xref: /openbmc/linux/arch/x86/hyperv/hv_init.c (revision 9c6d26df1fae6ad4718d51c48e6517913304ed27)
1 /*
2  * X86 specific Hyper-V initialization code.
3  *
4  * Copyright (C) 2016, Microsoft, Inc.
5  *
6  * Author : K. Y. Srinivasan <kys@microsoft.com>
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published
10  * by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
15  * NON INFRINGEMENT.  See the GNU General Public License for more
16  * details.
17  *
18  */
19 
20 #include <linux/types.h>
21 #include <asm/apic.h>
22 #include <asm/desc.h>
23 #include <asm/hypervisor.h>
24 #include <asm/hyperv-tlfs.h>
25 #include <asm/mshyperv.h>
26 #include <linux/version.h>
27 #include <linux/vmalloc.h>
28 #include <linux/mm.h>
29 #include <linux/clockchips.h>
30 #include <linux/hyperv.h>
31 #include <linux/slab.h>
32 #include <linux/cpuhotplug.h>
33 
34 #ifdef CONFIG_HYPERV_TSCPAGE
35 
36 static struct ms_hyperv_tsc_page *tsc_pg;
37 
38 struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
39 {
40 	return tsc_pg;
41 }
42 EXPORT_SYMBOL_GPL(hv_get_tsc_page);
43 
44 static u64 read_hv_clock_tsc(struct clocksource *arg)
45 {
46 	u64 current_tick = hv_read_tsc_page(tsc_pg);
47 
48 	if (current_tick == U64_MAX)
49 		rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick);
50 
51 	return current_tick;
52 }
53 
54 static struct clocksource hyperv_cs_tsc = {
55 		.name		= "hyperv_clocksource_tsc_page",
56 		.rating		= 400,
57 		.read		= read_hv_clock_tsc,
58 		.mask		= CLOCKSOURCE_MASK(64),
59 		.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
60 };
61 #endif
62 
63 static u64 read_hv_clock_msr(struct clocksource *arg)
64 {
65 	u64 current_tick;
66 	/*
67 	 * Read the partition counter to get the current tick count. This count
68 	 * is set to 0 when the partition is created and is incremented in
69 	 * 100 nanosecond units.
70 	 */
71 	rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick);
72 	return current_tick;
73 }
74 
75 static struct clocksource hyperv_cs_msr = {
76 	.name		= "hyperv_clocksource_msr",
77 	.rating		= 400,
78 	.read		= read_hv_clock_msr,
79 	.mask		= CLOCKSOURCE_MASK(64),
80 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
81 };
82 
83 void *hv_hypercall_pg;
84 EXPORT_SYMBOL_GPL(hv_hypercall_pg);
85 struct clocksource *hyperv_cs;
86 EXPORT_SYMBOL_GPL(hyperv_cs);
87 
88 u32 *hv_vp_index;
89 EXPORT_SYMBOL_GPL(hv_vp_index);
90 
91 struct hv_vp_assist_page **hv_vp_assist_page;
92 EXPORT_SYMBOL_GPL(hv_vp_assist_page);
93 
94 u32 hv_max_vp_index;
95 
96 static int hv_cpu_init(unsigned int cpu)
97 {
98 	u64 msr_vp_index;
99 	struct hv_vp_assist_page **hvp = &hv_vp_assist_page[smp_processor_id()];
100 
101 	hv_get_vp_index(msr_vp_index);
102 
103 	hv_vp_index[smp_processor_id()] = msr_vp_index;
104 
105 	if (msr_vp_index > hv_max_vp_index)
106 		hv_max_vp_index = msr_vp_index;
107 
108 	if (!hv_vp_assist_page)
109 		return 0;
110 
111 	if (!*hvp)
112 		*hvp = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL);
113 
114 	if (*hvp) {
115 		u64 val;
116 
117 		val = vmalloc_to_pfn(*hvp);
118 		val = (val << HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT) |
119 			HV_X64_MSR_VP_ASSIST_PAGE_ENABLE;
120 
121 		wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, val);
122 	}
123 
124 	return 0;
125 }
126 
127 static void (*hv_reenlightenment_cb)(void);
128 
129 static void hv_reenlightenment_notify(struct work_struct *dummy)
130 {
131 	struct hv_tsc_emulation_status emu_status;
132 
133 	rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
134 
135 	/* Don't issue the callback if TSC accesses are not emulated */
136 	if (hv_reenlightenment_cb && emu_status.inprogress)
137 		hv_reenlightenment_cb();
138 }
139 static DECLARE_DELAYED_WORK(hv_reenlightenment_work, hv_reenlightenment_notify);
140 
141 void hyperv_stop_tsc_emulation(void)
142 {
143 	u64 freq;
144 	struct hv_tsc_emulation_status emu_status;
145 
146 	rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
147 	emu_status.inprogress = 0;
148 	wrmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
149 
150 	rdmsrl(HV_X64_MSR_TSC_FREQUENCY, freq);
151 	tsc_khz = div64_u64(freq, 1000);
152 }
153 EXPORT_SYMBOL_GPL(hyperv_stop_tsc_emulation);
154 
155 static inline bool hv_reenlightenment_available(void)
156 {
157 	/*
158 	 * Check for required features and priviliges to make TSC frequency
159 	 * change notifications work.
160 	 */
161 	return ms_hyperv.features & HV_X64_ACCESS_FREQUENCY_MSRS &&
162 		ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE &&
163 		ms_hyperv.features & HV_X64_ACCESS_REENLIGHTENMENT;
164 }
165 
166 __visible void __irq_entry hyperv_reenlightenment_intr(struct pt_regs *regs)
167 {
168 	entering_ack_irq();
169 
170 	inc_irq_stat(irq_hv_reenlightenment_count);
171 
172 	schedule_delayed_work(&hv_reenlightenment_work, HZ/10);
173 
174 	exiting_irq();
175 }
176 
177 void set_hv_tscchange_cb(void (*cb)(void))
178 {
179 	struct hv_reenlightenment_control re_ctrl = {
180 		.vector = HYPERV_REENLIGHTENMENT_VECTOR,
181 		.enabled = 1,
182 		.target_vp = hv_vp_index[smp_processor_id()]
183 	};
184 	struct hv_tsc_emulation_control emu_ctrl = {.enabled = 1};
185 
186 	if (!hv_reenlightenment_available()) {
187 		pr_warn("Hyper-V: reenlightenment support is unavailable\n");
188 		return;
189 	}
190 
191 	hv_reenlightenment_cb = cb;
192 
193 	/* Make sure callback is registered before we write to MSRs */
194 	wmb();
195 
196 	wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
197 	wrmsrl(HV_X64_MSR_TSC_EMULATION_CONTROL, *((u64 *)&emu_ctrl));
198 }
199 EXPORT_SYMBOL_GPL(set_hv_tscchange_cb);
200 
201 void clear_hv_tscchange_cb(void)
202 {
203 	struct hv_reenlightenment_control re_ctrl;
204 
205 	if (!hv_reenlightenment_available())
206 		return;
207 
208 	rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
209 	re_ctrl.enabled = 0;
210 	wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
211 
212 	hv_reenlightenment_cb = NULL;
213 }
214 EXPORT_SYMBOL_GPL(clear_hv_tscchange_cb);
215 
216 static int hv_cpu_die(unsigned int cpu)
217 {
218 	struct hv_reenlightenment_control re_ctrl;
219 	unsigned int new_cpu;
220 
221 	if (hv_vp_assist_page && hv_vp_assist_page[cpu])
222 		wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, 0);
223 
224 	if (hv_reenlightenment_cb == NULL)
225 		return 0;
226 
227 	rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
228 	if (re_ctrl.target_vp == hv_vp_index[cpu]) {
229 		/* Reassign to some other online CPU */
230 		new_cpu = cpumask_any_but(cpu_online_mask, cpu);
231 
232 		re_ctrl.target_vp = hv_vp_index[new_cpu];
233 		wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
234 	}
235 
236 	return 0;
237 }
238 
239 /*
240  * This function is to be invoked early in the boot sequence after the
241  * hypervisor has been detected.
242  *
243  * 1. Setup the hypercall page.
244  * 2. Register Hyper-V specific clocksource.
245  */
246 void hyperv_init(void)
247 {
248 	u64 guest_id, required_msrs;
249 	union hv_x64_msr_hypercall_contents hypercall_msr;
250 	int cpuhp;
251 
252 	if (x86_hyper_type != X86_HYPER_MS_HYPERV)
253 		return;
254 
255 	/* Absolutely required MSRs */
256 	required_msrs = HV_X64_MSR_HYPERCALL_AVAILABLE |
257 		HV_X64_MSR_VP_INDEX_AVAILABLE;
258 
259 	if ((ms_hyperv.features & required_msrs) != required_msrs)
260 		return;
261 
262 	/* Allocate percpu VP index */
263 	hv_vp_index = kmalloc_array(num_possible_cpus(), sizeof(*hv_vp_index),
264 				    GFP_KERNEL);
265 	if (!hv_vp_index)
266 		return;
267 
268 	hv_vp_assist_page = kcalloc(num_possible_cpus(),
269 				    sizeof(*hv_vp_assist_page), GFP_KERNEL);
270 	if (!hv_vp_assist_page) {
271 		ms_hyperv.hints &= ~HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
272 		goto free_vp_index;
273 	}
274 
275 	cpuhp = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv_init:online",
276 				  hv_cpu_init, hv_cpu_die);
277 	if (cpuhp < 0)
278 		goto free_vp_assist_page;
279 
280 	/*
281 	 * Setup the hypercall page and enable hypercalls.
282 	 * 1. Register the guest ID
283 	 * 2. Enable the hypercall and register the hypercall page
284 	 */
285 	guest_id = generate_guest_id(0, LINUX_VERSION_CODE, 0);
286 	wrmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
287 
288 	hv_hypercall_pg  = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL_RX);
289 	if (hv_hypercall_pg == NULL) {
290 		wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
291 		goto remove_cpuhp_state;
292 	}
293 
294 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
295 	hypercall_msr.enable = 1;
296 	hypercall_msr.guest_physical_address = vmalloc_to_pfn(hv_hypercall_pg);
297 	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
298 
299 	hyper_alloc_mmu();
300 
301 	/*
302 	 * Register Hyper-V specific clocksource.
303 	 */
304 #ifdef CONFIG_HYPERV_TSCPAGE
305 	if (ms_hyperv.features & HV_X64_MSR_REFERENCE_TSC_AVAILABLE) {
306 		union hv_x64_msr_hypercall_contents tsc_msr;
307 
308 		tsc_pg = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL);
309 		if (!tsc_pg)
310 			goto register_msr_cs;
311 
312 		hyperv_cs = &hyperv_cs_tsc;
313 
314 		rdmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
315 
316 		tsc_msr.enable = 1;
317 		tsc_msr.guest_physical_address = vmalloc_to_pfn(tsc_pg);
318 
319 		wrmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
320 
321 		hyperv_cs_tsc.archdata.vclock_mode = VCLOCK_HVCLOCK;
322 
323 		clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
324 		return;
325 	}
326 register_msr_cs:
327 #endif
328 	/*
329 	 * For 32 bit guests just use the MSR based mechanism for reading
330 	 * the partition counter.
331 	 */
332 
333 	hyperv_cs = &hyperv_cs_msr;
334 	if (ms_hyperv.features & HV_X64_MSR_TIME_REF_COUNT_AVAILABLE)
335 		clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
336 
337 	return;
338 
339 remove_cpuhp_state:
340 	cpuhp_remove_state(cpuhp);
341 free_vp_assist_page:
342 	kfree(hv_vp_assist_page);
343 	hv_vp_assist_page = NULL;
344 free_vp_index:
345 	kfree(hv_vp_index);
346 	hv_vp_index = NULL;
347 }
348 
349 /*
350  * This routine is called before kexec/kdump, it does the required cleanup.
351  */
352 void hyperv_cleanup(void)
353 {
354 	union hv_x64_msr_hypercall_contents hypercall_msr;
355 
356 	/* Reset our OS id */
357 	wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
358 
359 	/* Reset the hypercall page */
360 	hypercall_msr.as_uint64 = 0;
361 	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
362 
363 	/* Reset the TSC page */
364 	hypercall_msr.as_uint64 = 0;
365 	wrmsrl(HV_X64_MSR_REFERENCE_TSC, hypercall_msr.as_uint64);
366 }
367 EXPORT_SYMBOL_GPL(hyperv_cleanup);
368 
369 void hyperv_report_panic(struct pt_regs *regs, long err)
370 {
371 	static bool panic_reported;
372 	u64 guest_id;
373 
374 	/*
375 	 * We prefer to report panic on 'die' chain as we have proper
376 	 * registers to report, but if we miss it (e.g. on BUG()) we need
377 	 * to report it on 'panic'.
378 	 */
379 	if (panic_reported)
380 		return;
381 	panic_reported = true;
382 
383 	rdmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
384 
385 	wrmsrl(HV_X64_MSR_CRASH_P0, err);
386 	wrmsrl(HV_X64_MSR_CRASH_P1, guest_id);
387 	wrmsrl(HV_X64_MSR_CRASH_P2, regs->ip);
388 	wrmsrl(HV_X64_MSR_CRASH_P3, regs->ax);
389 	wrmsrl(HV_X64_MSR_CRASH_P4, regs->sp);
390 
391 	/*
392 	 * Let Hyper-V know there is crash data available
393 	 */
394 	wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
395 }
396 EXPORT_SYMBOL_GPL(hyperv_report_panic);
397 
398 bool hv_is_hyperv_initialized(void)
399 {
400 	union hv_x64_msr_hypercall_contents hypercall_msr;
401 
402 	/*
403 	 * Ensure that we're really on Hyper-V, and not a KVM or Xen
404 	 * emulation of Hyper-V
405 	 */
406 	if (x86_hyper_type != X86_HYPER_MS_HYPERV)
407 		return false;
408 
409 	/*
410 	 * Verify that earlier initialization succeeded by checking
411 	 * that the hypercall page is setup
412 	 */
413 	hypercall_msr.as_uint64 = 0;
414 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
415 
416 	return hypercall_msr.enable;
417 }
418 EXPORT_SYMBOL_GPL(hv_is_hyperv_initialized);
419