xref: /openbmc/linux/arch/x86/hyperv/hv_init.c (revision a85e4c52)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * X86 specific Hyper-V initialization code.
4  *
5  * Copyright (C) 2016, Microsoft, Inc.
6  *
7  * Author : K. Y. Srinivasan <kys@microsoft.com>
8  */
9 
10 #include <linux/efi.h>
11 #include <linux/types.h>
12 #include <linux/bitfield.h>
13 #include <linux/io.h>
14 #include <asm/apic.h>
15 #include <asm/desc.h>
16 #include <asm/hypervisor.h>
17 #include <asm/hyperv-tlfs.h>
18 #include <asm/mshyperv.h>
19 #include <asm/idtentry.h>
20 #include <linux/kexec.h>
21 #include <linux/version.h>
22 #include <linux/vmalloc.h>
23 #include <linux/mm.h>
24 #include <linux/hyperv.h>
25 #include <linux/slab.h>
26 #include <linux/kernel.h>
27 #include <linux/cpuhotplug.h>
28 #include <linux/syscore_ops.h>
29 #include <clocksource/hyperv_timer.h>
30 #include <linux/highmem.h>
31 #include <linux/swiotlb.h>
32 
33 int hyperv_init_cpuhp;
34 u64 hv_current_partition_id = ~0ull;
35 EXPORT_SYMBOL_GPL(hv_current_partition_id);
36 
37 void *hv_hypercall_pg;
38 EXPORT_SYMBOL_GPL(hv_hypercall_pg);
39 
40 union hv_ghcb * __percpu *hv_ghcb_pg;
41 
42 /* Storage to save the hypercall page temporarily for hibernation */
43 static void *hv_hypercall_pg_saved;
44 
45 struct hv_vp_assist_page **hv_vp_assist_page;
46 EXPORT_SYMBOL_GPL(hv_vp_assist_page);
47 
48 static int hyperv_init_ghcb(void)
49 {
50 	u64 ghcb_gpa;
51 	void *ghcb_va;
52 	void **ghcb_base;
53 
54 	if (!hv_isolation_type_snp())
55 		return 0;
56 
57 	if (!hv_ghcb_pg)
58 		return -EINVAL;
59 
60 	/*
61 	 * GHCB page is allocated by paravisor. The address
62 	 * returned by MSR_AMD64_SEV_ES_GHCB is above shared
63 	 * memory boundary and map it here.
64 	 */
65 	rdmsrl(MSR_AMD64_SEV_ES_GHCB, ghcb_gpa);
66 	ghcb_va = memremap(ghcb_gpa, HV_HYP_PAGE_SIZE, MEMREMAP_WB);
67 	if (!ghcb_va)
68 		return -ENOMEM;
69 
70 	ghcb_base = (void **)this_cpu_ptr(hv_ghcb_pg);
71 	*ghcb_base = ghcb_va;
72 
73 	return 0;
74 }
75 
76 static int hv_cpu_init(unsigned int cpu)
77 {
78 	union hv_vp_assist_msr_contents msr = { 0 };
79 	struct hv_vp_assist_page **hvp = &hv_vp_assist_page[smp_processor_id()];
80 	int ret;
81 
82 	ret = hv_common_cpu_init(cpu);
83 	if (ret)
84 		return ret;
85 
86 	if (!hv_vp_assist_page)
87 		return 0;
88 
89 	if (!*hvp) {
90 		if (hv_root_partition) {
91 			/*
92 			 * For root partition we get the hypervisor provided VP assist
93 			 * page, instead of allocating a new page.
94 			 */
95 			rdmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
96 			*hvp = memremap(msr.pfn <<
97 					HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT,
98 					PAGE_SIZE, MEMREMAP_WB);
99 		} else {
100 			/*
101 			 * The VP assist page is an "overlay" page (see Hyper-V TLFS's
102 			 * Section 5.2.1 "GPA Overlay Pages"). Here it must be zeroed
103 			 * out to make sure we always write the EOI MSR in
104 			 * hv_apic_eoi_write() *after* the EOI optimization is disabled
105 			 * in hv_cpu_die(), otherwise a CPU may not be stopped in the
106 			 * case of CPU offlining and the VM will hang.
107 			 */
108 			*hvp = __vmalloc(PAGE_SIZE, GFP_KERNEL | __GFP_ZERO);
109 			if (*hvp)
110 				msr.pfn = vmalloc_to_pfn(*hvp);
111 		}
112 		WARN_ON(!(*hvp));
113 		if (*hvp) {
114 			msr.enable = 1;
115 			wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
116 		}
117 	}
118 
119 	return hyperv_init_ghcb();
120 }
121 
122 static void (*hv_reenlightenment_cb)(void);
123 
124 static void hv_reenlightenment_notify(struct work_struct *dummy)
125 {
126 	struct hv_tsc_emulation_status emu_status;
127 
128 	rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
129 
130 	/* Don't issue the callback if TSC accesses are not emulated */
131 	if (hv_reenlightenment_cb && emu_status.inprogress)
132 		hv_reenlightenment_cb();
133 }
134 static DECLARE_DELAYED_WORK(hv_reenlightenment_work, hv_reenlightenment_notify);
135 
136 void hyperv_stop_tsc_emulation(void)
137 {
138 	u64 freq;
139 	struct hv_tsc_emulation_status emu_status;
140 
141 	rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
142 	emu_status.inprogress = 0;
143 	wrmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
144 
145 	rdmsrl(HV_X64_MSR_TSC_FREQUENCY, freq);
146 	tsc_khz = div64_u64(freq, 1000);
147 }
148 EXPORT_SYMBOL_GPL(hyperv_stop_tsc_emulation);
149 
150 static inline bool hv_reenlightenment_available(void)
151 {
152 	/*
153 	 * Check for required features and privileges to make TSC frequency
154 	 * change notifications work.
155 	 */
156 	return ms_hyperv.features & HV_ACCESS_FREQUENCY_MSRS &&
157 		ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE &&
158 		ms_hyperv.features & HV_ACCESS_REENLIGHTENMENT;
159 }
160 
161 DEFINE_IDTENTRY_SYSVEC(sysvec_hyperv_reenlightenment)
162 {
163 	ack_APIC_irq();
164 	inc_irq_stat(irq_hv_reenlightenment_count);
165 	schedule_delayed_work(&hv_reenlightenment_work, HZ/10);
166 }
167 
168 void set_hv_tscchange_cb(void (*cb)(void))
169 {
170 	struct hv_reenlightenment_control re_ctrl = {
171 		.vector = HYPERV_REENLIGHTENMENT_VECTOR,
172 		.enabled = 1,
173 	};
174 	struct hv_tsc_emulation_control emu_ctrl = {.enabled = 1};
175 
176 	if (!hv_reenlightenment_available()) {
177 		pr_warn("Hyper-V: reenlightenment support is unavailable\n");
178 		return;
179 	}
180 
181 	if (!hv_vp_index)
182 		return;
183 
184 	hv_reenlightenment_cb = cb;
185 
186 	/* Make sure callback is registered before we write to MSRs */
187 	wmb();
188 
189 	re_ctrl.target_vp = hv_vp_index[get_cpu()];
190 
191 	wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
192 	wrmsrl(HV_X64_MSR_TSC_EMULATION_CONTROL, *((u64 *)&emu_ctrl));
193 
194 	put_cpu();
195 }
196 EXPORT_SYMBOL_GPL(set_hv_tscchange_cb);
197 
198 void clear_hv_tscchange_cb(void)
199 {
200 	struct hv_reenlightenment_control re_ctrl;
201 
202 	if (!hv_reenlightenment_available())
203 		return;
204 
205 	rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
206 	re_ctrl.enabled = 0;
207 	wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
208 
209 	hv_reenlightenment_cb = NULL;
210 }
211 EXPORT_SYMBOL_GPL(clear_hv_tscchange_cb);
212 
213 static int hv_cpu_die(unsigned int cpu)
214 {
215 	struct hv_reenlightenment_control re_ctrl;
216 	unsigned int new_cpu;
217 	void **ghcb_va;
218 
219 	if (hv_ghcb_pg) {
220 		ghcb_va = (void **)this_cpu_ptr(hv_ghcb_pg);
221 		if (*ghcb_va)
222 			memunmap(*ghcb_va);
223 		*ghcb_va = NULL;
224 	}
225 
226 	hv_common_cpu_die(cpu);
227 
228 	if (hv_vp_assist_page && hv_vp_assist_page[cpu]) {
229 		union hv_vp_assist_msr_contents msr = { 0 };
230 		if (hv_root_partition) {
231 			/*
232 			 * For root partition the VP assist page is mapped to
233 			 * hypervisor provided page, and thus we unmap the
234 			 * page here and nullify it, so that in future we have
235 			 * correct page address mapped in hv_cpu_init.
236 			 */
237 			memunmap(hv_vp_assist_page[cpu]);
238 			hv_vp_assist_page[cpu] = NULL;
239 			rdmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
240 			msr.enable = 0;
241 		}
242 		wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
243 	}
244 
245 	if (hv_reenlightenment_cb == NULL)
246 		return 0;
247 
248 	rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
249 	if (re_ctrl.target_vp == hv_vp_index[cpu]) {
250 		/*
251 		 * Reassign reenlightenment notifications to some other online
252 		 * CPU or just disable the feature if there are no online CPUs
253 		 * left (happens on hibernation).
254 		 */
255 		new_cpu = cpumask_any_but(cpu_online_mask, cpu);
256 
257 		if (new_cpu < nr_cpu_ids)
258 			re_ctrl.target_vp = hv_vp_index[new_cpu];
259 		else
260 			re_ctrl.enabled = 0;
261 
262 		wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
263 	}
264 
265 	return 0;
266 }
267 
268 static int __init hv_pci_init(void)
269 {
270 	int gen2vm = efi_enabled(EFI_BOOT);
271 
272 	/*
273 	 * For Generation-2 VM, we exit from pci_arch_init() by returning 0.
274 	 * The purpose is to suppress the harmless warning:
275 	 * "PCI: Fatal: No config space access function found"
276 	 */
277 	if (gen2vm)
278 		return 0;
279 
280 	/* For Generation-1 VM, we'll proceed in pci_arch_init().  */
281 	return 1;
282 }
283 
284 static int hv_suspend(void)
285 {
286 	union hv_x64_msr_hypercall_contents hypercall_msr;
287 	int ret;
288 
289 	if (hv_root_partition)
290 		return -EPERM;
291 
292 	/*
293 	 * Reset the hypercall page as it is going to be invalidated
294 	 * across hibernation. Setting hv_hypercall_pg to NULL ensures
295 	 * that any subsequent hypercall operation fails safely instead of
296 	 * crashing due to an access of an invalid page. The hypercall page
297 	 * pointer is restored on resume.
298 	 */
299 	hv_hypercall_pg_saved = hv_hypercall_pg;
300 	hv_hypercall_pg = NULL;
301 
302 	/* Disable the hypercall page in the hypervisor */
303 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
304 	hypercall_msr.enable = 0;
305 	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
306 
307 	ret = hv_cpu_die(0);
308 	return ret;
309 }
310 
311 static void hv_resume(void)
312 {
313 	union hv_x64_msr_hypercall_contents hypercall_msr;
314 	int ret;
315 
316 	ret = hv_cpu_init(0);
317 	WARN_ON(ret);
318 
319 	/* Re-enable the hypercall page */
320 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
321 	hypercall_msr.enable = 1;
322 	hypercall_msr.guest_physical_address =
323 		vmalloc_to_pfn(hv_hypercall_pg_saved);
324 	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
325 
326 	hv_hypercall_pg = hv_hypercall_pg_saved;
327 	hv_hypercall_pg_saved = NULL;
328 
329 	/*
330 	 * Reenlightenment notifications are disabled by hv_cpu_die(0),
331 	 * reenable them here if hv_reenlightenment_cb was previously set.
332 	 */
333 	if (hv_reenlightenment_cb)
334 		set_hv_tscchange_cb(hv_reenlightenment_cb);
335 }
336 
337 /* Note: when the ops are called, only CPU0 is online and IRQs are disabled. */
338 static struct syscore_ops hv_syscore_ops = {
339 	.suspend	= hv_suspend,
340 	.resume		= hv_resume,
341 };
342 
343 static void (* __initdata old_setup_percpu_clockev)(void);
344 
345 static void __init hv_stimer_setup_percpu_clockev(void)
346 {
347 	/*
348 	 * Ignore any errors in setting up stimer clockevents
349 	 * as we can run with the LAPIC timer as a fallback.
350 	 */
351 	(void)hv_stimer_alloc(false);
352 
353 	/*
354 	 * Still register the LAPIC timer, because the direct-mode STIMER is
355 	 * not supported by old versions of Hyper-V. This also allows users
356 	 * to switch to LAPIC timer via /sys, if they want to.
357 	 */
358 	if (old_setup_percpu_clockev)
359 		old_setup_percpu_clockev();
360 }
361 
362 static void __init hv_get_partition_id(void)
363 {
364 	struct hv_get_partition_id *output_page;
365 	u64 status;
366 	unsigned long flags;
367 
368 	local_irq_save(flags);
369 	output_page = *this_cpu_ptr(hyperv_pcpu_output_arg);
370 	status = hv_do_hypercall(HVCALL_GET_PARTITION_ID, NULL, output_page);
371 	if (!hv_result_success(status)) {
372 		/* No point in proceeding if this failed */
373 		pr_err("Failed to get partition ID: %lld\n", status);
374 		BUG();
375 	}
376 	hv_current_partition_id = output_page->partition_id;
377 	local_irq_restore(flags);
378 }
379 
380 /*
381  * This function is to be invoked early in the boot sequence after the
382  * hypervisor has been detected.
383  *
384  * 1. Setup the hypercall page.
385  * 2. Register Hyper-V specific clocksource.
386  * 3. Setup Hyper-V specific APIC entry points.
387  */
388 void __init hyperv_init(void)
389 {
390 	u64 guest_id;
391 	union hv_x64_msr_hypercall_contents hypercall_msr;
392 	int cpuhp;
393 
394 	if (x86_hyper_type != X86_HYPER_MS_HYPERV)
395 		return;
396 
397 	if (hv_common_init())
398 		return;
399 
400 	hv_vp_assist_page = kcalloc(num_possible_cpus(),
401 				    sizeof(*hv_vp_assist_page), GFP_KERNEL);
402 	if (!hv_vp_assist_page) {
403 		ms_hyperv.hints &= ~HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
404 		goto common_free;
405 	}
406 
407 	if (hv_isolation_type_snp()) {
408 		hv_ghcb_pg = alloc_percpu(union hv_ghcb *);
409 		if (!hv_ghcb_pg)
410 			goto free_vp_assist_page;
411 	}
412 
413 	cpuhp = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv_init:online",
414 				  hv_cpu_init, hv_cpu_die);
415 	if (cpuhp < 0)
416 		goto free_ghcb_page;
417 
418 	/*
419 	 * Setup the hypercall page and enable hypercalls.
420 	 * 1. Register the guest ID
421 	 * 2. Enable the hypercall and register the hypercall page
422 	 */
423 	guest_id = generate_guest_id(0, LINUX_VERSION_CODE, 0);
424 	wrmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
425 
426 	/* Hyper-V requires to write guest os id via ghcb in SNP IVM. */
427 	hv_ghcb_msr_write(HV_X64_MSR_GUEST_OS_ID, guest_id);
428 
429 	hv_hypercall_pg = __vmalloc_node_range(PAGE_SIZE, 1, VMALLOC_START,
430 			VMALLOC_END, GFP_KERNEL, PAGE_KERNEL_ROX,
431 			VM_FLUSH_RESET_PERMS, NUMA_NO_NODE,
432 			__builtin_return_address(0));
433 	if (hv_hypercall_pg == NULL)
434 		goto clean_guest_os_id;
435 
436 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
437 	hypercall_msr.enable = 1;
438 
439 	if (hv_root_partition) {
440 		struct page *pg;
441 		void *src, *dst;
442 
443 		/*
444 		 * For the root partition, the hypervisor will set up its
445 		 * hypercall page. The hypervisor guarantees it will not show
446 		 * up in the root's address space. The root can't change the
447 		 * location of the hypercall page.
448 		 *
449 		 * Order is important here. We must enable the hypercall page
450 		 * so it is populated with code, then copy the code to an
451 		 * executable page.
452 		 */
453 		wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
454 
455 		pg = vmalloc_to_page(hv_hypercall_pg);
456 		dst = kmap(pg);
457 		src = memremap(hypercall_msr.guest_physical_address << PAGE_SHIFT, PAGE_SIZE,
458 				MEMREMAP_WB);
459 		BUG_ON(!(src && dst));
460 		memcpy(dst, src, HV_HYP_PAGE_SIZE);
461 		memunmap(src);
462 		kunmap(pg);
463 	} else {
464 		hypercall_msr.guest_physical_address = vmalloc_to_pfn(hv_hypercall_pg);
465 		wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
466 	}
467 
468 	/*
469 	 * hyperv_init() is called before LAPIC is initialized: see
470 	 * apic_intr_mode_init() -> x86_platform.apic_post_init() and
471 	 * apic_bsp_setup() -> setup_local_APIC(). The direct-mode STIMER
472 	 * depends on LAPIC, so hv_stimer_alloc() should be called from
473 	 * x86_init.timers.setup_percpu_clockev.
474 	 */
475 	old_setup_percpu_clockev = x86_init.timers.setup_percpu_clockev;
476 	x86_init.timers.setup_percpu_clockev = hv_stimer_setup_percpu_clockev;
477 
478 	hv_apic_init();
479 
480 	x86_init.pci.arch_init = hv_pci_init;
481 
482 	register_syscore_ops(&hv_syscore_ops);
483 
484 	hyperv_init_cpuhp = cpuhp;
485 
486 	if (cpuid_ebx(HYPERV_CPUID_FEATURES) & HV_ACCESS_PARTITION_ID)
487 		hv_get_partition_id();
488 
489 	BUG_ON(hv_root_partition && hv_current_partition_id == ~0ull);
490 
491 #ifdef CONFIG_PCI_MSI
492 	/*
493 	 * If we're running as root, we want to create our own PCI MSI domain.
494 	 * We can't set this in hv_pci_init because that would be too late.
495 	 */
496 	if (hv_root_partition)
497 		x86_init.irqs.create_pci_msi_domain = hv_create_pci_msi_domain;
498 #endif
499 
500 	/* Query the VMs extended capability once, so that it can be cached. */
501 	hv_query_ext_cap(0);
502 
503 #ifdef CONFIG_SWIOTLB
504 	/*
505 	 * Swiotlb bounce buffer needs to be mapped in extra address
506 	 * space. Map function doesn't work in the early place and so
507 	 * call swiotlb_update_mem_attributes() here.
508 	 */
509 	if (hv_is_isolation_supported())
510 		swiotlb_update_mem_attributes();
511 #endif
512 
513 	return;
514 
515 clean_guest_os_id:
516 	wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
517 	hv_ghcb_msr_write(HV_X64_MSR_GUEST_OS_ID, 0);
518 	cpuhp_remove_state(cpuhp);
519 free_ghcb_page:
520 	free_percpu(hv_ghcb_pg);
521 free_vp_assist_page:
522 	kfree(hv_vp_assist_page);
523 	hv_vp_assist_page = NULL;
524 common_free:
525 	hv_common_free();
526 }
527 
528 /*
529  * This routine is called before kexec/kdump, it does the required cleanup.
530  */
531 void hyperv_cleanup(void)
532 {
533 	union hv_x64_msr_hypercall_contents hypercall_msr;
534 
535 	unregister_syscore_ops(&hv_syscore_ops);
536 
537 	/* Reset our OS id */
538 	wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
539 	hv_ghcb_msr_write(HV_X64_MSR_GUEST_OS_ID, 0);
540 
541 	/*
542 	 * Reset hypercall page reference before reset the page,
543 	 * let hypercall operations fail safely rather than
544 	 * panic the kernel for using invalid hypercall page
545 	 */
546 	hv_hypercall_pg = NULL;
547 
548 	/* Reset the hypercall page */
549 	hypercall_msr.as_uint64 = 0;
550 	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
551 
552 	/* Reset the TSC page */
553 	hypercall_msr.as_uint64 = 0;
554 	wrmsrl(HV_X64_MSR_REFERENCE_TSC, hypercall_msr.as_uint64);
555 }
556 
557 void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die)
558 {
559 	static bool panic_reported;
560 	u64 guest_id;
561 
562 	if (in_die && !panic_on_oops)
563 		return;
564 
565 	/*
566 	 * We prefer to report panic on 'die' chain as we have proper
567 	 * registers to report, but if we miss it (e.g. on BUG()) we need
568 	 * to report it on 'panic'.
569 	 */
570 	if (panic_reported)
571 		return;
572 	panic_reported = true;
573 
574 	rdmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
575 
576 	wrmsrl(HV_X64_MSR_CRASH_P0, err);
577 	wrmsrl(HV_X64_MSR_CRASH_P1, guest_id);
578 	wrmsrl(HV_X64_MSR_CRASH_P2, regs->ip);
579 	wrmsrl(HV_X64_MSR_CRASH_P3, regs->ax);
580 	wrmsrl(HV_X64_MSR_CRASH_P4, regs->sp);
581 
582 	/*
583 	 * Let Hyper-V know there is crash data available
584 	 */
585 	wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
586 }
587 EXPORT_SYMBOL_GPL(hyperv_report_panic);
588 
589 bool hv_is_hyperv_initialized(void)
590 {
591 	union hv_x64_msr_hypercall_contents hypercall_msr;
592 
593 	/*
594 	 * Ensure that we're really on Hyper-V, and not a KVM or Xen
595 	 * emulation of Hyper-V
596 	 */
597 	if (x86_hyper_type != X86_HYPER_MS_HYPERV)
598 		return false;
599 
600 	/*
601 	 * Verify that earlier initialization succeeded by checking
602 	 * that the hypercall page is setup
603 	 */
604 	hypercall_msr.as_uint64 = 0;
605 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
606 
607 	return hypercall_msr.enable;
608 }
609 EXPORT_SYMBOL_GPL(hv_is_hyperv_initialized);
610