1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_X86_BITOPS_H 3 #define _ASM_X86_BITOPS_H 4 5 /* 6 * Copyright 1992, Linus Torvalds. 7 * 8 * Note: inlines with more than a single statement should be marked 9 * __always_inline to avoid problems with older gcc's inlining heuristics. 10 */ 11 12 #ifndef _LINUX_BITOPS_H 13 #error only <linux/bitops.h> can be included directly 14 #endif 15 16 #include <linux/compiler.h> 17 #include <asm/alternative.h> 18 #include <asm/rmwcc.h> 19 #include <asm/barrier.h> 20 21 #if BITS_PER_LONG == 32 22 # define _BITOPS_LONG_SHIFT 5 23 #elif BITS_PER_LONG == 64 24 # define _BITOPS_LONG_SHIFT 6 25 #else 26 # error "Unexpected BITS_PER_LONG" 27 #endif 28 29 #define BIT_64(n) (U64_C(1) << (n)) 30 31 /* 32 * These have to be done with inline assembly: that way the bit-setting 33 * is guaranteed to be atomic. All bit operations return 0 if the bit 34 * was cleared before the operation and != 0 if it was not. 35 * 36 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1). 37 */ 38 39 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1) 40 /* Technically wrong, but this avoids compilation errors on some gcc 41 versions. */ 42 #define BITOP_ADDR(x) "=m" (*(volatile long *) (x)) 43 #else 44 #define BITOP_ADDR(x) "+m" (*(volatile long *) (x)) 45 #endif 46 47 #define ADDR BITOP_ADDR(addr) 48 49 /* 50 * We do the locked ops that don't return the old value as 51 * a mask operation on a byte. 52 */ 53 #define IS_IMMEDIATE(nr) (__builtin_constant_p(nr)) 54 #define CONST_MASK_ADDR(nr, addr) BITOP_ADDR((void *)(addr) + ((nr)>>3)) 55 #define CONST_MASK(nr) (1 << ((nr) & 7)) 56 57 /** 58 * set_bit - Atomically set a bit in memory 59 * @nr: the bit to set 60 * @addr: the address to start counting from 61 * 62 * This function is atomic and may not be reordered. See __set_bit() 63 * if you do not require the atomic guarantees. 64 * 65 * Note: there are no guarantees that this function will not be reordered 66 * on non x86 architectures, so if you are writing portable code, 67 * make sure not to rely on its reordering guarantees. 68 * 69 * Note that @nr may be almost arbitrarily large; this function is not 70 * restricted to acting on a single-word quantity. 71 */ 72 static __always_inline void 73 set_bit(long nr, volatile unsigned long *addr) 74 { 75 if (IS_IMMEDIATE(nr)) { 76 asm volatile(LOCK_PREFIX "orb %1,%0" 77 : CONST_MASK_ADDR(nr, addr) 78 : "iq" ((u8)CONST_MASK(nr)) 79 : "memory"); 80 } else { 81 asm volatile(LOCK_PREFIX __ASM_SIZE(bts) " %1,%0" 82 : BITOP_ADDR(addr) : "Ir" (nr) : "memory"); 83 } 84 } 85 86 /** 87 * __set_bit - Set a bit in memory 88 * @nr: the bit to set 89 * @addr: the address to start counting from 90 * 91 * Unlike set_bit(), this function is non-atomic and may be reordered. 92 * If it's called on the same region of memory simultaneously, the effect 93 * may be that only one operation succeeds. 94 */ 95 static __always_inline void __set_bit(long nr, volatile unsigned long *addr) 96 { 97 asm volatile(__ASM_SIZE(bts) " %1,%0" : ADDR : "Ir" (nr) : "memory"); 98 } 99 100 /** 101 * clear_bit - Clears a bit in memory 102 * @nr: Bit to clear 103 * @addr: Address to start counting from 104 * 105 * clear_bit() is atomic and may not be reordered. However, it does 106 * not contain a memory barrier, so if it is used for locking purposes, 107 * you should call smp_mb__before_atomic() and/or smp_mb__after_atomic() 108 * in order to ensure changes are visible on other processors. 109 */ 110 static __always_inline void 111 clear_bit(long nr, volatile unsigned long *addr) 112 { 113 if (IS_IMMEDIATE(nr)) { 114 asm volatile(LOCK_PREFIX "andb %1,%0" 115 : CONST_MASK_ADDR(nr, addr) 116 : "iq" ((u8)~CONST_MASK(nr))); 117 } else { 118 asm volatile(LOCK_PREFIX __ASM_SIZE(btr) " %1,%0" 119 : BITOP_ADDR(addr) 120 : "Ir" (nr)); 121 } 122 } 123 124 /* 125 * clear_bit_unlock - Clears a bit in memory 126 * @nr: Bit to clear 127 * @addr: Address to start counting from 128 * 129 * clear_bit() is atomic and implies release semantics before the memory 130 * operation. It can be used for an unlock. 131 */ 132 static __always_inline void clear_bit_unlock(long nr, volatile unsigned long *addr) 133 { 134 barrier(); 135 clear_bit(nr, addr); 136 } 137 138 static __always_inline void __clear_bit(long nr, volatile unsigned long *addr) 139 { 140 asm volatile(__ASM_SIZE(btr) " %1,%0" : ADDR : "Ir" (nr)); 141 } 142 143 static __always_inline bool clear_bit_unlock_is_negative_byte(long nr, volatile unsigned long *addr) 144 { 145 bool negative; 146 asm volatile(LOCK_PREFIX "andb %2,%1" 147 CC_SET(s) 148 : CC_OUT(s) (negative), ADDR 149 : "ir" ((char) ~(1 << nr)) : "memory"); 150 return negative; 151 } 152 153 // Let everybody know we have it 154 #define clear_bit_unlock_is_negative_byte clear_bit_unlock_is_negative_byte 155 156 /* 157 * __clear_bit_unlock - Clears a bit in memory 158 * @nr: Bit to clear 159 * @addr: Address to start counting from 160 * 161 * __clear_bit() is non-atomic and implies release semantics before the memory 162 * operation. It can be used for an unlock if no other CPUs can concurrently 163 * modify other bits in the word. 164 * 165 * No memory barrier is required here, because x86 cannot reorder stores past 166 * older loads. Same principle as spin_unlock. 167 */ 168 static __always_inline void __clear_bit_unlock(long nr, volatile unsigned long *addr) 169 { 170 barrier(); 171 __clear_bit(nr, addr); 172 } 173 174 /** 175 * __change_bit - Toggle a bit in memory 176 * @nr: the bit to change 177 * @addr: the address to start counting from 178 * 179 * Unlike change_bit(), this function is non-atomic and may be reordered. 180 * If it's called on the same region of memory simultaneously, the effect 181 * may be that only one operation succeeds. 182 */ 183 static __always_inline void __change_bit(long nr, volatile unsigned long *addr) 184 { 185 asm volatile(__ASM_SIZE(btc) " %1,%0" : ADDR : "Ir" (nr)); 186 } 187 188 /** 189 * change_bit - Toggle a bit in memory 190 * @nr: Bit to change 191 * @addr: Address to start counting from 192 * 193 * change_bit() is atomic and may not be reordered. 194 * Note that @nr may be almost arbitrarily large; this function is not 195 * restricted to acting on a single-word quantity. 196 */ 197 static __always_inline void change_bit(long nr, volatile unsigned long *addr) 198 { 199 if (IS_IMMEDIATE(nr)) { 200 asm volatile(LOCK_PREFIX "xorb %1,%0" 201 : CONST_MASK_ADDR(nr, addr) 202 : "iq" ((u8)CONST_MASK(nr))); 203 } else { 204 asm volatile(LOCK_PREFIX __ASM_SIZE(btc) " %1,%0" 205 : BITOP_ADDR(addr) 206 : "Ir" (nr)); 207 } 208 } 209 210 /** 211 * test_and_set_bit - Set a bit and return its old value 212 * @nr: Bit to set 213 * @addr: Address to count from 214 * 215 * This operation is atomic and cannot be reordered. 216 * It also implies a memory barrier. 217 */ 218 static __always_inline bool test_and_set_bit(long nr, volatile unsigned long *addr) 219 { 220 return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(bts), *addr, c, "Ir", nr); 221 } 222 223 /** 224 * test_and_set_bit_lock - Set a bit and return its old value for lock 225 * @nr: Bit to set 226 * @addr: Address to count from 227 * 228 * This is the same as test_and_set_bit on x86. 229 */ 230 static __always_inline bool 231 test_and_set_bit_lock(long nr, volatile unsigned long *addr) 232 { 233 return test_and_set_bit(nr, addr); 234 } 235 236 /** 237 * __test_and_set_bit - Set a bit and return its old value 238 * @nr: Bit to set 239 * @addr: Address to count from 240 * 241 * This operation is non-atomic and can be reordered. 242 * If two examples of this operation race, one can appear to succeed 243 * but actually fail. You must protect multiple accesses with a lock. 244 */ 245 static __always_inline bool __test_and_set_bit(long nr, volatile unsigned long *addr) 246 { 247 bool oldbit; 248 249 asm(__ASM_SIZE(bts) " %2,%1" 250 CC_SET(c) 251 : CC_OUT(c) (oldbit), ADDR 252 : "Ir" (nr)); 253 return oldbit; 254 } 255 256 /** 257 * test_and_clear_bit - Clear a bit and return its old value 258 * @nr: Bit to clear 259 * @addr: Address to count from 260 * 261 * This operation is atomic and cannot be reordered. 262 * It also implies a memory barrier. 263 */ 264 static __always_inline bool test_and_clear_bit(long nr, volatile unsigned long *addr) 265 { 266 return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btr), *addr, c, "Ir", nr); 267 } 268 269 /** 270 * __test_and_clear_bit - Clear a bit and return its old value 271 * @nr: Bit to clear 272 * @addr: Address to count from 273 * 274 * This operation is non-atomic and can be reordered. 275 * If two examples of this operation race, one can appear to succeed 276 * but actually fail. You must protect multiple accesses with a lock. 277 * 278 * Note: the operation is performed atomically with respect to 279 * the local CPU, but not other CPUs. Portable code should not 280 * rely on this behaviour. 281 * KVM relies on this behaviour on x86 for modifying memory that is also 282 * accessed from a hypervisor on the same CPU if running in a VM: don't change 283 * this without also updating arch/x86/kernel/kvm.c 284 */ 285 static __always_inline bool __test_and_clear_bit(long nr, volatile unsigned long *addr) 286 { 287 bool oldbit; 288 289 asm volatile(__ASM_SIZE(btr) " %2,%1" 290 CC_SET(c) 291 : CC_OUT(c) (oldbit), ADDR 292 : "Ir" (nr)); 293 return oldbit; 294 } 295 296 /* WARNING: non atomic and it can be reordered! */ 297 static __always_inline bool __test_and_change_bit(long nr, volatile unsigned long *addr) 298 { 299 bool oldbit; 300 301 asm volatile(__ASM_SIZE(btc) " %2,%1" 302 CC_SET(c) 303 : CC_OUT(c) (oldbit), ADDR 304 : "Ir" (nr) : "memory"); 305 306 return oldbit; 307 } 308 309 /** 310 * test_and_change_bit - Change a bit and return its old value 311 * @nr: Bit to change 312 * @addr: Address to count from 313 * 314 * This operation is atomic and cannot be reordered. 315 * It also implies a memory barrier. 316 */ 317 static __always_inline bool test_and_change_bit(long nr, volatile unsigned long *addr) 318 { 319 return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btc), *addr, c, "Ir", nr); 320 } 321 322 static __always_inline bool constant_test_bit(long nr, const volatile unsigned long *addr) 323 { 324 return ((1UL << (nr & (BITS_PER_LONG-1))) & 325 (addr[nr >> _BITOPS_LONG_SHIFT])) != 0; 326 } 327 328 static __always_inline bool variable_test_bit(long nr, volatile const unsigned long *addr) 329 { 330 bool oldbit; 331 332 asm volatile(__ASM_SIZE(bt) " %2,%1" 333 CC_SET(c) 334 : CC_OUT(c) (oldbit) 335 : "m" (*(unsigned long *)addr), "Ir" (nr)); 336 337 return oldbit; 338 } 339 340 #if 0 /* Fool kernel-doc since it doesn't do macros yet */ 341 /** 342 * test_bit - Determine whether a bit is set 343 * @nr: bit number to test 344 * @addr: Address to start counting from 345 */ 346 static bool test_bit(int nr, const volatile unsigned long *addr); 347 #endif 348 349 #define test_bit(nr, addr) \ 350 (__builtin_constant_p((nr)) \ 351 ? constant_test_bit((nr), (addr)) \ 352 : variable_test_bit((nr), (addr))) 353 354 /** 355 * __ffs - find first set bit in word 356 * @word: The word to search 357 * 358 * Undefined if no bit exists, so code should check against 0 first. 359 */ 360 static __always_inline unsigned long __ffs(unsigned long word) 361 { 362 asm("rep; bsf %1,%0" 363 : "=r" (word) 364 : "rm" (word)); 365 return word; 366 } 367 368 /** 369 * ffz - find first zero bit in word 370 * @word: The word to search 371 * 372 * Undefined if no zero exists, so code should check against ~0UL first. 373 */ 374 static __always_inline unsigned long ffz(unsigned long word) 375 { 376 asm("rep; bsf %1,%0" 377 : "=r" (word) 378 : "r" (~word)); 379 return word; 380 } 381 382 /* 383 * __fls: find last set bit in word 384 * @word: The word to search 385 * 386 * Undefined if no set bit exists, so code should check against 0 first. 387 */ 388 static __always_inline unsigned long __fls(unsigned long word) 389 { 390 asm("bsr %1,%0" 391 : "=r" (word) 392 : "rm" (word)); 393 return word; 394 } 395 396 #undef ADDR 397 398 #ifdef __KERNEL__ 399 /** 400 * ffs - find first set bit in word 401 * @x: the word to search 402 * 403 * This is defined the same way as the libc and compiler builtin ffs 404 * routines, therefore differs in spirit from the other bitops. 405 * 406 * ffs(value) returns 0 if value is 0 or the position of the first 407 * set bit if value is nonzero. The first (least significant) bit 408 * is at position 1. 409 */ 410 static __always_inline int ffs(int x) 411 { 412 int r; 413 414 #ifdef CONFIG_X86_64 415 /* 416 * AMD64 says BSFL won't clobber the dest reg if x==0; Intel64 says the 417 * dest reg is undefined if x==0, but their CPU architect says its 418 * value is written to set it to the same as before, except that the 419 * top 32 bits will be cleared. 420 * 421 * We cannot do this on 32 bits because at the very least some 422 * 486 CPUs did not behave this way. 423 */ 424 asm("bsfl %1,%0" 425 : "=r" (r) 426 : "rm" (x), "0" (-1)); 427 #elif defined(CONFIG_X86_CMOV) 428 asm("bsfl %1,%0\n\t" 429 "cmovzl %2,%0" 430 : "=&r" (r) : "rm" (x), "r" (-1)); 431 #else 432 asm("bsfl %1,%0\n\t" 433 "jnz 1f\n\t" 434 "movl $-1,%0\n" 435 "1:" : "=r" (r) : "rm" (x)); 436 #endif 437 return r + 1; 438 } 439 440 /** 441 * fls - find last set bit in word 442 * @x: the word to search 443 * 444 * This is defined in a similar way as the libc and compiler builtin 445 * ffs, but returns the position of the most significant set bit. 446 * 447 * fls(value) returns 0 if value is 0 or the position of the last 448 * set bit if value is nonzero. The last (most significant) bit is 449 * at position 32. 450 */ 451 static __always_inline int fls(int x) 452 { 453 int r; 454 455 #ifdef CONFIG_X86_64 456 /* 457 * AMD64 says BSRL won't clobber the dest reg if x==0; Intel64 says the 458 * dest reg is undefined if x==0, but their CPU architect says its 459 * value is written to set it to the same as before, except that the 460 * top 32 bits will be cleared. 461 * 462 * We cannot do this on 32 bits because at the very least some 463 * 486 CPUs did not behave this way. 464 */ 465 asm("bsrl %1,%0" 466 : "=r" (r) 467 : "rm" (x), "0" (-1)); 468 #elif defined(CONFIG_X86_CMOV) 469 asm("bsrl %1,%0\n\t" 470 "cmovzl %2,%0" 471 : "=&r" (r) : "rm" (x), "rm" (-1)); 472 #else 473 asm("bsrl %1,%0\n\t" 474 "jnz 1f\n\t" 475 "movl $-1,%0\n" 476 "1:" : "=r" (r) : "rm" (x)); 477 #endif 478 return r + 1; 479 } 480 481 /** 482 * fls64 - find last set bit in a 64-bit word 483 * @x: the word to search 484 * 485 * This is defined in a similar way as the libc and compiler builtin 486 * ffsll, but returns the position of the most significant set bit. 487 * 488 * fls64(value) returns 0 if value is 0 or the position of the last 489 * set bit if value is nonzero. The last (most significant) bit is 490 * at position 64. 491 */ 492 #ifdef CONFIG_X86_64 493 static __always_inline int fls64(__u64 x) 494 { 495 int bitpos = -1; 496 /* 497 * AMD64 says BSRQ won't clobber the dest reg if x==0; Intel64 says the 498 * dest reg is undefined if x==0, but their CPU architect says its 499 * value is written to set it to the same as before. 500 */ 501 asm("bsrq %1,%q0" 502 : "+r" (bitpos) 503 : "rm" (x)); 504 return bitpos + 1; 505 } 506 #else 507 #include <asm-generic/bitops/fls64.h> 508 #endif 509 510 #include <asm-generic/bitops/find.h> 511 512 #include <asm-generic/bitops/sched.h> 513 514 #include <asm/arch_hweight.h> 515 516 #include <asm-generic/bitops/const_hweight.h> 517 518 #include <asm-generic/bitops/le.h> 519 520 #include <asm-generic/bitops/ext2-atomic-setbit.h> 521 522 #endif /* __KERNEL__ */ 523 #endif /* _ASM_X86_BITOPS_H */ 524