xref: /openbmc/linux/arch/x86/hyperv/hv_init.c (revision 6a87e0f0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * X86 specific Hyper-V initialization code.
4  *
5  * Copyright (C) 2016, Microsoft, Inc.
6  *
7  * Author : K. Y. Srinivasan <kys@microsoft.com>
8  */
9 
10 #include <linux/efi.h>
11 #include <linux/types.h>
12 #include <linux/bitfield.h>
13 #include <linux/io.h>
14 #include <asm/apic.h>
15 #include <asm/desc.h>
16 #include <asm/sev.h>
17 #include <asm/ibt.h>
18 #include <asm/hypervisor.h>
19 #include <asm/hyperv-tlfs.h>
20 #include <asm/mshyperv.h>
21 #include <asm/idtentry.h>
22 #include <linux/kexec.h>
23 #include <linux/version.h>
24 #include <linux/vmalloc.h>
25 #include <linux/mm.h>
26 #include <linux/hyperv.h>
27 #include <linux/slab.h>
28 #include <linux/kernel.h>
29 #include <linux/cpuhotplug.h>
30 #include <linux/syscore_ops.h>
31 #include <clocksource/hyperv_timer.h>
32 #include <linux/highmem.h>
33 
34 int hyperv_init_cpuhp;
35 u64 hv_current_partition_id = ~0ull;
36 EXPORT_SYMBOL_GPL(hv_current_partition_id);
37 
38 void *hv_hypercall_pg;
39 EXPORT_SYMBOL_GPL(hv_hypercall_pg);
40 
41 union hv_ghcb * __percpu *hv_ghcb_pg;
42 
43 /* Storage to save the hypercall page temporarily for hibernation */
44 static void *hv_hypercall_pg_saved;
45 
46 struct hv_vp_assist_page **hv_vp_assist_page;
47 EXPORT_SYMBOL_GPL(hv_vp_assist_page);
48 
49 static int hyperv_init_ghcb(void)
50 {
51 	u64 ghcb_gpa;
52 	void *ghcb_va;
53 	void **ghcb_base;
54 
55 	if (!hv_isolation_type_snp())
56 		return 0;
57 
58 	if (!hv_ghcb_pg)
59 		return -EINVAL;
60 
61 	/*
62 	 * GHCB page is allocated by paravisor. The address
63 	 * returned by MSR_AMD64_SEV_ES_GHCB is above shared
64 	 * memory boundary and map it here.
65 	 */
66 	rdmsrl(MSR_AMD64_SEV_ES_GHCB, ghcb_gpa);
67 
68 	/* Mask out vTOM bit. ioremap_cache() maps decrypted */
69 	ghcb_gpa &= ~ms_hyperv.shared_gpa_boundary;
70 	ghcb_va = (void *)ioremap_cache(ghcb_gpa, HV_HYP_PAGE_SIZE);
71 	if (!ghcb_va)
72 		return -ENOMEM;
73 
74 	ghcb_base = (void **)this_cpu_ptr(hv_ghcb_pg);
75 	*ghcb_base = ghcb_va;
76 
77 	return 0;
78 }
79 
80 static int hv_cpu_init(unsigned int cpu)
81 {
82 	union hv_vp_assist_msr_contents msr = { 0 };
83 	struct hv_vp_assist_page **hvp = &hv_vp_assist_page[cpu];
84 	int ret;
85 
86 	ret = hv_common_cpu_init(cpu);
87 	if (ret)
88 		return ret;
89 
90 	if (!hv_vp_assist_page)
91 		return 0;
92 
93 	if (hv_root_partition) {
94 		/*
95 		 * For root partition we get the hypervisor provided VP assist
96 		 * page, instead of allocating a new page.
97 		 */
98 		rdmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
99 		*hvp = memremap(msr.pfn << HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT,
100 				PAGE_SIZE, MEMREMAP_WB);
101 	} else {
102 		/*
103 		 * The VP assist page is an "overlay" page (see Hyper-V TLFS's
104 		 * Section 5.2.1 "GPA Overlay Pages"). Here it must be zeroed
105 		 * out to make sure we always write the EOI MSR in
106 		 * hv_apic_eoi_write() *after* the EOI optimization is disabled
107 		 * in hv_cpu_die(), otherwise a CPU may not be stopped in the
108 		 * case of CPU offlining and the VM will hang.
109 		 */
110 		if (!*hvp)
111 			*hvp = __vmalloc(PAGE_SIZE, GFP_KERNEL | __GFP_ZERO);
112 		if (*hvp)
113 			msr.pfn = vmalloc_to_pfn(*hvp);
114 
115 	}
116 	if (!WARN_ON(!(*hvp))) {
117 		msr.enable = 1;
118 		wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
119 	}
120 
121 	return hyperv_init_ghcb();
122 }
123 
124 static void (*hv_reenlightenment_cb)(void);
125 
126 static void hv_reenlightenment_notify(struct work_struct *dummy)
127 {
128 	struct hv_tsc_emulation_status emu_status;
129 
130 	rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
131 
132 	/* Don't issue the callback if TSC accesses are not emulated */
133 	if (hv_reenlightenment_cb && emu_status.inprogress)
134 		hv_reenlightenment_cb();
135 }
136 static DECLARE_DELAYED_WORK(hv_reenlightenment_work, hv_reenlightenment_notify);
137 
138 void hyperv_stop_tsc_emulation(void)
139 {
140 	u64 freq;
141 	struct hv_tsc_emulation_status emu_status;
142 
143 	rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
144 	emu_status.inprogress = 0;
145 	wrmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
146 
147 	rdmsrl(HV_X64_MSR_TSC_FREQUENCY, freq);
148 	tsc_khz = div64_u64(freq, 1000);
149 }
150 EXPORT_SYMBOL_GPL(hyperv_stop_tsc_emulation);
151 
152 static inline bool hv_reenlightenment_available(void)
153 {
154 	/*
155 	 * Check for required features and privileges to make TSC frequency
156 	 * change notifications work.
157 	 */
158 	return ms_hyperv.features & HV_ACCESS_FREQUENCY_MSRS &&
159 		ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE &&
160 		ms_hyperv.features & HV_ACCESS_REENLIGHTENMENT;
161 }
162 
163 DEFINE_IDTENTRY_SYSVEC(sysvec_hyperv_reenlightenment)
164 {
165 	ack_APIC_irq();
166 	inc_irq_stat(irq_hv_reenlightenment_count);
167 	schedule_delayed_work(&hv_reenlightenment_work, HZ/10);
168 }
169 
170 void set_hv_tscchange_cb(void (*cb)(void))
171 {
172 	struct hv_reenlightenment_control re_ctrl = {
173 		.vector = HYPERV_REENLIGHTENMENT_VECTOR,
174 		.enabled = 1,
175 	};
176 	struct hv_tsc_emulation_control emu_ctrl = {.enabled = 1};
177 
178 	if (!hv_reenlightenment_available()) {
179 		pr_warn("Hyper-V: reenlightenment support is unavailable\n");
180 		return;
181 	}
182 
183 	if (!hv_vp_index)
184 		return;
185 
186 	hv_reenlightenment_cb = cb;
187 
188 	/* Make sure callback is registered before we write to MSRs */
189 	wmb();
190 
191 	re_ctrl.target_vp = hv_vp_index[get_cpu()];
192 
193 	wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
194 	wrmsrl(HV_X64_MSR_TSC_EMULATION_CONTROL, *((u64 *)&emu_ctrl));
195 
196 	put_cpu();
197 }
198 EXPORT_SYMBOL_GPL(set_hv_tscchange_cb);
199 
200 void clear_hv_tscchange_cb(void)
201 {
202 	struct hv_reenlightenment_control re_ctrl;
203 
204 	if (!hv_reenlightenment_available())
205 		return;
206 
207 	rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
208 	re_ctrl.enabled = 0;
209 	wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
210 
211 	hv_reenlightenment_cb = NULL;
212 }
213 EXPORT_SYMBOL_GPL(clear_hv_tscchange_cb);
214 
215 static int hv_cpu_die(unsigned int cpu)
216 {
217 	struct hv_reenlightenment_control re_ctrl;
218 	unsigned int new_cpu;
219 	void **ghcb_va;
220 
221 	if (hv_ghcb_pg) {
222 		ghcb_va = (void **)this_cpu_ptr(hv_ghcb_pg);
223 		if (*ghcb_va)
224 			iounmap(*ghcb_va);
225 		*ghcb_va = NULL;
226 	}
227 
228 	hv_common_cpu_die(cpu);
229 
230 	if (hv_vp_assist_page && hv_vp_assist_page[cpu]) {
231 		union hv_vp_assist_msr_contents msr = { 0 };
232 		if (hv_root_partition) {
233 			/*
234 			 * For root partition the VP assist page is mapped to
235 			 * hypervisor provided page, and thus we unmap the
236 			 * page here and nullify it, so that in future we have
237 			 * correct page address mapped in hv_cpu_init.
238 			 */
239 			memunmap(hv_vp_assist_page[cpu]);
240 			hv_vp_assist_page[cpu] = NULL;
241 			rdmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
242 			msr.enable = 0;
243 		}
244 		wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
245 	}
246 
247 	if (hv_reenlightenment_cb == NULL)
248 		return 0;
249 
250 	rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
251 	if (re_ctrl.target_vp == hv_vp_index[cpu]) {
252 		/*
253 		 * Reassign reenlightenment notifications to some other online
254 		 * CPU or just disable the feature if there are no online CPUs
255 		 * left (happens on hibernation).
256 		 */
257 		new_cpu = cpumask_any_but(cpu_online_mask, cpu);
258 
259 		if (new_cpu < nr_cpu_ids)
260 			re_ctrl.target_vp = hv_vp_index[new_cpu];
261 		else
262 			re_ctrl.enabled = 0;
263 
264 		wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
265 	}
266 
267 	return 0;
268 }
269 
270 static int __init hv_pci_init(void)
271 {
272 	int gen2vm = efi_enabled(EFI_BOOT);
273 
274 	/*
275 	 * For Generation-2 VM, we exit from pci_arch_init() by returning 0.
276 	 * The purpose is to suppress the harmless warning:
277 	 * "PCI: Fatal: No config space access function found"
278 	 */
279 	if (gen2vm)
280 		return 0;
281 
282 	/* For Generation-1 VM, we'll proceed in pci_arch_init().  */
283 	return 1;
284 }
285 
286 static int hv_suspend(void)
287 {
288 	union hv_x64_msr_hypercall_contents hypercall_msr;
289 	int ret;
290 
291 	if (hv_root_partition)
292 		return -EPERM;
293 
294 	/*
295 	 * Reset the hypercall page as it is going to be invalidated
296 	 * across hibernation. Setting hv_hypercall_pg to NULL ensures
297 	 * that any subsequent hypercall operation fails safely instead of
298 	 * crashing due to an access of an invalid page. The hypercall page
299 	 * pointer is restored on resume.
300 	 */
301 	hv_hypercall_pg_saved = hv_hypercall_pg;
302 	hv_hypercall_pg = NULL;
303 
304 	/* Disable the hypercall page in the hypervisor */
305 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
306 	hypercall_msr.enable = 0;
307 	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
308 
309 	ret = hv_cpu_die(0);
310 	return ret;
311 }
312 
313 static void hv_resume(void)
314 {
315 	union hv_x64_msr_hypercall_contents hypercall_msr;
316 	int ret;
317 
318 	ret = hv_cpu_init(0);
319 	WARN_ON(ret);
320 
321 	/* Re-enable the hypercall page */
322 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
323 	hypercall_msr.enable = 1;
324 	hypercall_msr.guest_physical_address =
325 		vmalloc_to_pfn(hv_hypercall_pg_saved);
326 	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
327 
328 	hv_hypercall_pg = hv_hypercall_pg_saved;
329 	hv_hypercall_pg_saved = NULL;
330 
331 	/*
332 	 * Reenlightenment notifications are disabled by hv_cpu_die(0),
333 	 * reenable them here if hv_reenlightenment_cb was previously set.
334 	 */
335 	if (hv_reenlightenment_cb)
336 		set_hv_tscchange_cb(hv_reenlightenment_cb);
337 }
338 
339 /* Note: when the ops are called, only CPU0 is online and IRQs are disabled. */
340 static struct syscore_ops hv_syscore_ops = {
341 	.suspend	= hv_suspend,
342 	.resume		= hv_resume,
343 };
344 
345 static void (* __initdata old_setup_percpu_clockev)(void);
346 
347 static void __init hv_stimer_setup_percpu_clockev(void)
348 {
349 	/*
350 	 * Ignore any errors in setting up stimer clockevents
351 	 * as we can run with the LAPIC timer as a fallback.
352 	 */
353 	(void)hv_stimer_alloc(false);
354 
355 	/*
356 	 * Still register the LAPIC timer, because the direct-mode STIMER is
357 	 * not supported by old versions of Hyper-V. This also allows users
358 	 * to switch to LAPIC timer via /sys, if they want to.
359 	 */
360 	if (old_setup_percpu_clockev)
361 		old_setup_percpu_clockev();
362 }
363 
364 static void __init hv_get_partition_id(void)
365 {
366 	struct hv_get_partition_id *output_page;
367 	u64 status;
368 	unsigned long flags;
369 
370 	local_irq_save(flags);
371 	output_page = *this_cpu_ptr(hyperv_pcpu_output_arg);
372 	status = hv_do_hypercall(HVCALL_GET_PARTITION_ID, NULL, output_page);
373 	if (!hv_result_success(status)) {
374 		/* No point in proceeding if this failed */
375 		pr_err("Failed to get partition ID: %lld\n", status);
376 		BUG();
377 	}
378 	hv_current_partition_id = output_page->partition_id;
379 	local_irq_restore(flags);
380 }
381 
382 /*
383  * This function is to be invoked early in the boot sequence after the
384  * hypervisor has been detected.
385  *
386  * 1. Setup the hypercall page.
387  * 2. Register Hyper-V specific clocksource.
388  * 3. Setup Hyper-V specific APIC entry points.
389  */
390 void __init hyperv_init(void)
391 {
392 	u64 guest_id;
393 	union hv_x64_msr_hypercall_contents hypercall_msr;
394 	int cpuhp;
395 
396 	if (x86_hyper_type != X86_HYPER_MS_HYPERV)
397 		return;
398 
399 	if (hv_common_init())
400 		return;
401 
402 	hv_vp_assist_page = kcalloc(num_possible_cpus(),
403 				    sizeof(*hv_vp_assist_page), GFP_KERNEL);
404 	if (!hv_vp_assist_page) {
405 		ms_hyperv.hints &= ~HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
406 		goto common_free;
407 	}
408 
409 	if (hv_isolation_type_snp()) {
410 		/* Negotiate GHCB Version. */
411 		if (!hv_ghcb_negotiate_protocol())
412 			hv_ghcb_terminate(SEV_TERM_SET_GEN,
413 					  GHCB_SEV_ES_PROT_UNSUPPORTED);
414 
415 		hv_ghcb_pg = alloc_percpu(union hv_ghcb *);
416 		if (!hv_ghcb_pg)
417 			goto free_vp_assist_page;
418 	}
419 
420 	cpuhp = cpuhp_setup_state(CPUHP_AP_HYPERV_ONLINE, "x86/hyperv_init:online",
421 				  hv_cpu_init, hv_cpu_die);
422 	if (cpuhp < 0)
423 		goto free_ghcb_page;
424 
425 	/*
426 	 * Setup the hypercall page and enable hypercalls.
427 	 * 1. Register the guest ID
428 	 * 2. Enable the hypercall and register the hypercall page
429 	 */
430 	guest_id = hv_generate_guest_id(LINUX_VERSION_CODE);
431 	wrmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
432 
433 	/* Hyper-V requires to write guest os id via ghcb in SNP IVM. */
434 	hv_ghcb_msr_write(HV_X64_MSR_GUEST_OS_ID, guest_id);
435 
436 	hv_hypercall_pg = __vmalloc_node_range(PAGE_SIZE, 1, VMALLOC_START,
437 			VMALLOC_END, GFP_KERNEL, PAGE_KERNEL_ROX,
438 			VM_FLUSH_RESET_PERMS, NUMA_NO_NODE,
439 			__builtin_return_address(0));
440 	if (hv_hypercall_pg == NULL)
441 		goto clean_guest_os_id;
442 
443 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
444 	hypercall_msr.enable = 1;
445 
446 	if (hv_root_partition) {
447 		struct page *pg;
448 		void *src;
449 
450 		/*
451 		 * For the root partition, the hypervisor will set up its
452 		 * hypercall page. The hypervisor guarantees it will not show
453 		 * up in the root's address space. The root can't change the
454 		 * location of the hypercall page.
455 		 *
456 		 * Order is important here. We must enable the hypercall page
457 		 * so it is populated with code, then copy the code to an
458 		 * executable page.
459 		 */
460 		wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
461 
462 		pg = vmalloc_to_page(hv_hypercall_pg);
463 		src = memremap(hypercall_msr.guest_physical_address << PAGE_SHIFT, PAGE_SIZE,
464 				MEMREMAP_WB);
465 		BUG_ON(!src);
466 		memcpy_to_page(pg, 0, src, HV_HYP_PAGE_SIZE);
467 		memunmap(src);
468 
469 		hv_remap_tsc_clocksource();
470 	} else {
471 		hypercall_msr.guest_physical_address = vmalloc_to_pfn(hv_hypercall_pg);
472 		wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
473 	}
474 
475 	/*
476 	 * Some versions of Hyper-V that provide IBT in guest VMs have a bug
477 	 * in that there's no ENDBR64 instruction at the entry to the
478 	 * hypercall page. Because hypercalls are invoked via an indirect call
479 	 * to the hypercall page, all hypercall attempts fail when IBT is
480 	 * enabled, and Linux panics. For such buggy versions, disable IBT.
481 	 *
482 	 * Fixed versions of Hyper-V always provide ENDBR64 on the hypercall
483 	 * page, so if future Linux kernel versions enable IBT for 32-bit
484 	 * builds, additional hypercall page hackery will be required here
485 	 * to provide an ENDBR32.
486 	 */
487 #ifdef CONFIG_X86_KERNEL_IBT
488 	if (cpu_feature_enabled(X86_FEATURE_IBT) &&
489 	    *(u32 *)hv_hypercall_pg != gen_endbr()) {
490 		setup_clear_cpu_cap(X86_FEATURE_IBT);
491 		pr_warn("Hyper-V: Disabling IBT because of Hyper-V bug\n");
492 	}
493 #endif
494 
495 	/*
496 	 * hyperv_init() is called before LAPIC is initialized: see
497 	 * apic_intr_mode_init() -> x86_platform.apic_post_init() and
498 	 * apic_bsp_setup() -> setup_local_APIC(). The direct-mode STIMER
499 	 * depends on LAPIC, so hv_stimer_alloc() should be called from
500 	 * x86_init.timers.setup_percpu_clockev.
501 	 */
502 	old_setup_percpu_clockev = x86_init.timers.setup_percpu_clockev;
503 	x86_init.timers.setup_percpu_clockev = hv_stimer_setup_percpu_clockev;
504 
505 	hv_apic_init();
506 
507 	x86_init.pci.arch_init = hv_pci_init;
508 
509 	register_syscore_ops(&hv_syscore_ops);
510 
511 	hyperv_init_cpuhp = cpuhp;
512 
513 	if (cpuid_ebx(HYPERV_CPUID_FEATURES) & HV_ACCESS_PARTITION_ID)
514 		hv_get_partition_id();
515 
516 	BUG_ON(hv_root_partition && hv_current_partition_id == ~0ull);
517 
518 #ifdef CONFIG_PCI_MSI
519 	/*
520 	 * If we're running as root, we want to create our own PCI MSI domain.
521 	 * We can't set this in hv_pci_init because that would be too late.
522 	 */
523 	if (hv_root_partition)
524 		x86_init.irqs.create_pci_msi_domain = hv_create_pci_msi_domain;
525 #endif
526 
527 	/* Query the VMs extended capability once, so that it can be cached. */
528 	hv_query_ext_cap(0);
529 
530 	return;
531 
532 clean_guest_os_id:
533 	wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
534 	hv_ghcb_msr_write(HV_X64_MSR_GUEST_OS_ID, 0);
535 	cpuhp_remove_state(cpuhp);
536 free_ghcb_page:
537 	free_percpu(hv_ghcb_pg);
538 free_vp_assist_page:
539 	kfree(hv_vp_assist_page);
540 	hv_vp_assist_page = NULL;
541 common_free:
542 	hv_common_free();
543 }
544 
545 /*
546  * This routine is called before kexec/kdump, it does the required cleanup.
547  */
548 void hyperv_cleanup(void)
549 {
550 	union hv_x64_msr_hypercall_contents hypercall_msr;
551 	union hv_reference_tsc_msr tsc_msr;
552 
553 	/* Reset our OS id */
554 	wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
555 	hv_ghcb_msr_write(HV_X64_MSR_GUEST_OS_ID, 0);
556 
557 	/*
558 	 * Reset hypercall page reference before reset the page,
559 	 * let hypercall operations fail safely rather than
560 	 * panic the kernel for using invalid hypercall page
561 	 */
562 	hv_hypercall_pg = NULL;
563 
564 	/* Reset the hypercall page */
565 	hypercall_msr.as_uint64 = hv_get_register(HV_X64_MSR_HYPERCALL);
566 	hypercall_msr.enable = 0;
567 	hv_set_register(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
568 
569 	/* Reset the TSC page */
570 	tsc_msr.as_uint64 = hv_get_register(HV_X64_MSR_REFERENCE_TSC);
571 	tsc_msr.enable = 0;
572 	hv_set_register(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
573 }
574 
575 void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die)
576 {
577 	static bool panic_reported;
578 	u64 guest_id;
579 
580 	if (in_die && !panic_on_oops)
581 		return;
582 
583 	/*
584 	 * We prefer to report panic on 'die' chain as we have proper
585 	 * registers to report, but if we miss it (e.g. on BUG()) we need
586 	 * to report it on 'panic'.
587 	 */
588 	if (panic_reported)
589 		return;
590 	panic_reported = true;
591 
592 	rdmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
593 
594 	wrmsrl(HV_X64_MSR_CRASH_P0, err);
595 	wrmsrl(HV_X64_MSR_CRASH_P1, guest_id);
596 	wrmsrl(HV_X64_MSR_CRASH_P2, regs->ip);
597 	wrmsrl(HV_X64_MSR_CRASH_P3, regs->ax);
598 	wrmsrl(HV_X64_MSR_CRASH_P4, regs->sp);
599 
600 	/*
601 	 * Let Hyper-V know there is crash data available
602 	 */
603 	wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
604 }
605 EXPORT_SYMBOL_GPL(hyperv_report_panic);
606 
607 bool hv_is_hyperv_initialized(void)
608 {
609 	union hv_x64_msr_hypercall_contents hypercall_msr;
610 
611 	/*
612 	 * Ensure that we're really on Hyper-V, and not a KVM or Xen
613 	 * emulation of Hyper-V
614 	 */
615 	if (x86_hyper_type != X86_HYPER_MS_HYPERV)
616 		return false;
617 
618 	/*
619 	 * Verify that earlier initialization succeeded by checking
620 	 * that the hypercall page is setup
621 	 */
622 	hypercall_msr.as_uint64 = 0;
623 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
624 
625 	return hypercall_msr.enable;
626 }
627 EXPORT_SYMBOL_GPL(hv_is_hyperv_initialized);
628