xref: /openbmc/linux/arch/x86/include/asm/barrier.h (revision f677b30b487ca3763c3de3f1b4d8c976c2961cd1)
1 #ifndef _ASM_X86_BARRIER_H
2 #define _ASM_X86_BARRIER_H
3 
4 #include <asm/alternative.h>
5 #include <asm/nops.h>
6 
7 /*
8  * Force strict CPU ordering.
9  * And yes, this is required on UP too when we're talking
10  * to devices.
11  */
12 
13 #ifdef CONFIG_X86_32
14 /*
15  * Some non-Intel clones support out of order store. wmb() ceases to be a
16  * nop for these.
17  */
18 #define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2)
19 #define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2)
20 #define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM)
21 #else
22 #define mb() 	asm volatile("mfence":::"memory")
23 #define rmb()	asm volatile("lfence":::"memory")
24 #define wmb()	asm volatile("sfence" ::: "memory")
25 #endif
26 
27 /**
28  * read_barrier_depends - Flush all pending reads that subsequents reads
29  * depend on.
30  *
31  * No data-dependent reads from memory-like regions are ever reordered
32  * over this barrier.  All reads preceding this primitive are guaranteed
33  * to access memory (but not necessarily other CPUs' caches) before any
34  * reads following this primitive that depend on the data return by
35  * any of the preceding reads.  This primitive is much lighter weight than
36  * rmb() on most CPUs, and is never heavier weight than is
37  * rmb().
38  *
39  * These ordering constraints are respected by both the local CPU
40  * and the compiler.
41  *
42  * Ordering is not guaranteed by anything other than these primitives,
43  * not even by data dependencies.  See the documentation for
44  * memory_barrier() for examples and URLs to more information.
45  *
46  * For example, the following code would force ordering (the initial
47  * value of "a" is zero, "b" is one, and "p" is "&a"):
48  *
49  * <programlisting>
50  *	CPU 0				CPU 1
51  *
52  *	b = 2;
53  *	memory_barrier();
54  *	p = &b;				q = p;
55  *					read_barrier_depends();
56  *					d = *q;
57  * </programlisting>
58  *
59  * because the read of "*q" depends on the read of "p" and these
60  * two reads are separated by a read_barrier_depends().  However,
61  * the following code, with the same initial values for "a" and "b":
62  *
63  * <programlisting>
64  *	CPU 0				CPU 1
65  *
66  *	a = 2;
67  *	memory_barrier();
68  *	b = 3;				y = b;
69  *					read_barrier_depends();
70  *					x = a;
71  * </programlisting>
72  *
73  * does not enforce ordering, since there is no data dependency between
74  * the read of "a" and the read of "b".  Therefore, on some CPUs, such
75  * as Alpha, "y" could be set to 3 and "x" to 0.  Use rmb()
76  * in cases like this where there are no data dependencies.
77  **/
78 
79 #define read_barrier_depends()	do { } while (0)
80 
81 #ifdef CONFIG_SMP
82 #define smp_mb()	mb()
83 #ifdef CONFIG_X86_PPRO_FENCE
84 # define smp_rmb()	rmb()
85 #else
86 # define smp_rmb()	barrier()
87 #endif
88 #ifdef CONFIG_X86_OOSTORE
89 # define smp_wmb() 	wmb()
90 #else
91 # define smp_wmb()	barrier()
92 #endif
93 #define smp_read_barrier_depends()	read_barrier_depends()
94 #define set_mb(var, value) do { (void)xchg(&var, value); } while (0)
95 #else
96 #define smp_mb()	barrier()
97 #define smp_rmb()	barrier()
98 #define smp_wmb()	barrier()
99 #define smp_read_barrier_depends()	do { } while (0)
100 #define set_mb(var, value) do { var = value; barrier(); } while (0)
101 #endif
102 
103 /*
104  * Stop RDTSC speculation. This is needed when you need to use RDTSC
105  * (or get_cycles or vread that possibly accesses the TSC) in a defined
106  * code region.
107  *
108  * (Could use an alternative three way for this if there was one.)
109  */
110 static __always_inline void rdtsc_barrier(void)
111 {
112 	alternative(ASM_NOP3, "mfence", X86_FEATURE_MFENCE_RDTSC);
113 	alternative(ASM_NOP3, "lfence", X86_FEATURE_LFENCE_RDTSC);
114 }
115 
116 #endif /* _ASM_X86_BARRIER_H */
117