1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * X86 specific Hyper-V initialization code. 4 * 5 * Copyright (C) 2016, Microsoft, Inc. 6 * 7 * Author : K. Y. Srinivasan <kys@microsoft.com> 8 */ 9 10 #include <linux/acpi.h> 11 #include <linux/efi.h> 12 #include <linux/types.h> 13 #include <linux/bitfield.h> 14 #include <asm/apic.h> 15 #include <asm/desc.h> 16 #include <asm/hypervisor.h> 17 #include <asm/hyperv-tlfs.h> 18 #include <asm/mshyperv.h> 19 #include <asm/idtentry.h> 20 #include <linux/kexec.h> 21 #include <linux/version.h> 22 #include <linux/vmalloc.h> 23 #include <linux/mm.h> 24 #include <linux/hyperv.h> 25 #include <linux/slab.h> 26 #include <linux/kernel.h> 27 #include <linux/cpuhotplug.h> 28 #include <linux/syscore_ops.h> 29 #include <clocksource/hyperv_timer.h> 30 31 int hyperv_init_cpuhp; 32 u64 hv_current_partition_id = ~0ull; 33 EXPORT_SYMBOL_GPL(hv_current_partition_id); 34 35 void *hv_hypercall_pg; 36 EXPORT_SYMBOL_GPL(hv_hypercall_pg); 37 38 /* Storage to save the hypercall page temporarily for hibernation */ 39 static void *hv_hypercall_pg_saved; 40 41 u32 *hv_vp_index; 42 EXPORT_SYMBOL_GPL(hv_vp_index); 43 44 struct hv_vp_assist_page **hv_vp_assist_page; 45 EXPORT_SYMBOL_GPL(hv_vp_assist_page); 46 47 void __percpu **hyperv_pcpu_input_arg; 48 EXPORT_SYMBOL_GPL(hyperv_pcpu_input_arg); 49 50 void __percpu **hyperv_pcpu_output_arg; 51 EXPORT_SYMBOL_GPL(hyperv_pcpu_output_arg); 52 53 u32 hv_max_vp_index; 54 EXPORT_SYMBOL_GPL(hv_max_vp_index); 55 56 void *hv_alloc_hyperv_page(void) 57 { 58 BUILD_BUG_ON(PAGE_SIZE != HV_HYP_PAGE_SIZE); 59 60 return (void *)__get_free_page(GFP_KERNEL); 61 } 62 EXPORT_SYMBOL_GPL(hv_alloc_hyperv_page); 63 64 void *hv_alloc_hyperv_zeroed_page(void) 65 { 66 BUILD_BUG_ON(PAGE_SIZE != HV_HYP_PAGE_SIZE); 67 68 return (void *)__get_free_page(GFP_KERNEL | __GFP_ZERO); 69 } 70 EXPORT_SYMBOL_GPL(hv_alloc_hyperv_zeroed_page); 71 72 void hv_free_hyperv_page(unsigned long addr) 73 { 74 free_page(addr); 75 } 76 EXPORT_SYMBOL_GPL(hv_free_hyperv_page); 77 78 static int hv_cpu_init(unsigned int cpu) 79 { 80 u64 msr_vp_index; 81 struct hv_vp_assist_page **hvp = &hv_vp_assist_page[smp_processor_id()]; 82 void **input_arg; 83 struct page *pg; 84 85 /* hv_cpu_init() can be called with IRQs disabled from hv_resume() */ 86 pg = alloc_pages(irqs_disabled() ? GFP_ATOMIC : GFP_KERNEL, hv_root_partition ? 1 : 0); 87 if (unlikely(!pg)) 88 return -ENOMEM; 89 90 input_arg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg); 91 *input_arg = page_address(pg); 92 if (hv_root_partition) { 93 void **output_arg; 94 95 output_arg = (void **)this_cpu_ptr(hyperv_pcpu_output_arg); 96 *output_arg = page_address(pg + 1); 97 } 98 99 hv_get_vp_index(msr_vp_index); 100 101 hv_vp_index[smp_processor_id()] = msr_vp_index; 102 103 if (msr_vp_index > hv_max_vp_index) 104 hv_max_vp_index = msr_vp_index; 105 106 if (!hv_vp_assist_page) 107 return 0; 108 109 /* 110 * The VP ASSIST PAGE is an "overlay" page (see Hyper-V TLFS's Section 111 * 5.2.1 "GPA Overlay Pages"). Here it must be zeroed out to make sure 112 * we always write the EOI MSR in hv_apic_eoi_write() *after* the 113 * EOI optimization is disabled in hv_cpu_die(), otherwise a CPU may 114 * not be stopped in the case of CPU offlining and the VM will hang. 115 */ 116 if (!*hvp) { 117 *hvp = __vmalloc(PAGE_SIZE, GFP_KERNEL | __GFP_ZERO); 118 } 119 120 if (*hvp) { 121 u64 val; 122 123 val = vmalloc_to_pfn(*hvp); 124 val = (val << HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT) | 125 HV_X64_MSR_VP_ASSIST_PAGE_ENABLE; 126 127 wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, val); 128 } 129 130 return 0; 131 } 132 133 static void (*hv_reenlightenment_cb)(void); 134 135 static void hv_reenlightenment_notify(struct work_struct *dummy) 136 { 137 struct hv_tsc_emulation_status emu_status; 138 139 rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status); 140 141 /* Don't issue the callback if TSC accesses are not emulated */ 142 if (hv_reenlightenment_cb && emu_status.inprogress) 143 hv_reenlightenment_cb(); 144 } 145 static DECLARE_DELAYED_WORK(hv_reenlightenment_work, hv_reenlightenment_notify); 146 147 void hyperv_stop_tsc_emulation(void) 148 { 149 u64 freq; 150 struct hv_tsc_emulation_status emu_status; 151 152 rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status); 153 emu_status.inprogress = 0; 154 wrmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status); 155 156 rdmsrl(HV_X64_MSR_TSC_FREQUENCY, freq); 157 tsc_khz = div64_u64(freq, 1000); 158 } 159 EXPORT_SYMBOL_GPL(hyperv_stop_tsc_emulation); 160 161 static inline bool hv_reenlightenment_available(void) 162 { 163 /* 164 * Check for required features and priviliges to make TSC frequency 165 * change notifications work. 166 */ 167 return ms_hyperv.features & HV_ACCESS_FREQUENCY_MSRS && 168 ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE && 169 ms_hyperv.features & HV_ACCESS_REENLIGHTENMENT; 170 } 171 172 DEFINE_IDTENTRY_SYSVEC(sysvec_hyperv_reenlightenment) 173 { 174 ack_APIC_irq(); 175 inc_irq_stat(irq_hv_reenlightenment_count); 176 schedule_delayed_work(&hv_reenlightenment_work, HZ/10); 177 } 178 179 void set_hv_tscchange_cb(void (*cb)(void)) 180 { 181 struct hv_reenlightenment_control re_ctrl = { 182 .vector = HYPERV_REENLIGHTENMENT_VECTOR, 183 .enabled = 1, 184 .target_vp = hv_vp_index[smp_processor_id()] 185 }; 186 struct hv_tsc_emulation_control emu_ctrl = {.enabled = 1}; 187 188 if (!hv_reenlightenment_available()) { 189 pr_warn("Hyper-V: reenlightenment support is unavailable\n"); 190 return; 191 } 192 193 hv_reenlightenment_cb = cb; 194 195 /* Make sure callback is registered before we write to MSRs */ 196 wmb(); 197 198 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl)); 199 wrmsrl(HV_X64_MSR_TSC_EMULATION_CONTROL, *((u64 *)&emu_ctrl)); 200 } 201 EXPORT_SYMBOL_GPL(set_hv_tscchange_cb); 202 203 void clear_hv_tscchange_cb(void) 204 { 205 struct hv_reenlightenment_control re_ctrl; 206 207 if (!hv_reenlightenment_available()) 208 return; 209 210 rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl); 211 re_ctrl.enabled = 0; 212 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl); 213 214 hv_reenlightenment_cb = NULL; 215 } 216 EXPORT_SYMBOL_GPL(clear_hv_tscchange_cb); 217 218 static int hv_cpu_die(unsigned int cpu) 219 { 220 struct hv_reenlightenment_control re_ctrl; 221 unsigned int new_cpu; 222 unsigned long flags; 223 void **input_arg; 224 void *pg; 225 226 local_irq_save(flags); 227 input_arg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg); 228 pg = *input_arg; 229 *input_arg = NULL; 230 231 if (hv_root_partition) { 232 void **output_arg; 233 234 output_arg = (void **)this_cpu_ptr(hyperv_pcpu_output_arg); 235 *output_arg = NULL; 236 } 237 238 local_irq_restore(flags); 239 240 free_pages((unsigned long)pg, hv_root_partition ? 1 : 0); 241 242 if (hv_vp_assist_page && hv_vp_assist_page[cpu]) 243 wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, 0); 244 245 if (hv_reenlightenment_cb == NULL) 246 return 0; 247 248 rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl)); 249 if (re_ctrl.target_vp == hv_vp_index[cpu]) { 250 /* 251 * Reassign reenlightenment notifications to some other online 252 * CPU or just disable the feature if there are no online CPUs 253 * left (happens on hibernation). 254 */ 255 new_cpu = cpumask_any_but(cpu_online_mask, cpu); 256 257 if (new_cpu < nr_cpu_ids) 258 re_ctrl.target_vp = hv_vp_index[new_cpu]; 259 else 260 re_ctrl.enabled = 0; 261 262 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl)); 263 } 264 265 return 0; 266 } 267 268 static int __init hv_pci_init(void) 269 { 270 int gen2vm = efi_enabled(EFI_BOOT); 271 272 /* 273 * For Generation-2 VM, we exit from pci_arch_init() by returning 0. 274 * The purpose is to suppress the harmless warning: 275 * "PCI: Fatal: No config space access function found" 276 */ 277 if (gen2vm) 278 return 0; 279 280 /* For Generation-1 VM, we'll proceed in pci_arch_init(). */ 281 return 1; 282 } 283 284 static int hv_suspend(void) 285 { 286 union hv_x64_msr_hypercall_contents hypercall_msr; 287 int ret; 288 289 /* 290 * Reset the hypercall page as it is going to be invalidated 291 * accross hibernation. Setting hv_hypercall_pg to NULL ensures 292 * that any subsequent hypercall operation fails safely instead of 293 * crashing due to an access of an invalid page. The hypercall page 294 * pointer is restored on resume. 295 */ 296 hv_hypercall_pg_saved = hv_hypercall_pg; 297 hv_hypercall_pg = NULL; 298 299 /* Disable the hypercall page in the hypervisor */ 300 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 301 hypercall_msr.enable = 0; 302 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 303 304 ret = hv_cpu_die(0); 305 return ret; 306 } 307 308 static void hv_resume(void) 309 { 310 union hv_x64_msr_hypercall_contents hypercall_msr; 311 int ret; 312 313 ret = hv_cpu_init(0); 314 WARN_ON(ret); 315 316 /* Re-enable the hypercall page */ 317 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 318 hypercall_msr.enable = 1; 319 hypercall_msr.guest_physical_address = 320 vmalloc_to_pfn(hv_hypercall_pg_saved); 321 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 322 323 hv_hypercall_pg = hv_hypercall_pg_saved; 324 hv_hypercall_pg_saved = NULL; 325 326 /* 327 * Reenlightenment notifications are disabled by hv_cpu_die(0), 328 * reenable them here if hv_reenlightenment_cb was previously set. 329 */ 330 if (hv_reenlightenment_cb) 331 set_hv_tscchange_cb(hv_reenlightenment_cb); 332 } 333 334 /* Note: when the ops are called, only CPU0 is online and IRQs are disabled. */ 335 static struct syscore_ops hv_syscore_ops = { 336 .suspend = hv_suspend, 337 .resume = hv_resume, 338 }; 339 340 static void (* __initdata old_setup_percpu_clockev)(void); 341 342 static void __init hv_stimer_setup_percpu_clockev(void) 343 { 344 /* 345 * Ignore any errors in setting up stimer clockevents 346 * as we can run with the LAPIC timer as a fallback. 347 */ 348 (void)hv_stimer_alloc(); 349 350 /* 351 * Still register the LAPIC timer, because the direct-mode STIMER is 352 * not supported by old versions of Hyper-V. This also allows users 353 * to switch to LAPIC timer via /sys, if they want to. 354 */ 355 if (old_setup_percpu_clockev) 356 old_setup_percpu_clockev(); 357 } 358 359 static void __init hv_get_partition_id(void) 360 { 361 struct hv_get_partition_id *output_page; 362 u64 status; 363 unsigned long flags; 364 365 local_irq_save(flags); 366 output_page = *this_cpu_ptr(hyperv_pcpu_output_arg); 367 status = hv_do_hypercall(HVCALL_GET_PARTITION_ID, NULL, output_page); 368 if ((status & HV_HYPERCALL_RESULT_MASK) != HV_STATUS_SUCCESS) { 369 /* No point in proceeding if this failed */ 370 pr_err("Failed to get partition ID: %lld\n", status); 371 BUG(); 372 } 373 hv_current_partition_id = output_page->partition_id; 374 local_irq_restore(flags); 375 } 376 377 /* 378 * This function is to be invoked early in the boot sequence after the 379 * hypervisor has been detected. 380 * 381 * 1. Setup the hypercall page. 382 * 2. Register Hyper-V specific clocksource. 383 * 3. Setup Hyper-V specific APIC entry points. 384 */ 385 void __init hyperv_init(void) 386 { 387 u64 guest_id, required_msrs; 388 union hv_x64_msr_hypercall_contents hypercall_msr; 389 int cpuhp, i; 390 391 if (x86_hyper_type != X86_HYPER_MS_HYPERV) 392 return; 393 394 /* Absolutely required MSRs */ 395 required_msrs = HV_MSR_HYPERCALL_AVAILABLE | 396 HV_MSR_VP_INDEX_AVAILABLE; 397 398 if ((ms_hyperv.features & required_msrs) != required_msrs) 399 return; 400 401 /* 402 * Allocate the per-CPU state for the hypercall input arg. 403 * If this allocation fails, we will not be able to setup 404 * (per-CPU) hypercall input page and thus this failure is 405 * fatal on Hyper-V. 406 */ 407 hyperv_pcpu_input_arg = alloc_percpu(void *); 408 409 BUG_ON(hyperv_pcpu_input_arg == NULL); 410 411 /* Allocate the per-CPU state for output arg for root */ 412 if (hv_root_partition) { 413 hyperv_pcpu_output_arg = alloc_percpu(void *); 414 BUG_ON(hyperv_pcpu_output_arg == NULL); 415 } 416 417 /* Allocate percpu VP index */ 418 hv_vp_index = kmalloc_array(num_possible_cpus(), sizeof(*hv_vp_index), 419 GFP_KERNEL); 420 if (!hv_vp_index) 421 return; 422 423 for (i = 0; i < num_possible_cpus(); i++) 424 hv_vp_index[i] = VP_INVAL; 425 426 hv_vp_assist_page = kcalloc(num_possible_cpus(), 427 sizeof(*hv_vp_assist_page), GFP_KERNEL); 428 if (!hv_vp_assist_page) { 429 ms_hyperv.hints &= ~HV_X64_ENLIGHTENED_VMCS_RECOMMENDED; 430 goto free_vp_index; 431 } 432 433 cpuhp = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv_init:online", 434 hv_cpu_init, hv_cpu_die); 435 if (cpuhp < 0) 436 goto free_vp_assist_page; 437 438 /* 439 * Setup the hypercall page and enable hypercalls. 440 * 1. Register the guest ID 441 * 2. Enable the hypercall and register the hypercall page 442 */ 443 guest_id = generate_guest_id(0, LINUX_VERSION_CODE, 0); 444 wrmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id); 445 446 hv_hypercall_pg = __vmalloc_node_range(PAGE_SIZE, 1, VMALLOC_START, 447 VMALLOC_END, GFP_KERNEL, PAGE_KERNEL_ROX, 448 VM_FLUSH_RESET_PERMS, NUMA_NO_NODE, 449 __builtin_return_address(0)); 450 if (hv_hypercall_pg == NULL) { 451 wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0); 452 goto remove_cpuhp_state; 453 } 454 455 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 456 hypercall_msr.enable = 1; 457 hypercall_msr.guest_physical_address = vmalloc_to_pfn(hv_hypercall_pg); 458 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 459 460 /* 461 * hyperv_init() is called before LAPIC is initialized: see 462 * apic_intr_mode_init() -> x86_platform.apic_post_init() and 463 * apic_bsp_setup() -> setup_local_APIC(). The direct-mode STIMER 464 * depends on LAPIC, so hv_stimer_alloc() should be called from 465 * x86_init.timers.setup_percpu_clockev. 466 */ 467 old_setup_percpu_clockev = x86_init.timers.setup_percpu_clockev; 468 x86_init.timers.setup_percpu_clockev = hv_stimer_setup_percpu_clockev; 469 470 hv_apic_init(); 471 472 x86_init.pci.arch_init = hv_pci_init; 473 474 register_syscore_ops(&hv_syscore_ops); 475 476 hyperv_init_cpuhp = cpuhp; 477 478 if (cpuid_ebx(HYPERV_CPUID_FEATURES) & HV_ACCESS_PARTITION_ID) 479 hv_get_partition_id(); 480 481 BUG_ON(hv_root_partition && hv_current_partition_id == ~0ull); 482 483 return; 484 485 remove_cpuhp_state: 486 cpuhp_remove_state(cpuhp); 487 free_vp_assist_page: 488 kfree(hv_vp_assist_page); 489 hv_vp_assist_page = NULL; 490 free_vp_index: 491 kfree(hv_vp_index); 492 hv_vp_index = NULL; 493 } 494 495 /* 496 * This routine is called before kexec/kdump, it does the required cleanup. 497 */ 498 void hyperv_cleanup(void) 499 { 500 union hv_x64_msr_hypercall_contents hypercall_msr; 501 502 unregister_syscore_ops(&hv_syscore_ops); 503 504 /* Reset our OS id */ 505 wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0); 506 507 /* 508 * Reset hypercall page reference before reset the page, 509 * let hypercall operations fail safely rather than 510 * panic the kernel for using invalid hypercall page 511 */ 512 hv_hypercall_pg = NULL; 513 514 /* Reset the hypercall page */ 515 hypercall_msr.as_uint64 = 0; 516 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 517 518 /* Reset the TSC page */ 519 hypercall_msr.as_uint64 = 0; 520 wrmsrl(HV_X64_MSR_REFERENCE_TSC, hypercall_msr.as_uint64); 521 } 522 EXPORT_SYMBOL_GPL(hyperv_cleanup); 523 524 void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die) 525 { 526 static bool panic_reported; 527 u64 guest_id; 528 529 if (in_die && !panic_on_oops) 530 return; 531 532 /* 533 * We prefer to report panic on 'die' chain as we have proper 534 * registers to report, but if we miss it (e.g. on BUG()) we need 535 * to report it on 'panic'. 536 */ 537 if (panic_reported) 538 return; 539 panic_reported = true; 540 541 rdmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id); 542 543 wrmsrl(HV_X64_MSR_CRASH_P0, err); 544 wrmsrl(HV_X64_MSR_CRASH_P1, guest_id); 545 wrmsrl(HV_X64_MSR_CRASH_P2, regs->ip); 546 wrmsrl(HV_X64_MSR_CRASH_P3, regs->ax); 547 wrmsrl(HV_X64_MSR_CRASH_P4, regs->sp); 548 549 /* 550 * Let Hyper-V know there is crash data available 551 */ 552 wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY); 553 } 554 EXPORT_SYMBOL_GPL(hyperv_report_panic); 555 556 /** 557 * hyperv_report_panic_msg - report panic message to Hyper-V 558 * @pa: physical address of the panic page containing the message 559 * @size: size of the message in the page 560 */ 561 void hyperv_report_panic_msg(phys_addr_t pa, size_t size) 562 { 563 /* 564 * P3 to contain the physical address of the panic page & P4 to 565 * contain the size of the panic data in that page. Rest of the 566 * registers are no-op when the NOTIFY_MSG flag is set. 567 */ 568 wrmsrl(HV_X64_MSR_CRASH_P0, 0); 569 wrmsrl(HV_X64_MSR_CRASH_P1, 0); 570 wrmsrl(HV_X64_MSR_CRASH_P2, 0); 571 wrmsrl(HV_X64_MSR_CRASH_P3, pa); 572 wrmsrl(HV_X64_MSR_CRASH_P4, size); 573 574 /* 575 * Let Hyper-V know there is crash data available along with 576 * the panic message. 577 */ 578 wrmsrl(HV_X64_MSR_CRASH_CTL, 579 (HV_CRASH_CTL_CRASH_NOTIFY | HV_CRASH_CTL_CRASH_NOTIFY_MSG)); 580 } 581 EXPORT_SYMBOL_GPL(hyperv_report_panic_msg); 582 583 bool hv_is_hyperv_initialized(void) 584 { 585 union hv_x64_msr_hypercall_contents hypercall_msr; 586 587 /* 588 * Ensure that we're really on Hyper-V, and not a KVM or Xen 589 * emulation of Hyper-V 590 */ 591 if (x86_hyper_type != X86_HYPER_MS_HYPERV) 592 return false; 593 594 /* 595 * Verify that earlier initialization succeeded by checking 596 * that the hypercall page is setup 597 */ 598 hypercall_msr.as_uint64 = 0; 599 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 600 601 return hypercall_msr.enable; 602 } 603 EXPORT_SYMBOL_GPL(hv_is_hyperv_initialized); 604 605 bool hv_is_hibernation_supported(void) 606 { 607 return acpi_sleep_state_supported(ACPI_STATE_S4); 608 } 609 EXPORT_SYMBOL_GPL(hv_is_hibernation_supported); 610 611 enum hv_isolation_type hv_get_isolation_type(void) 612 { 613 if (!(ms_hyperv.features_b & HV_ISOLATION)) 614 return HV_ISOLATION_TYPE_NONE; 615 return FIELD_GET(HV_ISOLATION_TYPE, ms_hyperv.isolation_config_b); 616 } 617 EXPORT_SYMBOL_GPL(hv_get_isolation_type); 618 619 bool hv_is_isolation_supported(void) 620 { 621 return hv_get_isolation_type() != HV_ISOLATION_TYPE_NONE; 622 } 623 EXPORT_SYMBOL_GPL(hv_is_isolation_supported); 624