xref: /openbmc/linux/arch/x86/hyperv/hv_init.c (revision fed8b7e366e7c8f81e957ef91aa8f0a38e038c66)
1 /*
2  * X86 specific Hyper-V initialization code.
3  *
4  * Copyright (C) 2016, Microsoft, Inc.
5  *
6  * Author : K. Y. Srinivasan <kys@microsoft.com>
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published
10  * by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
15  * NON INFRINGEMENT.  See the GNU General Public License for more
16  * details.
17  *
18  */
19 
20 #include <linux/efi.h>
21 #include <linux/types.h>
22 #include <asm/apic.h>
23 #include <asm/desc.h>
24 #include <asm/hypervisor.h>
25 #include <asm/hyperv-tlfs.h>
26 #include <asm/mshyperv.h>
27 #include <linux/version.h>
28 #include <linux/vmalloc.h>
29 #include <linux/mm.h>
30 #include <linux/clockchips.h>
31 #include <linux/hyperv.h>
32 #include <linux/slab.h>
33 #include <linux/cpuhotplug.h>
34 
35 #ifdef CONFIG_HYPERV_TSCPAGE
36 
37 static struct ms_hyperv_tsc_page *tsc_pg;
38 
39 struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
40 {
41 	return tsc_pg;
42 }
43 EXPORT_SYMBOL_GPL(hv_get_tsc_page);
44 
45 static u64 read_hv_clock_tsc(struct clocksource *arg)
46 {
47 	u64 current_tick = hv_read_tsc_page(tsc_pg);
48 
49 	if (current_tick == U64_MAX)
50 		rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick);
51 
52 	return current_tick;
53 }
54 
55 static struct clocksource hyperv_cs_tsc = {
56 		.name		= "hyperv_clocksource_tsc_page",
57 		.rating		= 400,
58 		.read		= read_hv_clock_tsc,
59 		.mask		= CLOCKSOURCE_MASK(64),
60 		.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
61 };
62 #endif
63 
64 static u64 read_hv_clock_msr(struct clocksource *arg)
65 {
66 	u64 current_tick;
67 	/*
68 	 * Read the partition counter to get the current tick count. This count
69 	 * is set to 0 when the partition is created and is incremented in
70 	 * 100 nanosecond units.
71 	 */
72 	rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick);
73 	return current_tick;
74 }
75 
76 static struct clocksource hyperv_cs_msr = {
77 	.name		= "hyperv_clocksource_msr",
78 	.rating		= 400,
79 	.read		= read_hv_clock_msr,
80 	.mask		= CLOCKSOURCE_MASK(64),
81 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
82 };
83 
84 void *hv_hypercall_pg;
85 EXPORT_SYMBOL_GPL(hv_hypercall_pg);
86 struct clocksource *hyperv_cs;
87 EXPORT_SYMBOL_GPL(hyperv_cs);
88 
89 u32 *hv_vp_index;
90 EXPORT_SYMBOL_GPL(hv_vp_index);
91 
92 struct hv_vp_assist_page **hv_vp_assist_page;
93 EXPORT_SYMBOL_GPL(hv_vp_assist_page);
94 
95 void  __percpu **hyperv_pcpu_input_arg;
96 EXPORT_SYMBOL_GPL(hyperv_pcpu_input_arg);
97 
98 u32 hv_max_vp_index;
99 
100 static int hv_cpu_init(unsigned int cpu)
101 {
102 	u64 msr_vp_index;
103 	struct hv_vp_assist_page **hvp = &hv_vp_assist_page[smp_processor_id()];
104 	void **input_arg;
105 
106 	input_arg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg);
107 	*input_arg = page_address(alloc_page(GFP_KERNEL));
108 
109 	hv_get_vp_index(msr_vp_index);
110 
111 	hv_vp_index[smp_processor_id()] = msr_vp_index;
112 
113 	if (msr_vp_index > hv_max_vp_index)
114 		hv_max_vp_index = msr_vp_index;
115 
116 	if (!hv_vp_assist_page)
117 		return 0;
118 
119 	if (!*hvp)
120 		*hvp = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL);
121 
122 	if (*hvp) {
123 		u64 val;
124 
125 		val = vmalloc_to_pfn(*hvp);
126 		val = (val << HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT) |
127 			HV_X64_MSR_VP_ASSIST_PAGE_ENABLE;
128 
129 		wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, val);
130 	}
131 
132 	return 0;
133 }
134 
135 static void (*hv_reenlightenment_cb)(void);
136 
137 static void hv_reenlightenment_notify(struct work_struct *dummy)
138 {
139 	struct hv_tsc_emulation_status emu_status;
140 
141 	rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
142 
143 	/* Don't issue the callback if TSC accesses are not emulated */
144 	if (hv_reenlightenment_cb && emu_status.inprogress)
145 		hv_reenlightenment_cb();
146 }
147 static DECLARE_DELAYED_WORK(hv_reenlightenment_work, hv_reenlightenment_notify);
148 
149 void hyperv_stop_tsc_emulation(void)
150 {
151 	u64 freq;
152 	struct hv_tsc_emulation_status emu_status;
153 
154 	rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
155 	emu_status.inprogress = 0;
156 	wrmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
157 
158 	rdmsrl(HV_X64_MSR_TSC_FREQUENCY, freq);
159 	tsc_khz = div64_u64(freq, 1000);
160 }
161 EXPORT_SYMBOL_GPL(hyperv_stop_tsc_emulation);
162 
163 static inline bool hv_reenlightenment_available(void)
164 {
165 	/*
166 	 * Check for required features and priviliges to make TSC frequency
167 	 * change notifications work.
168 	 */
169 	return ms_hyperv.features & HV_X64_ACCESS_FREQUENCY_MSRS &&
170 		ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE &&
171 		ms_hyperv.features & HV_X64_ACCESS_REENLIGHTENMENT;
172 }
173 
174 __visible void __irq_entry hyperv_reenlightenment_intr(struct pt_regs *regs)
175 {
176 	entering_ack_irq();
177 
178 	inc_irq_stat(irq_hv_reenlightenment_count);
179 
180 	schedule_delayed_work(&hv_reenlightenment_work, HZ/10);
181 
182 	exiting_irq();
183 }
184 
185 void set_hv_tscchange_cb(void (*cb)(void))
186 {
187 	struct hv_reenlightenment_control re_ctrl = {
188 		.vector = HYPERV_REENLIGHTENMENT_VECTOR,
189 		.enabled = 1,
190 		.target_vp = hv_vp_index[smp_processor_id()]
191 	};
192 	struct hv_tsc_emulation_control emu_ctrl = {.enabled = 1};
193 
194 	if (!hv_reenlightenment_available()) {
195 		pr_warn("Hyper-V: reenlightenment support is unavailable\n");
196 		return;
197 	}
198 
199 	hv_reenlightenment_cb = cb;
200 
201 	/* Make sure callback is registered before we write to MSRs */
202 	wmb();
203 
204 	wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
205 	wrmsrl(HV_X64_MSR_TSC_EMULATION_CONTROL, *((u64 *)&emu_ctrl));
206 }
207 EXPORT_SYMBOL_GPL(set_hv_tscchange_cb);
208 
209 void clear_hv_tscchange_cb(void)
210 {
211 	struct hv_reenlightenment_control re_ctrl;
212 
213 	if (!hv_reenlightenment_available())
214 		return;
215 
216 	rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
217 	re_ctrl.enabled = 0;
218 	wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
219 
220 	hv_reenlightenment_cb = NULL;
221 }
222 EXPORT_SYMBOL_GPL(clear_hv_tscchange_cb);
223 
224 static int hv_cpu_die(unsigned int cpu)
225 {
226 	struct hv_reenlightenment_control re_ctrl;
227 	unsigned int new_cpu;
228 	unsigned long flags;
229 	void **input_arg;
230 	void *input_pg = NULL;
231 
232 	local_irq_save(flags);
233 	input_arg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg);
234 	input_pg = *input_arg;
235 	*input_arg = NULL;
236 	local_irq_restore(flags);
237 	free_page((unsigned long)input_pg);
238 
239 	if (hv_vp_assist_page && hv_vp_assist_page[cpu])
240 		wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, 0);
241 
242 	if (hv_reenlightenment_cb == NULL)
243 		return 0;
244 
245 	rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
246 	if (re_ctrl.target_vp == hv_vp_index[cpu]) {
247 		/* Reassign to some other online CPU */
248 		new_cpu = cpumask_any_but(cpu_online_mask, cpu);
249 
250 		re_ctrl.target_vp = hv_vp_index[new_cpu];
251 		wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
252 	}
253 
254 	return 0;
255 }
256 
257 static int __init hv_pci_init(void)
258 {
259 	int gen2vm = efi_enabled(EFI_BOOT);
260 
261 	/*
262 	 * For Generation-2 VM, we exit from pci_arch_init() by returning 0.
263 	 * The purpose is to suppress the harmless warning:
264 	 * "PCI: Fatal: No config space access function found"
265 	 */
266 	if (gen2vm)
267 		return 0;
268 
269 	/* For Generation-1 VM, we'll proceed in pci_arch_init().  */
270 	return 1;
271 }
272 
273 /*
274  * This function is to be invoked early in the boot sequence after the
275  * hypervisor has been detected.
276  *
277  * 1. Setup the hypercall page.
278  * 2. Register Hyper-V specific clocksource.
279  * 3. Setup Hyper-V specific APIC entry points.
280  */
281 void __init hyperv_init(void)
282 {
283 	u64 guest_id, required_msrs;
284 	union hv_x64_msr_hypercall_contents hypercall_msr;
285 	int cpuhp, i;
286 
287 	if (x86_hyper_type != X86_HYPER_MS_HYPERV)
288 		return;
289 
290 	/* Absolutely required MSRs */
291 	required_msrs = HV_X64_MSR_HYPERCALL_AVAILABLE |
292 		HV_X64_MSR_VP_INDEX_AVAILABLE;
293 
294 	if ((ms_hyperv.features & required_msrs) != required_msrs)
295 		return;
296 
297 	/*
298 	 * Allocate the per-CPU state for the hypercall input arg.
299 	 * If this allocation fails, we will not be able to setup
300 	 * (per-CPU) hypercall input page and thus this failure is
301 	 * fatal on Hyper-V.
302 	 */
303 	hyperv_pcpu_input_arg = alloc_percpu(void  *);
304 
305 	BUG_ON(hyperv_pcpu_input_arg == NULL);
306 
307 	/* Allocate percpu VP index */
308 	hv_vp_index = kmalloc_array(num_possible_cpus(), sizeof(*hv_vp_index),
309 				    GFP_KERNEL);
310 	if (!hv_vp_index)
311 		return;
312 
313 	for (i = 0; i < num_possible_cpus(); i++)
314 		hv_vp_index[i] = VP_INVAL;
315 
316 	hv_vp_assist_page = kcalloc(num_possible_cpus(),
317 				    sizeof(*hv_vp_assist_page), GFP_KERNEL);
318 	if (!hv_vp_assist_page) {
319 		ms_hyperv.hints &= ~HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
320 		goto free_vp_index;
321 	}
322 
323 	cpuhp = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv_init:online",
324 				  hv_cpu_init, hv_cpu_die);
325 	if (cpuhp < 0)
326 		goto free_vp_assist_page;
327 
328 	/*
329 	 * Setup the hypercall page and enable hypercalls.
330 	 * 1. Register the guest ID
331 	 * 2. Enable the hypercall and register the hypercall page
332 	 */
333 	guest_id = generate_guest_id(0, LINUX_VERSION_CODE, 0);
334 	wrmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
335 
336 	hv_hypercall_pg  = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL_RX);
337 	if (hv_hypercall_pg == NULL) {
338 		wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
339 		goto remove_cpuhp_state;
340 	}
341 
342 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
343 	hypercall_msr.enable = 1;
344 	hypercall_msr.guest_physical_address = vmalloc_to_pfn(hv_hypercall_pg);
345 	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
346 
347 	hv_apic_init();
348 
349 	x86_init.pci.arch_init = hv_pci_init;
350 
351 	/*
352 	 * Register Hyper-V specific clocksource.
353 	 */
354 #ifdef CONFIG_HYPERV_TSCPAGE
355 	if (ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE) {
356 		union hv_x64_msr_hypercall_contents tsc_msr;
357 
358 		tsc_pg = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL);
359 		if (!tsc_pg)
360 			goto register_msr_cs;
361 
362 		hyperv_cs = &hyperv_cs_tsc;
363 
364 		rdmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
365 
366 		tsc_msr.enable = 1;
367 		tsc_msr.guest_physical_address = vmalloc_to_pfn(tsc_pg);
368 
369 		wrmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
370 
371 		hyperv_cs_tsc.archdata.vclock_mode = VCLOCK_HVCLOCK;
372 
373 		clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
374 		return;
375 	}
376 register_msr_cs:
377 #endif
378 	/*
379 	 * For 32 bit guests just use the MSR based mechanism for reading
380 	 * the partition counter.
381 	 */
382 
383 	hyperv_cs = &hyperv_cs_msr;
384 	if (ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE)
385 		clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
386 
387 	return;
388 
389 remove_cpuhp_state:
390 	cpuhp_remove_state(cpuhp);
391 free_vp_assist_page:
392 	kfree(hv_vp_assist_page);
393 	hv_vp_assist_page = NULL;
394 free_vp_index:
395 	kfree(hv_vp_index);
396 	hv_vp_index = NULL;
397 }
398 
399 /*
400  * This routine is called before kexec/kdump, it does the required cleanup.
401  */
402 void hyperv_cleanup(void)
403 {
404 	union hv_x64_msr_hypercall_contents hypercall_msr;
405 
406 	/* Reset our OS id */
407 	wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
408 
409 	/* Reset the hypercall page */
410 	hypercall_msr.as_uint64 = 0;
411 	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
412 
413 	/* Reset the TSC page */
414 	hypercall_msr.as_uint64 = 0;
415 	wrmsrl(HV_X64_MSR_REFERENCE_TSC, hypercall_msr.as_uint64);
416 }
417 EXPORT_SYMBOL_GPL(hyperv_cleanup);
418 
419 void hyperv_report_panic(struct pt_regs *regs, long err)
420 {
421 	static bool panic_reported;
422 	u64 guest_id;
423 
424 	/*
425 	 * We prefer to report panic on 'die' chain as we have proper
426 	 * registers to report, but if we miss it (e.g. on BUG()) we need
427 	 * to report it on 'panic'.
428 	 */
429 	if (panic_reported)
430 		return;
431 	panic_reported = true;
432 
433 	rdmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
434 
435 	wrmsrl(HV_X64_MSR_CRASH_P0, err);
436 	wrmsrl(HV_X64_MSR_CRASH_P1, guest_id);
437 	wrmsrl(HV_X64_MSR_CRASH_P2, regs->ip);
438 	wrmsrl(HV_X64_MSR_CRASH_P3, regs->ax);
439 	wrmsrl(HV_X64_MSR_CRASH_P4, regs->sp);
440 
441 	/*
442 	 * Let Hyper-V know there is crash data available
443 	 */
444 	wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
445 }
446 EXPORT_SYMBOL_GPL(hyperv_report_panic);
447 
448 /**
449  * hyperv_report_panic_msg - report panic message to Hyper-V
450  * @pa: physical address of the panic page containing the message
451  * @size: size of the message in the page
452  */
453 void hyperv_report_panic_msg(phys_addr_t pa, size_t size)
454 {
455 	/*
456 	 * P3 to contain the physical address of the panic page & P4 to
457 	 * contain the size of the panic data in that page. Rest of the
458 	 * registers are no-op when the NOTIFY_MSG flag is set.
459 	 */
460 	wrmsrl(HV_X64_MSR_CRASH_P0, 0);
461 	wrmsrl(HV_X64_MSR_CRASH_P1, 0);
462 	wrmsrl(HV_X64_MSR_CRASH_P2, 0);
463 	wrmsrl(HV_X64_MSR_CRASH_P3, pa);
464 	wrmsrl(HV_X64_MSR_CRASH_P4, size);
465 
466 	/*
467 	 * Let Hyper-V know there is crash data available along with
468 	 * the panic message.
469 	 */
470 	wrmsrl(HV_X64_MSR_CRASH_CTL,
471 	       (HV_CRASH_CTL_CRASH_NOTIFY | HV_CRASH_CTL_CRASH_NOTIFY_MSG));
472 }
473 EXPORT_SYMBOL_GPL(hyperv_report_panic_msg);
474 
475 bool hv_is_hyperv_initialized(void)
476 {
477 	union hv_x64_msr_hypercall_contents hypercall_msr;
478 
479 	/*
480 	 * Ensure that we're really on Hyper-V, and not a KVM or Xen
481 	 * emulation of Hyper-V
482 	 */
483 	if (x86_hyper_type != X86_HYPER_MS_HYPERV)
484 		return false;
485 
486 	/*
487 	 * Verify that earlier initialization succeeded by checking
488 	 * that the hypercall page is setup
489 	 */
490 	hypercall_msr.as_uint64 = 0;
491 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
492 
493 	return hypercall_msr.enable;
494 }
495 EXPORT_SYMBOL_GPL(hv_is_hyperv_initialized);
496