1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * X86 specific Hyper-V initialization code. 4 * 5 * Copyright (C) 2016, Microsoft, Inc. 6 * 7 * Author : K. Y. Srinivasan <kys@microsoft.com> 8 */ 9 10 #define pr_fmt(fmt) "Hyper-V: " fmt 11 12 #include <linux/efi.h> 13 #include <linux/types.h> 14 #include <linux/bitfield.h> 15 #include <linux/io.h> 16 #include <asm/apic.h> 17 #include <asm/desc.h> 18 #include <asm/sev.h> 19 #include <asm/ibt.h> 20 #include <asm/hypervisor.h> 21 #include <asm/hyperv-tlfs.h> 22 #include <asm/mshyperv.h> 23 #include <asm/idtentry.h> 24 #include <asm/set_memory.h> 25 #include <linux/kexec.h> 26 #include <linux/version.h> 27 #include <linux/vmalloc.h> 28 #include <linux/mm.h> 29 #include <linux/hyperv.h> 30 #include <linux/slab.h> 31 #include <linux/kernel.h> 32 #include <linux/cpuhotplug.h> 33 #include <linux/syscore_ops.h> 34 #include <clocksource/hyperv_timer.h> 35 #include <linux/highmem.h> 36 37 int hyperv_init_cpuhp; 38 u64 hv_current_partition_id = ~0ull; 39 EXPORT_SYMBOL_GPL(hv_current_partition_id); 40 41 void *hv_hypercall_pg; 42 EXPORT_SYMBOL_GPL(hv_hypercall_pg); 43 44 union hv_ghcb * __percpu *hv_ghcb_pg; 45 46 /* Storage to save the hypercall page temporarily for hibernation */ 47 static void *hv_hypercall_pg_saved; 48 49 struct hv_vp_assist_page **hv_vp_assist_page; 50 EXPORT_SYMBOL_GPL(hv_vp_assist_page); 51 52 static int hyperv_init_ghcb(void) 53 { 54 u64 ghcb_gpa; 55 void *ghcb_va; 56 void **ghcb_base; 57 58 if (!ms_hyperv.paravisor_present || !hv_isolation_type_snp()) 59 return 0; 60 61 if (!hv_ghcb_pg) 62 return -EINVAL; 63 64 /* 65 * GHCB page is allocated by paravisor. The address 66 * returned by MSR_AMD64_SEV_ES_GHCB is above shared 67 * memory boundary and map it here. 68 */ 69 rdmsrl(MSR_AMD64_SEV_ES_GHCB, ghcb_gpa); 70 71 /* Mask out vTOM bit. ioremap_cache() maps decrypted */ 72 ghcb_gpa &= ~ms_hyperv.shared_gpa_boundary; 73 ghcb_va = (void *)ioremap_cache(ghcb_gpa, HV_HYP_PAGE_SIZE); 74 if (!ghcb_va) 75 return -ENOMEM; 76 77 ghcb_base = (void **)this_cpu_ptr(hv_ghcb_pg); 78 *ghcb_base = ghcb_va; 79 80 return 0; 81 } 82 83 static int hv_cpu_init(unsigned int cpu) 84 { 85 union hv_vp_assist_msr_contents msr = { 0 }; 86 struct hv_vp_assist_page **hvp; 87 int ret; 88 89 ret = hv_common_cpu_init(cpu); 90 if (ret) 91 return ret; 92 93 if (!hv_vp_assist_page) 94 return 0; 95 96 hvp = &hv_vp_assist_page[cpu]; 97 if (hv_root_partition) { 98 /* 99 * For root partition we get the hypervisor provided VP assist 100 * page, instead of allocating a new page. 101 */ 102 rdmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64); 103 *hvp = memremap(msr.pfn << HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT, 104 PAGE_SIZE, MEMREMAP_WB); 105 } else { 106 /* 107 * The VP assist page is an "overlay" page (see Hyper-V TLFS's 108 * Section 5.2.1 "GPA Overlay Pages"). Here it must be zeroed 109 * out to make sure we always write the EOI MSR in 110 * hv_apic_eoi_write() *after* the EOI optimization is disabled 111 * in hv_cpu_die(), otherwise a CPU may not be stopped in the 112 * case of CPU offlining and the VM will hang. 113 */ 114 if (!*hvp) { 115 *hvp = __vmalloc(PAGE_SIZE, GFP_KERNEL | __GFP_ZERO); 116 117 /* 118 * Hyper-V should never specify a VM that is a Confidential 119 * VM and also running in the root partition. Root partition 120 * is blocked to run in Confidential VM. So only decrypt assist 121 * page in non-root partition here. 122 */ 123 if (*hvp && !ms_hyperv.paravisor_present && hv_isolation_type_snp()) { 124 WARN_ON_ONCE(set_memory_decrypted((unsigned long)(*hvp), 1)); 125 memset(*hvp, 0, PAGE_SIZE); 126 } 127 } 128 129 if (*hvp) 130 msr.pfn = vmalloc_to_pfn(*hvp); 131 132 } 133 if (!WARN_ON(!(*hvp))) { 134 msr.enable = 1; 135 wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64); 136 } 137 138 return hyperv_init_ghcb(); 139 } 140 141 static void (*hv_reenlightenment_cb)(void); 142 143 static void hv_reenlightenment_notify(struct work_struct *dummy) 144 { 145 struct hv_tsc_emulation_status emu_status; 146 147 rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status); 148 149 /* Don't issue the callback if TSC accesses are not emulated */ 150 if (hv_reenlightenment_cb && emu_status.inprogress) 151 hv_reenlightenment_cb(); 152 } 153 static DECLARE_DELAYED_WORK(hv_reenlightenment_work, hv_reenlightenment_notify); 154 155 void hyperv_stop_tsc_emulation(void) 156 { 157 u64 freq; 158 struct hv_tsc_emulation_status emu_status; 159 160 rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status); 161 emu_status.inprogress = 0; 162 wrmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status); 163 164 rdmsrl(HV_X64_MSR_TSC_FREQUENCY, freq); 165 tsc_khz = div64_u64(freq, 1000); 166 } 167 EXPORT_SYMBOL_GPL(hyperv_stop_tsc_emulation); 168 169 static inline bool hv_reenlightenment_available(void) 170 { 171 /* 172 * Check for required features and privileges to make TSC frequency 173 * change notifications work. 174 */ 175 return ms_hyperv.features & HV_ACCESS_FREQUENCY_MSRS && 176 ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE && 177 ms_hyperv.features & HV_ACCESS_REENLIGHTENMENT; 178 } 179 180 DEFINE_IDTENTRY_SYSVEC(sysvec_hyperv_reenlightenment) 181 { 182 apic_eoi(); 183 inc_irq_stat(irq_hv_reenlightenment_count); 184 schedule_delayed_work(&hv_reenlightenment_work, HZ/10); 185 } 186 187 void set_hv_tscchange_cb(void (*cb)(void)) 188 { 189 struct hv_reenlightenment_control re_ctrl = { 190 .vector = HYPERV_REENLIGHTENMENT_VECTOR, 191 .enabled = 1, 192 }; 193 struct hv_tsc_emulation_control emu_ctrl = {.enabled = 1}; 194 195 if (!hv_reenlightenment_available()) { 196 pr_warn("reenlightenment support is unavailable\n"); 197 return; 198 } 199 200 if (!hv_vp_index) 201 return; 202 203 hv_reenlightenment_cb = cb; 204 205 /* Make sure callback is registered before we write to MSRs */ 206 wmb(); 207 208 re_ctrl.target_vp = hv_vp_index[get_cpu()]; 209 210 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl)); 211 wrmsrl(HV_X64_MSR_TSC_EMULATION_CONTROL, *((u64 *)&emu_ctrl)); 212 213 put_cpu(); 214 } 215 EXPORT_SYMBOL_GPL(set_hv_tscchange_cb); 216 217 void clear_hv_tscchange_cb(void) 218 { 219 struct hv_reenlightenment_control re_ctrl; 220 221 if (!hv_reenlightenment_available()) 222 return; 223 224 rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl); 225 re_ctrl.enabled = 0; 226 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl); 227 228 hv_reenlightenment_cb = NULL; 229 } 230 EXPORT_SYMBOL_GPL(clear_hv_tscchange_cb); 231 232 static int hv_cpu_die(unsigned int cpu) 233 { 234 struct hv_reenlightenment_control re_ctrl; 235 unsigned int new_cpu; 236 void **ghcb_va; 237 238 if (hv_ghcb_pg) { 239 ghcb_va = (void **)this_cpu_ptr(hv_ghcb_pg); 240 if (*ghcb_va) 241 iounmap(*ghcb_va); 242 *ghcb_va = NULL; 243 } 244 245 hv_common_cpu_die(cpu); 246 247 if (hv_vp_assist_page && hv_vp_assist_page[cpu]) { 248 union hv_vp_assist_msr_contents msr = { 0 }; 249 if (hv_root_partition) { 250 /* 251 * For root partition the VP assist page is mapped to 252 * hypervisor provided page, and thus we unmap the 253 * page here and nullify it, so that in future we have 254 * correct page address mapped in hv_cpu_init. 255 */ 256 memunmap(hv_vp_assist_page[cpu]); 257 hv_vp_assist_page[cpu] = NULL; 258 rdmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64); 259 msr.enable = 0; 260 } 261 wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64); 262 } 263 264 if (hv_reenlightenment_cb == NULL) 265 return 0; 266 267 rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl)); 268 if (re_ctrl.target_vp == hv_vp_index[cpu]) { 269 /* 270 * Reassign reenlightenment notifications to some other online 271 * CPU or just disable the feature if there are no online CPUs 272 * left (happens on hibernation). 273 */ 274 new_cpu = cpumask_any_but(cpu_online_mask, cpu); 275 276 if (new_cpu < nr_cpu_ids) 277 re_ctrl.target_vp = hv_vp_index[new_cpu]; 278 else 279 re_ctrl.enabled = 0; 280 281 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl)); 282 } 283 284 return 0; 285 } 286 287 static int __init hv_pci_init(void) 288 { 289 int gen2vm = efi_enabled(EFI_BOOT); 290 291 /* 292 * For Generation-2 VM, we exit from pci_arch_init() by returning 0. 293 * The purpose is to suppress the harmless warning: 294 * "PCI: Fatal: No config space access function found" 295 */ 296 if (gen2vm) 297 return 0; 298 299 /* For Generation-1 VM, we'll proceed in pci_arch_init(). */ 300 return 1; 301 } 302 303 static int hv_suspend(void) 304 { 305 union hv_x64_msr_hypercall_contents hypercall_msr; 306 int ret; 307 308 if (hv_root_partition) 309 return -EPERM; 310 311 /* 312 * Reset the hypercall page as it is going to be invalidated 313 * across hibernation. Setting hv_hypercall_pg to NULL ensures 314 * that any subsequent hypercall operation fails safely instead of 315 * crashing due to an access of an invalid page. The hypercall page 316 * pointer is restored on resume. 317 */ 318 hv_hypercall_pg_saved = hv_hypercall_pg; 319 hv_hypercall_pg = NULL; 320 321 /* Disable the hypercall page in the hypervisor */ 322 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 323 hypercall_msr.enable = 0; 324 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 325 326 ret = hv_cpu_die(0); 327 return ret; 328 } 329 330 static void hv_resume(void) 331 { 332 union hv_x64_msr_hypercall_contents hypercall_msr; 333 int ret; 334 335 ret = hv_cpu_init(0); 336 WARN_ON(ret); 337 338 /* Re-enable the hypercall page */ 339 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 340 hypercall_msr.enable = 1; 341 hypercall_msr.guest_physical_address = 342 vmalloc_to_pfn(hv_hypercall_pg_saved); 343 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 344 345 hv_hypercall_pg = hv_hypercall_pg_saved; 346 hv_hypercall_pg_saved = NULL; 347 348 /* 349 * Reenlightenment notifications are disabled by hv_cpu_die(0), 350 * reenable them here if hv_reenlightenment_cb was previously set. 351 */ 352 if (hv_reenlightenment_cb) 353 set_hv_tscchange_cb(hv_reenlightenment_cb); 354 } 355 356 /* Note: when the ops are called, only CPU0 is online and IRQs are disabled. */ 357 static struct syscore_ops hv_syscore_ops = { 358 .suspend = hv_suspend, 359 .resume = hv_resume, 360 }; 361 362 static void (* __initdata old_setup_percpu_clockev)(void); 363 364 static void __init hv_stimer_setup_percpu_clockev(void) 365 { 366 /* 367 * Ignore any errors in setting up stimer clockevents 368 * as we can run with the LAPIC timer as a fallback. 369 */ 370 (void)hv_stimer_alloc(false); 371 372 /* 373 * Still register the LAPIC timer, because the direct-mode STIMER is 374 * not supported by old versions of Hyper-V. This also allows users 375 * to switch to LAPIC timer via /sys, if they want to. 376 */ 377 if (old_setup_percpu_clockev) 378 old_setup_percpu_clockev(); 379 } 380 381 static void __init hv_get_partition_id(void) 382 { 383 struct hv_get_partition_id *output_page; 384 u64 status; 385 unsigned long flags; 386 387 local_irq_save(flags); 388 output_page = *this_cpu_ptr(hyperv_pcpu_output_arg); 389 status = hv_do_hypercall(HVCALL_GET_PARTITION_ID, NULL, output_page); 390 if (!hv_result_success(status)) { 391 /* No point in proceeding if this failed */ 392 pr_err("Failed to get partition ID: %lld\n", status); 393 BUG(); 394 } 395 hv_current_partition_id = output_page->partition_id; 396 local_irq_restore(flags); 397 } 398 399 #if IS_ENABLED(CONFIG_HYPERV_VTL_MODE) 400 static u8 __init get_vtl(void) 401 { 402 u64 control = HV_HYPERCALL_REP_COMP_1 | HVCALL_GET_VP_REGISTERS; 403 struct hv_get_vp_registers_input *input; 404 struct hv_get_vp_registers_output *output; 405 unsigned long flags; 406 u64 ret; 407 408 local_irq_save(flags); 409 input = *this_cpu_ptr(hyperv_pcpu_input_arg); 410 output = (struct hv_get_vp_registers_output *)input; 411 412 memset(input, 0, struct_size(input, element, 1)); 413 input->header.partitionid = HV_PARTITION_ID_SELF; 414 input->header.vpindex = HV_VP_INDEX_SELF; 415 input->header.inputvtl = 0; 416 input->element[0].name0 = HV_X64_REGISTER_VSM_VP_STATUS; 417 418 ret = hv_do_hypercall(control, input, output); 419 if (hv_result_success(ret)) { 420 ret = output->as64.low & HV_X64_VTL_MASK; 421 } else { 422 pr_err("Failed to get VTL(error: %lld) exiting...\n", ret); 423 BUG(); 424 } 425 426 local_irq_restore(flags); 427 return ret; 428 } 429 #else 430 static inline u8 get_vtl(void) { return 0; } 431 #endif 432 433 /* 434 * This function is to be invoked early in the boot sequence after the 435 * hypervisor has been detected. 436 * 437 * 1. Setup the hypercall page. 438 * 2. Register Hyper-V specific clocksource. 439 * 3. Setup Hyper-V specific APIC entry points. 440 */ 441 void __init hyperv_init(void) 442 { 443 u64 guest_id; 444 union hv_x64_msr_hypercall_contents hypercall_msr; 445 int cpuhp; 446 447 if (x86_hyper_type != X86_HYPER_MS_HYPERV) 448 return; 449 450 if (hv_common_init()) 451 return; 452 453 /* 454 * The VP assist page is useless to a TDX guest: the only use we 455 * would have for it is lazy EOI, which can not be used with TDX. 456 */ 457 if (hv_isolation_type_tdx()) 458 hv_vp_assist_page = NULL; 459 else 460 hv_vp_assist_page = kcalloc(num_possible_cpus(), 461 sizeof(*hv_vp_assist_page), 462 GFP_KERNEL); 463 if (!hv_vp_assist_page) { 464 ms_hyperv.hints &= ~HV_X64_ENLIGHTENED_VMCS_RECOMMENDED; 465 466 if (!hv_isolation_type_tdx()) 467 goto common_free; 468 } 469 470 if (ms_hyperv.paravisor_present && hv_isolation_type_snp()) { 471 /* Negotiate GHCB Version. */ 472 if (!hv_ghcb_negotiate_protocol()) 473 hv_ghcb_terminate(SEV_TERM_SET_GEN, 474 GHCB_SEV_ES_PROT_UNSUPPORTED); 475 476 hv_ghcb_pg = alloc_percpu(union hv_ghcb *); 477 if (!hv_ghcb_pg) 478 goto free_vp_assist_page; 479 } 480 481 cpuhp = cpuhp_setup_state(CPUHP_AP_HYPERV_ONLINE, "x86/hyperv_init:online", 482 hv_cpu_init, hv_cpu_die); 483 if (cpuhp < 0) 484 goto free_ghcb_page; 485 486 /* 487 * Setup the hypercall page and enable hypercalls. 488 * 1. Register the guest ID 489 * 2. Enable the hypercall and register the hypercall page 490 * 491 * A TDX VM with no paravisor only uses TDX GHCI rather than hv_hypercall_pg: 492 * when the hypercall input is a page, such a VM must pass a decrypted 493 * page to Hyper-V, e.g. hv_post_message() uses the per-CPU page 494 * hyperv_pcpu_input_arg, which is decrypted if no paravisor is present. 495 * 496 * A TDX VM with the paravisor uses hv_hypercall_pg for most hypercalls, 497 * which are handled by the paravisor and the VM must use an encrypted 498 * input page: in such a VM, the hyperv_pcpu_input_arg is encrypted and 499 * used in the hypercalls, e.g. see hv_mark_gpa_visibility() and 500 * hv_arch_irq_unmask(). Such a VM uses TDX GHCI for two hypercalls: 501 * 1. HVCALL_SIGNAL_EVENT: see vmbus_set_event() and _hv_do_fast_hypercall8(). 502 * 2. HVCALL_POST_MESSAGE: the input page must be a decrypted page, i.e. 503 * hv_post_message() in such a VM can't use the encrypted hyperv_pcpu_input_arg; 504 * instead, hv_post_message() uses the post_msg_page, which is decrypted 505 * in such a VM and is only used in such a VM. 506 */ 507 guest_id = hv_generate_guest_id(LINUX_VERSION_CODE); 508 wrmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id); 509 510 /* With the paravisor, the VM must also write the ID via GHCB/GHCI */ 511 hv_ivm_msr_write(HV_X64_MSR_GUEST_OS_ID, guest_id); 512 513 /* A TDX VM with no paravisor only uses TDX GHCI rather than hv_hypercall_pg */ 514 if (hv_isolation_type_tdx() && !ms_hyperv.paravisor_present) 515 goto skip_hypercall_pg_init; 516 517 hv_hypercall_pg = __vmalloc_node_range(PAGE_SIZE, 1, VMALLOC_START, 518 VMALLOC_END, GFP_KERNEL, PAGE_KERNEL_ROX, 519 VM_FLUSH_RESET_PERMS, NUMA_NO_NODE, 520 __builtin_return_address(0)); 521 if (hv_hypercall_pg == NULL) 522 goto clean_guest_os_id; 523 524 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 525 hypercall_msr.enable = 1; 526 527 if (hv_root_partition) { 528 struct page *pg; 529 void *src; 530 531 /* 532 * For the root partition, the hypervisor will set up its 533 * hypercall page. The hypervisor guarantees it will not show 534 * up in the root's address space. The root can't change the 535 * location of the hypercall page. 536 * 537 * Order is important here. We must enable the hypercall page 538 * so it is populated with code, then copy the code to an 539 * executable page. 540 */ 541 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 542 543 pg = vmalloc_to_page(hv_hypercall_pg); 544 src = memremap(hypercall_msr.guest_physical_address << PAGE_SHIFT, PAGE_SIZE, 545 MEMREMAP_WB); 546 BUG_ON(!src); 547 memcpy_to_page(pg, 0, src, HV_HYP_PAGE_SIZE); 548 memunmap(src); 549 550 hv_remap_tsc_clocksource(); 551 } else { 552 hypercall_msr.guest_physical_address = vmalloc_to_pfn(hv_hypercall_pg); 553 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 554 } 555 556 skip_hypercall_pg_init: 557 /* 558 * Some versions of Hyper-V that provide IBT in guest VMs have a bug 559 * in that there's no ENDBR64 instruction at the entry to the 560 * hypercall page. Because hypercalls are invoked via an indirect call 561 * to the hypercall page, all hypercall attempts fail when IBT is 562 * enabled, and Linux panics. For such buggy versions, disable IBT. 563 * 564 * Fixed versions of Hyper-V always provide ENDBR64 on the hypercall 565 * page, so if future Linux kernel versions enable IBT for 32-bit 566 * builds, additional hypercall page hackery will be required here 567 * to provide an ENDBR32. 568 */ 569 #ifdef CONFIG_X86_KERNEL_IBT 570 if (cpu_feature_enabled(X86_FEATURE_IBT) && 571 *(u32 *)hv_hypercall_pg != gen_endbr()) { 572 setup_clear_cpu_cap(X86_FEATURE_IBT); 573 pr_warn("Disabling IBT because of Hyper-V bug\n"); 574 } 575 #endif 576 577 /* 578 * hyperv_init() is called before LAPIC is initialized: see 579 * apic_intr_mode_init() -> x86_platform.apic_post_init() and 580 * apic_bsp_setup() -> setup_local_APIC(). The direct-mode STIMER 581 * depends on LAPIC, so hv_stimer_alloc() should be called from 582 * x86_init.timers.setup_percpu_clockev. 583 */ 584 old_setup_percpu_clockev = x86_init.timers.setup_percpu_clockev; 585 x86_init.timers.setup_percpu_clockev = hv_stimer_setup_percpu_clockev; 586 587 hv_apic_init(); 588 589 x86_init.pci.arch_init = hv_pci_init; 590 591 register_syscore_ops(&hv_syscore_ops); 592 593 hyperv_init_cpuhp = cpuhp; 594 595 if (cpuid_ebx(HYPERV_CPUID_FEATURES) & HV_ACCESS_PARTITION_ID) 596 hv_get_partition_id(); 597 598 BUG_ON(hv_root_partition && hv_current_partition_id == ~0ull); 599 600 #ifdef CONFIG_PCI_MSI 601 /* 602 * If we're running as root, we want to create our own PCI MSI domain. 603 * We can't set this in hv_pci_init because that would be too late. 604 */ 605 if (hv_root_partition) 606 x86_init.irqs.create_pci_msi_domain = hv_create_pci_msi_domain; 607 #endif 608 609 /* Query the VMs extended capability once, so that it can be cached. */ 610 hv_query_ext_cap(0); 611 612 /* Find the VTL */ 613 ms_hyperv.vtl = get_vtl(); 614 615 if (ms_hyperv.vtl > 0) /* non default VTL */ 616 hv_vtl_early_init(); 617 618 return; 619 620 clean_guest_os_id: 621 wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0); 622 hv_ivm_msr_write(HV_X64_MSR_GUEST_OS_ID, 0); 623 cpuhp_remove_state(cpuhp); 624 free_ghcb_page: 625 free_percpu(hv_ghcb_pg); 626 free_vp_assist_page: 627 kfree(hv_vp_assist_page); 628 hv_vp_assist_page = NULL; 629 common_free: 630 hv_common_free(); 631 } 632 633 /* 634 * This routine is called before kexec/kdump, it does the required cleanup. 635 */ 636 void hyperv_cleanup(void) 637 { 638 union hv_x64_msr_hypercall_contents hypercall_msr; 639 union hv_reference_tsc_msr tsc_msr; 640 641 /* Reset our OS id */ 642 wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0); 643 hv_ivm_msr_write(HV_X64_MSR_GUEST_OS_ID, 0); 644 645 /* 646 * Reset hypercall page reference before reset the page, 647 * let hypercall operations fail safely rather than 648 * panic the kernel for using invalid hypercall page 649 */ 650 hv_hypercall_pg = NULL; 651 652 /* Reset the hypercall page */ 653 hypercall_msr.as_uint64 = hv_get_register(HV_X64_MSR_HYPERCALL); 654 hypercall_msr.enable = 0; 655 hv_set_register(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 656 657 /* Reset the TSC page */ 658 tsc_msr.as_uint64 = hv_get_register(HV_X64_MSR_REFERENCE_TSC); 659 tsc_msr.enable = 0; 660 hv_set_register(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64); 661 } 662 663 void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die) 664 { 665 static bool panic_reported; 666 u64 guest_id; 667 668 if (in_die && !panic_on_oops) 669 return; 670 671 /* 672 * We prefer to report panic on 'die' chain as we have proper 673 * registers to report, but if we miss it (e.g. on BUG()) we need 674 * to report it on 'panic'. 675 */ 676 if (panic_reported) 677 return; 678 panic_reported = true; 679 680 rdmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id); 681 682 wrmsrl(HV_X64_MSR_CRASH_P0, err); 683 wrmsrl(HV_X64_MSR_CRASH_P1, guest_id); 684 wrmsrl(HV_X64_MSR_CRASH_P2, regs->ip); 685 wrmsrl(HV_X64_MSR_CRASH_P3, regs->ax); 686 wrmsrl(HV_X64_MSR_CRASH_P4, regs->sp); 687 688 /* 689 * Let Hyper-V know there is crash data available 690 */ 691 wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY); 692 } 693 EXPORT_SYMBOL_GPL(hyperv_report_panic); 694 695 bool hv_is_hyperv_initialized(void) 696 { 697 union hv_x64_msr_hypercall_contents hypercall_msr; 698 699 /* 700 * Ensure that we're really on Hyper-V, and not a KVM or Xen 701 * emulation of Hyper-V 702 */ 703 if (x86_hyper_type != X86_HYPER_MS_HYPERV) 704 return false; 705 706 /* A TDX VM with no paravisor uses TDX GHCI call rather than hv_hypercall_pg */ 707 if (hv_isolation_type_tdx() && !ms_hyperv.paravisor_present) 708 return true; 709 /* 710 * Verify that earlier initialization succeeded by checking 711 * that the hypercall page is setup 712 */ 713 hypercall_msr.as_uint64 = 0; 714 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); 715 716 return hypercall_msr.enable; 717 } 718 EXPORT_SYMBOL_GPL(hv_is_hyperv_initialized); 719