1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * X86 specific Hyper-V initialization code. 4 * 5 * Copyright (C) 2016, Microsoft, Inc. 6 * 7 * Author : K. Y. Srinivasan <kys@microsoft.com> 8 */ 9 10 #include <linux/acpi.h> 11 #include <linux/efi.h> 12 #include <linux/types.h> 13 #include <linux/bitfield.h> 14 #include <asm/apic.h> 15 #include <asm/desc.h> 16 #include <asm/hypervisor.h> 17 #include <asm/hyperv-tlfs.h> 18 #include <asm/mshyperv.h> 19 #include <asm/idtentry.h> 20 #include <linux/kexec.h> 21 #include <linux/version.h> 22 #include <linux/vmalloc.h> 23 #include <linux/mm.h> 24 #include <linux/hyperv.h> 25 #include <linux/slab.h> 26 #include <linux/kernel.h> 27 #include <linux/cpuhotplug.h> 28 #include <linux/syscore_ops.h> 29 #include <clocksource/hyperv_timer.h> 30 #include <linux/highmem.h> 31 32 int hyperv_init_cpuhp; 33 u64 hv_current_partition_id = ~0ull; 34 EXPORT_SYMBOL_GPL(hv_current_partition_id); 35 36 void *hv_hypercall_pg; 37 EXPORT_SYMBOL_GPL(hv_hypercall_pg); 38 39 /* Storage to save the hypercall page temporarily for hibernation */ 40 static void *hv_hypercall_pg_saved; 41 42 u32 *hv_vp_index; 43 EXPORT_SYMBOL_GPL(hv_vp_index); 44 45 struct hv_vp_assist_page **hv_vp_assist_page; 46 EXPORT_SYMBOL_GPL(hv_vp_assist_page); 47 48 void __percpu **hyperv_pcpu_input_arg; 49 EXPORT_SYMBOL_GPL(hyperv_pcpu_input_arg); 50 51 void __percpu **hyperv_pcpu_output_arg; 52 EXPORT_SYMBOL_GPL(hyperv_pcpu_output_arg); 53 54 u32 hv_max_vp_index; 55 EXPORT_SYMBOL_GPL(hv_max_vp_index); 56 57 void *hv_alloc_hyperv_page(void) 58 { 59 BUILD_BUG_ON(PAGE_SIZE != HV_HYP_PAGE_SIZE); 60 61 return (void *)__get_free_page(GFP_KERNEL); 62 } 63 EXPORT_SYMBOL_GPL(hv_alloc_hyperv_page); 64 65 void *hv_alloc_hyperv_zeroed_page(void) 66 { 67 BUILD_BUG_ON(PAGE_SIZE != HV_HYP_PAGE_SIZE); 68 69 return (void *)__get_free_page(GFP_KERNEL | __GFP_ZERO); 70 } 71 EXPORT_SYMBOL_GPL(hv_alloc_hyperv_zeroed_page); 72 73 void hv_free_hyperv_page(unsigned long addr) 74 { 75 free_page(addr); 76 } 77 EXPORT_SYMBOL_GPL(hv_free_hyperv_page); 78 79 static int hv_cpu_init(unsigned int cpu) 80 { 81 u64 msr_vp_index; 82 struct hv_vp_assist_page **hvp = &hv_vp_assist_page[smp_processor_id()]; 83 void **input_arg; 84 struct page *pg; 85 86 /* hv_cpu_init() can be called with IRQs disabled from hv_resume() */ 87 pg = alloc_pages(irqs_disabled() ? GFP_ATOMIC : GFP_KERNEL, hv_root_partition ? 1 : 0); 88 if (unlikely(!pg)) 89 return -ENOMEM; 90 91 input_arg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg); 92 *input_arg = page_address(pg); 93 if (hv_root_partition) { 94 void **output_arg; 95 96 output_arg = (void **)this_cpu_ptr(hyperv_pcpu_output_arg); 97 *output_arg = page_address(pg + 1); 98 } 99 100 hv_get_vp_index(msr_vp_index); 101 102 hv_vp_index[smp_processor_id()] = msr_vp_index; 103 104 if (msr_vp_index > hv_max_vp_index) 105 hv_max_vp_index = msr_vp_index; 106 107 if (!hv_vp_assist_page) 108 return 0; 109 110 /* 111 * The VP ASSIST PAGE is an "overlay" page (see Hyper-V TLFS's Section 112 * 5.2.1 "GPA Overlay Pages"). Here it must be zeroed out to make sure 113 * we always write the EOI MSR in hv_apic_eoi_write() *after* the 114 * EOI optimization is disabled in hv_cpu_die(), otherwise a CPU may 115 * not be stopped in the case of CPU offlining and the VM will hang. 116 */ 117 if (!*hvp) { 118 *hvp = __vmalloc(PAGE_SIZE, GFP_KERNEL | __GFP_ZERO); 119 } 120 121 if (*hvp) { 122 u64 val; 123 124 val = vmalloc_to_pfn(*hvp); 125 val = (val << HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT) | 126 HV_X64_MSR_VP_ASSIST_PAGE_ENABLE; 127 128 wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, val); 129 } 130 131 return 0; 132 } 133 134 static void (*hv_reenlightenment_cb)(void); 135 136 static void hv_reenlightenment_notify(struct work_struct *dummy) 137 { 138 struct hv_tsc_emulation_status emu_status; 139 140 rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status); 141 142 /* Don't issue the callback if TSC accesses are not emulated */ 143 if (hv_reenlightenment_cb && emu_status.inprogress) 144 hv_reenlightenment_cb(); 145 } 146 static DECLARE_DELAYED_WORK(hv_reenlightenment_work, hv_reenlightenment_notify); 147 148 void hyperv_stop_tsc_emulation(void) 149 { 150 u64 freq; 151 struct hv_tsc_emulation_status emu_status; 152 153 rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status); 154 emu_status.inprogress = 0; 155 wrmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status); 156 157 rdmsrl(HV_X64_MSR_TSC_FREQUENCY, freq); 158 tsc_khz = div64_u64(freq, 1000); 159 } 160 EXPORT_SYMBOL_GPL(hyperv_stop_tsc_emulation); 161 162 static inline bool hv_reenlightenment_available(void) 163 { 164 /* 165 * Check for required features and priviliges to make TSC frequency 166 * change notifications work. 167 */ 168 return ms_hyperv.features & HV_ACCESS_FREQUENCY_MSRS && 169 ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE && 170 ms_hyperv.features & HV_ACCESS_REENLIGHTENMENT; 171 } 172 173 DEFINE_IDTENTRY_SYSVEC(sysvec_hyperv_reenlightenment) 174 { 175 ack_APIC_irq(); 176 inc_irq_stat(irq_hv_reenlightenment_count); 177 schedule_delayed_work(&hv_reenlightenment_work, HZ/10); 178 } 179 180 void set_hv_tscchange_cb(void (*cb)(void)) 181 { 182 struct hv_reenlightenment_control re_ctrl = { 183 .vector = HYPERV_REENLIGHTENMENT_VECTOR, 184 .enabled = 1, 185 .target_vp = hv_vp_index[smp_processor_id()] 186 }; 187 struct hv_tsc_emulation_control emu_ctrl = {.enabled = 1}; 188 189 if (!hv_reenlightenment_available()) { 190 pr_warn("Hyper-V: reenlightenment support is unavailable\n"); 191 return; 192 } 193 194 hv_reenlightenment_cb = cb; 195 196 /* Make sure callback is registered before we write to MSRs */ 197 wmb(); 198 199 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl)); 200 wrmsrl(HV_X64_MSR_TSC_EMULATION_CONTROL, *((u64 *)&emu_ctrl)); 201 } 202 EXPORT_SYMBOL_GPL(set_hv_tscchange_cb); 203 204 void clear_hv_tscchange_cb(void) 205 { 206 struct hv_reenlightenment_control re_ctrl; 207 208 if (!hv_reenlightenment_available()) 209 return; 210 211 rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl); 212 re_ctrl.enabled = 0; 213 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl); 214 215 hv_reenlightenment_cb = NULL; 216 } 217 EXPORT_SYMBOL_GPL(clear_hv_tscchange_cb); 218 219 static int hv_cpu_die(unsigned int cpu) 220 { 221 struct hv_reenlightenment_control re_ctrl; 222 unsigned int new_cpu; 223 unsigned long flags; 224 void **input_arg; 225 void *pg; 226 227 local_irq_save(flags); 228 input_arg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg); 229 pg = *input_arg; 230 *input_arg = NULL; 231 232 if (hv_root_partition) { 233 void **output_arg; 234 235 output_arg = (void **)this_cpu_ptr(hyperv_pcpu_output_arg); 236 *output_arg = NULL; 237 } 238 239 local_irq_restore(flags); 240 241 free_pages((unsigned long)pg, hv_root_partition ? 1 : 0); 242 243 if (hv_vp_assist_page && hv_vp_assist_page[cpu]) 244 wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, 0); 245 246 if (hv_reenlightenment_cb == NULL) 247 return 0; 248 249 rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl)); 250 if (re_ctrl.target_vp == hv_vp_index[cpu]) { 251 /* 252 * Reassign reenlightenment notifications to some other online 253 * CPU or just disable the feature if there are no online CPUs 254 * left (happens on hibernation). 255 */ 256 new_cpu = cpumask_any_but(cpu_online_mask, cpu); 257 258 if (new_cpu < nr_cpu_ids) 259 re_ctrl.target_vp = hv_vp_index[new_cpu]; 260 else 261 re_ctrl.enabled = 0; 262 263 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl)); 264 } 265 266 return 0; 267 } 268 269 static int __init hv_pci_init(void) 270 { 271 int gen2vm = efi_enabled(EFI_BOOT); 272 273 /* 274 * For Generation-2 VM, we exit from pci_arch_init() by returning 0. 275 * The purpose is to suppress the harmless warning: 276 * "PCI: Fatal: No config space access function found" 277 */ 278 if (gen2vm) 279 return 0; 280 281 /* For Generation-1 VM, we'll proceed in pci_arch_init(). */ 282 return 1; 283 } 284 285 static int hv_suspend(void) 286 { 287 union hv_x64_msr_hypercall_contents hypercall_msr; 288 int ret; 289 290 if (hv_root_partition) 291 return -EPERM; 292 293 /* 294 * Reset the hypercall page as it is going to be invalidated 295 * accross hibernation. Setting hv_hypercall_pg to NULL ensures 296 * that any subsequent hypercall operation fails safely instead of 297 * crashing due to an access of an invalid page. The hypercall page 298 * pointer is restored on resume. 299 */ 300 hv_hypercall_pg_saved = hv_hypercall_pg; 301 hv_hypercall_pg = NULL; 302 303 /* Disable the hypercall page in the hypervisor */ 304 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 305 hypercall_msr.enable = 0; 306 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 307 308 ret = hv_cpu_die(0); 309 return ret; 310 } 311 312 static void hv_resume(void) 313 { 314 union hv_x64_msr_hypercall_contents hypercall_msr; 315 int ret; 316 317 ret = hv_cpu_init(0); 318 WARN_ON(ret); 319 320 /* Re-enable the hypercall page */ 321 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 322 hypercall_msr.enable = 1; 323 hypercall_msr.guest_physical_address = 324 vmalloc_to_pfn(hv_hypercall_pg_saved); 325 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 326 327 hv_hypercall_pg = hv_hypercall_pg_saved; 328 hv_hypercall_pg_saved = NULL; 329 330 /* 331 * Reenlightenment notifications are disabled by hv_cpu_die(0), 332 * reenable them here if hv_reenlightenment_cb was previously set. 333 */ 334 if (hv_reenlightenment_cb) 335 set_hv_tscchange_cb(hv_reenlightenment_cb); 336 } 337 338 /* Note: when the ops are called, only CPU0 is online and IRQs are disabled. */ 339 static struct syscore_ops hv_syscore_ops = { 340 .suspend = hv_suspend, 341 .resume = hv_resume, 342 }; 343 344 static void (* __initdata old_setup_percpu_clockev)(void); 345 346 static void __init hv_stimer_setup_percpu_clockev(void) 347 { 348 /* 349 * Ignore any errors in setting up stimer clockevents 350 * as we can run with the LAPIC timer as a fallback. 351 */ 352 (void)hv_stimer_alloc(); 353 354 /* 355 * Still register the LAPIC timer, because the direct-mode STIMER is 356 * not supported by old versions of Hyper-V. This also allows users 357 * to switch to LAPIC timer via /sys, if they want to. 358 */ 359 if (old_setup_percpu_clockev) 360 old_setup_percpu_clockev(); 361 } 362 363 static void __init hv_get_partition_id(void) 364 { 365 struct hv_get_partition_id *output_page; 366 u64 status; 367 unsigned long flags; 368 369 local_irq_save(flags); 370 output_page = *this_cpu_ptr(hyperv_pcpu_output_arg); 371 status = hv_do_hypercall(HVCALL_GET_PARTITION_ID, NULL, output_page); 372 if ((status & HV_HYPERCALL_RESULT_MASK) != HV_STATUS_SUCCESS) { 373 /* No point in proceeding if this failed */ 374 pr_err("Failed to get partition ID: %lld\n", status); 375 BUG(); 376 } 377 hv_current_partition_id = output_page->partition_id; 378 local_irq_restore(flags); 379 } 380 381 /* 382 * This function is to be invoked early in the boot sequence after the 383 * hypervisor has been detected. 384 * 385 * 1. Setup the hypercall page. 386 * 2. Register Hyper-V specific clocksource. 387 * 3. Setup Hyper-V specific APIC entry points. 388 */ 389 void __init hyperv_init(void) 390 { 391 u64 guest_id, required_msrs; 392 union hv_x64_msr_hypercall_contents hypercall_msr; 393 int cpuhp, i; 394 395 if (x86_hyper_type != X86_HYPER_MS_HYPERV) 396 return; 397 398 /* Absolutely required MSRs */ 399 required_msrs = HV_MSR_HYPERCALL_AVAILABLE | 400 HV_MSR_VP_INDEX_AVAILABLE; 401 402 if ((ms_hyperv.features & required_msrs) != required_msrs) 403 return; 404 405 /* 406 * Allocate the per-CPU state for the hypercall input arg. 407 * If this allocation fails, we will not be able to setup 408 * (per-CPU) hypercall input page and thus this failure is 409 * fatal on Hyper-V. 410 */ 411 hyperv_pcpu_input_arg = alloc_percpu(void *); 412 413 BUG_ON(hyperv_pcpu_input_arg == NULL); 414 415 /* Allocate the per-CPU state for output arg for root */ 416 if (hv_root_partition) { 417 hyperv_pcpu_output_arg = alloc_percpu(void *); 418 BUG_ON(hyperv_pcpu_output_arg == NULL); 419 } 420 421 /* Allocate percpu VP index */ 422 hv_vp_index = kmalloc_array(num_possible_cpus(), sizeof(*hv_vp_index), 423 GFP_KERNEL); 424 if (!hv_vp_index) 425 return; 426 427 for (i = 0; i < num_possible_cpus(); i++) 428 hv_vp_index[i] = VP_INVAL; 429 430 hv_vp_assist_page = kcalloc(num_possible_cpus(), 431 sizeof(*hv_vp_assist_page), GFP_KERNEL); 432 if (!hv_vp_assist_page) { 433 ms_hyperv.hints &= ~HV_X64_ENLIGHTENED_VMCS_RECOMMENDED; 434 goto free_vp_index; 435 } 436 437 cpuhp = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv_init:online", 438 hv_cpu_init, hv_cpu_die); 439 if (cpuhp < 0) 440 goto free_vp_assist_page; 441 442 /* 443 * Setup the hypercall page and enable hypercalls. 444 * 1. Register the guest ID 445 * 2. Enable the hypercall and register the hypercall page 446 */ 447 guest_id = generate_guest_id(0, LINUX_VERSION_CODE, 0); 448 wrmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id); 449 450 hv_hypercall_pg = __vmalloc_node_range(PAGE_SIZE, 1, VMALLOC_START, 451 VMALLOC_END, GFP_KERNEL, PAGE_KERNEL_ROX, 452 VM_FLUSH_RESET_PERMS, NUMA_NO_NODE, 453 __builtin_return_address(0)); 454 if (hv_hypercall_pg == NULL) { 455 wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0); 456 goto remove_cpuhp_state; 457 } 458 459 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 460 hypercall_msr.enable = 1; 461 462 if (hv_root_partition) { 463 struct page *pg; 464 void *src, *dst; 465 466 /* 467 * For the root partition, the hypervisor will set up its 468 * hypercall page. The hypervisor guarantees it will not show 469 * up in the root's address space. The root can't change the 470 * location of the hypercall page. 471 * 472 * Order is important here. We must enable the hypercall page 473 * so it is populated with code, then copy the code to an 474 * executable page. 475 */ 476 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 477 478 pg = vmalloc_to_page(hv_hypercall_pg); 479 dst = kmap(pg); 480 src = memremap(hypercall_msr.guest_physical_address << PAGE_SHIFT, PAGE_SIZE, 481 MEMREMAP_WB); 482 BUG_ON(!(src && dst)); 483 memcpy(dst, src, HV_HYP_PAGE_SIZE); 484 memunmap(src); 485 kunmap(pg); 486 } else { 487 hypercall_msr.guest_physical_address = vmalloc_to_pfn(hv_hypercall_pg); 488 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 489 } 490 491 /* 492 * hyperv_init() is called before LAPIC is initialized: see 493 * apic_intr_mode_init() -> x86_platform.apic_post_init() and 494 * apic_bsp_setup() -> setup_local_APIC(). The direct-mode STIMER 495 * depends on LAPIC, so hv_stimer_alloc() should be called from 496 * x86_init.timers.setup_percpu_clockev. 497 */ 498 old_setup_percpu_clockev = x86_init.timers.setup_percpu_clockev; 499 x86_init.timers.setup_percpu_clockev = hv_stimer_setup_percpu_clockev; 500 501 hv_apic_init(); 502 503 x86_init.pci.arch_init = hv_pci_init; 504 505 register_syscore_ops(&hv_syscore_ops); 506 507 hyperv_init_cpuhp = cpuhp; 508 509 if (cpuid_ebx(HYPERV_CPUID_FEATURES) & HV_ACCESS_PARTITION_ID) 510 hv_get_partition_id(); 511 512 BUG_ON(hv_root_partition && hv_current_partition_id == ~0ull); 513 514 #ifdef CONFIG_PCI_MSI 515 /* 516 * If we're running as root, we want to create our own PCI MSI domain. 517 * We can't set this in hv_pci_init because that would be too late. 518 */ 519 if (hv_root_partition) 520 x86_init.irqs.create_pci_msi_domain = hv_create_pci_msi_domain; 521 #endif 522 523 return; 524 525 remove_cpuhp_state: 526 cpuhp_remove_state(cpuhp); 527 free_vp_assist_page: 528 kfree(hv_vp_assist_page); 529 hv_vp_assist_page = NULL; 530 free_vp_index: 531 kfree(hv_vp_index); 532 hv_vp_index = NULL; 533 } 534 535 /* 536 * This routine is called before kexec/kdump, it does the required cleanup. 537 */ 538 void hyperv_cleanup(void) 539 { 540 union hv_x64_msr_hypercall_contents hypercall_msr; 541 542 unregister_syscore_ops(&hv_syscore_ops); 543 544 /* Reset our OS id */ 545 wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0); 546 547 /* 548 * Reset hypercall page reference before reset the page, 549 * let hypercall operations fail safely rather than 550 * panic the kernel for using invalid hypercall page 551 */ 552 hv_hypercall_pg = NULL; 553 554 /* Reset the hypercall page */ 555 hypercall_msr.as_uint64 = 0; 556 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 557 558 /* Reset the TSC page */ 559 hypercall_msr.as_uint64 = 0; 560 wrmsrl(HV_X64_MSR_REFERENCE_TSC, hypercall_msr.as_uint64); 561 } 562 EXPORT_SYMBOL_GPL(hyperv_cleanup); 563 564 void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die) 565 { 566 static bool panic_reported; 567 u64 guest_id; 568 569 if (in_die && !panic_on_oops) 570 return; 571 572 /* 573 * We prefer to report panic on 'die' chain as we have proper 574 * registers to report, but if we miss it (e.g. on BUG()) we need 575 * to report it on 'panic'. 576 */ 577 if (panic_reported) 578 return; 579 panic_reported = true; 580 581 rdmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id); 582 583 wrmsrl(HV_X64_MSR_CRASH_P0, err); 584 wrmsrl(HV_X64_MSR_CRASH_P1, guest_id); 585 wrmsrl(HV_X64_MSR_CRASH_P2, regs->ip); 586 wrmsrl(HV_X64_MSR_CRASH_P3, regs->ax); 587 wrmsrl(HV_X64_MSR_CRASH_P4, regs->sp); 588 589 /* 590 * Let Hyper-V know there is crash data available 591 */ 592 wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY); 593 } 594 EXPORT_SYMBOL_GPL(hyperv_report_panic); 595 596 /** 597 * hyperv_report_panic_msg - report panic message to Hyper-V 598 * @pa: physical address of the panic page containing the message 599 * @size: size of the message in the page 600 */ 601 void hyperv_report_panic_msg(phys_addr_t pa, size_t size) 602 { 603 /* 604 * P3 to contain the physical address of the panic page & P4 to 605 * contain the size of the panic data in that page. Rest of the 606 * registers are no-op when the NOTIFY_MSG flag is set. 607 */ 608 wrmsrl(HV_X64_MSR_CRASH_P0, 0); 609 wrmsrl(HV_X64_MSR_CRASH_P1, 0); 610 wrmsrl(HV_X64_MSR_CRASH_P2, 0); 611 wrmsrl(HV_X64_MSR_CRASH_P3, pa); 612 wrmsrl(HV_X64_MSR_CRASH_P4, size); 613 614 /* 615 * Let Hyper-V know there is crash data available along with 616 * the panic message. 617 */ 618 wrmsrl(HV_X64_MSR_CRASH_CTL, 619 (HV_CRASH_CTL_CRASH_NOTIFY | HV_CRASH_CTL_CRASH_NOTIFY_MSG)); 620 } 621 EXPORT_SYMBOL_GPL(hyperv_report_panic_msg); 622 623 bool hv_is_hyperv_initialized(void) 624 { 625 union hv_x64_msr_hypercall_contents hypercall_msr; 626 627 /* 628 * Ensure that we're really on Hyper-V, and not a KVM or Xen 629 * emulation of Hyper-V 630 */ 631 if (x86_hyper_type != X86_HYPER_MS_HYPERV) 632 return false; 633 634 /* 635 * Verify that earlier initialization succeeded by checking 636 * that the hypercall page is setup 637 */ 638 hypercall_msr.as_uint64 = 0; 639 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 640 641 return hypercall_msr.enable; 642 } 643 EXPORT_SYMBOL_GPL(hv_is_hyperv_initialized); 644 645 bool hv_is_hibernation_supported(void) 646 { 647 return !hv_root_partition && acpi_sleep_state_supported(ACPI_STATE_S4); 648 } 649 EXPORT_SYMBOL_GPL(hv_is_hibernation_supported); 650 651 enum hv_isolation_type hv_get_isolation_type(void) 652 { 653 if (!(ms_hyperv.features_b & HV_ISOLATION)) 654 return HV_ISOLATION_TYPE_NONE; 655 return FIELD_GET(HV_ISOLATION_TYPE, ms_hyperv.isolation_config_b); 656 } 657 EXPORT_SYMBOL_GPL(hv_get_isolation_type); 658 659 bool hv_is_isolation_supported(void) 660 { 661 return hv_get_isolation_type() != HV_ISOLATION_TYPE_NONE; 662 } 663 EXPORT_SYMBOL_GPL(hv_is_isolation_supported); 664