1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * X86 specific Hyper-V initialization code. 4 * 5 * Copyright (C) 2016, Microsoft, Inc. 6 * 7 * Author : K. Y. Srinivasan <kys@microsoft.com> 8 */ 9 10 #include <linux/acpi.h> 11 #include <linux/efi.h> 12 #include <linux/types.h> 13 #include <linux/bitfield.h> 14 #include <asm/apic.h> 15 #include <asm/desc.h> 16 #include <asm/hypervisor.h> 17 #include <asm/hyperv-tlfs.h> 18 #include <asm/mshyperv.h> 19 #include <asm/idtentry.h> 20 #include <linux/kexec.h> 21 #include <linux/version.h> 22 #include <linux/vmalloc.h> 23 #include <linux/mm.h> 24 #include <linux/hyperv.h> 25 #include <linux/slab.h> 26 #include <linux/kernel.h> 27 #include <linux/cpuhotplug.h> 28 #include <linux/syscore_ops.h> 29 #include <clocksource/hyperv_timer.h> 30 #include <linux/highmem.h> 31 32 int hyperv_init_cpuhp; 33 u64 hv_current_partition_id = ~0ull; 34 EXPORT_SYMBOL_GPL(hv_current_partition_id); 35 36 void *hv_hypercall_pg; 37 EXPORT_SYMBOL_GPL(hv_hypercall_pg); 38 39 /* Storage to save the hypercall page temporarily for hibernation */ 40 static void *hv_hypercall_pg_saved; 41 42 u32 *hv_vp_index; 43 EXPORT_SYMBOL_GPL(hv_vp_index); 44 45 struct hv_vp_assist_page **hv_vp_assist_page; 46 EXPORT_SYMBOL_GPL(hv_vp_assist_page); 47 48 void __percpu **hyperv_pcpu_input_arg; 49 EXPORT_SYMBOL_GPL(hyperv_pcpu_input_arg); 50 51 void __percpu **hyperv_pcpu_output_arg; 52 EXPORT_SYMBOL_GPL(hyperv_pcpu_output_arg); 53 54 u32 hv_max_vp_index; 55 EXPORT_SYMBOL_GPL(hv_max_vp_index); 56 57 static int hv_cpu_init(unsigned int cpu) 58 { 59 u64 msr_vp_index; 60 struct hv_vp_assist_page **hvp = &hv_vp_assist_page[smp_processor_id()]; 61 void **input_arg; 62 struct page *pg; 63 64 /* hv_cpu_init() can be called with IRQs disabled from hv_resume() */ 65 pg = alloc_pages(irqs_disabled() ? GFP_ATOMIC : GFP_KERNEL, hv_root_partition ? 1 : 0); 66 if (unlikely(!pg)) 67 return -ENOMEM; 68 69 input_arg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg); 70 *input_arg = page_address(pg); 71 if (hv_root_partition) { 72 void **output_arg; 73 74 output_arg = (void **)this_cpu_ptr(hyperv_pcpu_output_arg); 75 *output_arg = page_address(pg + 1); 76 } 77 78 msr_vp_index = hv_get_register(HV_REGISTER_VP_INDEX); 79 80 hv_vp_index[smp_processor_id()] = msr_vp_index; 81 82 if (msr_vp_index > hv_max_vp_index) 83 hv_max_vp_index = msr_vp_index; 84 85 if (!hv_vp_assist_page) 86 return 0; 87 88 /* 89 * The VP ASSIST PAGE is an "overlay" page (see Hyper-V TLFS's Section 90 * 5.2.1 "GPA Overlay Pages"). Here it must be zeroed out to make sure 91 * we always write the EOI MSR in hv_apic_eoi_write() *after* the 92 * EOI optimization is disabled in hv_cpu_die(), otherwise a CPU may 93 * not be stopped in the case of CPU offlining and the VM will hang. 94 */ 95 if (!*hvp) { 96 *hvp = __vmalloc(PAGE_SIZE, GFP_KERNEL | __GFP_ZERO); 97 } 98 99 if (*hvp) { 100 u64 val; 101 102 val = vmalloc_to_pfn(*hvp); 103 val = (val << HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT) | 104 HV_X64_MSR_VP_ASSIST_PAGE_ENABLE; 105 106 wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, val); 107 } 108 109 return 0; 110 } 111 112 static void (*hv_reenlightenment_cb)(void); 113 114 static void hv_reenlightenment_notify(struct work_struct *dummy) 115 { 116 struct hv_tsc_emulation_status emu_status; 117 118 rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status); 119 120 /* Don't issue the callback if TSC accesses are not emulated */ 121 if (hv_reenlightenment_cb && emu_status.inprogress) 122 hv_reenlightenment_cb(); 123 } 124 static DECLARE_DELAYED_WORK(hv_reenlightenment_work, hv_reenlightenment_notify); 125 126 void hyperv_stop_tsc_emulation(void) 127 { 128 u64 freq; 129 struct hv_tsc_emulation_status emu_status; 130 131 rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status); 132 emu_status.inprogress = 0; 133 wrmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status); 134 135 rdmsrl(HV_X64_MSR_TSC_FREQUENCY, freq); 136 tsc_khz = div64_u64(freq, 1000); 137 } 138 EXPORT_SYMBOL_GPL(hyperv_stop_tsc_emulation); 139 140 static inline bool hv_reenlightenment_available(void) 141 { 142 /* 143 * Check for required features and privileges to make TSC frequency 144 * change notifications work. 145 */ 146 return ms_hyperv.features & HV_ACCESS_FREQUENCY_MSRS && 147 ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE && 148 ms_hyperv.features & HV_ACCESS_REENLIGHTENMENT; 149 } 150 151 DEFINE_IDTENTRY_SYSVEC(sysvec_hyperv_reenlightenment) 152 { 153 ack_APIC_irq(); 154 inc_irq_stat(irq_hv_reenlightenment_count); 155 schedule_delayed_work(&hv_reenlightenment_work, HZ/10); 156 } 157 158 void set_hv_tscchange_cb(void (*cb)(void)) 159 { 160 struct hv_reenlightenment_control re_ctrl = { 161 .vector = HYPERV_REENLIGHTENMENT_VECTOR, 162 .enabled = 1, 163 .target_vp = hv_vp_index[smp_processor_id()] 164 }; 165 struct hv_tsc_emulation_control emu_ctrl = {.enabled = 1}; 166 167 if (!hv_reenlightenment_available()) { 168 pr_warn("Hyper-V: reenlightenment support is unavailable\n"); 169 return; 170 } 171 172 hv_reenlightenment_cb = cb; 173 174 /* Make sure callback is registered before we write to MSRs */ 175 wmb(); 176 177 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl)); 178 wrmsrl(HV_X64_MSR_TSC_EMULATION_CONTROL, *((u64 *)&emu_ctrl)); 179 } 180 EXPORT_SYMBOL_GPL(set_hv_tscchange_cb); 181 182 void clear_hv_tscchange_cb(void) 183 { 184 struct hv_reenlightenment_control re_ctrl; 185 186 if (!hv_reenlightenment_available()) 187 return; 188 189 rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl); 190 re_ctrl.enabled = 0; 191 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl); 192 193 hv_reenlightenment_cb = NULL; 194 } 195 EXPORT_SYMBOL_GPL(clear_hv_tscchange_cb); 196 197 static int hv_cpu_die(unsigned int cpu) 198 { 199 struct hv_reenlightenment_control re_ctrl; 200 unsigned int new_cpu; 201 unsigned long flags; 202 void **input_arg; 203 void *pg; 204 205 local_irq_save(flags); 206 input_arg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg); 207 pg = *input_arg; 208 *input_arg = NULL; 209 210 if (hv_root_partition) { 211 void **output_arg; 212 213 output_arg = (void **)this_cpu_ptr(hyperv_pcpu_output_arg); 214 *output_arg = NULL; 215 } 216 217 local_irq_restore(flags); 218 219 free_pages((unsigned long)pg, hv_root_partition ? 1 : 0); 220 221 if (hv_vp_assist_page && hv_vp_assist_page[cpu]) 222 wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, 0); 223 224 if (hv_reenlightenment_cb == NULL) 225 return 0; 226 227 rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl)); 228 if (re_ctrl.target_vp == hv_vp_index[cpu]) { 229 /* 230 * Reassign reenlightenment notifications to some other online 231 * CPU or just disable the feature if there are no online CPUs 232 * left (happens on hibernation). 233 */ 234 new_cpu = cpumask_any_but(cpu_online_mask, cpu); 235 236 if (new_cpu < nr_cpu_ids) 237 re_ctrl.target_vp = hv_vp_index[new_cpu]; 238 else 239 re_ctrl.enabled = 0; 240 241 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl)); 242 } 243 244 return 0; 245 } 246 247 static int __init hv_pci_init(void) 248 { 249 int gen2vm = efi_enabled(EFI_BOOT); 250 251 /* 252 * For Generation-2 VM, we exit from pci_arch_init() by returning 0. 253 * The purpose is to suppress the harmless warning: 254 * "PCI: Fatal: No config space access function found" 255 */ 256 if (gen2vm) 257 return 0; 258 259 /* For Generation-1 VM, we'll proceed in pci_arch_init(). */ 260 return 1; 261 } 262 263 static int hv_suspend(void) 264 { 265 union hv_x64_msr_hypercall_contents hypercall_msr; 266 int ret; 267 268 if (hv_root_partition) 269 return -EPERM; 270 271 /* 272 * Reset the hypercall page as it is going to be invalidated 273 * across hibernation. Setting hv_hypercall_pg to NULL ensures 274 * that any subsequent hypercall operation fails safely instead of 275 * crashing due to an access of an invalid page. The hypercall page 276 * pointer is restored on resume. 277 */ 278 hv_hypercall_pg_saved = hv_hypercall_pg; 279 hv_hypercall_pg = NULL; 280 281 /* Disable the hypercall page in the hypervisor */ 282 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 283 hypercall_msr.enable = 0; 284 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 285 286 ret = hv_cpu_die(0); 287 return ret; 288 } 289 290 static void hv_resume(void) 291 { 292 union hv_x64_msr_hypercall_contents hypercall_msr; 293 int ret; 294 295 ret = hv_cpu_init(0); 296 WARN_ON(ret); 297 298 /* Re-enable the hypercall page */ 299 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 300 hypercall_msr.enable = 1; 301 hypercall_msr.guest_physical_address = 302 vmalloc_to_pfn(hv_hypercall_pg_saved); 303 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 304 305 hv_hypercall_pg = hv_hypercall_pg_saved; 306 hv_hypercall_pg_saved = NULL; 307 308 /* 309 * Reenlightenment notifications are disabled by hv_cpu_die(0), 310 * reenable them here if hv_reenlightenment_cb was previously set. 311 */ 312 if (hv_reenlightenment_cb) 313 set_hv_tscchange_cb(hv_reenlightenment_cb); 314 } 315 316 /* Note: when the ops are called, only CPU0 is online and IRQs are disabled. */ 317 static struct syscore_ops hv_syscore_ops = { 318 .suspend = hv_suspend, 319 .resume = hv_resume, 320 }; 321 322 static void (* __initdata old_setup_percpu_clockev)(void); 323 324 static void __init hv_stimer_setup_percpu_clockev(void) 325 { 326 /* 327 * Ignore any errors in setting up stimer clockevents 328 * as we can run with the LAPIC timer as a fallback. 329 */ 330 (void)hv_stimer_alloc(false); 331 332 /* 333 * Still register the LAPIC timer, because the direct-mode STIMER is 334 * not supported by old versions of Hyper-V. This also allows users 335 * to switch to LAPIC timer via /sys, if they want to. 336 */ 337 if (old_setup_percpu_clockev) 338 old_setup_percpu_clockev(); 339 } 340 341 static void __init hv_get_partition_id(void) 342 { 343 struct hv_get_partition_id *output_page; 344 u64 status; 345 unsigned long flags; 346 347 local_irq_save(flags); 348 output_page = *this_cpu_ptr(hyperv_pcpu_output_arg); 349 status = hv_do_hypercall(HVCALL_GET_PARTITION_ID, NULL, output_page); 350 if (!hv_result_success(status)) { 351 /* No point in proceeding if this failed */ 352 pr_err("Failed to get partition ID: %lld\n", status); 353 BUG(); 354 } 355 hv_current_partition_id = output_page->partition_id; 356 local_irq_restore(flags); 357 } 358 359 /* 360 * This function is to be invoked early in the boot sequence after the 361 * hypervisor has been detected. 362 * 363 * 1. Setup the hypercall page. 364 * 2. Register Hyper-V specific clocksource. 365 * 3. Setup Hyper-V specific APIC entry points. 366 */ 367 void __init hyperv_init(void) 368 { 369 u64 guest_id, required_msrs; 370 union hv_x64_msr_hypercall_contents hypercall_msr; 371 int cpuhp, i; 372 373 if (x86_hyper_type != X86_HYPER_MS_HYPERV) 374 return; 375 376 /* Absolutely required MSRs */ 377 required_msrs = HV_MSR_HYPERCALL_AVAILABLE | 378 HV_MSR_VP_INDEX_AVAILABLE; 379 380 if ((ms_hyperv.features & required_msrs) != required_msrs) 381 return; 382 383 /* 384 * Allocate the per-CPU state for the hypercall input arg. 385 * If this allocation fails, we will not be able to setup 386 * (per-CPU) hypercall input page and thus this failure is 387 * fatal on Hyper-V. 388 */ 389 hyperv_pcpu_input_arg = alloc_percpu(void *); 390 391 BUG_ON(hyperv_pcpu_input_arg == NULL); 392 393 /* Allocate the per-CPU state for output arg for root */ 394 if (hv_root_partition) { 395 hyperv_pcpu_output_arg = alloc_percpu(void *); 396 BUG_ON(hyperv_pcpu_output_arg == NULL); 397 } 398 399 /* Allocate percpu VP index */ 400 hv_vp_index = kmalloc_array(num_possible_cpus(), sizeof(*hv_vp_index), 401 GFP_KERNEL); 402 if (!hv_vp_index) 403 return; 404 405 for (i = 0; i < num_possible_cpus(); i++) 406 hv_vp_index[i] = VP_INVAL; 407 408 hv_vp_assist_page = kcalloc(num_possible_cpus(), 409 sizeof(*hv_vp_assist_page), GFP_KERNEL); 410 if (!hv_vp_assist_page) { 411 ms_hyperv.hints &= ~HV_X64_ENLIGHTENED_VMCS_RECOMMENDED; 412 goto free_vp_index; 413 } 414 415 cpuhp = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv_init:online", 416 hv_cpu_init, hv_cpu_die); 417 if (cpuhp < 0) 418 goto free_vp_assist_page; 419 420 /* 421 * Setup the hypercall page and enable hypercalls. 422 * 1. Register the guest ID 423 * 2. Enable the hypercall and register the hypercall page 424 */ 425 guest_id = generate_guest_id(0, LINUX_VERSION_CODE, 0); 426 wrmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id); 427 428 hv_hypercall_pg = __vmalloc_node_range(PAGE_SIZE, 1, VMALLOC_START, 429 VMALLOC_END, GFP_KERNEL, PAGE_KERNEL_ROX, 430 VM_FLUSH_RESET_PERMS, NUMA_NO_NODE, 431 __builtin_return_address(0)); 432 if (hv_hypercall_pg == NULL) { 433 wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0); 434 goto remove_cpuhp_state; 435 } 436 437 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 438 hypercall_msr.enable = 1; 439 440 if (hv_root_partition) { 441 struct page *pg; 442 void *src, *dst; 443 444 /* 445 * For the root partition, the hypervisor will set up its 446 * hypercall page. The hypervisor guarantees it will not show 447 * up in the root's address space. The root can't change the 448 * location of the hypercall page. 449 * 450 * Order is important here. We must enable the hypercall page 451 * so it is populated with code, then copy the code to an 452 * executable page. 453 */ 454 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 455 456 pg = vmalloc_to_page(hv_hypercall_pg); 457 dst = kmap(pg); 458 src = memremap(hypercall_msr.guest_physical_address << PAGE_SHIFT, PAGE_SIZE, 459 MEMREMAP_WB); 460 BUG_ON(!(src && dst)); 461 memcpy(dst, src, HV_HYP_PAGE_SIZE); 462 memunmap(src); 463 kunmap(pg); 464 } else { 465 hypercall_msr.guest_physical_address = vmalloc_to_pfn(hv_hypercall_pg); 466 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 467 } 468 469 /* 470 * hyperv_init() is called before LAPIC is initialized: see 471 * apic_intr_mode_init() -> x86_platform.apic_post_init() and 472 * apic_bsp_setup() -> setup_local_APIC(). The direct-mode STIMER 473 * depends on LAPIC, so hv_stimer_alloc() should be called from 474 * x86_init.timers.setup_percpu_clockev. 475 */ 476 old_setup_percpu_clockev = x86_init.timers.setup_percpu_clockev; 477 x86_init.timers.setup_percpu_clockev = hv_stimer_setup_percpu_clockev; 478 479 hv_apic_init(); 480 481 x86_init.pci.arch_init = hv_pci_init; 482 483 register_syscore_ops(&hv_syscore_ops); 484 485 hyperv_init_cpuhp = cpuhp; 486 487 if (cpuid_ebx(HYPERV_CPUID_FEATURES) & HV_ACCESS_PARTITION_ID) 488 hv_get_partition_id(); 489 490 BUG_ON(hv_root_partition && hv_current_partition_id == ~0ull); 491 492 #ifdef CONFIG_PCI_MSI 493 /* 494 * If we're running as root, we want to create our own PCI MSI domain. 495 * We can't set this in hv_pci_init because that would be too late. 496 */ 497 if (hv_root_partition) 498 x86_init.irqs.create_pci_msi_domain = hv_create_pci_msi_domain; 499 #endif 500 501 /* Query the VMs extended capability once, so that it can be cached. */ 502 hv_query_ext_cap(0); 503 return; 504 505 remove_cpuhp_state: 506 cpuhp_remove_state(cpuhp); 507 free_vp_assist_page: 508 kfree(hv_vp_assist_page); 509 hv_vp_assist_page = NULL; 510 free_vp_index: 511 kfree(hv_vp_index); 512 hv_vp_index = NULL; 513 } 514 515 /* 516 * This routine is called before kexec/kdump, it does the required cleanup. 517 */ 518 void hyperv_cleanup(void) 519 { 520 union hv_x64_msr_hypercall_contents hypercall_msr; 521 522 unregister_syscore_ops(&hv_syscore_ops); 523 524 /* Reset our OS id */ 525 wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0); 526 527 /* 528 * Reset hypercall page reference before reset the page, 529 * let hypercall operations fail safely rather than 530 * panic the kernel for using invalid hypercall page 531 */ 532 hv_hypercall_pg = NULL; 533 534 /* Reset the hypercall page */ 535 hypercall_msr.as_uint64 = 0; 536 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 537 538 /* Reset the TSC page */ 539 hypercall_msr.as_uint64 = 0; 540 wrmsrl(HV_X64_MSR_REFERENCE_TSC, hypercall_msr.as_uint64); 541 } 542 EXPORT_SYMBOL_GPL(hyperv_cleanup); 543 544 void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die) 545 { 546 static bool panic_reported; 547 u64 guest_id; 548 549 if (in_die && !panic_on_oops) 550 return; 551 552 /* 553 * We prefer to report panic on 'die' chain as we have proper 554 * registers to report, but if we miss it (e.g. on BUG()) we need 555 * to report it on 'panic'. 556 */ 557 if (panic_reported) 558 return; 559 panic_reported = true; 560 561 rdmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id); 562 563 wrmsrl(HV_X64_MSR_CRASH_P0, err); 564 wrmsrl(HV_X64_MSR_CRASH_P1, guest_id); 565 wrmsrl(HV_X64_MSR_CRASH_P2, regs->ip); 566 wrmsrl(HV_X64_MSR_CRASH_P3, regs->ax); 567 wrmsrl(HV_X64_MSR_CRASH_P4, regs->sp); 568 569 /* 570 * Let Hyper-V know there is crash data available 571 */ 572 wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY); 573 } 574 EXPORT_SYMBOL_GPL(hyperv_report_panic); 575 576 bool hv_is_hyperv_initialized(void) 577 { 578 union hv_x64_msr_hypercall_contents hypercall_msr; 579 580 /* 581 * Ensure that we're really on Hyper-V, and not a KVM or Xen 582 * emulation of Hyper-V 583 */ 584 if (x86_hyper_type != X86_HYPER_MS_HYPERV) 585 return false; 586 587 /* 588 * Verify that earlier initialization succeeded by checking 589 * that the hypercall page is setup 590 */ 591 hypercall_msr.as_uint64 = 0; 592 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 593 594 return hypercall_msr.enable; 595 } 596 EXPORT_SYMBOL_GPL(hv_is_hyperv_initialized); 597 598 bool hv_is_hibernation_supported(void) 599 { 600 return !hv_root_partition && acpi_sleep_state_supported(ACPI_STATE_S4); 601 } 602 EXPORT_SYMBOL_GPL(hv_is_hibernation_supported); 603 604 enum hv_isolation_type hv_get_isolation_type(void) 605 { 606 if (!(ms_hyperv.priv_high & HV_ISOLATION)) 607 return HV_ISOLATION_TYPE_NONE; 608 return FIELD_GET(HV_ISOLATION_TYPE, ms_hyperv.isolation_config_b); 609 } 610 EXPORT_SYMBOL_GPL(hv_get_isolation_type); 611 612 bool hv_is_isolation_supported(void) 613 { 614 return hv_get_isolation_type() != HV_ISOLATION_TYPE_NONE; 615 } 616 EXPORT_SYMBOL_GPL(hv_is_isolation_supported); 617