xref: /openbmc/linux/arch/x86/hyperv/hv_init.c (revision c8ed9fc9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * X86 specific Hyper-V initialization code.
4  *
5  * Copyright (C) 2016, Microsoft, Inc.
6  *
7  * Author : K. Y. Srinivasan <kys@microsoft.com>
8  */
9 
10 #include <linux/acpi.h>
11 #include <linux/efi.h>
12 #include <linux/types.h>
13 #include <asm/apic.h>
14 #include <asm/desc.h>
15 #include <asm/hypervisor.h>
16 #include <asm/hyperv-tlfs.h>
17 #include <asm/mshyperv.h>
18 #include <asm/idtentry.h>
19 #include <linux/version.h>
20 #include <linux/vmalloc.h>
21 #include <linux/mm.h>
22 #include <linux/hyperv.h>
23 #include <linux/slab.h>
24 #include <linux/kernel.h>
25 #include <linux/cpuhotplug.h>
26 #include <linux/syscore_ops.h>
27 #include <clocksource/hyperv_timer.h>
28 
29 void *hv_hypercall_pg;
30 EXPORT_SYMBOL_GPL(hv_hypercall_pg);
31 
32 /* Storage to save the hypercall page temporarily for hibernation */
33 static void *hv_hypercall_pg_saved;
34 
35 u32 *hv_vp_index;
36 EXPORT_SYMBOL_GPL(hv_vp_index);
37 
38 struct hv_vp_assist_page **hv_vp_assist_page;
39 EXPORT_SYMBOL_GPL(hv_vp_assist_page);
40 
41 void  __percpu **hyperv_pcpu_input_arg;
42 EXPORT_SYMBOL_GPL(hyperv_pcpu_input_arg);
43 
44 u32 hv_max_vp_index;
45 EXPORT_SYMBOL_GPL(hv_max_vp_index);
46 
47 void *hv_alloc_hyperv_page(void)
48 {
49 	BUILD_BUG_ON(PAGE_SIZE != HV_HYP_PAGE_SIZE);
50 
51 	return (void *)__get_free_page(GFP_KERNEL);
52 }
53 EXPORT_SYMBOL_GPL(hv_alloc_hyperv_page);
54 
55 void *hv_alloc_hyperv_zeroed_page(void)
56 {
57         BUILD_BUG_ON(PAGE_SIZE != HV_HYP_PAGE_SIZE);
58 
59         return (void *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
60 }
61 EXPORT_SYMBOL_GPL(hv_alloc_hyperv_zeroed_page);
62 
63 void hv_free_hyperv_page(unsigned long addr)
64 {
65 	free_page(addr);
66 }
67 EXPORT_SYMBOL_GPL(hv_free_hyperv_page);
68 
69 static int hv_cpu_init(unsigned int cpu)
70 {
71 	u64 msr_vp_index;
72 	struct hv_vp_assist_page **hvp = &hv_vp_assist_page[smp_processor_id()];
73 	void **input_arg;
74 	struct page *pg;
75 
76 	input_arg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg);
77 	/* hv_cpu_init() can be called with IRQs disabled from hv_resume() */
78 	pg = alloc_page(irqs_disabled() ? GFP_ATOMIC : GFP_KERNEL);
79 	if (unlikely(!pg))
80 		return -ENOMEM;
81 	*input_arg = page_address(pg);
82 
83 	hv_get_vp_index(msr_vp_index);
84 
85 	hv_vp_index[smp_processor_id()] = msr_vp_index;
86 
87 	if (msr_vp_index > hv_max_vp_index)
88 		hv_max_vp_index = msr_vp_index;
89 
90 	if (!hv_vp_assist_page)
91 		return 0;
92 
93 	/*
94 	 * The VP ASSIST PAGE is an "overlay" page (see Hyper-V TLFS's Section
95 	 * 5.2.1 "GPA Overlay Pages"). Here it must be zeroed out to make sure
96 	 * we always write the EOI MSR in hv_apic_eoi_write() *after* the
97 	 * EOI optimization is disabled in hv_cpu_die(), otherwise a CPU may
98 	 * not be stopped in the case of CPU offlining and the VM will hang.
99 	 */
100 	if (!*hvp) {
101 		*hvp = __vmalloc(PAGE_SIZE, GFP_KERNEL | __GFP_ZERO);
102 	}
103 
104 	if (*hvp) {
105 		u64 val;
106 
107 		val = vmalloc_to_pfn(*hvp);
108 		val = (val << HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT) |
109 			HV_X64_MSR_VP_ASSIST_PAGE_ENABLE;
110 
111 		wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, val);
112 	}
113 
114 	return 0;
115 }
116 
117 static void (*hv_reenlightenment_cb)(void);
118 
119 static void hv_reenlightenment_notify(struct work_struct *dummy)
120 {
121 	struct hv_tsc_emulation_status emu_status;
122 
123 	rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
124 
125 	/* Don't issue the callback if TSC accesses are not emulated */
126 	if (hv_reenlightenment_cb && emu_status.inprogress)
127 		hv_reenlightenment_cb();
128 }
129 static DECLARE_DELAYED_WORK(hv_reenlightenment_work, hv_reenlightenment_notify);
130 
131 void hyperv_stop_tsc_emulation(void)
132 {
133 	u64 freq;
134 	struct hv_tsc_emulation_status emu_status;
135 
136 	rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
137 	emu_status.inprogress = 0;
138 	wrmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
139 
140 	rdmsrl(HV_X64_MSR_TSC_FREQUENCY, freq);
141 	tsc_khz = div64_u64(freq, 1000);
142 }
143 EXPORT_SYMBOL_GPL(hyperv_stop_tsc_emulation);
144 
145 static inline bool hv_reenlightenment_available(void)
146 {
147 	/*
148 	 * Check for required features and priviliges to make TSC frequency
149 	 * change notifications work.
150 	 */
151 	return ms_hyperv.features & HV_X64_ACCESS_FREQUENCY_MSRS &&
152 		ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE &&
153 		ms_hyperv.features & HV_X64_ACCESS_REENLIGHTENMENT;
154 }
155 
156 DEFINE_IDTENTRY_SYSVEC(sysvec_hyperv_reenlightenment)
157 {
158 	ack_APIC_irq();
159 	inc_irq_stat(irq_hv_reenlightenment_count);
160 	schedule_delayed_work(&hv_reenlightenment_work, HZ/10);
161 }
162 
163 void set_hv_tscchange_cb(void (*cb)(void))
164 {
165 	struct hv_reenlightenment_control re_ctrl = {
166 		.vector = HYPERV_REENLIGHTENMENT_VECTOR,
167 		.enabled = 1,
168 		.target_vp = hv_vp_index[smp_processor_id()]
169 	};
170 	struct hv_tsc_emulation_control emu_ctrl = {.enabled = 1};
171 
172 	if (!hv_reenlightenment_available()) {
173 		pr_warn("Hyper-V: reenlightenment support is unavailable\n");
174 		return;
175 	}
176 
177 	hv_reenlightenment_cb = cb;
178 
179 	/* Make sure callback is registered before we write to MSRs */
180 	wmb();
181 
182 	wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
183 	wrmsrl(HV_X64_MSR_TSC_EMULATION_CONTROL, *((u64 *)&emu_ctrl));
184 }
185 EXPORT_SYMBOL_GPL(set_hv_tscchange_cb);
186 
187 void clear_hv_tscchange_cb(void)
188 {
189 	struct hv_reenlightenment_control re_ctrl;
190 
191 	if (!hv_reenlightenment_available())
192 		return;
193 
194 	rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
195 	re_ctrl.enabled = 0;
196 	wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
197 
198 	hv_reenlightenment_cb = NULL;
199 }
200 EXPORT_SYMBOL_GPL(clear_hv_tscchange_cb);
201 
202 static int hv_cpu_die(unsigned int cpu)
203 {
204 	struct hv_reenlightenment_control re_ctrl;
205 	unsigned int new_cpu;
206 	unsigned long flags;
207 	void **input_arg;
208 	void *input_pg = NULL;
209 
210 	local_irq_save(flags);
211 	input_arg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg);
212 	input_pg = *input_arg;
213 	*input_arg = NULL;
214 	local_irq_restore(flags);
215 	free_page((unsigned long)input_pg);
216 
217 	if (hv_vp_assist_page && hv_vp_assist_page[cpu])
218 		wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, 0);
219 
220 	if (hv_reenlightenment_cb == NULL)
221 		return 0;
222 
223 	rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
224 	if (re_ctrl.target_vp == hv_vp_index[cpu]) {
225 		/*
226 		 * Reassign reenlightenment notifications to some other online
227 		 * CPU or just disable the feature if there are no online CPUs
228 		 * left (happens on hibernation).
229 		 */
230 		new_cpu = cpumask_any_but(cpu_online_mask, cpu);
231 
232 		if (new_cpu < nr_cpu_ids)
233 			re_ctrl.target_vp = hv_vp_index[new_cpu];
234 		else
235 			re_ctrl.enabled = 0;
236 
237 		wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
238 	}
239 
240 	return 0;
241 }
242 
243 static int __init hv_pci_init(void)
244 {
245 	int gen2vm = efi_enabled(EFI_BOOT);
246 
247 	/*
248 	 * For Generation-2 VM, we exit from pci_arch_init() by returning 0.
249 	 * The purpose is to suppress the harmless warning:
250 	 * "PCI: Fatal: No config space access function found"
251 	 */
252 	if (gen2vm)
253 		return 0;
254 
255 	/* For Generation-1 VM, we'll proceed in pci_arch_init().  */
256 	return 1;
257 }
258 
259 static int hv_suspend(void)
260 {
261 	union hv_x64_msr_hypercall_contents hypercall_msr;
262 	int ret;
263 
264 	/*
265 	 * Reset the hypercall page as it is going to be invalidated
266 	 * accross hibernation. Setting hv_hypercall_pg to NULL ensures
267 	 * that any subsequent hypercall operation fails safely instead of
268 	 * crashing due to an access of an invalid page. The hypercall page
269 	 * pointer is restored on resume.
270 	 */
271 	hv_hypercall_pg_saved = hv_hypercall_pg;
272 	hv_hypercall_pg = NULL;
273 
274 	/* Disable the hypercall page in the hypervisor */
275 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
276 	hypercall_msr.enable = 0;
277 	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
278 
279 	ret = hv_cpu_die(0);
280 	return ret;
281 }
282 
283 static void hv_resume(void)
284 {
285 	union hv_x64_msr_hypercall_contents hypercall_msr;
286 	int ret;
287 
288 	ret = hv_cpu_init(0);
289 	WARN_ON(ret);
290 
291 	/* Re-enable the hypercall page */
292 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
293 	hypercall_msr.enable = 1;
294 	hypercall_msr.guest_physical_address =
295 		vmalloc_to_pfn(hv_hypercall_pg_saved);
296 	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
297 
298 	hv_hypercall_pg = hv_hypercall_pg_saved;
299 	hv_hypercall_pg_saved = NULL;
300 
301 	/*
302 	 * Reenlightenment notifications are disabled by hv_cpu_die(0),
303 	 * reenable them here if hv_reenlightenment_cb was previously set.
304 	 */
305 	if (hv_reenlightenment_cb)
306 		set_hv_tscchange_cb(hv_reenlightenment_cb);
307 }
308 
309 /* Note: when the ops are called, only CPU0 is online and IRQs are disabled. */
310 static struct syscore_ops hv_syscore_ops = {
311 	.suspend	= hv_suspend,
312 	.resume		= hv_resume,
313 };
314 
315 /*
316  * This function is to be invoked early in the boot sequence after the
317  * hypervisor has been detected.
318  *
319  * 1. Setup the hypercall page.
320  * 2. Register Hyper-V specific clocksource.
321  * 3. Setup Hyper-V specific APIC entry points.
322  */
323 void __init hyperv_init(void)
324 {
325 	u64 guest_id, required_msrs;
326 	union hv_x64_msr_hypercall_contents hypercall_msr;
327 	int cpuhp, i;
328 
329 	if (x86_hyper_type != X86_HYPER_MS_HYPERV)
330 		return;
331 
332 	/* Absolutely required MSRs */
333 	required_msrs = HV_X64_MSR_HYPERCALL_AVAILABLE |
334 		HV_X64_MSR_VP_INDEX_AVAILABLE;
335 
336 	if ((ms_hyperv.features & required_msrs) != required_msrs)
337 		return;
338 
339 	/*
340 	 * Allocate the per-CPU state for the hypercall input arg.
341 	 * If this allocation fails, we will not be able to setup
342 	 * (per-CPU) hypercall input page and thus this failure is
343 	 * fatal on Hyper-V.
344 	 */
345 	hyperv_pcpu_input_arg = alloc_percpu(void  *);
346 
347 	BUG_ON(hyperv_pcpu_input_arg == NULL);
348 
349 	/* Allocate percpu VP index */
350 	hv_vp_index = kmalloc_array(num_possible_cpus(), sizeof(*hv_vp_index),
351 				    GFP_KERNEL);
352 	if (!hv_vp_index)
353 		return;
354 
355 	for (i = 0; i < num_possible_cpus(); i++)
356 		hv_vp_index[i] = VP_INVAL;
357 
358 	hv_vp_assist_page = kcalloc(num_possible_cpus(),
359 				    sizeof(*hv_vp_assist_page), GFP_KERNEL);
360 	if (!hv_vp_assist_page) {
361 		ms_hyperv.hints &= ~HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
362 		goto free_vp_index;
363 	}
364 
365 	cpuhp = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv_init:online",
366 				  hv_cpu_init, hv_cpu_die);
367 	if (cpuhp < 0)
368 		goto free_vp_assist_page;
369 
370 	/*
371 	 * Setup the hypercall page and enable hypercalls.
372 	 * 1. Register the guest ID
373 	 * 2. Enable the hypercall and register the hypercall page
374 	 */
375 	guest_id = generate_guest_id(0, LINUX_VERSION_CODE, 0);
376 	wrmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
377 
378 	hv_hypercall_pg = vmalloc_exec(PAGE_SIZE);
379 	if (hv_hypercall_pg == NULL) {
380 		wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
381 		goto remove_cpuhp_state;
382 	}
383 
384 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
385 	hypercall_msr.enable = 1;
386 	hypercall_msr.guest_physical_address = vmalloc_to_pfn(hv_hypercall_pg);
387 	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
388 
389 	/*
390 	 * Ignore any errors in setting up stimer clockevents
391 	 * as we can run with the LAPIC timer as a fallback.
392 	 */
393 	(void)hv_stimer_alloc();
394 
395 	hv_apic_init();
396 
397 	x86_init.pci.arch_init = hv_pci_init;
398 
399 	register_syscore_ops(&hv_syscore_ops);
400 
401 	return;
402 
403 remove_cpuhp_state:
404 	cpuhp_remove_state(cpuhp);
405 free_vp_assist_page:
406 	kfree(hv_vp_assist_page);
407 	hv_vp_assist_page = NULL;
408 free_vp_index:
409 	kfree(hv_vp_index);
410 	hv_vp_index = NULL;
411 }
412 
413 /*
414  * This routine is called before kexec/kdump, it does the required cleanup.
415  */
416 void hyperv_cleanup(void)
417 {
418 	union hv_x64_msr_hypercall_contents hypercall_msr;
419 
420 	unregister_syscore_ops(&hv_syscore_ops);
421 
422 	/* Reset our OS id */
423 	wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
424 
425 	/*
426 	 * Reset hypercall page reference before reset the page,
427 	 * let hypercall operations fail safely rather than
428 	 * panic the kernel for using invalid hypercall page
429 	 */
430 	hv_hypercall_pg = NULL;
431 
432 	/* Reset the hypercall page */
433 	hypercall_msr.as_uint64 = 0;
434 	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
435 
436 	/* Reset the TSC page */
437 	hypercall_msr.as_uint64 = 0;
438 	wrmsrl(HV_X64_MSR_REFERENCE_TSC, hypercall_msr.as_uint64);
439 }
440 EXPORT_SYMBOL_GPL(hyperv_cleanup);
441 
442 void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die)
443 {
444 	static bool panic_reported;
445 	u64 guest_id;
446 
447 	if (in_die && !panic_on_oops)
448 		return;
449 
450 	/*
451 	 * We prefer to report panic on 'die' chain as we have proper
452 	 * registers to report, but if we miss it (e.g. on BUG()) we need
453 	 * to report it on 'panic'.
454 	 */
455 	if (panic_reported)
456 		return;
457 	panic_reported = true;
458 
459 	rdmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
460 
461 	wrmsrl(HV_X64_MSR_CRASH_P0, err);
462 	wrmsrl(HV_X64_MSR_CRASH_P1, guest_id);
463 	wrmsrl(HV_X64_MSR_CRASH_P2, regs->ip);
464 	wrmsrl(HV_X64_MSR_CRASH_P3, regs->ax);
465 	wrmsrl(HV_X64_MSR_CRASH_P4, regs->sp);
466 
467 	/*
468 	 * Let Hyper-V know there is crash data available
469 	 */
470 	wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
471 }
472 EXPORT_SYMBOL_GPL(hyperv_report_panic);
473 
474 /**
475  * hyperv_report_panic_msg - report panic message to Hyper-V
476  * @pa: physical address of the panic page containing the message
477  * @size: size of the message in the page
478  */
479 void hyperv_report_panic_msg(phys_addr_t pa, size_t size)
480 {
481 	/*
482 	 * P3 to contain the physical address of the panic page & P4 to
483 	 * contain the size of the panic data in that page. Rest of the
484 	 * registers are no-op when the NOTIFY_MSG flag is set.
485 	 */
486 	wrmsrl(HV_X64_MSR_CRASH_P0, 0);
487 	wrmsrl(HV_X64_MSR_CRASH_P1, 0);
488 	wrmsrl(HV_X64_MSR_CRASH_P2, 0);
489 	wrmsrl(HV_X64_MSR_CRASH_P3, pa);
490 	wrmsrl(HV_X64_MSR_CRASH_P4, size);
491 
492 	/*
493 	 * Let Hyper-V know there is crash data available along with
494 	 * the panic message.
495 	 */
496 	wrmsrl(HV_X64_MSR_CRASH_CTL,
497 	       (HV_CRASH_CTL_CRASH_NOTIFY | HV_CRASH_CTL_CRASH_NOTIFY_MSG));
498 }
499 EXPORT_SYMBOL_GPL(hyperv_report_panic_msg);
500 
501 bool hv_is_hyperv_initialized(void)
502 {
503 	union hv_x64_msr_hypercall_contents hypercall_msr;
504 
505 	/*
506 	 * Ensure that we're really on Hyper-V, and not a KVM or Xen
507 	 * emulation of Hyper-V
508 	 */
509 	if (x86_hyper_type != X86_HYPER_MS_HYPERV)
510 		return false;
511 
512 	/*
513 	 * Verify that earlier initialization succeeded by checking
514 	 * that the hypercall page is setup
515 	 */
516 	hypercall_msr.as_uint64 = 0;
517 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
518 
519 	return hypercall_msr.enable;
520 }
521 EXPORT_SYMBOL_GPL(hv_is_hyperv_initialized);
522 
523 bool hv_is_hibernation_supported(void)
524 {
525 	return acpi_sleep_state_supported(ACPI_STATE_S4);
526 }
527 EXPORT_SYMBOL_GPL(hv_is_hibernation_supported);
528