1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * X86 specific Hyper-V initialization code. 4 * 5 * Copyright (C) 2016, Microsoft, Inc. 6 * 7 * Author : K. Y. Srinivasan <kys@microsoft.com> 8 */ 9 10 #include <linux/acpi.h> 11 #include <linux/efi.h> 12 #include <linux/types.h> 13 #include <asm/apic.h> 14 #include <asm/desc.h> 15 #include <asm/hypervisor.h> 16 #include <asm/hyperv-tlfs.h> 17 #include <asm/mshyperv.h> 18 #include <asm/idtentry.h> 19 #include <linux/version.h> 20 #include <linux/vmalloc.h> 21 #include <linux/mm.h> 22 #include <linux/hyperv.h> 23 #include <linux/slab.h> 24 #include <linux/kernel.h> 25 #include <linux/cpuhotplug.h> 26 #include <linux/syscore_ops.h> 27 #include <clocksource/hyperv_timer.h> 28 29 void *hv_hypercall_pg; 30 EXPORT_SYMBOL_GPL(hv_hypercall_pg); 31 32 /* Storage to save the hypercall page temporarily for hibernation */ 33 static void *hv_hypercall_pg_saved; 34 35 u32 *hv_vp_index; 36 EXPORT_SYMBOL_GPL(hv_vp_index); 37 38 struct hv_vp_assist_page **hv_vp_assist_page; 39 EXPORT_SYMBOL_GPL(hv_vp_assist_page); 40 41 void __percpu **hyperv_pcpu_input_arg; 42 EXPORT_SYMBOL_GPL(hyperv_pcpu_input_arg); 43 44 u32 hv_max_vp_index; 45 EXPORT_SYMBOL_GPL(hv_max_vp_index); 46 47 void *hv_alloc_hyperv_page(void) 48 { 49 BUILD_BUG_ON(PAGE_SIZE != HV_HYP_PAGE_SIZE); 50 51 return (void *)__get_free_page(GFP_KERNEL); 52 } 53 EXPORT_SYMBOL_GPL(hv_alloc_hyperv_page); 54 55 void *hv_alloc_hyperv_zeroed_page(void) 56 { 57 BUILD_BUG_ON(PAGE_SIZE != HV_HYP_PAGE_SIZE); 58 59 return (void *)__get_free_page(GFP_KERNEL | __GFP_ZERO); 60 } 61 EXPORT_SYMBOL_GPL(hv_alloc_hyperv_zeroed_page); 62 63 void hv_free_hyperv_page(unsigned long addr) 64 { 65 free_page(addr); 66 } 67 EXPORT_SYMBOL_GPL(hv_free_hyperv_page); 68 69 static int hv_cpu_init(unsigned int cpu) 70 { 71 u64 msr_vp_index; 72 struct hv_vp_assist_page **hvp = &hv_vp_assist_page[smp_processor_id()]; 73 void **input_arg; 74 struct page *pg; 75 76 input_arg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg); 77 /* hv_cpu_init() can be called with IRQs disabled from hv_resume() */ 78 pg = alloc_page(irqs_disabled() ? GFP_ATOMIC : GFP_KERNEL); 79 if (unlikely(!pg)) 80 return -ENOMEM; 81 *input_arg = page_address(pg); 82 83 hv_get_vp_index(msr_vp_index); 84 85 hv_vp_index[smp_processor_id()] = msr_vp_index; 86 87 if (msr_vp_index > hv_max_vp_index) 88 hv_max_vp_index = msr_vp_index; 89 90 if (!hv_vp_assist_page) 91 return 0; 92 93 /* 94 * The VP ASSIST PAGE is an "overlay" page (see Hyper-V TLFS's Section 95 * 5.2.1 "GPA Overlay Pages"). Here it must be zeroed out to make sure 96 * we always write the EOI MSR in hv_apic_eoi_write() *after* the 97 * EOI optimization is disabled in hv_cpu_die(), otherwise a CPU may 98 * not be stopped in the case of CPU offlining and the VM will hang. 99 */ 100 if (!*hvp) { 101 *hvp = __vmalloc(PAGE_SIZE, GFP_KERNEL | __GFP_ZERO); 102 } 103 104 if (*hvp) { 105 u64 val; 106 107 val = vmalloc_to_pfn(*hvp); 108 val = (val << HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT) | 109 HV_X64_MSR_VP_ASSIST_PAGE_ENABLE; 110 111 wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, val); 112 } 113 114 return 0; 115 } 116 117 static void (*hv_reenlightenment_cb)(void); 118 119 static void hv_reenlightenment_notify(struct work_struct *dummy) 120 { 121 struct hv_tsc_emulation_status emu_status; 122 123 rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status); 124 125 /* Don't issue the callback if TSC accesses are not emulated */ 126 if (hv_reenlightenment_cb && emu_status.inprogress) 127 hv_reenlightenment_cb(); 128 } 129 static DECLARE_DELAYED_WORK(hv_reenlightenment_work, hv_reenlightenment_notify); 130 131 void hyperv_stop_tsc_emulation(void) 132 { 133 u64 freq; 134 struct hv_tsc_emulation_status emu_status; 135 136 rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status); 137 emu_status.inprogress = 0; 138 wrmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status); 139 140 rdmsrl(HV_X64_MSR_TSC_FREQUENCY, freq); 141 tsc_khz = div64_u64(freq, 1000); 142 } 143 EXPORT_SYMBOL_GPL(hyperv_stop_tsc_emulation); 144 145 static inline bool hv_reenlightenment_available(void) 146 { 147 /* 148 * Check for required features and priviliges to make TSC frequency 149 * change notifications work. 150 */ 151 return ms_hyperv.features & HV_ACCESS_FREQUENCY_MSRS && 152 ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE && 153 ms_hyperv.features & HV_ACCESS_REENLIGHTENMENT; 154 } 155 156 DEFINE_IDTENTRY_SYSVEC(sysvec_hyperv_reenlightenment) 157 { 158 ack_APIC_irq(); 159 inc_irq_stat(irq_hv_reenlightenment_count); 160 schedule_delayed_work(&hv_reenlightenment_work, HZ/10); 161 } 162 163 void set_hv_tscchange_cb(void (*cb)(void)) 164 { 165 struct hv_reenlightenment_control re_ctrl = { 166 .vector = HYPERV_REENLIGHTENMENT_VECTOR, 167 .enabled = 1, 168 .target_vp = hv_vp_index[smp_processor_id()] 169 }; 170 struct hv_tsc_emulation_control emu_ctrl = {.enabled = 1}; 171 172 if (!hv_reenlightenment_available()) { 173 pr_warn("Hyper-V: reenlightenment support is unavailable\n"); 174 return; 175 } 176 177 hv_reenlightenment_cb = cb; 178 179 /* Make sure callback is registered before we write to MSRs */ 180 wmb(); 181 182 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl)); 183 wrmsrl(HV_X64_MSR_TSC_EMULATION_CONTROL, *((u64 *)&emu_ctrl)); 184 } 185 EXPORT_SYMBOL_GPL(set_hv_tscchange_cb); 186 187 void clear_hv_tscchange_cb(void) 188 { 189 struct hv_reenlightenment_control re_ctrl; 190 191 if (!hv_reenlightenment_available()) 192 return; 193 194 rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl); 195 re_ctrl.enabled = 0; 196 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl); 197 198 hv_reenlightenment_cb = NULL; 199 } 200 EXPORT_SYMBOL_GPL(clear_hv_tscchange_cb); 201 202 static int hv_cpu_die(unsigned int cpu) 203 { 204 struct hv_reenlightenment_control re_ctrl; 205 unsigned int new_cpu; 206 unsigned long flags; 207 void **input_arg; 208 void *input_pg = NULL; 209 210 local_irq_save(flags); 211 input_arg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg); 212 input_pg = *input_arg; 213 *input_arg = NULL; 214 local_irq_restore(flags); 215 free_page((unsigned long)input_pg); 216 217 if (hv_vp_assist_page && hv_vp_assist_page[cpu]) 218 wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, 0); 219 220 if (hv_reenlightenment_cb == NULL) 221 return 0; 222 223 rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl)); 224 if (re_ctrl.target_vp == hv_vp_index[cpu]) { 225 /* 226 * Reassign reenlightenment notifications to some other online 227 * CPU or just disable the feature if there are no online CPUs 228 * left (happens on hibernation). 229 */ 230 new_cpu = cpumask_any_but(cpu_online_mask, cpu); 231 232 if (new_cpu < nr_cpu_ids) 233 re_ctrl.target_vp = hv_vp_index[new_cpu]; 234 else 235 re_ctrl.enabled = 0; 236 237 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl)); 238 } 239 240 return 0; 241 } 242 243 static int __init hv_pci_init(void) 244 { 245 int gen2vm = efi_enabled(EFI_BOOT); 246 247 /* 248 * For Generation-2 VM, we exit from pci_arch_init() by returning 0. 249 * The purpose is to suppress the harmless warning: 250 * "PCI: Fatal: No config space access function found" 251 */ 252 if (gen2vm) 253 return 0; 254 255 /* For Generation-1 VM, we'll proceed in pci_arch_init(). */ 256 return 1; 257 } 258 259 static int hv_suspend(void) 260 { 261 union hv_x64_msr_hypercall_contents hypercall_msr; 262 int ret; 263 264 /* 265 * Reset the hypercall page as it is going to be invalidated 266 * accross hibernation. Setting hv_hypercall_pg to NULL ensures 267 * that any subsequent hypercall operation fails safely instead of 268 * crashing due to an access of an invalid page. The hypercall page 269 * pointer is restored on resume. 270 */ 271 hv_hypercall_pg_saved = hv_hypercall_pg; 272 hv_hypercall_pg = NULL; 273 274 /* Disable the hypercall page in the hypervisor */ 275 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 276 hypercall_msr.enable = 0; 277 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 278 279 ret = hv_cpu_die(0); 280 return ret; 281 } 282 283 static void hv_resume(void) 284 { 285 union hv_x64_msr_hypercall_contents hypercall_msr; 286 int ret; 287 288 ret = hv_cpu_init(0); 289 WARN_ON(ret); 290 291 /* Re-enable the hypercall page */ 292 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 293 hypercall_msr.enable = 1; 294 hypercall_msr.guest_physical_address = 295 vmalloc_to_pfn(hv_hypercall_pg_saved); 296 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 297 298 hv_hypercall_pg = hv_hypercall_pg_saved; 299 hv_hypercall_pg_saved = NULL; 300 301 /* 302 * Reenlightenment notifications are disabled by hv_cpu_die(0), 303 * reenable them here if hv_reenlightenment_cb was previously set. 304 */ 305 if (hv_reenlightenment_cb) 306 set_hv_tscchange_cb(hv_reenlightenment_cb); 307 } 308 309 /* Note: when the ops are called, only CPU0 is online and IRQs are disabled. */ 310 static struct syscore_ops hv_syscore_ops = { 311 .suspend = hv_suspend, 312 .resume = hv_resume, 313 }; 314 315 /* 316 * This function is to be invoked early in the boot sequence after the 317 * hypervisor has been detected. 318 * 319 * 1. Setup the hypercall page. 320 * 2. Register Hyper-V specific clocksource. 321 * 3. Setup Hyper-V specific APIC entry points. 322 */ 323 void __init hyperv_init(void) 324 { 325 u64 guest_id, required_msrs; 326 union hv_x64_msr_hypercall_contents hypercall_msr; 327 int cpuhp, i; 328 329 if (x86_hyper_type != X86_HYPER_MS_HYPERV) 330 return; 331 332 /* Absolutely required MSRs */ 333 required_msrs = HV_MSR_HYPERCALL_AVAILABLE | 334 HV_MSR_VP_INDEX_AVAILABLE; 335 336 if ((ms_hyperv.features & required_msrs) != required_msrs) 337 return; 338 339 /* 340 * Allocate the per-CPU state for the hypercall input arg. 341 * If this allocation fails, we will not be able to setup 342 * (per-CPU) hypercall input page and thus this failure is 343 * fatal on Hyper-V. 344 */ 345 hyperv_pcpu_input_arg = alloc_percpu(void *); 346 347 BUG_ON(hyperv_pcpu_input_arg == NULL); 348 349 /* Allocate percpu VP index */ 350 hv_vp_index = kmalloc_array(num_possible_cpus(), sizeof(*hv_vp_index), 351 GFP_KERNEL); 352 if (!hv_vp_index) 353 return; 354 355 for (i = 0; i < num_possible_cpus(); i++) 356 hv_vp_index[i] = VP_INVAL; 357 358 hv_vp_assist_page = kcalloc(num_possible_cpus(), 359 sizeof(*hv_vp_assist_page), GFP_KERNEL); 360 if (!hv_vp_assist_page) { 361 ms_hyperv.hints &= ~HV_X64_ENLIGHTENED_VMCS_RECOMMENDED; 362 goto free_vp_index; 363 } 364 365 cpuhp = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv_init:online", 366 hv_cpu_init, hv_cpu_die); 367 if (cpuhp < 0) 368 goto free_vp_assist_page; 369 370 /* 371 * Setup the hypercall page and enable hypercalls. 372 * 1. Register the guest ID 373 * 2. Enable the hypercall and register the hypercall page 374 */ 375 guest_id = generate_guest_id(0, LINUX_VERSION_CODE, 0); 376 wrmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id); 377 378 hv_hypercall_pg = __vmalloc_node_range(PAGE_SIZE, 1, VMALLOC_START, 379 VMALLOC_END, GFP_KERNEL, PAGE_KERNEL_ROX, 380 VM_FLUSH_RESET_PERMS, NUMA_NO_NODE, 381 __builtin_return_address(0)); 382 if (hv_hypercall_pg == NULL) { 383 wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0); 384 goto remove_cpuhp_state; 385 } 386 387 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 388 hypercall_msr.enable = 1; 389 hypercall_msr.guest_physical_address = vmalloc_to_pfn(hv_hypercall_pg); 390 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 391 392 /* 393 * Ignore any errors in setting up stimer clockevents 394 * as we can run with the LAPIC timer as a fallback. 395 */ 396 (void)hv_stimer_alloc(); 397 398 hv_apic_init(); 399 400 x86_init.pci.arch_init = hv_pci_init; 401 402 register_syscore_ops(&hv_syscore_ops); 403 404 return; 405 406 remove_cpuhp_state: 407 cpuhp_remove_state(cpuhp); 408 free_vp_assist_page: 409 kfree(hv_vp_assist_page); 410 hv_vp_assist_page = NULL; 411 free_vp_index: 412 kfree(hv_vp_index); 413 hv_vp_index = NULL; 414 } 415 416 /* 417 * This routine is called before kexec/kdump, it does the required cleanup. 418 */ 419 void hyperv_cleanup(void) 420 { 421 union hv_x64_msr_hypercall_contents hypercall_msr; 422 423 unregister_syscore_ops(&hv_syscore_ops); 424 425 /* Reset our OS id */ 426 wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0); 427 428 /* 429 * Reset hypercall page reference before reset the page, 430 * let hypercall operations fail safely rather than 431 * panic the kernel for using invalid hypercall page 432 */ 433 hv_hypercall_pg = NULL; 434 435 /* Reset the hypercall page */ 436 hypercall_msr.as_uint64 = 0; 437 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 438 439 /* Reset the TSC page */ 440 hypercall_msr.as_uint64 = 0; 441 wrmsrl(HV_X64_MSR_REFERENCE_TSC, hypercall_msr.as_uint64); 442 } 443 EXPORT_SYMBOL_GPL(hyperv_cleanup); 444 445 void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die) 446 { 447 static bool panic_reported; 448 u64 guest_id; 449 450 if (in_die && !panic_on_oops) 451 return; 452 453 /* 454 * We prefer to report panic on 'die' chain as we have proper 455 * registers to report, but if we miss it (e.g. on BUG()) we need 456 * to report it on 'panic'. 457 */ 458 if (panic_reported) 459 return; 460 panic_reported = true; 461 462 rdmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id); 463 464 wrmsrl(HV_X64_MSR_CRASH_P0, err); 465 wrmsrl(HV_X64_MSR_CRASH_P1, guest_id); 466 wrmsrl(HV_X64_MSR_CRASH_P2, regs->ip); 467 wrmsrl(HV_X64_MSR_CRASH_P3, regs->ax); 468 wrmsrl(HV_X64_MSR_CRASH_P4, regs->sp); 469 470 /* 471 * Let Hyper-V know there is crash data available 472 */ 473 wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY); 474 } 475 EXPORT_SYMBOL_GPL(hyperv_report_panic); 476 477 /** 478 * hyperv_report_panic_msg - report panic message to Hyper-V 479 * @pa: physical address of the panic page containing the message 480 * @size: size of the message in the page 481 */ 482 void hyperv_report_panic_msg(phys_addr_t pa, size_t size) 483 { 484 /* 485 * P3 to contain the physical address of the panic page & P4 to 486 * contain the size of the panic data in that page. Rest of the 487 * registers are no-op when the NOTIFY_MSG flag is set. 488 */ 489 wrmsrl(HV_X64_MSR_CRASH_P0, 0); 490 wrmsrl(HV_X64_MSR_CRASH_P1, 0); 491 wrmsrl(HV_X64_MSR_CRASH_P2, 0); 492 wrmsrl(HV_X64_MSR_CRASH_P3, pa); 493 wrmsrl(HV_X64_MSR_CRASH_P4, size); 494 495 /* 496 * Let Hyper-V know there is crash data available along with 497 * the panic message. 498 */ 499 wrmsrl(HV_X64_MSR_CRASH_CTL, 500 (HV_CRASH_CTL_CRASH_NOTIFY | HV_CRASH_CTL_CRASH_NOTIFY_MSG)); 501 } 502 EXPORT_SYMBOL_GPL(hyperv_report_panic_msg); 503 504 bool hv_is_hyperv_initialized(void) 505 { 506 union hv_x64_msr_hypercall_contents hypercall_msr; 507 508 /* 509 * Ensure that we're really on Hyper-V, and not a KVM or Xen 510 * emulation of Hyper-V 511 */ 512 if (x86_hyper_type != X86_HYPER_MS_HYPERV) 513 return false; 514 515 /* 516 * Verify that earlier initialization succeeded by checking 517 * that the hypercall page is setup 518 */ 519 hypercall_msr.as_uint64 = 0; 520 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 521 522 return hypercall_msr.enable; 523 } 524 EXPORT_SYMBOL_GPL(hv_is_hyperv_initialized); 525 526 bool hv_is_hibernation_supported(void) 527 { 528 return acpi_sleep_state_supported(ACPI_STATE_S4); 529 } 530 EXPORT_SYMBOL_GPL(hv_is_hibernation_supported); 531