1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Intel(R) Processor Trace PMU driver for perf 4 * Copyright (c) 2013-2014, Intel Corporation. 5 * 6 * Intel PT is specified in the Intel Architecture Instruction Set Extensions 7 * Programming Reference: 8 * http://software.intel.com/en-us/intel-isa-extensions 9 */ 10 11 #undef DEBUG 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/types.h> 16 #include <linux/slab.h> 17 #include <linux/device.h> 18 19 #include <asm/perf_event.h> 20 #include <asm/insn.h> 21 #include <asm/io.h> 22 #include <asm/intel_pt.h> 23 #include <asm/intel-family.h> 24 25 #include "../perf_event.h" 26 #include "pt.h" 27 28 static DEFINE_PER_CPU(struct pt, pt_ctx); 29 30 static struct pt_pmu pt_pmu; 31 32 /* 33 * Capabilities of Intel PT hardware, such as number of address bits or 34 * supported output schemes, are cached and exported to userspace as "caps" 35 * attribute group of pt pmu device 36 * (/sys/bus/event_source/devices/intel_pt/caps/) so that userspace can store 37 * relevant bits together with intel_pt traces. 38 * 39 * These are necessary for both trace decoding (payloads_lip, contains address 40 * width encoded in IP-related packets), and event configuration (bitmasks with 41 * permitted values for certain bit fields). 42 */ 43 #define PT_CAP(_n, _l, _r, _m) \ 44 [PT_CAP_ ## _n] = { .name = __stringify(_n), .leaf = _l, \ 45 .reg = _r, .mask = _m } 46 47 static struct pt_cap_desc { 48 const char *name; 49 u32 leaf; 50 u8 reg; 51 u32 mask; 52 } pt_caps[] = { 53 PT_CAP(max_subleaf, 0, CPUID_EAX, 0xffffffff), 54 PT_CAP(cr3_filtering, 0, CPUID_EBX, BIT(0)), 55 PT_CAP(psb_cyc, 0, CPUID_EBX, BIT(1)), 56 PT_CAP(ip_filtering, 0, CPUID_EBX, BIT(2)), 57 PT_CAP(mtc, 0, CPUID_EBX, BIT(3)), 58 PT_CAP(ptwrite, 0, CPUID_EBX, BIT(4)), 59 PT_CAP(power_event_trace, 0, CPUID_EBX, BIT(5)), 60 PT_CAP(topa_output, 0, CPUID_ECX, BIT(0)), 61 PT_CAP(topa_multiple_entries, 0, CPUID_ECX, BIT(1)), 62 PT_CAP(single_range_output, 0, CPUID_ECX, BIT(2)), 63 PT_CAP(output_subsys, 0, CPUID_ECX, BIT(3)), 64 PT_CAP(payloads_lip, 0, CPUID_ECX, BIT(31)), 65 PT_CAP(num_address_ranges, 1, CPUID_EAX, 0x3), 66 PT_CAP(mtc_periods, 1, CPUID_EAX, 0xffff0000), 67 PT_CAP(cycle_thresholds, 1, CPUID_EBX, 0xffff), 68 PT_CAP(psb_periods, 1, CPUID_EBX, 0xffff0000), 69 }; 70 71 u32 intel_pt_validate_cap(u32 *caps, enum pt_capabilities capability) 72 { 73 struct pt_cap_desc *cd = &pt_caps[capability]; 74 u32 c = caps[cd->leaf * PT_CPUID_REGS_NUM + cd->reg]; 75 unsigned int shift = __ffs(cd->mask); 76 77 return (c & cd->mask) >> shift; 78 } 79 EXPORT_SYMBOL_GPL(intel_pt_validate_cap); 80 81 u32 intel_pt_validate_hw_cap(enum pt_capabilities cap) 82 { 83 return intel_pt_validate_cap(pt_pmu.caps, cap); 84 } 85 EXPORT_SYMBOL_GPL(intel_pt_validate_hw_cap); 86 87 static ssize_t pt_cap_show(struct device *cdev, 88 struct device_attribute *attr, 89 char *buf) 90 { 91 struct dev_ext_attribute *ea = 92 container_of(attr, struct dev_ext_attribute, attr); 93 enum pt_capabilities cap = (long)ea->var; 94 95 return snprintf(buf, PAGE_SIZE, "%x\n", intel_pt_validate_hw_cap(cap)); 96 } 97 98 static struct attribute_group pt_cap_group __ro_after_init = { 99 .name = "caps", 100 }; 101 102 PMU_FORMAT_ATTR(pt, "config:0" ); 103 PMU_FORMAT_ATTR(cyc, "config:1" ); 104 PMU_FORMAT_ATTR(pwr_evt, "config:4" ); 105 PMU_FORMAT_ATTR(fup_on_ptw, "config:5" ); 106 PMU_FORMAT_ATTR(mtc, "config:9" ); 107 PMU_FORMAT_ATTR(tsc, "config:10" ); 108 PMU_FORMAT_ATTR(noretcomp, "config:11" ); 109 PMU_FORMAT_ATTR(ptw, "config:12" ); 110 PMU_FORMAT_ATTR(branch, "config:13" ); 111 PMU_FORMAT_ATTR(mtc_period, "config:14-17" ); 112 PMU_FORMAT_ATTR(cyc_thresh, "config:19-22" ); 113 PMU_FORMAT_ATTR(psb_period, "config:24-27" ); 114 115 static struct attribute *pt_formats_attr[] = { 116 &format_attr_pt.attr, 117 &format_attr_cyc.attr, 118 &format_attr_pwr_evt.attr, 119 &format_attr_fup_on_ptw.attr, 120 &format_attr_mtc.attr, 121 &format_attr_tsc.attr, 122 &format_attr_noretcomp.attr, 123 &format_attr_ptw.attr, 124 &format_attr_branch.attr, 125 &format_attr_mtc_period.attr, 126 &format_attr_cyc_thresh.attr, 127 &format_attr_psb_period.attr, 128 NULL, 129 }; 130 131 static struct attribute_group pt_format_group = { 132 .name = "format", 133 .attrs = pt_formats_attr, 134 }; 135 136 static ssize_t 137 pt_timing_attr_show(struct device *dev, struct device_attribute *attr, 138 char *page) 139 { 140 struct perf_pmu_events_attr *pmu_attr = 141 container_of(attr, struct perf_pmu_events_attr, attr); 142 143 switch (pmu_attr->id) { 144 case 0: 145 return sprintf(page, "%lu\n", pt_pmu.max_nonturbo_ratio); 146 case 1: 147 return sprintf(page, "%u:%u\n", 148 pt_pmu.tsc_art_num, 149 pt_pmu.tsc_art_den); 150 default: 151 break; 152 } 153 154 return -EINVAL; 155 } 156 157 PMU_EVENT_ATTR(max_nonturbo_ratio, timing_attr_max_nonturbo_ratio, 0, 158 pt_timing_attr_show); 159 PMU_EVENT_ATTR(tsc_art_ratio, timing_attr_tsc_art_ratio, 1, 160 pt_timing_attr_show); 161 162 static struct attribute *pt_timing_attr[] = { 163 &timing_attr_max_nonturbo_ratio.attr.attr, 164 &timing_attr_tsc_art_ratio.attr.attr, 165 NULL, 166 }; 167 168 static struct attribute_group pt_timing_group = { 169 .attrs = pt_timing_attr, 170 }; 171 172 static const struct attribute_group *pt_attr_groups[] = { 173 &pt_cap_group, 174 &pt_format_group, 175 &pt_timing_group, 176 NULL, 177 }; 178 179 static int __init pt_pmu_hw_init(void) 180 { 181 struct dev_ext_attribute *de_attrs; 182 struct attribute **attrs; 183 size_t size; 184 u64 reg; 185 int ret; 186 long i; 187 188 rdmsrl(MSR_PLATFORM_INFO, reg); 189 pt_pmu.max_nonturbo_ratio = (reg & 0xff00) >> 8; 190 191 /* 192 * if available, read in TSC to core crystal clock ratio, 193 * otherwise, zero for numerator stands for "not enumerated" 194 * as per SDM 195 */ 196 if (boot_cpu_data.cpuid_level >= CPUID_TSC_LEAF) { 197 u32 eax, ebx, ecx, edx; 198 199 cpuid(CPUID_TSC_LEAF, &eax, &ebx, &ecx, &edx); 200 201 pt_pmu.tsc_art_num = ebx; 202 pt_pmu.tsc_art_den = eax; 203 } 204 205 /* model-specific quirks */ 206 switch (boot_cpu_data.x86_model) { 207 case INTEL_FAM6_BROADWELL: 208 case INTEL_FAM6_BROADWELL_D: 209 case INTEL_FAM6_BROADWELL_G: 210 case INTEL_FAM6_BROADWELL_X: 211 /* not setting BRANCH_EN will #GP, erratum BDM106 */ 212 pt_pmu.branch_en_always_on = true; 213 break; 214 default: 215 break; 216 } 217 218 if (boot_cpu_has(X86_FEATURE_VMX)) { 219 /* 220 * Intel SDM, 36.5 "Tracing post-VMXON" says that 221 * "IA32_VMX_MISC[bit 14]" being 1 means PT can trace 222 * post-VMXON. 223 */ 224 rdmsrl(MSR_IA32_VMX_MISC, reg); 225 if (reg & BIT(14)) 226 pt_pmu.vmx = true; 227 } 228 229 attrs = NULL; 230 231 for (i = 0; i < PT_CPUID_LEAVES; i++) { 232 cpuid_count(20, i, 233 &pt_pmu.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM], 234 &pt_pmu.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM], 235 &pt_pmu.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM], 236 &pt_pmu.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM]); 237 } 238 239 ret = -ENOMEM; 240 size = sizeof(struct attribute *) * (ARRAY_SIZE(pt_caps)+1); 241 attrs = kzalloc(size, GFP_KERNEL); 242 if (!attrs) 243 goto fail; 244 245 size = sizeof(struct dev_ext_attribute) * (ARRAY_SIZE(pt_caps)+1); 246 de_attrs = kzalloc(size, GFP_KERNEL); 247 if (!de_attrs) 248 goto fail; 249 250 for (i = 0; i < ARRAY_SIZE(pt_caps); i++) { 251 struct dev_ext_attribute *de_attr = de_attrs + i; 252 253 de_attr->attr.attr.name = pt_caps[i].name; 254 255 sysfs_attr_init(&de_attr->attr.attr); 256 257 de_attr->attr.attr.mode = S_IRUGO; 258 de_attr->attr.show = pt_cap_show; 259 de_attr->var = (void *)i; 260 261 attrs[i] = &de_attr->attr.attr; 262 } 263 264 pt_cap_group.attrs = attrs; 265 266 return 0; 267 268 fail: 269 kfree(attrs); 270 271 return ret; 272 } 273 274 #define RTIT_CTL_CYC_PSB (RTIT_CTL_CYCLEACC | \ 275 RTIT_CTL_CYC_THRESH | \ 276 RTIT_CTL_PSB_FREQ) 277 278 #define RTIT_CTL_MTC (RTIT_CTL_MTC_EN | \ 279 RTIT_CTL_MTC_RANGE) 280 281 #define RTIT_CTL_PTW (RTIT_CTL_PTW_EN | \ 282 RTIT_CTL_FUP_ON_PTW) 283 284 /* 285 * Bit 0 (TraceEn) in the attr.config is meaningless as the 286 * corresponding bit in the RTIT_CTL can only be controlled 287 * by the driver; therefore, repurpose it to mean: pass 288 * through the bit that was previously assumed to be always 289 * on for PT, thereby allowing the user to *not* set it if 290 * they so wish. See also pt_event_valid() and pt_config(). 291 */ 292 #define RTIT_CTL_PASSTHROUGH RTIT_CTL_TRACEEN 293 294 #define PT_CONFIG_MASK (RTIT_CTL_TRACEEN | \ 295 RTIT_CTL_TSC_EN | \ 296 RTIT_CTL_DISRETC | \ 297 RTIT_CTL_BRANCH_EN | \ 298 RTIT_CTL_CYC_PSB | \ 299 RTIT_CTL_MTC | \ 300 RTIT_CTL_PWR_EVT_EN | \ 301 RTIT_CTL_FUP_ON_PTW | \ 302 RTIT_CTL_PTW_EN) 303 304 static bool pt_event_valid(struct perf_event *event) 305 { 306 u64 config = event->attr.config; 307 u64 allowed, requested; 308 309 if ((config & PT_CONFIG_MASK) != config) 310 return false; 311 312 if (config & RTIT_CTL_CYC_PSB) { 313 if (!intel_pt_validate_hw_cap(PT_CAP_psb_cyc)) 314 return false; 315 316 allowed = intel_pt_validate_hw_cap(PT_CAP_psb_periods); 317 requested = (config & RTIT_CTL_PSB_FREQ) >> 318 RTIT_CTL_PSB_FREQ_OFFSET; 319 if (requested && (!(allowed & BIT(requested)))) 320 return false; 321 322 allowed = intel_pt_validate_hw_cap(PT_CAP_cycle_thresholds); 323 requested = (config & RTIT_CTL_CYC_THRESH) >> 324 RTIT_CTL_CYC_THRESH_OFFSET; 325 if (requested && (!(allowed & BIT(requested)))) 326 return false; 327 } 328 329 if (config & RTIT_CTL_MTC) { 330 /* 331 * In the unlikely case that CPUID lists valid mtc periods, 332 * but not the mtc capability, drop out here. 333 * 334 * Spec says that setting mtc period bits while mtc bit in 335 * CPUID is 0 will #GP, so better safe than sorry. 336 */ 337 if (!intel_pt_validate_hw_cap(PT_CAP_mtc)) 338 return false; 339 340 allowed = intel_pt_validate_hw_cap(PT_CAP_mtc_periods); 341 if (!allowed) 342 return false; 343 344 requested = (config & RTIT_CTL_MTC_RANGE) >> 345 RTIT_CTL_MTC_RANGE_OFFSET; 346 347 if (!(allowed & BIT(requested))) 348 return false; 349 } 350 351 if (config & RTIT_CTL_PWR_EVT_EN && 352 !intel_pt_validate_hw_cap(PT_CAP_power_event_trace)) 353 return false; 354 355 if (config & RTIT_CTL_PTW) { 356 if (!intel_pt_validate_hw_cap(PT_CAP_ptwrite)) 357 return false; 358 359 /* FUPonPTW without PTW doesn't make sense */ 360 if ((config & RTIT_CTL_FUP_ON_PTW) && 361 !(config & RTIT_CTL_PTW_EN)) 362 return false; 363 } 364 365 /* 366 * Setting bit 0 (TraceEn in RTIT_CTL MSR) in the attr.config 367 * clears the assomption that BranchEn must always be enabled, 368 * as was the case with the first implementation of PT. 369 * If this bit is not set, the legacy behavior is preserved 370 * for compatibility with the older userspace. 371 * 372 * Re-using bit 0 for this purpose is fine because it is never 373 * directly set by the user; previous attempts at setting it in 374 * the attr.config resulted in -EINVAL. 375 */ 376 if (config & RTIT_CTL_PASSTHROUGH) { 377 /* 378 * Disallow not setting BRANCH_EN where BRANCH_EN is 379 * always required. 380 */ 381 if (pt_pmu.branch_en_always_on && 382 !(config & RTIT_CTL_BRANCH_EN)) 383 return false; 384 } else { 385 /* 386 * Disallow BRANCH_EN without the PASSTHROUGH. 387 */ 388 if (config & RTIT_CTL_BRANCH_EN) 389 return false; 390 } 391 392 return true; 393 } 394 395 /* 396 * PT configuration helpers 397 * These all are cpu affine and operate on a local PT 398 */ 399 400 /* Address ranges and their corresponding msr configuration registers */ 401 static const struct pt_address_range { 402 unsigned long msr_a; 403 unsigned long msr_b; 404 unsigned int reg_off; 405 } pt_address_ranges[] = { 406 { 407 .msr_a = MSR_IA32_RTIT_ADDR0_A, 408 .msr_b = MSR_IA32_RTIT_ADDR0_B, 409 .reg_off = RTIT_CTL_ADDR0_OFFSET, 410 }, 411 { 412 .msr_a = MSR_IA32_RTIT_ADDR1_A, 413 .msr_b = MSR_IA32_RTIT_ADDR1_B, 414 .reg_off = RTIT_CTL_ADDR1_OFFSET, 415 }, 416 { 417 .msr_a = MSR_IA32_RTIT_ADDR2_A, 418 .msr_b = MSR_IA32_RTIT_ADDR2_B, 419 .reg_off = RTIT_CTL_ADDR2_OFFSET, 420 }, 421 { 422 .msr_a = MSR_IA32_RTIT_ADDR3_A, 423 .msr_b = MSR_IA32_RTIT_ADDR3_B, 424 .reg_off = RTIT_CTL_ADDR3_OFFSET, 425 } 426 }; 427 428 static u64 pt_config_filters(struct perf_event *event) 429 { 430 struct pt_filters *filters = event->hw.addr_filters; 431 struct pt *pt = this_cpu_ptr(&pt_ctx); 432 unsigned int range = 0; 433 u64 rtit_ctl = 0; 434 435 if (!filters) 436 return 0; 437 438 perf_event_addr_filters_sync(event); 439 440 for (range = 0; range < filters->nr_filters; range++) { 441 struct pt_filter *filter = &filters->filter[range]; 442 443 /* 444 * Note, if the range has zero start/end addresses due 445 * to its dynamic object not being loaded yet, we just 446 * go ahead and program zeroed range, which will simply 447 * produce no data. Note^2: if executable code at 0x0 448 * is a concern, we can set up an "invalid" configuration 449 * such as msr_b < msr_a. 450 */ 451 452 /* avoid redundant msr writes */ 453 if (pt->filters.filter[range].msr_a != filter->msr_a) { 454 wrmsrl(pt_address_ranges[range].msr_a, filter->msr_a); 455 pt->filters.filter[range].msr_a = filter->msr_a; 456 } 457 458 if (pt->filters.filter[range].msr_b != filter->msr_b) { 459 wrmsrl(pt_address_ranges[range].msr_b, filter->msr_b); 460 pt->filters.filter[range].msr_b = filter->msr_b; 461 } 462 463 rtit_ctl |= filter->config << pt_address_ranges[range].reg_off; 464 } 465 466 return rtit_ctl; 467 } 468 469 static void pt_config(struct perf_event *event) 470 { 471 struct pt *pt = this_cpu_ptr(&pt_ctx); 472 u64 reg; 473 474 /* First round: clear STATUS, in particular the PSB byte counter. */ 475 if (!event->hw.config) { 476 perf_event_itrace_started(event); 477 wrmsrl(MSR_IA32_RTIT_STATUS, 0); 478 } 479 480 reg = pt_config_filters(event); 481 reg |= RTIT_CTL_TOPA | RTIT_CTL_TRACEEN; 482 483 /* 484 * Previously, we had BRANCH_EN on by default, but now that PT has 485 * grown features outside of branch tracing, it is useful to allow 486 * the user to disable it. Setting bit 0 in the event's attr.config 487 * allows BRANCH_EN to pass through instead of being always on. See 488 * also the comment in pt_event_valid(). 489 */ 490 if (event->attr.config & BIT(0)) { 491 reg |= event->attr.config & RTIT_CTL_BRANCH_EN; 492 } else { 493 reg |= RTIT_CTL_BRANCH_EN; 494 } 495 496 if (!event->attr.exclude_kernel) 497 reg |= RTIT_CTL_OS; 498 if (!event->attr.exclude_user) 499 reg |= RTIT_CTL_USR; 500 501 reg |= (event->attr.config & PT_CONFIG_MASK); 502 503 event->hw.config = reg; 504 if (READ_ONCE(pt->vmx_on)) 505 perf_aux_output_flag(&pt->handle, PERF_AUX_FLAG_PARTIAL); 506 else 507 wrmsrl(MSR_IA32_RTIT_CTL, reg); 508 } 509 510 static void pt_config_stop(struct perf_event *event) 511 { 512 struct pt *pt = this_cpu_ptr(&pt_ctx); 513 u64 ctl = READ_ONCE(event->hw.config); 514 515 /* may be already stopped by a PMI */ 516 if (!(ctl & RTIT_CTL_TRACEEN)) 517 return; 518 519 ctl &= ~RTIT_CTL_TRACEEN; 520 if (!READ_ONCE(pt->vmx_on)) 521 wrmsrl(MSR_IA32_RTIT_CTL, ctl); 522 523 WRITE_ONCE(event->hw.config, ctl); 524 525 /* 526 * A wrmsr that disables trace generation serializes other PT 527 * registers and causes all data packets to be written to memory, 528 * but a fence is required for the data to become globally visible. 529 * 530 * The below WMB, separating data store and aux_head store matches 531 * the consumer's RMB that separates aux_head load and data load. 532 */ 533 wmb(); 534 } 535 536 static void pt_config_buffer(void *buf, unsigned int topa_idx, 537 unsigned int output_off) 538 { 539 u64 reg; 540 541 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, virt_to_phys(buf)); 542 543 reg = 0x7f | ((u64)topa_idx << 7) | ((u64)output_off << 32); 544 545 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, reg); 546 } 547 548 /** 549 * struct topa - ToPA metadata 550 * @list: linkage to struct pt_buffer's list of tables 551 * @offset: offset of the first entry in this table in the buffer 552 * @size: total size of all entries in this table 553 * @last: index of the last initialized entry in this table 554 * @z_count: how many times the first entry repeats 555 */ 556 struct topa { 557 struct list_head list; 558 u64 offset; 559 size_t size; 560 int last; 561 unsigned int z_count; 562 }; 563 564 /* 565 * Keep ToPA table-related metadata on the same page as the actual table, 566 * taking up a few words from the top 567 */ 568 569 #define TENTS_PER_PAGE \ 570 ((PAGE_SIZE - sizeof(struct topa)) / sizeof(struct topa_entry)) 571 572 /** 573 * struct topa_page - page-sized ToPA table with metadata at the top 574 * @table: actual ToPA table entries, as understood by PT hardware 575 * @topa: metadata 576 */ 577 struct topa_page { 578 struct topa_entry table[TENTS_PER_PAGE]; 579 struct topa topa; 580 }; 581 582 static inline struct topa_page *topa_to_page(struct topa *topa) 583 { 584 return container_of(topa, struct topa_page, topa); 585 } 586 587 static inline struct topa_page *topa_entry_to_page(struct topa_entry *te) 588 { 589 return (struct topa_page *)((unsigned long)te & PAGE_MASK); 590 } 591 592 static inline phys_addr_t topa_pfn(struct topa *topa) 593 { 594 return PFN_DOWN(virt_to_phys(topa_to_page(topa))); 595 } 596 597 /* make -1 stand for the last table entry */ 598 #define TOPA_ENTRY(t, i) \ 599 ((i) == -1 \ 600 ? &topa_to_page(t)->table[(t)->last] \ 601 : &topa_to_page(t)->table[(i)]) 602 #define TOPA_ENTRY_SIZE(t, i) (sizes(TOPA_ENTRY((t), (i))->size)) 603 #define TOPA_ENTRY_PAGES(t, i) (1 << TOPA_ENTRY((t), (i))->size) 604 605 /** 606 * topa_alloc() - allocate page-sized ToPA table 607 * @cpu: CPU on which to allocate. 608 * @gfp: Allocation flags. 609 * 610 * Return: On success, return the pointer to ToPA table page. 611 */ 612 static struct topa *topa_alloc(int cpu, gfp_t gfp) 613 { 614 int node = cpu_to_node(cpu); 615 struct topa_page *tp; 616 struct page *p; 617 618 p = alloc_pages_node(node, gfp | __GFP_ZERO, 0); 619 if (!p) 620 return NULL; 621 622 tp = page_address(p); 623 tp->topa.last = 0; 624 625 /* 626 * In case of singe-entry ToPA, always put the self-referencing END 627 * link as the 2nd entry in the table 628 */ 629 if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) { 630 TOPA_ENTRY(&tp->topa, 1)->base = page_to_phys(p) >> TOPA_SHIFT; 631 TOPA_ENTRY(&tp->topa, 1)->end = 1; 632 } 633 634 return &tp->topa; 635 } 636 637 /** 638 * topa_free() - free a page-sized ToPA table 639 * @topa: Table to deallocate. 640 */ 641 static void topa_free(struct topa *topa) 642 { 643 free_page((unsigned long)topa); 644 } 645 646 /** 647 * topa_insert_table() - insert a ToPA table into a buffer 648 * @buf: PT buffer that's being extended. 649 * @topa: New topa table to be inserted. 650 * 651 * If it's the first table in this buffer, set up buffer's pointers 652 * accordingly; otherwise, add a END=1 link entry to @topa to the current 653 * "last" table and adjust the last table pointer to @topa. 654 */ 655 static void topa_insert_table(struct pt_buffer *buf, struct topa *topa) 656 { 657 struct topa *last = buf->last; 658 659 list_add_tail(&topa->list, &buf->tables); 660 661 if (!buf->first) { 662 buf->first = buf->last = buf->cur = topa; 663 return; 664 } 665 666 topa->offset = last->offset + last->size; 667 buf->last = topa; 668 669 if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) 670 return; 671 672 BUG_ON(last->last != TENTS_PER_PAGE - 1); 673 674 TOPA_ENTRY(last, -1)->base = topa_pfn(topa); 675 TOPA_ENTRY(last, -1)->end = 1; 676 } 677 678 /** 679 * topa_table_full() - check if a ToPA table is filled up 680 * @topa: ToPA table. 681 */ 682 static bool topa_table_full(struct topa *topa) 683 { 684 /* single-entry ToPA is a special case */ 685 if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) 686 return !!topa->last; 687 688 return topa->last == TENTS_PER_PAGE - 1; 689 } 690 691 /** 692 * topa_insert_pages() - create a list of ToPA tables 693 * @buf: PT buffer being initialized. 694 * @gfp: Allocation flags. 695 * 696 * This initializes a list of ToPA tables with entries from 697 * the data_pages provided by rb_alloc_aux(). 698 * 699 * Return: 0 on success or error code. 700 */ 701 static int topa_insert_pages(struct pt_buffer *buf, int cpu, gfp_t gfp) 702 { 703 struct topa *topa = buf->last; 704 int order = 0; 705 struct page *p; 706 707 p = virt_to_page(buf->data_pages[buf->nr_pages]); 708 if (PagePrivate(p)) 709 order = page_private(p); 710 711 if (topa_table_full(topa)) { 712 topa = topa_alloc(cpu, gfp); 713 if (!topa) 714 return -ENOMEM; 715 716 topa_insert_table(buf, topa); 717 } 718 719 if (topa->z_count == topa->last - 1) { 720 if (order == TOPA_ENTRY(topa, topa->last - 1)->size) 721 topa->z_count++; 722 } 723 724 TOPA_ENTRY(topa, -1)->base = page_to_phys(p) >> TOPA_SHIFT; 725 TOPA_ENTRY(topa, -1)->size = order; 726 if (!buf->snapshot && 727 !intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) { 728 TOPA_ENTRY(topa, -1)->intr = 1; 729 TOPA_ENTRY(topa, -1)->stop = 1; 730 } 731 732 topa->last++; 733 topa->size += sizes(order); 734 735 buf->nr_pages += 1ul << order; 736 737 return 0; 738 } 739 740 /** 741 * pt_topa_dump() - print ToPA tables and their entries 742 * @buf: PT buffer. 743 */ 744 static void pt_topa_dump(struct pt_buffer *buf) 745 { 746 struct topa *topa; 747 748 list_for_each_entry(topa, &buf->tables, list) { 749 struct topa_page *tp = topa_to_page(topa); 750 int i; 751 752 pr_debug("# table @%p, off %llx size %zx\n", tp->table, 753 topa->offset, topa->size); 754 for (i = 0; i < TENTS_PER_PAGE; i++) { 755 pr_debug("# entry @%p (%lx sz %u %c%c%c) raw=%16llx\n", 756 &tp->table[i], 757 (unsigned long)tp->table[i].base << TOPA_SHIFT, 758 sizes(tp->table[i].size), 759 tp->table[i].end ? 'E' : ' ', 760 tp->table[i].intr ? 'I' : ' ', 761 tp->table[i].stop ? 'S' : ' ', 762 *(u64 *)&tp->table[i]); 763 if ((intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) && 764 tp->table[i].stop) || 765 tp->table[i].end) 766 break; 767 if (!i && topa->z_count) 768 i += topa->z_count; 769 } 770 } 771 } 772 773 /** 774 * pt_buffer_advance() - advance to the next output region 775 * @buf: PT buffer. 776 * 777 * Advance the current pointers in the buffer to the next ToPA entry. 778 */ 779 static void pt_buffer_advance(struct pt_buffer *buf) 780 { 781 buf->output_off = 0; 782 buf->cur_idx++; 783 784 if (buf->cur_idx == buf->cur->last) { 785 if (buf->cur == buf->last) 786 buf->cur = buf->first; 787 else 788 buf->cur = list_entry(buf->cur->list.next, struct topa, 789 list); 790 buf->cur_idx = 0; 791 } 792 } 793 794 /** 795 * pt_update_head() - calculate current offsets and sizes 796 * @pt: Per-cpu pt context. 797 * 798 * Update buffer's current write pointer position and data size. 799 */ 800 static void pt_update_head(struct pt *pt) 801 { 802 struct pt_buffer *buf = perf_get_aux(&pt->handle); 803 u64 topa_idx, base, old; 804 805 /* offset of the first region in this table from the beginning of buf */ 806 base = buf->cur->offset + buf->output_off; 807 808 /* offset of the current output region within this table */ 809 for (topa_idx = 0; topa_idx < buf->cur_idx; topa_idx++) 810 base += TOPA_ENTRY_SIZE(buf->cur, topa_idx); 811 812 if (buf->snapshot) { 813 local_set(&buf->data_size, base); 814 } else { 815 old = (local64_xchg(&buf->head, base) & 816 ((buf->nr_pages << PAGE_SHIFT) - 1)); 817 if (base < old) 818 base += buf->nr_pages << PAGE_SHIFT; 819 820 local_add(base - old, &buf->data_size); 821 } 822 } 823 824 /** 825 * pt_buffer_region() - obtain current output region's address 826 * @buf: PT buffer. 827 */ 828 static void *pt_buffer_region(struct pt_buffer *buf) 829 { 830 return phys_to_virt(TOPA_ENTRY(buf->cur, buf->cur_idx)->base << TOPA_SHIFT); 831 } 832 833 /** 834 * pt_buffer_region_size() - obtain current output region's size 835 * @buf: PT buffer. 836 */ 837 static size_t pt_buffer_region_size(struct pt_buffer *buf) 838 { 839 return TOPA_ENTRY_SIZE(buf->cur, buf->cur_idx); 840 } 841 842 /** 843 * pt_handle_status() - take care of possible status conditions 844 * @pt: Per-cpu pt context. 845 */ 846 static void pt_handle_status(struct pt *pt) 847 { 848 struct pt_buffer *buf = perf_get_aux(&pt->handle); 849 int advance = 0; 850 u64 status; 851 852 rdmsrl(MSR_IA32_RTIT_STATUS, status); 853 854 if (status & RTIT_STATUS_ERROR) { 855 pr_err_ratelimited("ToPA ERROR encountered, trying to recover\n"); 856 pt_topa_dump(buf); 857 status &= ~RTIT_STATUS_ERROR; 858 } 859 860 if (status & RTIT_STATUS_STOPPED) { 861 status &= ~RTIT_STATUS_STOPPED; 862 863 /* 864 * On systems that only do single-entry ToPA, hitting STOP 865 * means we are already losing data; need to let the decoder 866 * know. 867 */ 868 if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) || 869 buf->output_off == pt_buffer_region_size(buf)) { 870 perf_aux_output_flag(&pt->handle, 871 PERF_AUX_FLAG_TRUNCATED); 872 advance++; 873 } 874 } 875 876 /* 877 * Also on single-entry ToPA implementations, interrupt will come 878 * before the output reaches its output region's boundary. 879 */ 880 if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) && 881 !buf->snapshot && 882 pt_buffer_region_size(buf) - buf->output_off <= TOPA_PMI_MARGIN) { 883 void *head = pt_buffer_region(buf); 884 885 /* everything within this margin needs to be zeroed out */ 886 memset(head + buf->output_off, 0, 887 pt_buffer_region_size(buf) - 888 buf->output_off); 889 advance++; 890 } 891 892 if (advance) 893 pt_buffer_advance(buf); 894 895 wrmsrl(MSR_IA32_RTIT_STATUS, status); 896 } 897 898 /** 899 * pt_read_offset() - translate registers into buffer pointers 900 * @buf: PT buffer. 901 * 902 * Set buffer's output pointers from MSR values. 903 */ 904 static void pt_read_offset(struct pt_buffer *buf) 905 { 906 u64 offset, base_topa; 907 struct topa_page *tp; 908 909 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, base_topa); 910 tp = phys_to_virt(base_topa); 911 buf->cur = &tp->topa; 912 913 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, offset); 914 /* offset within current output region */ 915 buf->output_off = offset >> 32; 916 /* index of current output region within this table */ 917 buf->cur_idx = (offset & 0xffffff80) >> 7; 918 } 919 920 static struct topa_entry * 921 pt_topa_entry_for_page(struct pt_buffer *buf, unsigned int pg) 922 { 923 struct topa_page *tp; 924 struct topa *topa; 925 unsigned int idx, cur_pg = 0, z_pg = 0, start_idx = 0; 926 927 /* 928 * Indicates a bug in the caller. 929 */ 930 if (WARN_ON_ONCE(pg >= buf->nr_pages)) 931 return NULL; 932 933 /* 934 * First, find the ToPA table where @pg fits. With high 935 * order allocations, there shouldn't be many of these. 936 */ 937 list_for_each_entry(topa, &buf->tables, list) { 938 if (topa->offset + topa->size > pg << PAGE_SHIFT) 939 goto found; 940 } 941 942 /* 943 * Hitting this means we have a problem in the ToPA 944 * allocation code. 945 */ 946 WARN_ON_ONCE(1); 947 948 return NULL; 949 950 found: 951 /* 952 * Indicates a problem in the ToPA allocation code. 953 */ 954 if (WARN_ON_ONCE(topa->last == -1)) 955 return NULL; 956 957 tp = topa_to_page(topa); 958 cur_pg = PFN_DOWN(topa->offset); 959 if (topa->z_count) { 960 z_pg = TOPA_ENTRY_PAGES(topa, 0) * (topa->z_count + 1); 961 start_idx = topa->z_count + 1; 962 } 963 964 /* 965 * Multiple entries at the beginning of the table have the same size, 966 * ideally all of them; if @pg falls there, the search is done. 967 */ 968 if (pg >= cur_pg && pg < cur_pg + z_pg) { 969 idx = (pg - cur_pg) / TOPA_ENTRY_PAGES(topa, 0); 970 return &tp->table[idx]; 971 } 972 973 /* 974 * Otherwise, slow path: iterate through the remaining entries. 975 */ 976 for (idx = start_idx, cur_pg += z_pg; idx < topa->last; idx++) { 977 if (cur_pg + TOPA_ENTRY_PAGES(topa, idx) > pg) 978 return &tp->table[idx]; 979 980 cur_pg += TOPA_ENTRY_PAGES(topa, idx); 981 } 982 983 /* 984 * Means we couldn't find a ToPA entry in the table that does match. 985 */ 986 WARN_ON_ONCE(1); 987 988 return NULL; 989 } 990 991 static struct topa_entry * 992 pt_topa_prev_entry(struct pt_buffer *buf, struct topa_entry *te) 993 { 994 unsigned long table = (unsigned long)te & ~(PAGE_SIZE - 1); 995 struct topa_page *tp; 996 struct topa *topa; 997 998 tp = (struct topa_page *)table; 999 if (tp->table != te) 1000 return --te; 1001 1002 topa = &tp->topa; 1003 if (topa == buf->first) 1004 topa = buf->last; 1005 else 1006 topa = list_prev_entry(topa, list); 1007 1008 tp = topa_to_page(topa); 1009 1010 return &tp->table[topa->last - 1]; 1011 } 1012 1013 /** 1014 * pt_buffer_reset_markers() - place interrupt and stop bits in the buffer 1015 * @buf: PT buffer. 1016 * @handle: Current output handle. 1017 * 1018 * Place INT and STOP marks to prevent overwriting old data that the consumer 1019 * hasn't yet collected and waking up the consumer after a certain fraction of 1020 * the buffer has filled up. Only needed and sensible for non-snapshot counters. 1021 * 1022 * This obviously relies on buf::head to figure out buffer markers, so it has 1023 * to be called after pt_buffer_reset_offsets() and before the hardware tracing 1024 * is enabled. 1025 */ 1026 static int pt_buffer_reset_markers(struct pt_buffer *buf, 1027 struct perf_output_handle *handle) 1028 1029 { 1030 unsigned long head = local64_read(&buf->head); 1031 unsigned long idx, npages, wakeup; 1032 1033 /* can't stop in the middle of an output region */ 1034 if (buf->output_off + handle->size + 1 < pt_buffer_region_size(buf)) { 1035 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED); 1036 return -EINVAL; 1037 } 1038 1039 1040 /* single entry ToPA is handled by marking all regions STOP=1 INT=1 */ 1041 if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) 1042 return 0; 1043 1044 /* clear STOP and INT from current entry */ 1045 if (buf->stop_te) { 1046 buf->stop_te->stop = 0; 1047 buf->stop_te->intr = 0; 1048 } 1049 1050 if (buf->intr_te) 1051 buf->intr_te->intr = 0; 1052 1053 /* how many pages till the STOP marker */ 1054 npages = handle->size >> PAGE_SHIFT; 1055 1056 /* if it's on a page boundary, fill up one more page */ 1057 if (!offset_in_page(head + handle->size + 1)) 1058 npages++; 1059 1060 idx = (head >> PAGE_SHIFT) + npages; 1061 idx &= buf->nr_pages - 1; 1062 1063 if (idx != buf->stop_pos) { 1064 buf->stop_pos = idx; 1065 buf->stop_te = pt_topa_entry_for_page(buf, idx); 1066 buf->stop_te = pt_topa_prev_entry(buf, buf->stop_te); 1067 } 1068 1069 wakeup = handle->wakeup >> PAGE_SHIFT; 1070 1071 /* in the worst case, wake up the consumer one page before hard stop */ 1072 idx = (head >> PAGE_SHIFT) + npages - 1; 1073 if (idx > wakeup) 1074 idx = wakeup; 1075 1076 idx &= buf->nr_pages - 1; 1077 if (idx != buf->intr_pos) { 1078 buf->intr_pos = idx; 1079 buf->intr_te = pt_topa_entry_for_page(buf, idx); 1080 buf->intr_te = pt_topa_prev_entry(buf, buf->intr_te); 1081 } 1082 1083 buf->stop_te->stop = 1; 1084 buf->stop_te->intr = 1; 1085 buf->intr_te->intr = 1; 1086 1087 return 0; 1088 } 1089 1090 /** 1091 * pt_buffer_reset_offsets() - adjust buffer's write pointers from aux_head 1092 * @buf: PT buffer. 1093 * @head: Write pointer (aux_head) from AUX buffer. 1094 * 1095 * Find the ToPA table and entry corresponding to given @head and set buffer's 1096 * "current" pointers accordingly. This is done after we have obtained the 1097 * current aux_head position from a successful call to perf_aux_output_begin() 1098 * to make sure the hardware is writing to the right place. 1099 * 1100 * This function modifies buf::{cur,cur_idx,output_off} that will be programmed 1101 * into PT msrs when the tracing is enabled and buf::head and buf::data_size, 1102 * which are used to determine INT and STOP markers' locations by a subsequent 1103 * call to pt_buffer_reset_markers(). 1104 */ 1105 static void pt_buffer_reset_offsets(struct pt_buffer *buf, unsigned long head) 1106 { 1107 struct topa_page *cur_tp; 1108 struct topa_entry *te; 1109 int pg; 1110 1111 if (buf->snapshot) 1112 head &= (buf->nr_pages << PAGE_SHIFT) - 1; 1113 1114 pg = (head >> PAGE_SHIFT) & (buf->nr_pages - 1); 1115 te = pt_topa_entry_for_page(buf, pg); 1116 1117 cur_tp = topa_entry_to_page(te); 1118 buf->cur = &cur_tp->topa; 1119 buf->cur_idx = te - TOPA_ENTRY(buf->cur, 0); 1120 buf->output_off = head & (pt_buffer_region_size(buf) - 1); 1121 1122 local64_set(&buf->head, head); 1123 local_set(&buf->data_size, 0); 1124 } 1125 1126 /** 1127 * pt_buffer_fini_topa() - deallocate ToPA structure of a buffer 1128 * @buf: PT buffer. 1129 */ 1130 static void pt_buffer_fini_topa(struct pt_buffer *buf) 1131 { 1132 struct topa *topa, *iter; 1133 1134 list_for_each_entry_safe(topa, iter, &buf->tables, list) { 1135 /* 1136 * right now, this is in free_aux() path only, so 1137 * no need to unlink this table from the list 1138 */ 1139 topa_free(topa); 1140 } 1141 } 1142 1143 /** 1144 * pt_buffer_init_topa() - initialize ToPA table for pt buffer 1145 * @buf: PT buffer. 1146 * @size: Total size of all regions within this ToPA. 1147 * @gfp: Allocation flags. 1148 */ 1149 static int pt_buffer_init_topa(struct pt_buffer *buf, int cpu, 1150 unsigned long nr_pages, gfp_t gfp) 1151 { 1152 struct topa *topa; 1153 int err; 1154 1155 topa = topa_alloc(cpu, gfp); 1156 if (!topa) 1157 return -ENOMEM; 1158 1159 topa_insert_table(buf, topa); 1160 1161 while (buf->nr_pages < nr_pages) { 1162 err = topa_insert_pages(buf, cpu, gfp); 1163 if (err) { 1164 pt_buffer_fini_topa(buf); 1165 return -ENOMEM; 1166 } 1167 } 1168 1169 /* link last table to the first one, unless we're double buffering */ 1170 if (intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) { 1171 TOPA_ENTRY(buf->last, -1)->base = topa_pfn(buf->first); 1172 TOPA_ENTRY(buf->last, -1)->end = 1; 1173 } 1174 1175 pt_topa_dump(buf); 1176 return 0; 1177 } 1178 1179 /** 1180 * pt_buffer_setup_aux() - set up topa tables for a PT buffer 1181 * @cpu: Cpu on which to allocate, -1 means current. 1182 * @pages: Array of pointers to buffer pages passed from perf core. 1183 * @nr_pages: Number of pages in the buffer. 1184 * @snapshot: If this is a snapshot/overwrite counter. 1185 * 1186 * This is a pmu::setup_aux callback that sets up ToPA tables and all the 1187 * bookkeeping for an AUX buffer. 1188 * 1189 * Return: Our private PT buffer structure. 1190 */ 1191 static void * 1192 pt_buffer_setup_aux(struct perf_event *event, void **pages, 1193 int nr_pages, bool snapshot) 1194 { 1195 struct pt_buffer *buf; 1196 int node, ret, cpu = event->cpu; 1197 1198 if (!nr_pages) 1199 return NULL; 1200 1201 if (cpu == -1) 1202 cpu = raw_smp_processor_id(); 1203 node = cpu_to_node(cpu); 1204 1205 buf = kzalloc_node(sizeof(struct pt_buffer), GFP_KERNEL, node); 1206 if (!buf) 1207 return NULL; 1208 1209 buf->snapshot = snapshot; 1210 buf->data_pages = pages; 1211 buf->stop_pos = -1; 1212 buf->intr_pos = -1; 1213 1214 INIT_LIST_HEAD(&buf->tables); 1215 1216 ret = pt_buffer_init_topa(buf, cpu, nr_pages, GFP_KERNEL); 1217 if (ret) { 1218 kfree(buf); 1219 return NULL; 1220 } 1221 1222 return buf; 1223 } 1224 1225 /** 1226 * pt_buffer_free_aux() - perf AUX deallocation path callback 1227 * @data: PT buffer. 1228 */ 1229 static void pt_buffer_free_aux(void *data) 1230 { 1231 struct pt_buffer *buf = data; 1232 1233 pt_buffer_fini_topa(buf); 1234 kfree(buf); 1235 } 1236 1237 static int pt_addr_filters_init(struct perf_event *event) 1238 { 1239 struct pt_filters *filters; 1240 int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu); 1241 1242 if (!intel_pt_validate_hw_cap(PT_CAP_num_address_ranges)) 1243 return 0; 1244 1245 filters = kzalloc_node(sizeof(struct pt_filters), GFP_KERNEL, node); 1246 if (!filters) 1247 return -ENOMEM; 1248 1249 if (event->parent) 1250 memcpy(filters, event->parent->hw.addr_filters, 1251 sizeof(*filters)); 1252 1253 event->hw.addr_filters = filters; 1254 1255 return 0; 1256 } 1257 1258 static void pt_addr_filters_fini(struct perf_event *event) 1259 { 1260 kfree(event->hw.addr_filters); 1261 event->hw.addr_filters = NULL; 1262 } 1263 1264 static inline bool valid_kernel_ip(unsigned long ip) 1265 { 1266 return virt_addr_valid(ip) && kernel_ip(ip); 1267 } 1268 1269 static int pt_event_addr_filters_validate(struct list_head *filters) 1270 { 1271 struct perf_addr_filter *filter; 1272 int range = 0; 1273 1274 list_for_each_entry(filter, filters, entry) { 1275 /* 1276 * PT doesn't support single address triggers and 1277 * 'start' filters. 1278 */ 1279 if (!filter->size || 1280 filter->action == PERF_ADDR_FILTER_ACTION_START) 1281 return -EOPNOTSUPP; 1282 1283 if (!filter->path.dentry) { 1284 if (!valid_kernel_ip(filter->offset)) 1285 return -EINVAL; 1286 1287 if (!valid_kernel_ip(filter->offset + filter->size)) 1288 return -EINVAL; 1289 } 1290 1291 if (++range > intel_pt_validate_hw_cap(PT_CAP_num_address_ranges)) 1292 return -EOPNOTSUPP; 1293 } 1294 1295 return 0; 1296 } 1297 1298 static void pt_event_addr_filters_sync(struct perf_event *event) 1299 { 1300 struct perf_addr_filters_head *head = perf_event_addr_filters(event); 1301 unsigned long msr_a, msr_b; 1302 struct perf_addr_filter_range *fr = event->addr_filter_ranges; 1303 struct pt_filters *filters = event->hw.addr_filters; 1304 struct perf_addr_filter *filter; 1305 int range = 0; 1306 1307 if (!filters) 1308 return; 1309 1310 list_for_each_entry(filter, &head->list, entry) { 1311 if (filter->path.dentry && !fr[range].start) { 1312 msr_a = msr_b = 0; 1313 } else { 1314 /* apply the offset */ 1315 msr_a = fr[range].start; 1316 msr_b = msr_a + fr[range].size - 1; 1317 } 1318 1319 filters->filter[range].msr_a = msr_a; 1320 filters->filter[range].msr_b = msr_b; 1321 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER) 1322 filters->filter[range].config = 1; 1323 else 1324 filters->filter[range].config = 2; 1325 range++; 1326 } 1327 1328 filters->nr_filters = range; 1329 } 1330 1331 /** 1332 * intel_pt_interrupt() - PT PMI handler 1333 */ 1334 void intel_pt_interrupt(void) 1335 { 1336 struct pt *pt = this_cpu_ptr(&pt_ctx); 1337 struct pt_buffer *buf; 1338 struct perf_event *event = pt->handle.event; 1339 1340 /* 1341 * There may be a dangling PT bit in the interrupt status register 1342 * after PT has been disabled by pt_event_stop(). Make sure we don't 1343 * do anything (particularly, re-enable) for this event here. 1344 */ 1345 if (!READ_ONCE(pt->handle_nmi)) 1346 return; 1347 1348 if (!event) 1349 return; 1350 1351 pt_config_stop(event); 1352 1353 buf = perf_get_aux(&pt->handle); 1354 if (!buf) 1355 return; 1356 1357 pt_read_offset(buf); 1358 1359 pt_handle_status(pt); 1360 1361 pt_update_head(pt); 1362 1363 perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0)); 1364 1365 if (!event->hw.state) { 1366 int ret; 1367 1368 buf = perf_aux_output_begin(&pt->handle, event); 1369 if (!buf) { 1370 event->hw.state = PERF_HES_STOPPED; 1371 return; 1372 } 1373 1374 pt_buffer_reset_offsets(buf, pt->handle.head); 1375 /* snapshot counters don't use PMI, so it's safe */ 1376 ret = pt_buffer_reset_markers(buf, &pt->handle); 1377 if (ret) { 1378 perf_aux_output_end(&pt->handle, 0); 1379 return; 1380 } 1381 1382 pt_config_buffer(topa_to_page(buf->cur)->table, buf->cur_idx, 1383 buf->output_off); 1384 pt_config(event); 1385 } 1386 } 1387 1388 void intel_pt_handle_vmx(int on) 1389 { 1390 struct pt *pt = this_cpu_ptr(&pt_ctx); 1391 struct perf_event *event; 1392 unsigned long flags; 1393 1394 /* PT plays nice with VMX, do nothing */ 1395 if (pt_pmu.vmx) 1396 return; 1397 1398 /* 1399 * VMXON will clear RTIT_CTL.TraceEn; we need to make 1400 * sure to not try to set it while VMX is on. Disable 1401 * interrupts to avoid racing with pmu callbacks; 1402 * concurrent PMI should be handled fine. 1403 */ 1404 local_irq_save(flags); 1405 WRITE_ONCE(pt->vmx_on, on); 1406 1407 /* 1408 * If an AUX transaction is in progress, it will contain 1409 * gap(s), so flag it PARTIAL to inform the user. 1410 */ 1411 event = pt->handle.event; 1412 if (event) 1413 perf_aux_output_flag(&pt->handle, 1414 PERF_AUX_FLAG_PARTIAL); 1415 1416 /* Turn PTs back on */ 1417 if (!on && event) 1418 wrmsrl(MSR_IA32_RTIT_CTL, event->hw.config); 1419 1420 local_irq_restore(flags); 1421 } 1422 EXPORT_SYMBOL_GPL(intel_pt_handle_vmx); 1423 1424 /* 1425 * PMU callbacks 1426 */ 1427 1428 static void pt_event_start(struct perf_event *event, int mode) 1429 { 1430 struct hw_perf_event *hwc = &event->hw; 1431 struct pt *pt = this_cpu_ptr(&pt_ctx); 1432 struct pt_buffer *buf; 1433 1434 buf = perf_aux_output_begin(&pt->handle, event); 1435 if (!buf) 1436 goto fail_stop; 1437 1438 pt_buffer_reset_offsets(buf, pt->handle.head); 1439 if (!buf->snapshot) { 1440 if (pt_buffer_reset_markers(buf, &pt->handle)) 1441 goto fail_end_stop; 1442 } 1443 1444 WRITE_ONCE(pt->handle_nmi, 1); 1445 hwc->state = 0; 1446 1447 pt_config_buffer(topa_to_page(buf->cur)->table, buf->cur_idx, 1448 buf->output_off); 1449 pt_config(event); 1450 1451 return; 1452 1453 fail_end_stop: 1454 perf_aux_output_end(&pt->handle, 0); 1455 fail_stop: 1456 hwc->state = PERF_HES_STOPPED; 1457 } 1458 1459 static void pt_event_stop(struct perf_event *event, int mode) 1460 { 1461 struct pt *pt = this_cpu_ptr(&pt_ctx); 1462 1463 /* 1464 * Protect against the PMI racing with disabling wrmsr, 1465 * see comment in intel_pt_interrupt(). 1466 */ 1467 WRITE_ONCE(pt->handle_nmi, 0); 1468 1469 pt_config_stop(event); 1470 1471 if (event->hw.state == PERF_HES_STOPPED) 1472 return; 1473 1474 event->hw.state = PERF_HES_STOPPED; 1475 1476 if (mode & PERF_EF_UPDATE) { 1477 struct pt_buffer *buf = perf_get_aux(&pt->handle); 1478 1479 if (!buf) 1480 return; 1481 1482 if (WARN_ON_ONCE(pt->handle.event != event)) 1483 return; 1484 1485 pt_read_offset(buf); 1486 1487 pt_handle_status(pt); 1488 1489 pt_update_head(pt); 1490 1491 if (buf->snapshot) 1492 pt->handle.head = 1493 local_xchg(&buf->data_size, 1494 buf->nr_pages << PAGE_SHIFT); 1495 perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0)); 1496 } 1497 } 1498 1499 static void pt_event_del(struct perf_event *event, int mode) 1500 { 1501 pt_event_stop(event, PERF_EF_UPDATE); 1502 } 1503 1504 static int pt_event_add(struct perf_event *event, int mode) 1505 { 1506 struct pt *pt = this_cpu_ptr(&pt_ctx); 1507 struct hw_perf_event *hwc = &event->hw; 1508 int ret = -EBUSY; 1509 1510 if (pt->handle.event) 1511 goto fail; 1512 1513 if (mode & PERF_EF_START) { 1514 pt_event_start(event, 0); 1515 ret = -EINVAL; 1516 if (hwc->state == PERF_HES_STOPPED) 1517 goto fail; 1518 } else { 1519 hwc->state = PERF_HES_STOPPED; 1520 } 1521 1522 ret = 0; 1523 fail: 1524 1525 return ret; 1526 } 1527 1528 static void pt_event_read(struct perf_event *event) 1529 { 1530 } 1531 1532 static void pt_event_destroy(struct perf_event *event) 1533 { 1534 pt_addr_filters_fini(event); 1535 x86_del_exclusive(x86_lbr_exclusive_pt); 1536 } 1537 1538 static int pt_event_init(struct perf_event *event) 1539 { 1540 if (event->attr.type != pt_pmu.pmu.type) 1541 return -ENOENT; 1542 1543 if (!pt_event_valid(event)) 1544 return -EINVAL; 1545 1546 if (x86_add_exclusive(x86_lbr_exclusive_pt)) 1547 return -EBUSY; 1548 1549 if (pt_addr_filters_init(event)) { 1550 x86_del_exclusive(x86_lbr_exclusive_pt); 1551 return -ENOMEM; 1552 } 1553 1554 event->destroy = pt_event_destroy; 1555 1556 return 0; 1557 } 1558 1559 void cpu_emergency_stop_pt(void) 1560 { 1561 struct pt *pt = this_cpu_ptr(&pt_ctx); 1562 1563 if (pt->handle.event) 1564 pt_event_stop(pt->handle.event, PERF_EF_UPDATE); 1565 } 1566 1567 int is_intel_pt_event(struct perf_event *event) 1568 { 1569 return event->pmu == &pt_pmu.pmu; 1570 } 1571 1572 static __init int pt_init(void) 1573 { 1574 int ret, cpu, prior_warn = 0; 1575 1576 BUILD_BUG_ON(sizeof(struct topa) > PAGE_SIZE); 1577 1578 if (!boot_cpu_has(X86_FEATURE_INTEL_PT)) 1579 return -ENODEV; 1580 1581 get_online_cpus(); 1582 for_each_online_cpu(cpu) { 1583 u64 ctl; 1584 1585 ret = rdmsrl_safe_on_cpu(cpu, MSR_IA32_RTIT_CTL, &ctl); 1586 if (!ret && (ctl & RTIT_CTL_TRACEEN)) 1587 prior_warn++; 1588 } 1589 put_online_cpus(); 1590 1591 if (prior_warn) { 1592 x86_add_exclusive(x86_lbr_exclusive_pt); 1593 pr_warn("PT is enabled at boot time, doing nothing\n"); 1594 1595 return -EBUSY; 1596 } 1597 1598 ret = pt_pmu_hw_init(); 1599 if (ret) 1600 return ret; 1601 1602 if (!intel_pt_validate_hw_cap(PT_CAP_topa_output)) { 1603 pr_warn("ToPA output is not supported on this CPU\n"); 1604 return -ENODEV; 1605 } 1606 1607 if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) 1608 pt_pmu.pmu.capabilities = PERF_PMU_CAP_AUX_NO_SG; 1609 1610 pt_pmu.pmu.capabilities |= PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE; 1611 pt_pmu.pmu.attr_groups = pt_attr_groups; 1612 pt_pmu.pmu.task_ctx_nr = perf_sw_context; 1613 pt_pmu.pmu.event_init = pt_event_init; 1614 pt_pmu.pmu.add = pt_event_add; 1615 pt_pmu.pmu.del = pt_event_del; 1616 pt_pmu.pmu.start = pt_event_start; 1617 pt_pmu.pmu.stop = pt_event_stop; 1618 pt_pmu.pmu.read = pt_event_read; 1619 pt_pmu.pmu.setup_aux = pt_buffer_setup_aux; 1620 pt_pmu.pmu.free_aux = pt_buffer_free_aux; 1621 pt_pmu.pmu.addr_filters_sync = pt_event_addr_filters_sync; 1622 pt_pmu.pmu.addr_filters_validate = pt_event_addr_filters_validate; 1623 pt_pmu.pmu.nr_addr_filters = 1624 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges); 1625 1626 ret = perf_pmu_register(&pt_pmu.pmu, "intel_pt", -1); 1627 1628 return ret; 1629 } 1630 arch_initcall(pt_init); 1631