1 /* 2 * Intel(R) Processor Trace PMU driver for perf 3 * Copyright (c) 2013-2014, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * Intel PT is specified in the Intel Architecture Instruction Set Extensions 15 * Programming Reference: 16 * http://software.intel.com/en-us/intel-isa-extensions 17 */ 18 19 #undef DEBUG 20 21 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 22 23 #include <linux/types.h> 24 #include <linux/slab.h> 25 #include <linux/device.h> 26 27 #include <asm/perf_event.h> 28 #include <asm/insn.h> 29 #include <asm/io.h> 30 #include <asm/intel_pt.h> 31 #include <asm/intel-family.h> 32 33 #include "../perf_event.h" 34 #include "pt.h" 35 36 static DEFINE_PER_CPU(struct pt, pt_ctx); 37 38 static struct pt_pmu pt_pmu; 39 40 /* 41 * Capabilities of Intel PT hardware, such as number of address bits or 42 * supported output schemes, are cached and exported to userspace as "caps" 43 * attribute group of pt pmu device 44 * (/sys/bus/event_source/devices/intel_pt/caps/) so that userspace can store 45 * relevant bits together with intel_pt traces. 46 * 47 * These are necessary for both trace decoding (payloads_lip, contains address 48 * width encoded in IP-related packets), and event configuration (bitmasks with 49 * permitted values for certain bit fields). 50 */ 51 #define PT_CAP(_n, _l, _r, _m) \ 52 [PT_CAP_ ## _n] = { .name = __stringify(_n), .leaf = _l, \ 53 .reg = _r, .mask = _m } 54 55 static struct pt_cap_desc { 56 const char *name; 57 u32 leaf; 58 u8 reg; 59 u32 mask; 60 } pt_caps[] = { 61 PT_CAP(max_subleaf, 0, CPUID_EAX, 0xffffffff), 62 PT_CAP(cr3_filtering, 0, CPUID_EBX, BIT(0)), 63 PT_CAP(psb_cyc, 0, CPUID_EBX, BIT(1)), 64 PT_CAP(ip_filtering, 0, CPUID_EBX, BIT(2)), 65 PT_CAP(mtc, 0, CPUID_EBX, BIT(3)), 66 PT_CAP(ptwrite, 0, CPUID_EBX, BIT(4)), 67 PT_CAP(power_event_trace, 0, CPUID_EBX, BIT(5)), 68 PT_CAP(topa_output, 0, CPUID_ECX, BIT(0)), 69 PT_CAP(topa_multiple_entries, 0, CPUID_ECX, BIT(1)), 70 PT_CAP(single_range_output, 0, CPUID_ECX, BIT(2)), 71 PT_CAP(output_subsys, 0, CPUID_ECX, BIT(3)), 72 PT_CAP(payloads_lip, 0, CPUID_ECX, BIT(31)), 73 PT_CAP(num_address_ranges, 1, CPUID_EAX, 0x3), 74 PT_CAP(mtc_periods, 1, CPUID_EAX, 0xffff0000), 75 PT_CAP(cycle_thresholds, 1, CPUID_EBX, 0xffff), 76 PT_CAP(psb_periods, 1, CPUID_EBX, 0xffff0000), 77 }; 78 79 u32 intel_pt_validate_cap(u32 *caps, enum pt_capabilities capability) 80 { 81 struct pt_cap_desc *cd = &pt_caps[capability]; 82 u32 c = caps[cd->leaf * PT_CPUID_REGS_NUM + cd->reg]; 83 unsigned int shift = __ffs(cd->mask); 84 85 return (c & cd->mask) >> shift; 86 } 87 EXPORT_SYMBOL_GPL(intel_pt_validate_cap); 88 89 u32 intel_pt_validate_hw_cap(enum pt_capabilities cap) 90 { 91 return intel_pt_validate_cap(pt_pmu.caps, cap); 92 } 93 EXPORT_SYMBOL_GPL(intel_pt_validate_hw_cap); 94 95 static ssize_t pt_cap_show(struct device *cdev, 96 struct device_attribute *attr, 97 char *buf) 98 { 99 struct dev_ext_attribute *ea = 100 container_of(attr, struct dev_ext_attribute, attr); 101 enum pt_capabilities cap = (long)ea->var; 102 103 return snprintf(buf, PAGE_SIZE, "%x\n", intel_pt_validate_hw_cap(cap)); 104 } 105 106 static struct attribute_group pt_cap_group __ro_after_init = { 107 .name = "caps", 108 }; 109 110 PMU_FORMAT_ATTR(pt, "config:0" ); 111 PMU_FORMAT_ATTR(cyc, "config:1" ); 112 PMU_FORMAT_ATTR(pwr_evt, "config:4" ); 113 PMU_FORMAT_ATTR(fup_on_ptw, "config:5" ); 114 PMU_FORMAT_ATTR(mtc, "config:9" ); 115 PMU_FORMAT_ATTR(tsc, "config:10" ); 116 PMU_FORMAT_ATTR(noretcomp, "config:11" ); 117 PMU_FORMAT_ATTR(ptw, "config:12" ); 118 PMU_FORMAT_ATTR(branch, "config:13" ); 119 PMU_FORMAT_ATTR(mtc_period, "config:14-17" ); 120 PMU_FORMAT_ATTR(cyc_thresh, "config:19-22" ); 121 PMU_FORMAT_ATTR(psb_period, "config:24-27" ); 122 123 static struct attribute *pt_formats_attr[] = { 124 &format_attr_pt.attr, 125 &format_attr_cyc.attr, 126 &format_attr_pwr_evt.attr, 127 &format_attr_fup_on_ptw.attr, 128 &format_attr_mtc.attr, 129 &format_attr_tsc.attr, 130 &format_attr_noretcomp.attr, 131 &format_attr_ptw.attr, 132 &format_attr_branch.attr, 133 &format_attr_mtc_period.attr, 134 &format_attr_cyc_thresh.attr, 135 &format_attr_psb_period.attr, 136 NULL, 137 }; 138 139 static struct attribute_group pt_format_group = { 140 .name = "format", 141 .attrs = pt_formats_attr, 142 }; 143 144 static ssize_t 145 pt_timing_attr_show(struct device *dev, struct device_attribute *attr, 146 char *page) 147 { 148 struct perf_pmu_events_attr *pmu_attr = 149 container_of(attr, struct perf_pmu_events_attr, attr); 150 151 switch (pmu_attr->id) { 152 case 0: 153 return sprintf(page, "%lu\n", pt_pmu.max_nonturbo_ratio); 154 case 1: 155 return sprintf(page, "%u:%u\n", 156 pt_pmu.tsc_art_num, 157 pt_pmu.tsc_art_den); 158 default: 159 break; 160 } 161 162 return -EINVAL; 163 } 164 165 PMU_EVENT_ATTR(max_nonturbo_ratio, timing_attr_max_nonturbo_ratio, 0, 166 pt_timing_attr_show); 167 PMU_EVENT_ATTR(tsc_art_ratio, timing_attr_tsc_art_ratio, 1, 168 pt_timing_attr_show); 169 170 static struct attribute *pt_timing_attr[] = { 171 &timing_attr_max_nonturbo_ratio.attr.attr, 172 &timing_attr_tsc_art_ratio.attr.attr, 173 NULL, 174 }; 175 176 static struct attribute_group pt_timing_group = { 177 .attrs = pt_timing_attr, 178 }; 179 180 static const struct attribute_group *pt_attr_groups[] = { 181 &pt_cap_group, 182 &pt_format_group, 183 &pt_timing_group, 184 NULL, 185 }; 186 187 static int __init pt_pmu_hw_init(void) 188 { 189 struct dev_ext_attribute *de_attrs; 190 struct attribute **attrs; 191 size_t size; 192 u64 reg; 193 int ret; 194 long i; 195 196 rdmsrl(MSR_PLATFORM_INFO, reg); 197 pt_pmu.max_nonturbo_ratio = (reg & 0xff00) >> 8; 198 199 /* 200 * if available, read in TSC to core crystal clock ratio, 201 * otherwise, zero for numerator stands for "not enumerated" 202 * as per SDM 203 */ 204 if (boot_cpu_data.cpuid_level >= CPUID_TSC_LEAF) { 205 u32 eax, ebx, ecx, edx; 206 207 cpuid(CPUID_TSC_LEAF, &eax, &ebx, &ecx, &edx); 208 209 pt_pmu.tsc_art_num = ebx; 210 pt_pmu.tsc_art_den = eax; 211 } 212 213 /* model-specific quirks */ 214 switch (boot_cpu_data.x86_model) { 215 case INTEL_FAM6_BROADWELL_CORE: 216 case INTEL_FAM6_BROADWELL_XEON_D: 217 case INTEL_FAM6_BROADWELL_GT3E: 218 case INTEL_FAM6_BROADWELL_X: 219 /* not setting BRANCH_EN will #GP, erratum BDM106 */ 220 pt_pmu.branch_en_always_on = true; 221 break; 222 default: 223 break; 224 } 225 226 if (boot_cpu_has(X86_FEATURE_VMX)) { 227 /* 228 * Intel SDM, 36.5 "Tracing post-VMXON" says that 229 * "IA32_VMX_MISC[bit 14]" being 1 means PT can trace 230 * post-VMXON. 231 */ 232 rdmsrl(MSR_IA32_VMX_MISC, reg); 233 if (reg & BIT(14)) 234 pt_pmu.vmx = true; 235 } 236 237 attrs = NULL; 238 239 for (i = 0; i < PT_CPUID_LEAVES; i++) { 240 cpuid_count(20, i, 241 &pt_pmu.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM], 242 &pt_pmu.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM], 243 &pt_pmu.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM], 244 &pt_pmu.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM]); 245 } 246 247 ret = -ENOMEM; 248 size = sizeof(struct attribute *) * (ARRAY_SIZE(pt_caps)+1); 249 attrs = kzalloc(size, GFP_KERNEL); 250 if (!attrs) 251 goto fail; 252 253 size = sizeof(struct dev_ext_attribute) * (ARRAY_SIZE(pt_caps)+1); 254 de_attrs = kzalloc(size, GFP_KERNEL); 255 if (!de_attrs) 256 goto fail; 257 258 for (i = 0; i < ARRAY_SIZE(pt_caps); i++) { 259 struct dev_ext_attribute *de_attr = de_attrs + i; 260 261 de_attr->attr.attr.name = pt_caps[i].name; 262 263 sysfs_attr_init(&de_attr->attr.attr); 264 265 de_attr->attr.attr.mode = S_IRUGO; 266 de_attr->attr.show = pt_cap_show; 267 de_attr->var = (void *)i; 268 269 attrs[i] = &de_attr->attr.attr; 270 } 271 272 pt_cap_group.attrs = attrs; 273 274 return 0; 275 276 fail: 277 kfree(attrs); 278 279 return ret; 280 } 281 282 #define RTIT_CTL_CYC_PSB (RTIT_CTL_CYCLEACC | \ 283 RTIT_CTL_CYC_THRESH | \ 284 RTIT_CTL_PSB_FREQ) 285 286 #define RTIT_CTL_MTC (RTIT_CTL_MTC_EN | \ 287 RTIT_CTL_MTC_RANGE) 288 289 #define RTIT_CTL_PTW (RTIT_CTL_PTW_EN | \ 290 RTIT_CTL_FUP_ON_PTW) 291 292 /* 293 * Bit 0 (TraceEn) in the attr.config is meaningless as the 294 * corresponding bit in the RTIT_CTL can only be controlled 295 * by the driver; therefore, repurpose it to mean: pass 296 * through the bit that was previously assumed to be always 297 * on for PT, thereby allowing the user to *not* set it if 298 * they so wish. See also pt_event_valid() and pt_config(). 299 */ 300 #define RTIT_CTL_PASSTHROUGH RTIT_CTL_TRACEEN 301 302 #define PT_CONFIG_MASK (RTIT_CTL_TRACEEN | \ 303 RTIT_CTL_TSC_EN | \ 304 RTIT_CTL_DISRETC | \ 305 RTIT_CTL_BRANCH_EN | \ 306 RTIT_CTL_CYC_PSB | \ 307 RTIT_CTL_MTC | \ 308 RTIT_CTL_PWR_EVT_EN | \ 309 RTIT_CTL_FUP_ON_PTW | \ 310 RTIT_CTL_PTW_EN) 311 312 static bool pt_event_valid(struct perf_event *event) 313 { 314 u64 config = event->attr.config; 315 u64 allowed, requested; 316 317 if ((config & PT_CONFIG_MASK) != config) 318 return false; 319 320 if (config & RTIT_CTL_CYC_PSB) { 321 if (!intel_pt_validate_hw_cap(PT_CAP_psb_cyc)) 322 return false; 323 324 allowed = intel_pt_validate_hw_cap(PT_CAP_psb_periods); 325 requested = (config & RTIT_CTL_PSB_FREQ) >> 326 RTIT_CTL_PSB_FREQ_OFFSET; 327 if (requested && (!(allowed & BIT(requested)))) 328 return false; 329 330 allowed = intel_pt_validate_hw_cap(PT_CAP_cycle_thresholds); 331 requested = (config & RTIT_CTL_CYC_THRESH) >> 332 RTIT_CTL_CYC_THRESH_OFFSET; 333 if (requested && (!(allowed & BIT(requested)))) 334 return false; 335 } 336 337 if (config & RTIT_CTL_MTC) { 338 /* 339 * In the unlikely case that CPUID lists valid mtc periods, 340 * but not the mtc capability, drop out here. 341 * 342 * Spec says that setting mtc period bits while mtc bit in 343 * CPUID is 0 will #GP, so better safe than sorry. 344 */ 345 if (!intel_pt_validate_hw_cap(PT_CAP_mtc)) 346 return false; 347 348 allowed = intel_pt_validate_hw_cap(PT_CAP_mtc_periods); 349 if (!allowed) 350 return false; 351 352 requested = (config & RTIT_CTL_MTC_RANGE) >> 353 RTIT_CTL_MTC_RANGE_OFFSET; 354 355 if (!(allowed & BIT(requested))) 356 return false; 357 } 358 359 if (config & RTIT_CTL_PWR_EVT_EN && 360 !intel_pt_validate_hw_cap(PT_CAP_power_event_trace)) 361 return false; 362 363 if (config & RTIT_CTL_PTW) { 364 if (!intel_pt_validate_hw_cap(PT_CAP_ptwrite)) 365 return false; 366 367 /* FUPonPTW without PTW doesn't make sense */ 368 if ((config & RTIT_CTL_FUP_ON_PTW) && 369 !(config & RTIT_CTL_PTW_EN)) 370 return false; 371 } 372 373 /* 374 * Setting bit 0 (TraceEn in RTIT_CTL MSR) in the attr.config 375 * clears the assomption that BranchEn must always be enabled, 376 * as was the case with the first implementation of PT. 377 * If this bit is not set, the legacy behavior is preserved 378 * for compatibility with the older userspace. 379 * 380 * Re-using bit 0 for this purpose is fine because it is never 381 * directly set by the user; previous attempts at setting it in 382 * the attr.config resulted in -EINVAL. 383 */ 384 if (config & RTIT_CTL_PASSTHROUGH) { 385 /* 386 * Disallow not setting BRANCH_EN where BRANCH_EN is 387 * always required. 388 */ 389 if (pt_pmu.branch_en_always_on && 390 !(config & RTIT_CTL_BRANCH_EN)) 391 return false; 392 } else { 393 /* 394 * Disallow BRANCH_EN without the PASSTHROUGH. 395 */ 396 if (config & RTIT_CTL_BRANCH_EN) 397 return false; 398 } 399 400 return true; 401 } 402 403 /* 404 * PT configuration helpers 405 * These all are cpu affine and operate on a local PT 406 */ 407 408 /* Address ranges and their corresponding msr configuration registers */ 409 static const struct pt_address_range { 410 unsigned long msr_a; 411 unsigned long msr_b; 412 unsigned int reg_off; 413 } pt_address_ranges[] = { 414 { 415 .msr_a = MSR_IA32_RTIT_ADDR0_A, 416 .msr_b = MSR_IA32_RTIT_ADDR0_B, 417 .reg_off = RTIT_CTL_ADDR0_OFFSET, 418 }, 419 { 420 .msr_a = MSR_IA32_RTIT_ADDR1_A, 421 .msr_b = MSR_IA32_RTIT_ADDR1_B, 422 .reg_off = RTIT_CTL_ADDR1_OFFSET, 423 }, 424 { 425 .msr_a = MSR_IA32_RTIT_ADDR2_A, 426 .msr_b = MSR_IA32_RTIT_ADDR2_B, 427 .reg_off = RTIT_CTL_ADDR2_OFFSET, 428 }, 429 { 430 .msr_a = MSR_IA32_RTIT_ADDR3_A, 431 .msr_b = MSR_IA32_RTIT_ADDR3_B, 432 .reg_off = RTIT_CTL_ADDR3_OFFSET, 433 } 434 }; 435 436 static u64 pt_config_filters(struct perf_event *event) 437 { 438 struct pt_filters *filters = event->hw.addr_filters; 439 struct pt *pt = this_cpu_ptr(&pt_ctx); 440 unsigned int range = 0; 441 u64 rtit_ctl = 0; 442 443 if (!filters) 444 return 0; 445 446 perf_event_addr_filters_sync(event); 447 448 for (range = 0; range < filters->nr_filters; range++) { 449 struct pt_filter *filter = &filters->filter[range]; 450 451 /* 452 * Note, if the range has zero start/end addresses due 453 * to its dynamic object not being loaded yet, we just 454 * go ahead and program zeroed range, which will simply 455 * produce no data. Note^2: if executable code at 0x0 456 * is a concern, we can set up an "invalid" configuration 457 * such as msr_b < msr_a. 458 */ 459 460 /* avoid redundant msr writes */ 461 if (pt->filters.filter[range].msr_a != filter->msr_a) { 462 wrmsrl(pt_address_ranges[range].msr_a, filter->msr_a); 463 pt->filters.filter[range].msr_a = filter->msr_a; 464 } 465 466 if (pt->filters.filter[range].msr_b != filter->msr_b) { 467 wrmsrl(pt_address_ranges[range].msr_b, filter->msr_b); 468 pt->filters.filter[range].msr_b = filter->msr_b; 469 } 470 471 rtit_ctl |= filter->config << pt_address_ranges[range].reg_off; 472 } 473 474 return rtit_ctl; 475 } 476 477 static void pt_config(struct perf_event *event) 478 { 479 struct pt *pt = this_cpu_ptr(&pt_ctx); 480 u64 reg; 481 482 /* First round: clear STATUS, in particular the PSB byte counter. */ 483 if (!event->hw.config) { 484 perf_event_itrace_started(event); 485 wrmsrl(MSR_IA32_RTIT_STATUS, 0); 486 } 487 488 reg = pt_config_filters(event); 489 reg |= RTIT_CTL_TOPA | RTIT_CTL_TRACEEN; 490 491 /* 492 * Previously, we had BRANCH_EN on by default, but now that PT has 493 * grown features outside of branch tracing, it is useful to allow 494 * the user to disable it. Setting bit 0 in the event's attr.config 495 * allows BRANCH_EN to pass through instead of being always on. See 496 * also the comment in pt_event_valid(). 497 */ 498 if (event->attr.config & BIT(0)) { 499 reg |= event->attr.config & RTIT_CTL_BRANCH_EN; 500 } else { 501 reg |= RTIT_CTL_BRANCH_EN; 502 } 503 504 if (!event->attr.exclude_kernel) 505 reg |= RTIT_CTL_OS; 506 if (!event->attr.exclude_user) 507 reg |= RTIT_CTL_USR; 508 509 reg |= (event->attr.config & PT_CONFIG_MASK); 510 511 event->hw.config = reg; 512 if (READ_ONCE(pt->vmx_on)) 513 perf_aux_output_flag(&pt->handle, PERF_AUX_FLAG_PARTIAL); 514 else 515 wrmsrl(MSR_IA32_RTIT_CTL, reg); 516 } 517 518 static void pt_config_stop(struct perf_event *event) 519 { 520 struct pt *pt = this_cpu_ptr(&pt_ctx); 521 u64 ctl = READ_ONCE(event->hw.config); 522 523 /* may be already stopped by a PMI */ 524 if (!(ctl & RTIT_CTL_TRACEEN)) 525 return; 526 527 ctl &= ~RTIT_CTL_TRACEEN; 528 if (!READ_ONCE(pt->vmx_on)) 529 wrmsrl(MSR_IA32_RTIT_CTL, ctl); 530 531 WRITE_ONCE(event->hw.config, ctl); 532 533 /* 534 * A wrmsr that disables trace generation serializes other PT 535 * registers and causes all data packets to be written to memory, 536 * but a fence is required for the data to become globally visible. 537 * 538 * The below WMB, separating data store and aux_head store matches 539 * the consumer's RMB that separates aux_head load and data load. 540 */ 541 wmb(); 542 } 543 544 static void pt_config_buffer(void *buf, unsigned int topa_idx, 545 unsigned int output_off) 546 { 547 u64 reg; 548 549 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, virt_to_phys(buf)); 550 551 reg = 0x7f | ((u64)topa_idx << 7) | ((u64)output_off << 32); 552 553 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, reg); 554 } 555 556 /* 557 * Keep ToPA table-related metadata on the same page as the actual table, 558 * taking up a few words from the top 559 */ 560 561 #define TENTS_PER_PAGE (((PAGE_SIZE - 40) / sizeof(struct topa_entry)) - 1) 562 563 /** 564 * struct topa - page-sized ToPA table with metadata at the top 565 * @table: actual ToPA table entries, as understood by PT hardware 566 * @list: linkage to struct pt_buffer's list of tables 567 * @phys: physical address of this page 568 * @offset: offset of the first entry in this table in the buffer 569 * @size: total size of all entries in this table 570 * @last: index of the last initialized entry in this table 571 */ 572 struct topa { 573 struct topa_entry table[TENTS_PER_PAGE]; 574 struct list_head list; 575 u64 phys; 576 u64 offset; 577 size_t size; 578 int last; 579 }; 580 581 /* make -1 stand for the last table entry */ 582 #define TOPA_ENTRY(t, i) ((i) == -1 ? &(t)->table[(t)->last] : &(t)->table[(i)]) 583 584 /** 585 * topa_alloc() - allocate page-sized ToPA table 586 * @cpu: CPU on which to allocate. 587 * @gfp: Allocation flags. 588 * 589 * Return: On success, return the pointer to ToPA table page. 590 */ 591 static struct topa *topa_alloc(int cpu, gfp_t gfp) 592 { 593 int node = cpu_to_node(cpu); 594 struct topa *topa; 595 struct page *p; 596 597 p = alloc_pages_node(node, gfp | __GFP_ZERO, 0); 598 if (!p) 599 return NULL; 600 601 topa = page_address(p); 602 topa->last = 0; 603 topa->phys = page_to_phys(p); 604 605 /* 606 * In case of singe-entry ToPA, always put the self-referencing END 607 * link as the 2nd entry in the table 608 */ 609 if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) { 610 TOPA_ENTRY(topa, 1)->base = topa->phys >> TOPA_SHIFT; 611 TOPA_ENTRY(topa, 1)->end = 1; 612 } 613 614 return topa; 615 } 616 617 /** 618 * topa_free() - free a page-sized ToPA table 619 * @topa: Table to deallocate. 620 */ 621 static void topa_free(struct topa *topa) 622 { 623 free_page((unsigned long)topa); 624 } 625 626 /** 627 * topa_insert_table() - insert a ToPA table into a buffer 628 * @buf: PT buffer that's being extended. 629 * @topa: New topa table to be inserted. 630 * 631 * If it's the first table in this buffer, set up buffer's pointers 632 * accordingly; otherwise, add a END=1 link entry to @topa to the current 633 * "last" table and adjust the last table pointer to @topa. 634 */ 635 static void topa_insert_table(struct pt_buffer *buf, struct topa *topa) 636 { 637 struct topa *last = buf->last; 638 639 list_add_tail(&topa->list, &buf->tables); 640 641 if (!buf->first) { 642 buf->first = buf->last = buf->cur = topa; 643 return; 644 } 645 646 topa->offset = last->offset + last->size; 647 buf->last = topa; 648 649 if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) 650 return; 651 652 BUG_ON(last->last != TENTS_PER_PAGE - 1); 653 654 TOPA_ENTRY(last, -1)->base = topa->phys >> TOPA_SHIFT; 655 TOPA_ENTRY(last, -1)->end = 1; 656 } 657 658 /** 659 * topa_table_full() - check if a ToPA table is filled up 660 * @topa: ToPA table. 661 */ 662 static bool topa_table_full(struct topa *topa) 663 { 664 /* single-entry ToPA is a special case */ 665 if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) 666 return !!topa->last; 667 668 return topa->last == TENTS_PER_PAGE - 1; 669 } 670 671 /** 672 * topa_insert_pages() - create a list of ToPA tables 673 * @buf: PT buffer being initialized. 674 * @gfp: Allocation flags. 675 * 676 * This initializes a list of ToPA tables with entries from 677 * the data_pages provided by rb_alloc_aux(). 678 * 679 * Return: 0 on success or error code. 680 */ 681 static int topa_insert_pages(struct pt_buffer *buf, gfp_t gfp) 682 { 683 struct topa *topa = buf->last; 684 int order = 0; 685 struct page *p; 686 687 p = virt_to_page(buf->data_pages[buf->nr_pages]); 688 if (PagePrivate(p)) 689 order = page_private(p); 690 691 if (topa_table_full(topa)) { 692 topa = topa_alloc(buf->cpu, gfp); 693 if (!topa) 694 return -ENOMEM; 695 696 topa_insert_table(buf, topa); 697 } 698 699 TOPA_ENTRY(topa, -1)->base = page_to_phys(p) >> TOPA_SHIFT; 700 TOPA_ENTRY(topa, -1)->size = order; 701 if (!buf->snapshot && 702 !intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) { 703 TOPA_ENTRY(topa, -1)->intr = 1; 704 TOPA_ENTRY(topa, -1)->stop = 1; 705 } 706 707 topa->last++; 708 topa->size += sizes(order); 709 710 buf->nr_pages += 1ul << order; 711 712 return 0; 713 } 714 715 /** 716 * pt_topa_dump() - print ToPA tables and their entries 717 * @buf: PT buffer. 718 */ 719 static void pt_topa_dump(struct pt_buffer *buf) 720 { 721 struct topa *topa; 722 723 list_for_each_entry(topa, &buf->tables, list) { 724 int i; 725 726 pr_debug("# table @%p (%016Lx), off %llx size %zx\n", topa->table, 727 topa->phys, topa->offset, topa->size); 728 for (i = 0; i < TENTS_PER_PAGE; i++) { 729 pr_debug("# entry @%p (%lx sz %u %c%c%c) raw=%16llx\n", 730 &topa->table[i], 731 (unsigned long)topa->table[i].base << TOPA_SHIFT, 732 sizes(topa->table[i].size), 733 topa->table[i].end ? 'E' : ' ', 734 topa->table[i].intr ? 'I' : ' ', 735 topa->table[i].stop ? 'S' : ' ', 736 *(u64 *)&topa->table[i]); 737 if ((intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) && 738 topa->table[i].stop) || 739 topa->table[i].end) 740 break; 741 } 742 } 743 } 744 745 /** 746 * pt_buffer_advance() - advance to the next output region 747 * @buf: PT buffer. 748 * 749 * Advance the current pointers in the buffer to the next ToPA entry. 750 */ 751 static void pt_buffer_advance(struct pt_buffer *buf) 752 { 753 buf->output_off = 0; 754 buf->cur_idx++; 755 756 if (buf->cur_idx == buf->cur->last) { 757 if (buf->cur == buf->last) 758 buf->cur = buf->first; 759 else 760 buf->cur = list_entry(buf->cur->list.next, struct topa, 761 list); 762 buf->cur_idx = 0; 763 } 764 } 765 766 /** 767 * pt_update_head() - calculate current offsets and sizes 768 * @pt: Per-cpu pt context. 769 * 770 * Update buffer's current write pointer position and data size. 771 */ 772 static void pt_update_head(struct pt *pt) 773 { 774 struct pt_buffer *buf = perf_get_aux(&pt->handle); 775 u64 topa_idx, base, old; 776 777 /* offset of the first region in this table from the beginning of buf */ 778 base = buf->cur->offset + buf->output_off; 779 780 /* offset of the current output region within this table */ 781 for (topa_idx = 0; topa_idx < buf->cur_idx; topa_idx++) 782 base += sizes(buf->cur->table[topa_idx].size); 783 784 if (buf->snapshot) { 785 local_set(&buf->data_size, base); 786 } else { 787 old = (local64_xchg(&buf->head, base) & 788 ((buf->nr_pages << PAGE_SHIFT) - 1)); 789 if (base < old) 790 base += buf->nr_pages << PAGE_SHIFT; 791 792 local_add(base - old, &buf->data_size); 793 } 794 } 795 796 /** 797 * pt_buffer_region() - obtain current output region's address 798 * @buf: PT buffer. 799 */ 800 static void *pt_buffer_region(struct pt_buffer *buf) 801 { 802 return phys_to_virt(buf->cur->table[buf->cur_idx].base << TOPA_SHIFT); 803 } 804 805 /** 806 * pt_buffer_region_size() - obtain current output region's size 807 * @buf: PT buffer. 808 */ 809 static size_t pt_buffer_region_size(struct pt_buffer *buf) 810 { 811 return sizes(buf->cur->table[buf->cur_idx].size); 812 } 813 814 /** 815 * pt_handle_status() - take care of possible status conditions 816 * @pt: Per-cpu pt context. 817 */ 818 static void pt_handle_status(struct pt *pt) 819 { 820 struct pt_buffer *buf = perf_get_aux(&pt->handle); 821 int advance = 0; 822 u64 status; 823 824 rdmsrl(MSR_IA32_RTIT_STATUS, status); 825 826 if (status & RTIT_STATUS_ERROR) { 827 pr_err_ratelimited("ToPA ERROR encountered, trying to recover\n"); 828 pt_topa_dump(buf); 829 status &= ~RTIT_STATUS_ERROR; 830 } 831 832 if (status & RTIT_STATUS_STOPPED) { 833 status &= ~RTIT_STATUS_STOPPED; 834 835 /* 836 * On systems that only do single-entry ToPA, hitting STOP 837 * means we are already losing data; need to let the decoder 838 * know. 839 */ 840 if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) || 841 buf->output_off == sizes(TOPA_ENTRY(buf->cur, buf->cur_idx)->size)) { 842 perf_aux_output_flag(&pt->handle, 843 PERF_AUX_FLAG_TRUNCATED); 844 advance++; 845 } 846 } 847 848 /* 849 * Also on single-entry ToPA implementations, interrupt will come 850 * before the output reaches its output region's boundary. 851 */ 852 if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) && 853 !buf->snapshot && 854 pt_buffer_region_size(buf) - buf->output_off <= TOPA_PMI_MARGIN) { 855 void *head = pt_buffer_region(buf); 856 857 /* everything within this margin needs to be zeroed out */ 858 memset(head + buf->output_off, 0, 859 pt_buffer_region_size(buf) - 860 buf->output_off); 861 advance++; 862 } 863 864 if (advance) 865 pt_buffer_advance(buf); 866 867 wrmsrl(MSR_IA32_RTIT_STATUS, status); 868 } 869 870 /** 871 * pt_read_offset() - translate registers into buffer pointers 872 * @buf: PT buffer. 873 * 874 * Set buffer's output pointers from MSR values. 875 */ 876 static void pt_read_offset(struct pt_buffer *buf) 877 { 878 u64 offset, base_topa; 879 880 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, base_topa); 881 buf->cur = phys_to_virt(base_topa); 882 883 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, offset); 884 /* offset within current output region */ 885 buf->output_off = offset >> 32; 886 /* index of current output region within this table */ 887 buf->cur_idx = (offset & 0xffffff80) >> 7; 888 } 889 890 /** 891 * pt_topa_next_entry() - obtain index of the first page in the next ToPA entry 892 * @buf: PT buffer. 893 * @pg: Page offset in the buffer. 894 * 895 * When advancing to the next output region (ToPA entry), given a page offset 896 * into the buffer, we need to find the offset of the first page in the next 897 * region. 898 */ 899 static unsigned int pt_topa_next_entry(struct pt_buffer *buf, unsigned int pg) 900 { 901 struct topa_entry *te = buf->topa_index[pg]; 902 903 /* one region */ 904 if (buf->first == buf->last && buf->first->last == 1) 905 return pg; 906 907 do { 908 pg++; 909 pg &= buf->nr_pages - 1; 910 } while (buf->topa_index[pg] == te); 911 912 return pg; 913 } 914 915 /** 916 * pt_buffer_reset_markers() - place interrupt and stop bits in the buffer 917 * @buf: PT buffer. 918 * @handle: Current output handle. 919 * 920 * Place INT and STOP marks to prevent overwriting old data that the consumer 921 * hasn't yet collected and waking up the consumer after a certain fraction of 922 * the buffer has filled up. Only needed and sensible for non-snapshot counters. 923 * 924 * This obviously relies on buf::head to figure out buffer markers, so it has 925 * to be called after pt_buffer_reset_offsets() and before the hardware tracing 926 * is enabled. 927 */ 928 static int pt_buffer_reset_markers(struct pt_buffer *buf, 929 struct perf_output_handle *handle) 930 931 { 932 unsigned long head = local64_read(&buf->head); 933 unsigned long idx, npages, wakeup; 934 935 /* can't stop in the middle of an output region */ 936 if (buf->output_off + handle->size + 1 < 937 sizes(TOPA_ENTRY(buf->cur, buf->cur_idx)->size)) { 938 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED); 939 return -EINVAL; 940 } 941 942 943 /* single entry ToPA is handled by marking all regions STOP=1 INT=1 */ 944 if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) 945 return 0; 946 947 /* clear STOP and INT from current entry */ 948 buf->topa_index[buf->stop_pos]->stop = 0; 949 buf->topa_index[buf->stop_pos]->intr = 0; 950 buf->topa_index[buf->intr_pos]->intr = 0; 951 952 /* how many pages till the STOP marker */ 953 npages = handle->size >> PAGE_SHIFT; 954 955 /* if it's on a page boundary, fill up one more page */ 956 if (!offset_in_page(head + handle->size + 1)) 957 npages++; 958 959 idx = (head >> PAGE_SHIFT) + npages; 960 idx &= buf->nr_pages - 1; 961 buf->stop_pos = idx; 962 963 wakeup = handle->wakeup >> PAGE_SHIFT; 964 965 /* in the worst case, wake up the consumer one page before hard stop */ 966 idx = (head >> PAGE_SHIFT) + npages - 1; 967 if (idx > wakeup) 968 idx = wakeup; 969 970 idx &= buf->nr_pages - 1; 971 buf->intr_pos = idx; 972 973 buf->topa_index[buf->stop_pos]->stop = 1; 974 buf->topa_index[buf->stop_pos]->intr = 1; 975 buf->topa_index[buf->intr_pos]->intr = 1; 976 977 return 0; 978 } 979 980 /** 981 * pt_buffer_setup_topa_index() - build topa_index[] table of regions 982 * @buf: PT buffer. 983 * 984 * topa_index[] references output regions indexed by offset into the 985 * buffer for purposes of quick reverse lookup. 986 */ 987 static void pt_buffer_setup_topa_index(struct pt_buffer *buf) 988 { 989 struct topa *cur = buf->first, *prev = buf->last; 990 struct topa_entry *te_cur = TOPA_ENTRY(cur, 0), 991 *te_prev = TOPA_ENTRY(prev, prev->last - 1); 992 int pg = 0, idx = 0; 993 994 while (pg < buf->nr_pages) { 995 int tidx; 996 997 /* pages within one topa entry */ 998 for (tidx = 0; tidx < 1 << te_cur->size; tidx++, pg++) 999 buf->topa_index[pg] = te_prev; 1000 1001 te_prev = te_cur; 1002 1003 if (idx == cur->last - 1) { 1004 /* advance to next topa table */ 1005 idx = 0; 1006 cur = list_entry(cur->list.next, struct topa, list); 1007 } else { 1008 idx++; 1009 } 1010 te_cur = TOPA_ENTRY(cur, idx); 1011 } 1012 1013 } 1014 1015 /** 1016 * pt_buffer_reset_offsets() - adjust buffer's write pointers from aux_head 1017 * @buf: PT buffer. 1018 * @head: Write pointer (aux_head) from AUX buffer. 1019 * 1020 * Find the ToPA table and entry corresponding to given @head and set buffer's 1021 * "current" pointers accordingly. This is done after we have obtained the 1022 * current aux_head position from a successful call to perf_aux_output_begin() 1023 * to make sure the hardware is writing to the right place. 1024 * 1025 * This function modifies buf::{cur,cur_idx,output_off} that will be programmed 1026 * into PT msrs when the tracing is enabled and buf::head and buf::data_size, 1027 * which are used to determine INT and STOP markers' locations by a subsequent 1028 * call to pt_buffer_reset_markers(). 1029 */ 1030 static void pt_buffer_reset_offsets(struct pt_buffer *buf, unsigned long head) 1031 { 1032 int pg; 1033 1034 if (buf->snapshot) 1035 head &= (buf->nr_pages << PAGE_SHIFT) - 1; 1036 1037 pg = (head >> PAGE_SHIFT) & (buf->nr_pages - 1); 1038 pg = pt_topa_next_entry(buf, pg); 1039 1040 buf->cur = (struct topa *)((unsigned long)buf->topa_index[pg] & PAGE_MASK); 1041 buf->cur_idx = ((unsigned long)buf->topa_index[pg] - 1042 (unsigned long)buf->cur) / sizeof(struct topa_entry); 1043 buf->output_off = head & (sizes(buf->cur->table[buf->cur_idx].size) - 1); 1044 1045 local64_set(&buf->head, head); 1046 local_set(&buf->data_size, 0); 1047 } 1048 1049 /** 1050 * pt_buffer_fini_topa() - deallocate ToPA structure of a buffer 1051 * @buf: PT buffer. 1052 */ 1053 static void pt_buffer_fini_topa(struct pt_buffer *buf) 1054 { 1055 struct topa *topa, *iter; 1056 1057 list_for_each_entry_safe(topa, iter, &buf->tables, list) { 1058 /* 1059 * right now, this is in free_aux() path only, so 1060 * no need to unlink this table from the list 1061 */ 1062 topa_free(topa); 1063 } 1064 } 1065 1066 /** 1067 * pt_buffer_init_topa() - initialize ToPA table for pt buffer 1068 * @buf: PT buffer. 1069 * @size: Total size of all regions within this ToPA. 1070 * @gfp: Allocation flags. 1071 */ 1072 static int pt_buffer_init_topa(struct pt_buffer *buf, unsigned long nr_pages, 1073 gfp_t gfp) 1074 { 1075 struct topa *topa; 1076 int err; 1077 1078 topa = topa_alloc(buf->cpu, gfp); 1079 if (!topa) 1080 return -ENOMEM; 1081 1082 topa_insert_table(buf, topa); 1083 1084 while (buf->nr_pages < nr_pages) { 1085 err = topa_insert_pages(buf, gfp); 1086 if (err) { 1087 pt_buffer_fini_topa(buf); 1088 return -ENOMEM; 1089 } 1090 } 1091 1092 pt_buffer_setup_topa_index(buf); 1093 1094 /* link last table to the first one, unless we're double buffering */ 1095 if (intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) { 1096 TOPA_ENTRY(buf->last, -1)->base = buf->first->phys >> TOPA_SHIFT; 1097 TOPA_ENTRY(buf->last, -1)->end = 1; 1098 } 1099 1100 pt_topa_dump(buf); 1101 return 0; 1102 } 1103 1104 /** 1105 * pt_buffer_setup_aux() - set up topa tables for a PT buffer 1106 * @cpu: Cpu on which to allocate, -1 means current. 1107 * @pages: Array of pointers to buffer pages passed from perf core. 1108 * @nr_pages: Number of pages in the buffer. 1109 * @snapshot: If this is a snapshot/overwrite counter. 1110 * 1111 * This is a pmu::setup_aux callback that sets up ToPA tables and all the 1112 * bookkeeping for an AUX buffer. 1113 * 1114 * Return: Our private PT buffer structure. 1115 */ 1116 static void * 1117 pt_buffer_setup_aux(struct perf_event *event, void **pages, 1118 int nr_pages, bool snapshot) 1119 { 1120 struct pt_buffer *buf; 1121 int node, ret, cpu = event->cpu; 1122 1123 if (!nr_pages) 1124 return NULL; 1125 1126 if (cpu == -1) 1127 cpu = raw_smp_processor_id(); 1128 node = cpu_to_node(cpu); 1129 1130 buf = kzalloc_node(offsetof(struct pt_buffer, topa_index[nr_pages]), 1131 GFP_KERNEL, node); 1132 if (!buf) 1133 return NULL; 1134 1135 buf->cpu = cpu; 1136 buf->snapshot = snapshot; 1137 buf->data_pages = pages; 1138 1139 INIT_LIST_HEAD(&buf->tables); 1140 1141 ret = pt_buffer_init_topa(buf, nr_pages, GFP_KERNEL); 1142 if (ret) { 1143 kfree(buf); 1144 return NULL; 1145 } 1146 1147 return buf; 1148 } 1149 1150 /** 1151 * pt_buffer_free_aux() - perf AUX deallocation path callback 1152 * @data: PT buffer. 1153 */ 1154 static void pt_buffer_free_aux(void *data) 1155 { 1156 struct pt_buffer *buf = data; 1157 1158 pt_buffer_fini_topa(buf); 1159 kfree(buf); 1160 } 1161 1162 static int pt_addr_filters_init(struct perf_event *event) 1163 { 1164 struct pt_filters *filters; 1165 int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu); 1166 1167 if (!intel_pt_validate_hw_cap(PT_CAP_num_address_ranges)) 1168 return 0; 1169 1170 filters = kzalloc_node(sizeof(struct pt_filters), GFP_KERNEL, node); 1171 if (!filters) 1172 return -ENOMEM; 1173 1174 if (event->parent) 1175 memcpy(filters, event->parent->hw.addr_filters, 1176 sizeof(*filters)); 1177 1178 event->hw.addr_filters = filters; 1179 1180 return 0; 1181 } 1182 1183 static void pt_addr_filters_fini(struct perf_event *event) 1184 { 1185 kfree(event->hw.addr_filters); 1186 event->hw.addr_filters = NULL; 1187 } 1188 1189 static inline bool valid_kernel_ip(unsigned long ip) 1190 { 1191 return virt_addr_valid(ip) && kernel_ip(ip); 1192 } 1193 1194 static int pt_event_addr_filters_validate(struct list_head *filters) 1195 { 1196 struct perf_addr_filter *filter; 1197 int range = 0; 1198 1199 list_for_each_entry(filter, filters, entry) { 1200 /* 1201 * PT doesn't support single address triggers and 1202 * 'start' filters. 1203 */ 1204 if (!filter->size || 1205 filter->action == PERF_ADDR_FILTER_ACTION_START) 1206 return -EOPNOTSUPP; 1207 1208 if (!filter->path.dentry) { 1209 if (!valid_kernel_ip(filter->offset)) 1210 return -EINVAL; 1211 1212 if (!valid_kernel_ip(filter->offset + filter->size)) 1213 return -EINVAL; 1214 } 1215 1216 if (++range > intel_pt_validate_hw_cap(PT_CAP_num_address_ranges)) 1217 return -EOPNOTSUPP; 1218 } 1219 1220 return 0; 1221 } 1222 1223 static void pt_event_addr_filters_sync(struct perf_event *event) 1224 { 1225 struct perf_addr_filters_head *head = perf_event_addr_filters(event); 1226 unsigned long msr_a, msr_b; 1227 struct perf_addr_filter_range *fr = event->addr_filter_ranges; 1228 struct pt_filters *filters = event->hw.addr_filters; 1229 struct perf_addr_filter *filter; 1230 int range = 0; 1231 1232 if (!filters) 1233 return; 1234 1235 list_for_each_entry(filter, &head->list, entry) { 1236 if (filter->path.dentry && !fr[range].start) { 1237 msr_a = msr_b = 0; 1238 } else { 1239 /* apply the offset */ 1240 msr_a = fr[range].start; 1241 msr_b = msr_a + fr[range].size - 1; 1242 } 1243 1244 filters->filter[range].msr_a = msr_a; 1245 filters->filter[range].msr_b = msr_b; 1246 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER) 1247 filters->filter[range].config = 1; 1248 else 1249 filters->filter[range].config = 2; 1250 range++; 1251 } 1252 1253 filters->nr_filters = range; 1254 } 1255 1256 /** 1257 * intel_pt_interrupt() - PT PMI handler 1258 */ 1259 void intel_pt_interrupt(void) 1260 { 1261 struct pt *pt = this_cpu_ptr(&pt_ctx); 1262 struct pt_buffer *buf; 1263 struct perf_event *event = pt->handle.event; 1264 1265 /* 1266 * There may be a dangling PT bit in the interrupt status register 1267 * after PT has been disabled by pt_event_stop(). Make sure we don't 1268 * do anything (particularly, re-enable) for this event here. 1269 */ 1270 if (!READ_ONCE(pt->handle_nmi)) 1271 return; 1272 1273 if (!event) 1274 return; 1275 1276 pt_config_stop(event); 1277 1278 buf = perf_get_aux(&pt->handle); 1279 if (!buf) 1280 return; 1281 1282 pt_read_offset(buf); 1283 1284 pt_handle_status(pt); 1285 1286 pt_update_head(pt); 1287 1288 perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0)); 1289 1290 if (!event->hw.state) { 1291 int ret; 1292 1293 buf = perf_aux_output_begin(&pt->handle, event); 1294 if (!buf) { 1295 event->hw.state = PERF_HES_STOPPED; 1296 return; 1297 } 1298 1299 pt_buffer_reset_offsets(buf, pt->handle.head); 1300 /* snapshot counters don't use PMI, so it's safe */ 1301 ret = pt_buffer_reset_markers(buf, &pt->handle); 1302 if (ret) { 1303 perf_aux_output_end(&pt->handle, 0); 1304 return; 1305 } 1306 1307 pt_config_buffer(buf->cur->table, buf->cur_idx, 1308 buf->output_off); 1309 pt_config(event); 1310 } 1311 } 1312 1313 void intel_pt_handle_vmx(int on) 1314 { 1315 struct pt *pt = this_cpu_ptr(&pt_ctx); 1316 struct perf_event *event; 1317 unsigned long flags; 1318 1319 /* PT plays nice with VMX, do nothing */ 1320 if (pt_pmu.vmx) 1321 return; 1322 1323 /* 1324 * VMXON will clear RTIT_CTL.TraceEn; we need to make 1325 * sure to not try to set it while VMX is on. Disable 1326 * interrupts to avoid racing with pmu callbacks; 1327 * concurrent PMI should be handled fine. 1328 */ 1329 local_irq_save(flags); 1330 WRITE_ONCE(pt->vmx_on, on); 1331 1332 /* 1333 * If an AUX transaction is in progress, it will contain 1334 * gap(s), so flag it PARTIAL to inform the user. 1335 */ 1336 event = pt->handle.event; 1337 if (event) 1338 perf_aux_output_flag(&pt->handle, 1339 PERF_AUX_FLAG_PARTIAL); 1340 1341 /* Turn PTs back on */ 1342 if (!on && event) 1343 wrmsrl(MSR_IA32_RTIT_CTL, event->hw.config); 1344 1345 local_irq_restore(flags); 1346 } 1347 EXPORT_SYMBOL_GPL(intel_pt_handle_vmx); 1348 1349 /* 1350 * PMU callbacks 1351 */ 1352 1353 static void pt_event_start(struct perf_event *event, int mode) 1354 { 1355 struct hw_perf_event *hwc = &event->hw; 1356 struct pt *pt = this_cpu_ptr(&pt_ctx); 1357 struct pt_buffer *buf; 1358 1359 buf = perf_aux_output_begin(&pt->handle, event); 1360 if (!buf) 1361 goto fail_stop; 1362 1363 pt_buffer_reset_offsets(buf, pt->handle.head); 1364 if (!buf->snapshot) { 1365 if (pt_buffer_reset_markers(buf, &pt->handle)) 1366 goto fail_end_stop; 1367 } 1368 1369 WRITE_ONCE(pt->handle_nmi, 1); 1370 hwc->state = 0; 1371 1372 pt_config_buffer(buf->cur->table, buf->cur_idx, 1373 buf->output_off); 1374 pt_config(event); 1375 1376 return; 1377 1378 fail_end_stop: 1379 perf_aux_output_end(&pt->handle, 0); 1380 fail_stop: 1381 hwc->state = PERF_HES_STOPPED; 1382 } 1383 1384 static void pt_event_stop(struct perf_event *event, int mode) 1385 { 1386 struct pt *pt = this_cpu_ptr(&pt_ctx); 1387 1388 /* 1389 * Protect against the PMI racing with disabling wrmsr, 1390 * see comment in intel_pt_interrupt(). 1391 */ 1392 WRITE_ONCE(pt->handle_nmi, 0); 1393 1394 pt_config_stop(event); 1395 1396 if (event->hw.state == PERF_HES_STOPPED) 1397 return; 1398 1399 event->hw.state = PERF_HES_STOPPED; 1400 1401 if (mode & PERF_EF_UPDATE) { 1402 struct pt_buffer *buf = perf_get_aux(&pt->handle); 1403 1404 if (!buf) 1405 return; 1406 1407 if (WARN_ON_ONCE(pt->handle.event != event)) 1408 return; 1409 1410 pt_read_offset(buf); 1411 1412 pt_handle_status(pt); 1413 1414 pt_update_head(pt); 1415 1416 if (buf->snapshot) 1417 pt->handle.head = 1418 local_xchg(&buf->data_size, 1419 buf->nr_pages << PAGE_SHIFT); 1420 perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0)); 1421 } 1422 } 1423 1424 static void pt_event_del(struct perf_event *event, int mode) 1425 { 1426 pt_event_stop(event, PERF_EF_UPDATE); 1427 } 1428 1429 static int pt_event_add(struct perf_event *event, int mode) 1430 { 1431 struct pt *pt = this_cpu_ptr(&pt_ctx); 1432 struct hw_perf_event *hwc = &event->hw; 1433 int ret = -EBUSY; 1434 1435 if (pt->handle.event) 1436 goto fail; 1437 1438 if (mode & PERF_EF_START) { 1439 pt_event_start(event, 0); 1440 ret = -EINVAL; 1441 if (hwc->state == PERF_HES_STOPPED) 1442 goto fail; 1443 } else { 1444 hwc->state = PERF_HES_STOPPED; 1445 } 1446 1447 ret = 0; 1448 fail: 1449 1450 return ret; 1451 } 1452 1453 static void pt_event_read(struct perf_event *event) 1454 { 1455 } 1456 1457 static void pt_event_destroy(struct perf_event *event) 1458 { 1459 pt_addr_filters_fini(event); 1460 x86_del_exclusive(x86_lbr_exclusive_pt); 1461 } 1462 1463 static int pt_event_init(struct perf_event *event) 1464 { 1465 if (event->attr.type != pt_pmu.pmu.type) 1466 return -ENOENT; 1467 1468 if (!pt_event_valid(event)) 1469 return -EINVAL; 1470 1471 if (x86_add_exclusive(x86_lbr_exclusive_pt)) 1472 return -EBUSY; 1473 1474 if (pt_addr_filters_init(event)) { 1475 x86_del_exclusive(x86_lbr_exclusive_pt); 1476 return -ENOMEM; 1477 } 1478 1479 event->destroy = pt_event_destroy; 1480 1481 return 0; 1482 } 1483 1484 void cpu_emergency_stop_pt(void) 1485 { 1486 struct pt *pt = this_cpu_ptr(&pt_ctx); 1487 1488 if (pt->handle.event) 1489 pt_event_stop(pt->handle.event, PERF_EF_UPDATE); 1490 } 1491 1492 static __init int pt_init(void) 1493 { 1494 int ret, cpu, prior_warn = 0; 1495 1496 BUILD_BUG_ON(sizeof(struct topa) > PAGE_SIZE); 1497 1498 if (!boot_cpu_has(X86_FEATURE_INTEL_PT)) 1499 return -ENODEV; 1500 1501 get_online_cpus(); 1502 for_each_online_cpu(cpu) { 1503 u64 ctl; 1504 1505 ret = rdmsrl_safe_on_cpu(cpu, MSR_IA32_RTIT_CTL, &ctl); 1506 if (!ret && (ctl & RTIT_CTL_TRACEEN)) 1507 prior_warn++; 1508 } 1509 put_online_cpus(); 1510 1511 if (prior_warn) { 1512 x86_add_exclusive(x86_lbr_exclusive_pt); 1513 pr_warn("PT is enabled at boot time, doing nothing\n"); 1514 1515 return -EBUSY; 1516 } 1517 1518 ret = pt_pmu_hw_init(); 1519 if (ret) 1520 return ret; 1521 1522 if (!intel_pt_validate_hw_cap(PT_CAP_topa_output)) { 1523 pr_warn("ToPA output is not supported on this CPU\n"); 1524 return -ENODEV; 1525 } 1526 1527 if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) 1528 pt_pmu.pmu.capabilities = 1529 PERF_PMU_CAP_AUX_NO_SG | PERF_PMU_CAP_AUX_SW_DOUBLEBUF; 1530 1531 pt_pmu.pmu.capabilities |= PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE; 1532 pt_pmu.pmu.attr_groups = pt_attr_groups; 1533 pt_pmu.pmu.task_ctx_nr = perf_sw_context; 1534 pt_pmu.pmu.event_init = pt_event_init; 1535 pt_pmu.pmu.add = pt_event_add; 1536 pt_pmu.pmu.del = pt_event_del; 1537 pt_pmu.pmu.start = pt_event_start; 1538 pt_pmu.pmu.stop = pt_event_stop; 1539 pt_pmu.pmu.read = pt_event_read; 1540 pt_pmu.pmu.setup_aux = pt_buffer_setup_aux; 1541 pt_pmu.pmu.free_aux = pt_buffer_free_aux; 1542 pt_pmu.pmu.addr_filters_sync = pt_event_addr_filters_sync; 1543 pt_pmu.pmu.addr_filters_validate = pt_event_addr_filters_validate; 1544 pt_pmu.pmu.nr_addr_filters = 1545 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges); 1546 1547 ret = perf_pmu_register(&pt_pmu.pmu, "intel_pt", -1); 1548 1549 return ret; 1550 } 1551 arch_initcall(pt_init); 1552