1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * X86 specific Hyper-V initialization code. 4 * 5 * Copyright (C) 2016, Microsoft, Inc. 6 * 7 * Author : K. Y. Srinivasan <kys@microsoft.com> 8 */ 9 10 #include <linux/efi.h> 11 #include <linux/types.h> 12 #include <linux/bitfield.h> 13 #include <linux/io.h> 14 #include <asm/apic.h> 15 #include <asm/desc.h> 16 #include <asm/sev.h> 17 #include <asm/hypervisor.h> 18 #include <asm/hyperv-tlfs.h> 19 #include <asm/mshyperv.h> 20 #include <asm/idtentry.h> 21 #include <asm/set_memory.h> 22 #include <linux/kexec.h> 23 #include <linux/version.h> 24 #include <linux/vmalloc.h> 25 #include <linux/mm.h> 26 #include <linux/hyperv.h> 27 #include <linux/slab.h> 28 #include <linux/kernel.h> 29 #include <linux/cpuhotplug.h> 30 #include <linux/syscore_ops.h> 31 #include <clocksource/hyperv_timer.h> 32 #include <linux/highmem.h> 33 34 int hyperv_init_cpuhp; 35 u64 hv_current_partition_id = ~0ull; 36 EXPORT_SYMBOL_GPL(hv_current_partition_id); 37 38 void *hv_hypercall_pg; 39 EXPORT_SYMBOL_GPL(hv_hypercall_pg); 40 41 union hv_ghcb * __percpu *hv_ghcb_pg; 42 43 /* Storage to save the hypercall page temporarily for hibernation */ 44 static void *hv_hypercall_pg_saved; 45 46 struct hv_vp_assist_page **hv_vp_assist_page; 47 EXPORT_SYMBOL_GPL(hv_vp_assist_page); 48 49 static int hyperv_init_ghcb(void) 50 { 51 u64 ghcb_gpa; 52 void *ghcb_va; 53 void **ghcb_base; 54 55 if (!hv_isolation_type_snp()) 56 return 0; 57 58 if (!hv_ghcb_pg) 59 return -EINVAL; 60 61 /* 62 * GHCB page is allocated by paravisor. The address 63 * returned by MSR_AMD64_SEV_ES_GHCB is above shared 64 * memory boundary and map it here. 65 */ 66 rdmsrl(MSR_AMD64_SEV_ES_GHCB, ghcb_gpa); 67 68 /* Mask out vTOM bit. ioremap_cache() maps decrypted */ 69 ghcb_gpa &= ~ms_hyperv.shared_gpa_boundary; 70 ghcb_va = (void *)ioremap_cache(ghcb_gpa, HV_HYP_PAGE_SIZE); 71 if (!ghcb_va) 72 return -ENOMEM; 73 74 ghcb_base = (void **)this_cpu_ptr(hv_ghcb_pg); 75 *ghcb_base = ghcb_va; 76 77 return 0; 78 } 79 80 static int hv_cpu_init(unsigned int cpu) 81 { 82 union hv_vp_assist_msr_contents msr = { 0 }; 83 struct hv_vp_assist_page **hvp = &hv_vp_assist_page[cpu]; 84 int ret; 85 86 ret = hv_common_cpu_init(cpu); 87 if (ret) 88 return ret; 89 90 if (!hv_vp_assist_page) 91 return 0; 92 93 if (hv_root_partition) { 94 /* 95 * For root partition we get the hypervisor provided VP assist 96 * page, instead of allocating a new page. 97 */ 98 rdmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64); 99 *hvp = memremap(msr.pfn << HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT, 100 PAGE_SIZE, MEMREMAP_WB); 101 } else { 102 /* 103 * The VP assist page is an "overlay" page (see Hyper-V TLFS's 104 * Section 5.2.1 "GPA Overlay Pages"). Here it must be zeroed 105 * out to make sure we always write the EOI MSR in 106 * hv_apic_eoi_write() *after* the EOI optimization is disabled 107 * in hv_cpu_die(), otherwise a CPU may not be stopped in the 108 * case of CPU offlining and the VM will hang. 109 */ 110 if (!*hvp) { 111 *hvp = __vmalloc(PAGE_SIZE, GFP_KERNEL | __GFP_ZERO); 112 113 /* 114 * Hyper-V should never specify a VM that is a Confidential 115 * VM and also running in the root partition. Root partition 116 * is blocked to run in Confidential VM. So only decrypt assist 117 * page in non-root partition here. 118 */ 119 if (*hvp && hv_isolation_type_en_snp()) { 120 WARN_ON_ONCE(set_memory_decrypted((unsigned long)(*hvp), 1)); 121 memset(*hvp, 0, PAGE_SIZE); 122 } 123 } 124 125 if (*hvp) 126 msr.pfn = vmalloc_to_pfn(*hvp); 127 128 } 129 if (!WARN_ON(!(*hvp))) { 130 msr.enable = 1; 131 wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64); 132 } 133 134 return hyperv_init_ghcb(); 135 } 136 137 static void (*hv_reenlightenment_cb)(void); 138 139 static void hv_reenlightenment_notify(struct work_struct *dummy) 140 { 141 struct hv_tsc_emulation_status emu_status; 142 143 rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status); 144 145 /* Don't issue the callback if TSC accesses are not emulated */ 146 if (hv_reenlightenment_cb && emu_status.inprogress) 147 hv_reenlightenment_cb(); 148 } 149 static DECLARE_DELAYED_WORK(hv_reenlightenment_work, hv_reenlightenment_notify); 150 151 void hyperv_stop_tsc_emulation(void) 152 { 153 u64 freq; 154 struct hv_tsc_emulation_status emu_status; 155 156 rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status); 157 emu_status.inprogress = 0; 158 wrmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status); 159 160 rdmsrl(HV_X64_MSR_TSC_FREQUENCY, freq); 161 tsc_khz = div64_u64(freq, 1000); 162 } 163 EXPORT_SYMBOL_GPL(hyperv_stop_tsc_emulation); 164 165 static inline bool hv_reenlightenment_available(void) 166 { 167 /* 168 * Check for required features and privileges to make TSC frequency 169 * change notifications work. 170 */ 171 return ms_hyperv.features & HV_ACCESS_FREQUENCY_MSRS && 172 ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE && 173 ms_hyperv.features & HV_ACCESS_REENLIGHTENMENT; 174 } 175 176 DEFINE_IDTENTRY_SYSVEC(sysvec_hyperv_reenlightenment) 177 { 178 ack_APIC_irq(); 179 inc_irq_stat(irq_hv_reenlightenment_count); 180 schedule_delayed_work(&hv_reenlightenment_work, HZ/10); 181 } 182 183 void set_hv_tscchange_cb(void (*cb)(void)) 184 { 185 struct hv_reenlightenment_control re_ctrl = { 186 .vector = HYPERV_REENLIGHTENMENT_VECTOR, 187 .enabled = 1, 188 }; 189 struct hv_tsc_emulation_control emu_ctrl = {.enabled = 1}; 190 191 if (!hv_reenlightenment_available()) { 192 pr_warn("Hyper-V: reenlightenment support is unavailable\n"); 193 return; 194 } 195 196 if (!hv_vp_index) 197 return; 198 199 hv_reenlightenment_cb = cb; 200 201 /* Make sure callback is registered before we write to MSRs */ 202 wmb(); 203 204 re_ctrl.target_vp = hv_vp_index[get_cpu()]; 205 206 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl)); 207 wrmsrl(HV_X64_MSR_TSC_EMULATION_CONTROL, *((u64 *)&emu_ctrl)); 208 209 put_cpu(); 210 } 211 EXPORT_SYMBOL_GPL(set_hv_tscchange_cb); 212 213 void clear_hv_tscchange_cb(void) 214 { 215 struct hv_reenlightenment_control re_ctrl; 216 217 if (!hv_reenlightenment_available()) 218 return; 219 220 rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl); 221 re_ctrl.enabled = 0; 222 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl); 223 224 hv_reenlightenment_cb = NULL; 225 } 226 EXPORT_SYMBOL_GPL(clear_hv_tscchange_cb); 227 228 static int hv_cpu_die(unsigned int cpu) 229 { 230 struct hv_reenlightenment_control re_ctrl; 231 unsigned int new_cpu; 232 void **ghcb_va; 233 234 if (hv_ghcb_pg) { 235 ghcb_va = (void **)this_cpu_ptr(hv_ghcb_pg); 236 if (*ghcb_va) 237 iounmap(*ghcb_va); 238 *ghcb_va = NULL; 239 } 240 241 hv_common_cpu_die(cpu); 242 243 if (hv_vp_assist_page && hv_vp_assist_page[cpu]) { 244 union hv_vp_assist_msr_contents msr = { 0 }; 245 if (hv_root_partition) { 246 /* 247 * For root partition the VP assist page is mapped to 248 * hypervisor provided page, and thus we unmap the 249 * page here and nullify it, so that in future we have 250 * correct page address mapped in hv_cpu_init. 251 */ 252 memunmap(hv_vp_assist_page[cpu]); 253 hv_vp_assist_page[cpu] = NULL; 254 rdmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64); 255 msr.enable = 0; 256 } 257 wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64); 258 } 259 260 if (hv_reenlightenment_cb == NULL) 261 return 0; 262 263 rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl)); 264 if (re_ctrl.target_vp == hv_vp_index[cpu]) { 265 /* 266 * Reassign reenlightenment notifications to some other online 267 * CPU or just disable the feature if there are no online CPUs 268 * left (happens on hibernation). 269 */ 270 new_cpu = cpumask_any_but(cpu_online_mask, cpu); 271 272 if (new_cpu < nr_cpu_ids) 273 re_ctrl.target_vp = hv_vp_index[new_cpu]; 274 else 275 re_ctrl.enabled = 0; 276 277 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl)); 278 } 279 280 return 0; 281 } 282 283 static int __init hv_pci_init(void) 284 { 285 int gen2vm = efi_enabled(EFI_BOOT); 286 287 /* 288 * For Generation-2 VM, we exit from pci_arch_init() by returning 0. 289 * The purpose is to suppress the harmless warning: 290 * "PCI: Fatal: No config space access function found" 291 */ 292 if (gen2vm) 293 return 0; 294 295 /* For Generation-1 VM, we'll proceed in pci_arch_init(). */ 296 return 1; 297 } 298 299 static int hv_suspend(void) 300 { 301 union hv_x64_msr_hypercall_contents hypercall_msr; 302 int ret; 303 304 if (hv_root_partition) 305 return -EPERM; 306 307 /* 308 * Reset the hypercall page as it is going to be invalidated 309 * across hibernation. Setting hv_hypercall_pg to NULL ensures 310 * that any subsequent hypercall operation fails safely instead of 311 * crashing due to an access of an invalid page. The hypercall page 312 * pointer is restored on resume. 313 */ 314 hv_hypercall_pg_saved = hv_hypercall_pg; 315 hv_hypercall_pg = NULL; 316 317 /* Disable the hypercall page in the hypervisor */ 318 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 319 hypercall_msr.enable = 0; 320 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 321 322 ret = hv_cpu_die(0); 323 return ret; 324 } 325 326 static void hv_resume(void) 327 { 328 union hv_x64_msr_hypercall_contents hypercall_msr; 329 int ret; 330 331 ret = hv_cpu_init(0); 332 WARN_ON(ret); 333 334 /* Re-enable the hypercall page */ 335 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 336 hypercall_msr.enable = 1; 337 hypercall_msr.guest_physical_address = 338 vmalloc_to_pfn(hv_hypercall_pg_saved); 339 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 340 341 hv_hypercall_pg = hv_hypercall_pg_saved; 342 hv_hypercall_pg_saved = NULL; 343 344 /* 345 * Reenlightenment notifications are disabled by hv_cpu_die(0), 346 * reenable them here if hv_reenlightenment_cb was previously set. 347 */ 348 if (hv_reenlightenment_cb) 349 set_hv_tscchange_cb(hv_reenlightenment_cb); 350 } 351 352 /* Note: when the ops are called, only CPU0 is online and IRQs are disabled. */ 353 static struct syscore_ops hv_syscore_ops = { 354 .suspend = hv_suspend, 355 .resume = hv_resume, 356 }; 357 358 static void (* __initdata old_setup_percpu_clockev)(void); 359 360 static void __init hv_stimer_setup_percpu_clockev(void) 361 { 362 /* 363 * Ignore any errors in setting up stimer clockevents 364 * as we can run with the LAPIC timer as a fallback. 365 */ 366 (void)hv_stimer_alloc(false); 367 368 /* 369 * Still register the LAPIC timer, because the direct-mode STIMER is 370 * not supported by old versions of Hyper-V. This also allows users 371 * to switch to LAPIC timer via /sys, if they want to. 372 */ 373 if (old_setup_percpu_clockev) 374 old_setup_percpu_clockev(); 375 } 376 377 static void __init hv_get_partition_id(void) 378 { 379 struct hv_get_partition_id *output_page; 380 u64 status; 381 unsigned long flags; 382 383 local_irq_save(flags); 384 output_page = *this_cpu_ptr(hyperv_pcpu_output_arg); 385 status = hv_do_hypercall(HVCALL_GET_PARTITION_ID, NULL, output_page); 386 if (!hv_result_success(status)) { 387 /* No point in proceeding if this failed */ 388 pr_err("Failed to get partition ID: %lld\n", status); 389 BUG(); 390 } 391 hv_current_partition_id = output_page->partition_id; 392 local_irq_restore(flags); 393 } 394 395 static u8 __init get_vtl(void) 396 { 397 u64 control = HV_HYPERCALL_REP_COMP_1 | HVCALL_GET_VP_REGISTERS; 398 struct hv_get_vp_registers_input *input; 399 struct hv_get_vp_registers_output *output; 400 unsigned long flags; 401 u64 ret; 402 403 local_irq_save(flags); 404 input = *this_cpu_ptr(hyperv_pcpu_input_arg); 405 output = (struct hv_get_vp_registers_output *)input; 406 407 memset(input, 0, struct_size(input, element, 1)); 408 input->header.partitionid = HV_PARTITION_ID_SELF; 409 input->header.vpindex = HV_VP_INDEX_SELF; 410 input->header.inputvtl = 0; 411 input->element[0].name0 = HV_X64_REGISTER_VSM_VP_STATUS; 412 413 ret = hv_do_hypercall(control, input, output); 414 if (hv_result_success(ret)) { 415 ret = output->as64.low & HV_X64_VTL_MASK; 416 } else { 417 pr_err("Failed to get VTL(%lld) and set VTL to zero by default.\n", ret); 418 ret = 0; 419 } 420 421 local_irq_restore(flags); 422 return ret; 423 } 424 425 /* 426 * This function is to be invoked early in the boot sequence after the 427 * hypervisor has been detected. 428 * 429 * 1. Setup the hypercall page. 430 * 2. Register Hyper-V specific clocksource. 431 * 3. Setup Hyper-V specific APIC entry points. 432 */ 433 void __init hyperv_init(void) 434 { 435 u64 guest_id; 436 union hv_x64_msr_hypercall_contents hypercall_msr; 437 int cpuhp; 438 439 if (x86_hyper_type != X86_HYPER_MS_HYPERV) 440 return; 441 442 if (hv_common_init()) 443 return; 444 445 hv_vp_assist_page = kcalloc(num_possible_cpus(), 446 sizeof(*hv_vp_assist_page), GFP_KERNEL); 447 if (!hv_vp_assist_page) { 448 ms_hyperv.hints &= ~HV_X64_ENLIGHTENED_VMCS_RECOMMENDED; 449 goto common_free; 450 } 451 452 if (hv_isolation_type_snp()) { 453 /* Negotiate GHCB Version. */ 454 if (!hv_ghcb_negotiate_protocol()) 455 hv_ghcb_terminate(SEV_TERM_SET_GEN, 456 GHCB_SEV_ES_PROT_UNSUPPORTED); 457 458 hv_ghcb_pg = alloc_percpu(union hv_ghcb *); 459 if (!hv_ghcb_pg) 460 goto free_vp_assist_page; 461 } 462 463 cpuhp = cpuhp_setup_state(CPUHP_AP_HYPERV_ONLINE, "x86/hyperv_init:online", 464 hv_cpu_init, hv_cpu_die); 465 if (cpuhp < 0) 466 goto free_ghcb_page; 467 468 /* 469 * Setup the hypercall page and enable hypercalls. 470 * 1. Register the guest ID 471 * 2. Enable the hypercall and register the hypercall page 472 */ 473 guest_id = hv_generate_guest_id(LINUX_VERSION_CODE); 474 wrmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id); 475 476 /* Hyper-V requires to write guest os id via ghcb in SNP IVM. */ 477 hv_ghcb_msr_write(HV_X64_MSR_GUEST_OS_ID, guest_id); 478 479 /* A TDX guest uses the GHCI call rather than hv_hypercall_pg. */ 480 if (hv_isolation_type_tdx()) 481 goto skip_hypercall_pg_init; 482 483 hv_hypercall_pg = __vmalloc_node_range(PAGE_SIZE, 1, VMALLOC_START, 484 VMALLOC_END, GFP_KERNEL, PAGE_KERNEL_ROX, 485 VM_FLUSH_RESET_PERMS, NUMA_NO_NODE, 486 __builtin_return_address(0)); 487 if (hv_hypercall_pg == NULL) 488 goto clean_guest_os_id; 489 490 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 491 hypercall_msr.enable = 1; 492 493 if (hv_root_partition) { 494 struct page *pg; 495 void *src; 496 497 /* 498 * For the root partition, the hypervisor will set up its 499 * hypercall page. The hypervisor guarantees it will not show 500 * up in the root's address space. The root can't change the 501 * location of the hypercall page. 502 * 503 * Order is important here. We must enable the hypercall page 504 * so it is populated with code, then copy the code to an 505 * executable page. 506 */ 507 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 508 509 pg = vmalloc_to_page(hv_hypercall_pg); 510 src = memremap(hypercall_msr.guest_physical_address << PAGE_SHIFT, PAGE_SIZE, 511 MEMREMAP_WB); 512 BUG_ON(!src); 513 memcpy_to_page(pg, 0, src, HV_HYP_PAGE_SIZE); 514 memunmap(src); 515 516 hv_remap_tsc_clocksource(); 517 } else { 518 hypercall_msr.guest_physical_address = vmalloc_to_pfn(hv_hypercall_pg); 519 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 520 } 521 522 skip_hypercall_pg_init: 523 /* 524 * hyperv_init() is called before LAPIC is initialized: see 525 * apic_intr_mode_init() -> x86_platform.apic_post_init() and 526 * apic_bsp_setup() -> setup_local_APIC(). The direct-mode STIMER 527 * depends on LAPIC, so hv_stimer_alloc() should be called from 528 * x86_init.timers.setup_percpu_clockev. 529 */ 530 old_setup_percpu_clockev = x86_init.timers.setup_percpu_clockev; 531 x86_init.timers.setup_percpu_clockev = hv_stimer_setup_percpu_clockev; 532 533 hv_apic_init(); 534 535 x86_init.pci.arch_init = hv_pci_init; 536 537 register_syscore_ops(&hv_syscore_ops); 538 539 hyperv_init_cpuhp = cpuhp; 540 541 if (cpuid_ebx(HYPERV_CPUID_FEATURES) & HV_ACCESS_PARTITION_ID) 542 hv_get_partition_id(); 543 544 BUG_ON(hv_root_partition && hv_current_partition_id == ~0ull); 545 546 #ifdef CONFIG_PCI_MSI 547 /* 548 * If we're running as root, we want to create our own PCI MSI domain. 549 * We can't set this in hv_pci_init because that would be too late. 550 */ 551 if (hv_root_partition) 552 x86_init.irqs.create_pci_msi_domain = hv_create_pci_msi_domain; 553 #endif 554 555 /* Query the VMs extended capability once, so that it can be cached. */ 556 hv_query_ext_cap(0); 557 558 /* Find the VTL */ 559 if (hv_isolation_type_en_snp()) 560 ms_hyperv.vtl = get_vtl(); 561 562 return; 563 564 clean_guest_os_id: 565 wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0); 566 hv_ghcb_msr_write(HV_X64_MSR_GUEST_OS_ID, 0); 567 cpuhp_remove_state(cpuhp); 568 free_ghcb_page: 569 free_percpu(hv_ghcb_pg); 570 free_vp_assist_page: 571 kfree(hv_vp_assist_page); 572 hv_vp_assist_page = NULL; 573 common_free: 574 hv_common_free(); 575 } 576 577 /* 578 * This routine is called before kexec/kdump, it does the required cleanup. 579 */ 580 void hyperv_cleanup(void) 581 { 582 union hv_x64_msr_hypercall_contents hypercall_msr; 583 union hv_reference_tsc_msr tsc_msr; 584 585 /* Reset our OS id */ 586 wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0); 587 hv_ghcb_msr_write(HV_X64_MSR_GUEST_OS_ID, 0); 588 589 /* 590 * Reset hypercall page reference before reset the page, 591 * let hypercall operations fail safely rather than 592 * panic the kernel for using invalid hypercall page 593 */ 594 hv_hypercall_pg = NULL; 595 596 /* Reset the hypercall page */ 597 hypercall_msr.as_uint64 = hv_get_register(HV_X64_MSR_HYPERCALL); 598 hypercall_msr.enable = 0; 599 hv_set_register(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 600 601 /* Reset the TSC page */ 602 tsc_msr.as_uint64 = hv_get_register(HV_X64_MSR_REFERENCE_TSC); 603 tsc_msr.enable = 0; 604 hv_set_register(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64); 605 } 606 607 void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die) 608 { 609 static bool panic_reported; 610 u64 guest_id; 611 612 if (in_die && !panic_on_oops) 613 return; 614 615 /* 616 * We prefer to report panic on 'die' chain as we have proper 617 * registers to report, but if we miss it (e.g. on BUG()) we need 618 * to report it on 'panic'. 619 */ 620 if (panic_reported) 621 return; 622 panic_reported = true; 623 624 rdmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id); 625 626 wrmsrl(HV_X64_MSR_CRASH_P0, err); 627 wrmsrl(HV_X64_MSR_CRASH_P1, guest_id); 628 wrmsrl(HV_X64_MSR_CRASH_P2, regs->ip); 629 wrmsrl(HV_X64_MSR_CRASH_P3, regs->ax); 630 wrmsrl(HV_X64_MSR_CRASH_P4, regs->sp); 631 632 /* 633 * Let Hyper-V know there is crash data available 634 */ 635 wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY); 636 } 637 EXPORT_SYMBOL_GPL(hyperv_report_panic); 638 639 bool hv_is_hyperv_initialized(void) 640 { 641 union hv_x64_msr_hypercall_contents hypercall_msr; 642 643 /* 644 * Ensure that we're really on Hyper-V, and not a KVM or Xen 645 * emulation of Hyper-V 646 */ 647 if (x86_hyper_type != X86_HYPER_MS_HYPERV) 648 return false; 649 650 /* A TDX guest uses the GHCI call rather than hv_hypercall_pg. */ 651 if (hv_isolation_type_tdx()) 652 return true; 653 /* 654 * Verify that earlier initialization succeeded by checking 655 * that the hypercall page is setup 656 */ 657 hypercall_msr.as_uint64 = 0; 658 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 659 660 return hypercall_msr.enable; 661 } 662 EXPORT_SYMBOL_GPL(hv_is_hyperv_initialized); 663