xref: /openbmc/linux/arch/x86/hyperv/hv_init.c (revision 1964777e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * X86 specific Hyper-V initialization code.
4  *
5  * Copyright (C) 2016, Microsoft, Inc.
6  *
7  * Author : K. Y. Srinivasan <kys@microsoft.com>
8  */
9 
10 #include <linux/efi.h>
11 #include <linux/types.h>
12 #include <linux/bitfield.h>
13 #include <linux/io.h>
14 #include <asm/apic.h>
15 #include <asm/desc.h>
16 #include <asm/hypervisor.h>
17 #include <asm/hyperv-tlfs.h>
18 #include <asm/mshyperv.h>
19 #include <asm/idtentry.h>
20 #include <linux/kexec.h>
21 #include <linux/version.h>
22 #include <linux/vmalloc.h>
23 #include <linux/mm.h>
24 #include <linux/hyperv.h>
25 #include <linux/slab.h>
26 #include <linux/kernel.h>
27 #include <linux/cpuhotplug.h>
28 #include <linux/syscore_ops.h>
29 #include <clocksource/hyperv_timer.h>
30 #include <linux/highmem.h>
31 
32 int hyperv_init_cpuhp;
33 u64 hv_current_partition_id = ~0ull;
34 EXPORT_SYMBOL_GPL(hv_current_partition_id);
35 
36 void *hv_hypercall_pg;
37 EXPORT_SYMBOL_GPL(hv_hypercall_pg);
38 
39 union hv_ghcb __percpu **hv_ghcb_pg;
40 
41 /* Storage to save the hypercall page temporarily for hibernation */
42 static void *hv_hypercall_pg_saved;
43 
44 struct hv_vp_assist_page **hv_vp_assist_page;
45 EXPORT_SYMBOL_GPL(hv_vp_assist_page);
46 
47 static int hyperv_init_ghcb(void)
48 {
49 	u64 ghcb_gpa;
50 	void *ghcb_va;
51 	void **ghcb_base;
52 
53 	if (!hv_isolation_type_snp())
54 		return 0;
55 
56 	if (!hv_ghcb_pg)
57 		return -EINVAL;
58 
59 	/*
60 	 * GHCB page is allocated by paravisor. The address
61 	 * returned by MSR_AMD64_SEV_ES_GHCB is above shared
62 	 * memory boundary and map it here.
63 	 */
64 	rdmsrl(MSR_AMD64_SEV_ES_GHCB, ghcb_gpa);
65 	ghcb_va = memremap(ghcb_gpa, HV_HYP_PAGE_SIZE, MEMREMAP_WB);
66 	if (!ghcb_va)
67 		return -ENOMEM;
68 
69 	ghcb_base = (void **)this_cpu_ptr(hv_ghcb_pg);
70 	*ghcb_base = ghcb_va;
71 
72 	return 0;
73 }
74 
75 static int hv_cpu_init(unsigned int cpu)
76 {
77 	union hv_vp_assist_msr_contents msr = { 0 };
78 	struct hv_vp_assist_page **hvp = &hv_vp_assist_page[smp_processor_id()];
79 	int ret;
80 
81 	ret = hv_common_cpu_init(cpu);
82 	if (ret)
83 		return ret;
84 
85 	if (!hv_vp_assist_page)
86 		return 0;
87 
88 	if (!*hvp) {
89 		if (hv_root_partition) {
90 			/*
91 			 * For root partition we get the hypervisor provided VP assist
92 			 * page, instead of allocating a new page.
93 			 */
94 			rdmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
95 			*hvp = memremap(msr.pfn <<
96 					HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT,
97 					PAGE_SIZE, MEMREMAP_WB);
98 		} else {
99 			/*
100 			 * The VP assist page is an "overlay" page (see Hyper-V TLFS's
101 			 * Section 5.2.1 "GPA Overlay Pages"). Here it must be zeroed
102 			 * out to make sure we always write the EOI MSR in
103 			 * hv_apic_eoi_write() *after* the EOI optimization is disabled
104 			 * in hv_cpu_die(), otherwise a CPU may not be stopped in the
105 			 * case of CPU offlining and the VM will hang.
106 			 */
107 			*hvp = __vmalloc(PAGE_SIZE, GFP_KERNEL | __GFP_ZERO);
108 			if (*hvp)
109 				msr.pfn = vmalloc_to_pfn(*hvp);
110 		}
111 		WARN_ON(!(*hvp));
112 		if (*hvp) {
113 			msr.enable = 1;
114 			wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
115 		}
116 	}
117 
118 	return hyperv_init_ghcb();
119 }
120 
121 static void (*hv_reenlightenment_cb)(void);
122 
123 static void hv_reenlightenment_notify(struct work_struct *dummy)
124 {
125 	struct hv_tsc_emulation_status emu_status;
126 
127 	rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
128 
129 	/* Don't issue the callback if TSC accesses are not emulated */
130 	if (hv_reenlightenment_cb && emu_status.inprogress)
131 		hv_reenlightenment_cb();
132 }
133 static DECLARE_DELAYED_WORK(hv_reenlightenment_work, hv_reenlightenment_notify);
134 
135 void hyperv_stop_tsc_emulation(void)
136 {
137 	u64 freq;
138 	struct hv_tsc_emulation_status emu_status;
139 
140 	rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
141 	emu_status.inprogress = 0;
142 	wrmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
143 
144 	rdmsrl(HV_X64_MSR_TSC_FREQUENCY, freq);
145 	tsc_khz = div64_u64(freq, 1000);
146 }
147 EXPORT_SYMBOL_GPL(hyperv_stop_tsc_emulation);
148 
149 static inline bool hv_reenlightenment_available(void)
150 {
151 	/*
152 	 * Check for required features and privileges to make TSC frequency
153 	 * change notifications work.
154 	 */
155 	return ms_hyperv.features & HV_ACCESS_FREQUENCY_MSRS &&
156 		ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE &&
157 		ms_hyperv.features & HV_ACCESS_REENLIGHTENMENT;
158 }
159 
160 DEFINE_IDTENTRY_SYSVEC(sysvec_hyperv_reenlightenment)
161 {
162 	ack_APIC_irq();
163 	inc_irq_stat(irq_hv_reenlightenment_count);
164 	schedule_delayed_work(&hv_reenlightenment_work, HZ/10);
165 }
166 
167 void set_hv_tscchange_cb(void (*cb)(void))
168 {
169 	struct hv_reenlightenment_control re_ctrl = {
170 		.vector = HYPERV_REENLIGHTENMENT_VECTOR,
171 		.enabled = 1,
172 	};
173 	struct hv_tsc_emulation_control emu_ctrl = {.enabled = 1};
174 
175 	if (!hv_reenlightenment_available()) {
176 		pr_warn("Hyper-V: reenlightenment support is unavailable\n");
177 		return;
178 	}
179 
180 	hv_reenlightenment_cb = cb;
181 
182 	/* Make sure callback is registered before we write to MSRs */
183 	wmb();
184 
185 	re_ctrl.target_vp = hv_vp_index[get_cpu()];
186 
187 	wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
188 	wrmsrl(HV_X64_MSR_TSC_EMULATION_CONTROL, *((u64 *)&emu_ctrl));
189 
190 	put_cpu();
191 }
192 EXPORT_SYMBOL_GPL(set_hv_tscchange_cb);
193 
194 void clear_hv_tscchange_cb(void)
195 {
196 	struct hv_reenlightenment_control re_ctrl;
197 
198 	if (!hv_reenlightenment_available())
199 		return;
200 
201 	rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
202 	re_ctrl.enabled = 0;
203 	wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
204 
205 	hv_reenlightenment_cb = NULL;
206 }
207 EXPORT_SYMBOL_GPL(clear_hv_tscchange_cb);
208 
209 static int hv_cpu_die(unsigned int cpu)
210 {
211 	struct hv_reenlightenment_control re_ctrl;
212 	unsigned int new_cpu;
213 	void **ghcb_va;
214 
215 	if (hv_ghcb_pg) {
216 		ghcb_va = (void **)this_cpu_ptr(hv_ghcb_pg);
217 		if (*ghcb_va)
218 			memunmap(*ghcb_va);
219 		*ghcb_va = NULL;
220 	}
221 
222 	hv_common_cpu_die(cpu);
223 
224 	if (hv_vp_assist_page && hv_vp_assist_page[cpu]) {
225 		union hv_vp_assist_msr_contents msr = { 0 };
226 		if (hv_root_partition) {
227 			/*
228 			 * For root partition the VP assist page is mapped to
229 			 * hypervisor provided page, and thus we unmap the
230 			 * page here and nullify it, so that in future we have
231 			 * correct page address mapped in hv_cpu_init.
232 			 */
233 			memunmap(hv_vp_assist_page[cpu]);
234 			hv_vp_assist_page[cpu] = NULL;
235 			rdmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
236 			msr.enable = 0;
237 		}
238 		wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
239 	}
240 
241 	if (hv_reenlightenment_cb == NULL)
242 		return 0;
243 
244 	rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
245 	if (re_ctrl.target_vp == hv_vp_index[cpu]) {
246 		/*
247 		 * Reassign reenlightenment notifications to some other online
248 		 * CPU or just disable the feature if there are no online CPUs
249 		 * left (happens on hibernation).
250 		 */
251 		new_cpu = cpumask_any_but(cpu_online_mask, cpu);
252 
253 		if (new_cpu < nr_cpu_ids)
254 			re_ctrl.target_vp = hv_vp_index[new_cpu];
255 		else
256 			re_ctrl.enabled = 0;
257 
258 		wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
259 	}
260 
261 	return 0;
262 }
263 
264 static int __init hv_pci_init(void)
265 {
266 	int gen2vm = efi_enabled(EFI_BOOT);
267 
268 	/*
269 	 * For Generation-2 VM, we exit from pci_arch_init() by returning 0.
270 	 * The purpose is to suppress the harmless warning:
271 	 * "PCI: Fatal: No config space access function found"
272 	 */
273 	if (gen2vm)
274 		return 0;
275 
276 	/* For Generation-1 VM, we'll proceed in pci_arch_init().  */
277 	return 1;
278 }
279 
280 static int hv_suspend(void)
281 {
282 	union hv_x64_msr_hypercall_contents hypercall_msr;
283 	int ret;
284 
285 	if (hv_root_partition)
286 		return -EPERM;
287 
288 	/*
289 	 * Reset the hypercall page as it is going to be invalidated
290 	 * across hibernation. Setting hv_hypercall_pg to NULL ensures
291 	 * that any subsequent hypercall operation fails safely instead of
292 	 * crashing due to an access of an invalid page. The hypercall page
293 	 * pointer is restored on resume.
294 	 */
295 	hv_hypercall_pg_saved = hv_hypercall_pg;
296 	hv_hypercall_pg = NULL;
297 
298 	/* Disable the hypercall page in the hypervisor */
299 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
300 	hypercall_msr.enable = 0;
301 	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
302 
303 	ret = hv_cpu_die(0);
304 	return ret;
305 }
306 
307 static void hv_resume(void)
308 {
309 	union hv_x64_msr_hypercall_contents hypercall_msr;
310 	int ret;
311 
312 	ret = hv_cpu_init(0);
313 	WARN_ON(ret);
314 
315 	/* Re-enable the hypercall page */
316 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
317 	hypercall_msr.enable = 1;
318 	hypercall_msr.guest_physical_address =
319 		vmalloc_to_pfn(hv_hypercall_pg_saved);
320 	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
321 
322 	hv_hypercall_pg = hv_hypercall_pg_saved;
323 	hv_hypercall_pg_saved = NULL;
324 
325 	/*
326 	 * Reenlightenment notifications are disabled by hv_cpu_die(0),
327 	 * reenable them here if hv_reenlightenment_cb was previously set.
328 	 */
329 	if (hv_reenlightenment_cb)
330 		set_hv_tscchange_cb(hv_reenlightenment_cb);
331 }
332 
333 /* Note: when the ops are called, only CPU0 is online and IRQs are disabled. */
334 static struct syscore_ops hv_syscore_ops = {
335 	.suspend	= hv_suspend,
336 	.resume		= hv_resume,
337 };
338 
339 static void (* __initdata old_setup_percpu_clockev)(void);
340 
341 static void __init hv_stimer_setup_percpu_clockev(void)
342 {
343 	/*
344 	 * Ignore any errors in setting up stimer clockevents
345 	 * as we can run with the LAPIC timer as a fallback.
346 	 */
347 	(void)hv_stimer_alloc(false);
348 
349 	/*
350 	 * Still register the LAPIC timer, because the direct-mode STIMER is
351 	 * not supported by old versions of Hyper-V. This also allows users
352 	 * to switch to LAPIC timer via /sys, if they want to.
353 	 */
354 	if (old_setup_percpu_clockev)
355 		old_setup_percpu_clockev();
356 }
357 
358 static void __init hv_get_partition_id(void)
359 {
360 	struct hv_get_partition_id *output_page;
361 	u64 status;
362 	unsigned long flags;
363 
364 	local_irq_save(flags);
365 	output_page = *this_cpu_ptr(hyperv_pcpu_output_arg);
366 	status = hv_do_hypercall(HVCALL_GET_PARTITION_ID, NULL, output_page);
367 	if (!hv_result_success(status)) {
368 		/* No point in proceeding if this failed */
369 		pr_err("Failed to get partition ID: %lld\n", status);
370 		BUG();
371 	}
372 	hv_current_partition_id = output_page->partition_id;
373 	local_irq_restore(flags);
374 }
375 
376 /*
377  * This function is to be invoked early in the boot sequence after the
378  * hypervisor has been detected.
379  *
380  * 1. Setup the hypercall page.
381  * 2. Register Hyper-V specific clocksource.
382  * 3. Setup Hyper-V specific APIC entry points.
383  */
384 void __init hyperv_init(void)
385 {
386 	u64 guest_id, required_msrs;
387 	union hv_x64_msr_hypercall_contents hypercall_msr;
388 	int cpuhp;
389 
390 	if (x86_hyper_type != X86_HYPER_MS_HYPERV)
391 		return;
392 
393 	/* Absolutely required MSRs */
394 	required_msrs = HV_MSR_HYPERCALL_AVAILABLE |
395 		HV_MSR_VP_INDEX_AVAILABLE;
396 
397 	if ((ms_hyperv.features & required_msrs) != required_msrs)
398 		return;
399 
400 	if (hv_common_init())
401 		return;
402 
403 	hv_vp_assist_page = kcalloc(num_possible_cpus(),
404 				    sizeof(*hv_vp_assist_page), GFP_KERNEL);
405 	if (!hv_vp_assist_page) {
406 		ms_hyperv.hints &= ~HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
407 		goto common_free;
408 	}
409 
410 	if (hv_isolation_type_snp()) {
411 		hv_ghcb_pg = alloc_percpu(union hv_ghcb *);
412 		if (!hv_ghcb_pg)
413 			goto free_vp_assist_page;
414 	}
415 
416 	cpuhp = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv_init:online",
417 				  hv_cpu_init, hv_cpu_die);
418 	if (cpuhp < 0)
419 		goto free_ghcb_page;
420 
421 	/*
422 	 * Setup the hypercall page and enable hypercalls.
423 	 * 1. Register the guest ID
424 	 * 2. Enable the hypercall and register the hypercall page
425 	 */
426 	guest_id = generate_guest_id(0, LINUX_VERSION_CODE, 0);
427 	wrmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
428 
429 	/* Hyper-V requires to write guest os id via ghcb in SNP IVM. */
430 	hv_ghcb_msr_write(HV_X64_MSR_GUEST_OS_ID, guest_id);
431 
432 	hv_hypercall_pg = __vmalloc_node_range(PAGE_SIZE, 1, VMALLOC_START,
433 			VMALLOC_END, GFP_KERNEL, PAGE_KERNEL_ROX,
434 			VM_FLUSH_RESET_PERMS, NUMA_NO_NODE,
435 			__builtin_return_address(0));
436 	if (hv_hypercall_pg == NULL)
437 		goto clean_guest_os_id;
438 
439 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
440 	hypercall_msr.enable = 1;
441 
442 	if (hv_root_partition) {
443 		struct page *pg;
444 		void *src, *dst;
445 
446 		/*
447 		 * For the root partition, the hypervisor will set up its
448 		 * hypercall page. The hypervisor guarantees it will not show
449 		 * up in the root's address space. The root can't change the
450 		 * location of the hypercall page.
451 		 *
452 		 * Order is important here. We must enable the hypercall page
453 		 * so it is populated with code, then copy the code to an
454 		 * executable page.
455 		 */
456 		wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
457 
458 		pg = vmalloc_to_page(hv_hypercall_pg);
459 		dst = kmap(pg);
460 		src = memremap(hypercall_msr.guest_physical_address << PAGE_SHIFT, PAGE_SIZE,
461 				MEMREMAP_WB);
462 		BUG_ON(!(src && dst));
463 		memcpy(dst, src, HV_HYP_PAGE_SIZE);
464 		memunmap(src);
465 		kunmap(pg);
466 	} else {
467 		hypercall_msr.guest_physical_address = vmalloc_to_pfn(hv_hypercall_pg);
468 		wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
469 	}
470 
471 	/*
472 	 * hyperv_init() is called before LAPIC is initialized: see
473 	 * apic_intr_mode_init() -> x86_platform.apic_post_init() and
474 	 * apic_bsp_setup() -> setup_local_APIC(). The direct-mode STIMER
475 	 * depends on LAPIC, so hv_stimer_alloc() should be called from
476 	 * x86_init.timers.setup_percpu_clockev.
477 	 */
478 	old_setup_percpu_clockev = x86_init.timers.setup_percpu_clockev;
479 	x86_init.timers.setup_percpu_clockev = hv_stimer_setup_percpu_clockev;
480 
481 	hv_apic_init();
482 
483 	x86_init.pci.arch_init = hv_pci_init;
484 
485 	register_syscore_ops(&hv_syscore_ops);
486 
487 	hyperv_init_cpuhp = cpuhp;
488 
489 	if (cpuid_ebx(HYPERV_CPUID_FEATURES) & HV_ACCESS_PARTITION_ID)
490 		hv_get_partition_id();
491 
492 	BUG_ON(hv_root_partition && hv_current_partition_id == ~0ull);
493 
494 #ifdef CONFIG_PCI_MSI
495 	/*
496 	 * If we're running as root, we want to create our own PCI MSI domain.
497 	 * We can't set this in hv_pci_init because that would be too late.
498 	 */
499 	if (hv_root_partition)
500 		x86_init.irqs.create_pci_msi_domain = hv_create_pci_msi_domain;
501 #endif
502 
503 	/* Query the VMs extended capability once, so that it can be cached. */
504 	hv_query_ext_cap(0);
505 	return;
506 
507 clean_guest_os_id:
508 	wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
509 	hv_ghcb_msr_write(HV_X64_MSR_GUEST_OS_ID, 0);
510 	cpuhp_remove_state(cpuhp);
511 free_ghcb_page:
512 	free_percpu(hv_ghcb_pg);
513 free_vp_assist_page:
514 	kfree(hv_vp_assist_page);
515 	hv_vp_assist_page = NULL;
516 common_free:
517 	hv_common_free();
518 }
519 
520 /*
521  * This routine is called before kexec/kdump, it does the required cleanup.
522  */
523 void hyperv_cleanup(void)
524 {
525 	union hv_x64_msr_hypercall_contents hypercall_msr;
526 
527 	unregister_syscore_ops(&hv_syscore_ops);
528 
529 	/* Reset our OS id */
530 	wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
531 	hv_ghcb_msr_write(HV_X64_MSR_GUEST_OS_ID, 0);
532 
533 	/*
534 	 * Reset hypercall page reference before reset the page,
535 	 * let hypercall operations fail safely rather than
536 	 * panic the kernel for using invalid hypercall page
537 	 */
538 	hv_hypercall_pg = NULL;
539 
540 	/* Reset the hypercall page */
541 	hypercall_msr.as_uint64 = 0;
542 	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
543 
544 	/* Reset the TSC page */
545 	hypercall_msr.as_uint64 = 0;
546 	wrmsrl(HV_X64_MSR_REFERENCE_TSC, hypercall_msr.as_uint64);
547 }
548 
549 void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die)
550 {
551 	static bool panic_reported;
552 	u64 guest_id;
553 
554 	if (in_die && !panic_on_oops)
555 		return;
556 
557 	/*
558 	 * We prefer to report panic on 'die' chain as we have proper
559 	 * registers to report, but if we miss it (e.g. on BUG()) we need
560 	 * to report it on 'panic'.
561 	 */
562 	if (panic_reported)
563 		return;
564 	panic_reported = true;
565 
566 	rdmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
567 
568 	wrmsrl(HV_X64_MSR_CRASH_P0, err);
569 	wrmsrl(HV_X64_MSR_CRASH_P1, guest_id);
570 	wrmsrl(HV_X64_MSR_CRASH_P2, regs->ip);
571 	wrmsrl(HV_X64_MSR_CRASH_P3, regs->ax);
572 	wrmsrl(HV_X64_MSR_CRASH_P4, regs->sp);
573 
574 	/*
575 	 * Let Hyper-V know there is crash data available
576 	 */
577 	wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
578 }
579 EXPORT_SYMBOL_GPL(hyperv_report_panic);
580 
581 bool hv_is_hyperv_initialized(void)
582 {
583 	union hv_x64_msr_hypercall_contents hypercall_msr;
584 
585 	/*
586 	 * Ensure that we're really on Hyper-V, and not a KVM or Xen
587 	 * emulation of Hyper-V
588 	 */
589 	if (x86_hyper_type != X86_HYPER_MS_HYPERV)
590 		return false;
591 
592 	/*
593 	 * Verify that earlier initialization succeeded by checking
594 	 * that the hypercall page is setup
595 	 */
596 	hypercall_msr.as_uint64 = 0;
597 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
598 
599 	return hypercall_msr.enable;
600 }
601 EXPORT_SYMBOL_GPL(hv_is_hyperv_initialized);
602