xref: /openbmc/linux/arch/x86/include/asm/bitops.h (revision 26cfd12b)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_BITOPS_H
3 #define _ASM_X86_BITOPS_H
4 
5 /*
6  * Copyright 1992, Linus Torvalds.
7  *
8  * Note: inlines with more than a single statement should be marked
9  * __always_inline to avoid problems with older gcc's inlining heuristics.
10  */
11 
12 #ifndef _LINUX_BITOPS_H
13 #error only <linux/bitops.h> can be included directly
14 #endif
15 
16 #include <linux/compiler.h>
17 #include <asm/alternative.h>
18 #include <asm/rmwcc.h>
19 #include <asm/barrier.h>
20 
21 #if BITS_PER_LONG == 32
22 # define _BITOPS_LONG_SHIFT 5
23 #elif BITS_PER_LONG == 64
24 # define _BITOPS_LONG_SHIFT 6
25 #else
26 # error "Unexpected BITS_PER_LONG"
27 #endif
28 
29 #define BIT_64(n)			(U64_C(1) << (n))
30 
31 /*
32  * These have to be done with inline assembly: that way the bit-setting
33  * is guaranteed to be atomic. All bit operations return 0 if the bit
34  * was cleared before the operation and != 0 if it was not.
35  *
36  * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
37  */
38 
39 #define RLONG_ADDR(x)			 "m" (*(volatile long *) (x))
40 #define WBYTE_ADDR(x)			"+m" (*(volatile char *) (x))
41 
42 #define ADDR				RLONG_ADDR(addr)
43 
44 /*
45  * We do the locked ops that don't return the old value as
46  * a mask operation on a byte.
47  */
48 #define CONST_MASK_ADDR(nr, addr)	WBYTE_ADDR((void *)(addr) + ((nr)>>3))
49 #define CONST_MASK(nr)			(1 << ((nr) & 7))
50 
51 static __always_inline void
52 arch_set_bit(long nr, volatile unsigned long *addr)
53 {
54 	if (__builtin_constant_p(nr)) {
55 		asm volatile(LOCK_PREFIX "orb %b1,%0"
56 			: CONST_MASK_ADDR(nr, addr)
57 			: "iq" (CONST_MASK(nr))
58 			: "memory");
59 	} else {
60 		asm volatile(LOCK_PREFIX __ASM_SIZE(bts) " %1,%0"
61 			: : RLONG_ADDR(addr), "Ir" (nr) : "memory");
62 	}
63 }
64 
65 static __always_inline void
66 arch___set_bit(long nr, volatile unsigned long *addr)
67 {
68 	asm volatile(__ASM_SIZE(bts) " %1,%0" : : ADDR, "Ir" (nr) : "memory");
69 }
70 
71 static __always_inline void
72 arch_clear_bit(long nr, volatile unsigned long *addr)
73 {
74 	if (__builtin_constant_p(nr)) {
75 		asm volatile(LOCK_PREFIX "andb %b1,%0"
76 			: CONST_MASK_ADDR(nr, addr)
77 			: "iq" (~CONST_MASK(nr)));
78 	} else {
79 		asm volatile(LOCK_PREFIX __ASM_SIZE(btr) " %1,%0"
80 			: : RLONG_ADDR(addr), "Ir" (nr) : "memory");
81 	}
82 }
83 
84 static __always_inline void
85 arch_clear_bit_unlock(long nr, volatile unsigned long *addr)
86 {
87 	barrier();
88 	arch_clear_bit(nr, addr);
89 }
90 
91 static __always_inline void
92 arch___clear_bit(long nr, volatile unsigned long *addr)
93 {
94 	asm volatile(__ASM_SIZE(btr) " %1,%0" : : ADDR, "Ir" (nr) : "memory");
95 }
96 
97 static __always_inline bool
98 arch_clear_bit_unlock_is_negative_byte(long nr, volatile unsigned long *addr)
99 {
100 	bool negative;
101 	asm volatile(LOCK_PREFIX "andb %2,%1"
102 		CC_SET(s)
103 		: CC_OUT(s) (negative), WBYTE_ADDR(addr)
104 		: "ir" ((char) ~(1 << nr)) : "memory");
105 	return negative;
106 }
107 #define arch_clear_bit_unlock_is_negative_byte                                 \
108 	arch_clear_bit_unlock_is_negative_byte
109 
110 static __always_inline void
111 arch___clear_bit_unlock(long nr, volatile unsigned long *addr)
112 {
113 	arch___clear_bit(nr, addr);
114 }
115 
116 static __always_inline void
117 arch___change_bit(long nr, volatile unsigned long *addr)
118 {
119 	asm volatile(__ASM_SIZE(btc) " %1,%0" : : ADDR, "Ir" (nr) : "memory");
120 }
121 
122 static __always_inline void
123 arch_change_bit(long nr, volatile unsigned long *addr)
124 {
125 	if (__builtin_constant_p(nr)) {
126 		asm volatile(LOCK_PREFIX "xorb %b1,%0"
127 			: CONST_MASK_ADDR(nr, addr)
128 			: "iq" (CONST_MASK(nr)));
129 	} else {
130 		asm volatile(LOCK_PREFIX __ASM_SIZE(btc) " %1,%0"
131 			: : RLONG_ADDR(addr), "Ir" (nr) : "memory");
132 	}
133 }
134 
135 static __always_inline bool
136 arch_test_and_set_bit(long nr, volatile unsigned long *addr)
137 {
138 	return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(bts), *addr, c, "Ir", nr);
139 }
140 
141 static __always_inline bool
142 arch_test_and_set_bit_lock(long nr, volatile unsigned long *addr)
143 {
144 	return arch_test_and_set_bit(nr, addr);
145 }
146 
147 static __always_inline bool
148 arch___test_and_set_bit(long nr, volatile unsigned long *addr)
149 {
150 	bool oldbit;
151 
152 	asm(__ASM_SIZE(bts) " %2,%1"
153 	    CC_SET(c)
154 	    : CC_OUT(c) (oldbit)
155 	    : ADDR, "Ir" (nr) : "memory");
156 	return oldbit;
157 }
158 
159 static __always_inline bool
160 arch_test_and_clear_bit(long nr, volatile unsigned long *addr)
161 {
162 	return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btr), *addr, c, "Ir", nr);
163 }
164 
165 /*
166  * Note: the operation is performed atomically with respect to
167  * the local CPU, but not other CPUs. Portable code should not
168  * rely on this behaviour.
169  * KVM relies on this behaviour on x86 for modifying memory that is also
170  * accessed from a hypervisor on the same CPU if running in a VM: don't change
171  * this without also updating arch/x86/kernel/kvm.c
172  */
173 static __always_inline bool
174 arch___test_and_clear_bit(long nr, volatile unsigned long *addr)
175 {
176 	bool oldbit;
177 
178 	asm volatile(__ASM_SIZE(btr) " %2,%1"
179 		     CC_SET(c)
180 		     : CC_OUT(c) (oldbit)
181 		     : ADDR, "Ir" (nr) : "memory");
182 	return oldbit;
183 }
184 
185 static __always_inline bool
186 arch___test_and_change_bit(long nr, volatile unsigned long *addr)
187 {
188 	bool oldbit;
189 
190 	asm volatile(__ASM_SIZE(btc) " %2,%1"
191 		     CC_SET(c)
192 		     : CC_OUT(c) (oldbit)
193 		     : ADDR, "Ir" (nr) : "memory");
194 
195 	return oldbit;
196 }
197 
198 static __always_inline bool
199 arch_test_and_change_bit(long nr, volatile unsigned long *addr)
200 {
201 	return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btc), *addr, c, "Ir", nr);
202 }
203 
204 static __no_kcsan_or_inline bool constant_test_bit(long nr, const volatile unsigned long *addr)
205 {
206 	/*
207 	 * Because this is a plain access, we need to disable KCSAN here to
208 	 * avoid double instrumentation via instrumented bitops.
209 	 */
210 	return ((1UL << (nr & (BITS_PER_LONG-1))) &
211 		(addr[nr >> _BITOPS_LONG_SHIFT])) != 0;
212 }
213 
214 static __always_inline bool variable_test_bit(long nr, volatile const unsigned long *addr)
215 {
216 	bool oldbit;
217 
218 	asm volatile(__ASM_SIZE(bt) " %2,%1"
219 		     CC_SET(c)
220 		     : CC_OUT(c) (oldbit)
221 		     : "m" (*(unsigned long *)addr), "Ir" (nr) : "memory");
222 
223 	return oldbit;
224 }
225 
226 #define arch_test_bit(nr, addr)			\
227 	(__builtin_constant_p((nr))		\
228 	 ? constant_test_bit((nr), (addr))	\
229 	 : variable_test_bit((nr), (addr)))
230 
231 /**
232  * __ffs - find first set bit in word
233  * @word: The word to search
234  *
235  * Undefined if no bit exists, so code should check against 0 first.
236  */
237 static __always_inline unsigned long __ffs(unsigned long word)
238 {
239 	asm("rep; bsf %1,%0"
240 		: "=r" (word)
241 		: "rm" (word));
242 	return word;
243 }
244 
245 /**
246  * ffz - find first zero bit in word
247  * @word: The word to search
248  *
249  * Undefined if no zero exists, so code should check against ~0UL first.
250  */
251 static __always_inline unsigned long ffz(unsigned long word)
252 {
253 	asm("rep; bsf %1,%0"
254 		: "=r" (word)
255 		: "r" (~word));
256 	return word;
257 }
258 
259 /*
260  * __fls: find last set bit in word
261  * @word: The word to search
262  *
263  * Undefined if no set bit exists, so code should check against 0 first.
264  */
265 static __always_inline unsigned long __fls(unsigned long word)
266 {
267 	asm("bsr %1,%0"
268 	    : "=r" (word)
269 	    : "rm" (word));
270 	return word;
271 }
272 
273 #undef ADDR
274 
275 #ifdef __KERNEL__
276 /**
277  * ffs - find first set bit in word
278  * @x: the word to search
279  *
280  * This is defined the same way as the libc and compiler builtin ffs
281  * routines, therefore differs in spirit from the other bitops.
282  *
283  * ffs(value) returns 0 if value is 0 or the position of the first
284  * set bit if value is nonzero. The first (least significant) bit
285  * is at position 1.
286  */
287 static __always_inline int ffs(int x)
288 {
289 	int r;
290 
291 #ifdef CONFIG_X86_64
292 	/*
293 	 * AMD64 says BSFL won't clobber the dest reg if x==0; Intel64 says the
294 	 * dest reg is undefined if x==0, but their CPU architect says its
295 	 * value is written to set it to the same as before, except that the
296 	 * top 32 bits will be cleared.
297 	 *
298 	 * We cannot do this on 32 bits because at the very least some
299 	 * 486 CPUs did not behave this way.
300 	 */
301 	asm("bsfl %1,%0"
302 	    : "=r" (r)
303 	    : "rm" (x), "0" (-1));
304 #elif defined(CONFIG_X86_CMOV)
305 	asm("bsfl %1,%0\n\t"
306 	    "cmovzl %2,%0"
307 	    : "=&r" (r) : "rm" (x), "r" (-1));
308 #else
309 	asm("bsfl %1,%0\n\t"
310 	    "jnz 1f\n\t"
311 	    "movl $-1,%0\n"
312 	    "1:" : "=r" (r) : "rm" (x));
313 #endif
314 	return r + 1;
315 }
316 
317 /**
318  * fls - find last set bit in word
319  * @x: the word to search
320  *
321  * This is defined in a similar way as the libc and compiler builtin
322  * ffs, but returns the position of the most significant set bit.
323  *
324  * fls(value) returns 0 if value is 0 or the position of the last
325  * set bit if value is nonzero. The last (most significant) bit is
326  * at position 32.
327  */
328 static __always_inline int fls(unsigned int x)
329 {
330 	int r;
331 
332 #ifdef CONFIG_X86_64
333 	/*
334 	 * AMD64 says BSRL won't clobber the dest reg if x==0; Intel64 says the
335 	 * dest reg is undefined if x==0, but their CPU architect says its
336 	 * value is written to set it to the same as before, except that the
337 	 * top 32 bits will be cleared.
338 	 *
339 	 * We cannot do this on 32 bits because at the very least some
340 	 * 486 CPUs did not behave this way.
341 	 */
342 	asm("bsrl %1,%0"
343 	    : "=r" (r)
344 	    : "rm" (x), "0" (-1));
345 #elif defined(CONFIG_X86_CMOV)
346 	asm("bsrl %1,%0\n\t"
347 	    "cmovzl %2,%0"
348 	    : "=&r" (r) : "rm" (x), "rm" (-1));
349 #else
350 	asm("bsrl %1,%0\n\t"
351 	    "jnz 1f\n\t"
352 	    "movl $-1,%0\n"
353 	    "1:" : "=r" (r) : "rm" (x));
354 #endif
355 	return r + 1;
356 }
357 
358 /**
359  * fls64 - find last set bit in a 64-bit word
360  * @x: the word to search
361  *
362  * This is defined in a similar way as the libc and compiler builtin
363  * ffsll, but returns the position of the most significant set bit.
364  *
365  * fls64(value) returns 0 if value is 0 or the position of the last
366  * set bit if value is nonzero. The last (most significant) bit is
367  * at position 64.
368  */
369 #ifdef CONFIG_X86_64
370 static __always_inline int fls64(__u64 x)
371 {
372 	int bitpos = -1;
373 	/*
374 	 * AMD64 says BSRQ won't clobber the dest reg if x==0; Intel64 says the
375 	 * dest reg is undefined if x==0, but their CPU architect says its
376 	 * value is written to set it to the same as before.
377 	 */
378 	asm("bsrq %1,%q0"
379 	    : "+r" (bitpos)
380 	    : "rm" (x));
381 	return bitpos + 1;
382 }
383 #else
384 #include <asm-generic/bitops/fls64.h>
385 #endif
386 
387 #include <asm-generic/bitops/find.h>
388 
389 #include <asm-generic/bitops/sched.h>
390 
391 #include <asm/arch_hweight.h>
392 
393 #include <asm-generic/bitops/const_hweight.h>
394 
395 #include <asm-generic/bitops/instrumented-atomic.h>
396 #include <asm-generic/bitops/instrumented-non-atomic.h>
397 #include <asm-generic/bitops/instrumented-lock.h>
398 
399 #include <asm-generic/bitops/le.h>
400 
401 #include <asm-generic/bitops/ext2-atomic-setbit.h>
402 
403 #endif /* __KERNEL__ */
404 #endif /* _ASM_X86_BITOPS_H */
405