xref: /openbmc/linux/arch/x86/events/intel/pt.c (revision c10d12e3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel(R) Processor Trace PMU driver for perf
4  * Copyright (c) 2013-2014, Intel Corporation.
5  *
6  * Intel PT is specified in the Intel Architecture Instruction Set Extensions
7  * Programming Reference:
8  * http://software.intel.com/en-us/intel-isa-extensions
9  */
10 
11 #undef DEBUG
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/types.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 
19 #include <asm/perf_event.h>
20 #include <asm/insn.h>
21 #include <asm/io.h>
22 #include <asm/intel_pt.h>
23 #include <asm/intel-family.h>
24 
25 #include "../perf_event.h"
26 #include "pt.h"
27 
28 static DEFINE_PER_CPU(struct pt, pt_ctx);
29 
30 static struct pt_pmu pt_pmu;
31 
32 /*
33  * Capabilities of Intel PT hardware, such as number of address bits or
34  * supported output schemes, are cached and exported to userspace as "caps"
35  * attribute group of pt pmu device
36  * (/sys/bus/event_source/devices/intel_pt/caps/) so that userspace can store
37  * relevant bits together with intel_pt traces.
38  *
39  * These are necessary for both trace decoding (payloads_lip, contains address
40  * width encoded in IP-related packets), and event configuration (bitmasks with
41  * permitted values for certain bit fields).
42  */
43 #define PT_CAP(_n, _l, _r, _m)						\
44 	[PT_CAP_ ## _n] = { .name = __stringify(_n), .leaf = _l,	\
45 			    .reg = _r, .mask = _m }
46 
47 static struct pt_cap_desc {
48 	const char	*name;
49 	u32		leaf;
50 	u8		reg;
51 	u32		mask;
52 } pt_caps[] = {
53 	PT_CAP(max_subleaf,		0, CPUID_EAX, 0xffffffff),
54 	PT_CAP(cr3_filtering,		0, CPUID_EBX, BIT(0)),
55 	PT_CAP(psb_cyc,			0, CPUID_EBX, BIT(1)),
56 	PT_CAP(ip_filtering,		0, CPUID_EBX, BIT(2)),
57 	PT_CAP(mtc,			0, CPUID_EBX, BIT(3)),
58 	PT_CAP(ptwrite,			0, CPUID_EBX, BIT(4)),
59 	PT_CAP(power_event_trace,	0, CPUID_EBX, BIT(5)),
60 	PT_CAP(topa_output,		0, CPUID_ECX, BIT(0)),
61 	PT_CAP(topa_multiple_entries,	0, CPUID_ECX, BIT(1)),
62 	PT_CAP(single_range_output,	0, CPUID_ECX, BIT(2)),
63 	PT_CAP(output_subsys,		0, CPUID_ECX, BIT(3)),
64 	PT_CAP(payloads_lip,		0, CPUID_ECX, BIT(31)),
65 	PT_CAP(num_address_ranges,	1, CPUID_EAX, 0x7),
66 	PT_CAP(mtc_periods,		1, CPUID_EAX, 0xffff0000),
67 	PT_CAP(cycle_thresholds,	1, CPUID_EBX, 0xffff),
68 	PT_CAP(psb_periods,		1, CPUID_EBX, 0xffff0000),
69 };
70 
71 u32 intel_pt_validate_cap(u32 *caps, enum pt_capabilities capability)
72 {
73 	struct pt_cap_desc *cd = &pt_caps[capability];
74 	u32 c = caps[cd->leaf * PT_CPUID_REGS_NUM + cd->reg];
75 	unsigned int shift = __ffs(cd->mask);
76 
77 	return (c & cd->mask) >> shift;
78 }
79 EXPORT_SYMBOL_GPL(intel_pt_validate_cap);
80 
81 u32 intel_pt_validate_hw_cap(enum pt_capabilities cap)
82 {
83 	return intel_pt_validate_cap(pt_pmu.caps, cap);
84 }
85 EXPORT_SYMBOL_GPL(intel_pt_validate_hw_cap);
86 
87 static ssize_t pt_cap_show(struct device *cdev,
88 			   struct device_attribute *attr,
89 			   char *buf)
90 {
91 	struct dev_ext_attribute *ea =
92 		container_of(attr, struct dev_ext_attribute, attr);
93 	enum pt_capabilities cap = (long)ea->var;
94 
95 	return snprintf(buf, PAGE_SIZE, "%x\n", intel_pt_validate_hw_cap(cap));
96 }
97 
98 static struct attribute_group pt_cap_group __ro_after_init = {
99 	.name	= "caps",
100 };
101 
102 PMU_FORMAT_ATTR(pt,		"config:0"	);
103 PMU_FORMAT_ATTR(cyc,		"config:1"	);
104 PMU_FORMAT_ATTR(pwr_evt,	"config:4"	);
105 PMU_FORMAT_ATTR(fup_on_ptw,	"config:5"	);
106 PMU_FORMAT_ATTR(mtc,		"config:9"	);
107 PMU_FORMAT_ATTR(tsc,		"config:10"	);
108 PMU_FORMAT_ATTR(noretcomp,	"config:11"	);
109 PMU_FORMAT_ATTR(ptw,		"config:12"	);
110 PMU_FORMAT_ATTR(branch,		"config:13"	);
111 PMU_FORMAT_ATTR(mtc_period,	"config:14-17"	);
112 PMU_FORMAT_ATTR(cyc_thresh,	"config:19-22"	);
113 PMU_FORMAT_ATTR(psb_period,	"config:24-27"	);
114 
115 static struct attribute *pt_formats_attr[] = {
116 	&format_attr_pt.attr,
117 	&format_attr_cyc.attr,
118 	&format_attr_pwr_evt.attr,
119 	&format_attr_fup_on_ptw.attr,
120 	&format_attr_mtc.attr,
121 	&format_attr_tsc.attr,
122 	&format_attr_noretcomp.attr,
123 	&format_attr_ptw.attr,
124 	&format_attr_branch.attr,
125 	&format_attr_mtc_period.attr,
126 	&format_attr_cyc_thresh.attr,
127 	&format_attr_psb_period.attr,
128 	NULL,
129 };
130 
131 static struct attribute_group pt_format_group = {
132 	.name	= "format",
133 	.attrs	= pt_formats_attr,
134 };
135 
136 static ssize_t
137 pt_timing_attr_show(struct device *dev, struct device_attribute *attr,
138 		    char *page)
139 {
140 	struct perf_pmu_events_attr *pmu_attr =
141 		container_of(attr, struct perf_pmu_events_attr, attr);
142 
143 	switch (pmu_attr->id) {
144 	case 0:
145 		return sprintf(page, "%lu\n", pt_pmu.max_nonturbo_ratio);
146 	case 1:
147 		return sprintf(page, "%u:%u\n",
148 			       pt_pmu.tsc_art_num,
149 			       pt_pmu.tsc_art_den);
150 	default:
151 		break;
152 	}
153 
154 	return -EINVAL;
155 }
156 
157 PMU_EVENT_ATTR(max_nonturbo_ratio, timing_attr_max_nonturbo_ratio, 0,
158 	       pt_timing_attr_show);
159 PMU_EVENT_ATTR(tsc_art_ratio, timing_attr_tsc_art_ratio, 1,
160 	       pt_timing_attr_show);
161 
162 static struct attribute *pt_timing_attr[] = {
163 	&timing_attr_max_nonturbo_ratio.attr.attr,
164 	&timing_attr_tsc_art_ratio.attr.attr,
165 	NULL,
166 };
167 
168 static struct attribute_group pt_timing_group = {
169 	.attrs	= pt_timing_attr,
170 };
171 
172 static const struct attribute_group *pt_attr_groups[] = {
173 	&pt_cap_group,
174 	&pt_format_group,
175 	&pt_timing_group,
176 	NULL,
177 };
178 
179 static int __init pt_pmu_hw_init(void)
180 {
181 	struct dev_ext_attribute *de_attrs;
182 	struct attribute **attrs;
183 	size_t size;
184 	u64 reg;
185 	int ret;
186 	long i;
187 
188 	rdmsrl(MSR_PLATFORM_INFO, reg);
189 	pt_pmu.max_nonturbo_ratio = (reg & 0xff00) >> 8;
190 
191 	/*
192 	 * if available, read in TSC to core crystal clock ratio,
193 	 * otherwise, zero for numerator stands for "not enumerated"
194 	 * as per SDM
195 	 */
196 	if (boot_cpu_data.cpuid_level >= CPUID_TSC_LEAF) {
197 		u32 eax, ebx, ecx, edx;
198 
199 		cpuid(CPUID_TSC_LEAF, &eax, &ebx, &ecx, &edx);
200 
201 		pt_pmu.tsc_art_num = ebx;
202 		pt_pmu.tsc_art_den = eax;
203 	}
204 
205 	/* model-specific quirks */
206 	switch (boot_cpu_data.x86_model) {
207 	case INTEL_FAM6_BROADWELL:
208 	case INTEL_FAM6_BROADWELL_D:
209 	case INTEL_FAM6_BROADWELL_G:
210 	case INTEL_FAM6_BROADWELL_X:
211 		/* not setting BRANCH_EN will #GP, erratum BDM106 */
212 		pt_pmu.branch_en_always_on = true;
213 		break;
214 	default:
215 		break;
216 	}
217 
218 	if (boot_cpu_has(X86_FEATURE_VMX)) {
219 		/*
220 		 * Intel SDM, 36.5 "Tracing post-VMXON" says that
221 		 * "IA32_VMX_MISC[bit 14]" being 1 means PT can trace
222 		 * post-VMXON.
223 		 */
224 		rdmsrl(MSR_IA32_VMX_MISC, reg);
225 		if (reg & BIT(14))
226 			pt_pmu.vmx = true;
227 	}
228 
229 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
230 		cpuid_count(20, i,
231 			    &pt_pmu.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM],
232 			    &pt_pmu.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM],
233 			    &pt_pmu.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM],
234 			    &pt_pmu.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM]);
235 	}
236 
237 	ret = -ENOMEM;
238 	size = sizeof(struct attribute *) * (ARRAY_SIZE(pt_caps)+1);
239 	attrs = kzalloc(size, GFP_KERNEL);
240 	if (!attrs)
241 		goto fail;
242 
243 	size = sizeof(struct dev_ext_attribute) * (ARRAY_SIZE(pt_caps)+1);
244 	de_attrs = kzalloc(size, GFP_KERNEL);
245 	if (!de_attrs)
246 		goto fail;
247 
248 	for (i = 0; i < ARRAY_SIZE(pt_caps); i++) {
249 		struct dev_ext_attribute *de_attr = de_attrs + i;
250 
251 		de_attr->attr.attr.name = pt_caps[i].name;
252 
253 		sysfs_attr_init(&de_attr->attr.attr);
254 
255 		de_attr->attr.attr.mode		= S_IRUGO;
256 		de_attr->attr.show		= pt_cap_show;
257 		de_attr->var			= (void *)i;
258 
259 		attrs[i] = &de_attr->attr.attr;
260 	}
261 
262 	pt_cap_group.attrs = attrs;
263 
264 	return 0;
265 
266 fail:
267 	kfree(attrs);
268 
269 	return ret;
270 }
271 
272 #define RTIT_CTL_CYC_PSB (RTIT_CTL_CYCLEACC	| \
273 			  RTIT_CTL_CYC_THRESH	| \
274 			  RTIT_CTL_PSB_FREQ)
275 
276 #define RTIT_CTL_MTC	(RTIT_CTL_MTC_EN	| \
277 			 RTIT_CTL_MTC_RANGE)
278 
279 #define RTIT_CTL_PTW	(RTIT_CTL_PTW_EN	| \
280 			 RTIT_CTL_FUP_ON_PTW)
281 
282 /*
283  * Bit 0 (TraceEn) in the attr.config is meaningless as the
284  * corresponding bit in the RTIT_CTL can only be controlled
285  * by the driver; therefore, repurpose it to mean: pass
286  * through the bit that was previously assumed to be always
287  * on for PT, thereby allowing the user to *not* set it if
288  * they so wish. See also pt_event_valid() and pt_config().
289  */
290 #define RTIT_CTL_PASSTHROUGH RTIT_CTL_TRACEEN
291 
292 #define PT_CONFIG_MASK (RTIT_CTL_TRACEEN	| \
293 			RTIT_CTL_TSC_EN		| \
294 			RTIT_CTL_DISRETC	| \
295 			RTIT_CTL_BRANCH_EN	| \
296 			RTIT_CTL_CYC_PSB	| \
297 			RTIT_CTL_MTC		| \
298 			RTIT_CTL_PWR_EVT_EN	| \
299 			RTIT_CTL_FUP_ON_PTW	| \
300 			RTIT_CTL_PTW_EN)
301 
302 static bool pt_event_valid(struct perf_event *event)
303 {
304 	u64 config = event->attr.config;
305 	u64 allowed, requested;
306 
307 	if ((config & PT_CONFIG_MASK) != config)
308 		return false;
309 
310 	if (config & RTIT_CTL_CYC_PSB) {
311 		if (!intel_pt_validate_hw_cap(PT_CAP_psb_cyc))
312 			return false;
313 
314 		allowed = intel_pt_validate_hw_cap(PT_CAP_psb_periods);
315 		requested = (config & RTIT_CTL_PSB_FREQ) >>
316 			RTIT_CTL_PSB_FREQ_OFFSET;
317 		if (requested && (!(allowed & BIT(requested))))
318 			return false;
319 
320 		allowed = intel_pt_validate_hw_cap(PT_CAP_cycle_thresholds);
321 		requested = (config & RTIT_CTL_CYC_THRESH) >>
322 			RTIT_CTL_CYC_THRESH_OFFSET;
323 		if (requested && (!(allowed & BIT(requested))))
324 			return false;
325 	}
326 
327 	if (config & RTIT_CTL_MTC) {
328 		/*
329 		 * In the unlikely case that CPUID lists valid mtc periods,
330 		 * but not the mtc capability, drop out here.
331 		 *
332 		 * Spec says that setting mtc period bits while mtc bit in
333 		 * CPUID is 0 will #GP, so better safe than sorry.
334 		 */
335 		if (!intel_pt_validate_hw_cap(PT_CAP_mtc))
336 			return false;
337 
338 		allowed = intel_pt_validate_hw_cap(PT_CAP_mtc_periods);
339 		if (!allowed)
340 			return false;
341 
342 		requested = (config & RTIT_CTL_MTC_RANGE) >>
343 			RTIT_CTL_MTC_RANGE_OFFSET;
344 
345 		if (!(allowed & BIT(requested)))
346 			return false;
347 	}
348 
349 	if (config & RTIT_CTL_PWR_EVT_EN &&
350 	    !intel_pt_validate_hw_cap(PT_CAP_power_event_trace))
351 		return false;
352 
353 	if (config & RTIT_CTL_PTW) {
354 		if (!intel_pt_validate_hw_cap(PT_CAP_ptwrite))
355 			return false;
356 
357 		/* FUPonPTW without PTW doesn't make sense */
358 		if ((config & RTIT_CTL_FUP_ON_PTW) &&
359 		    !(config & RTIT_CTL_PTW_EN))
360 			return false;
361 	}
362 
363 	/*
364 	 * Setting bit 0 (TraceEn in RTIT_CTL MSR) in the attr.config
365 	 * clears the assumption that BranchEn must always be enabled,
366 	 * as was the case with the first implementation of PT.
367 	 * If this bit is not set, the legacy behavior is preserved
368 	 * for compatibility with the older userspace.
369 	 *
370 	 * Re-using bit 0 for this purpose is fine because it is never
371 	 * directly set by the user; previous attempts at setting it in
372 	 * the attr.config resulted in -EINVAL.
373 	 */
374 	if (config & RTIT_CTL_PASSTHROUGH) {
375 		/*
376 		 * Disallow not setting BRANCH_EN where BRANCH_EN is
377 		 * always required.
378 		 */
379 		if (pt_pmu.branch_en_always_on &&
380 		    !(config & RTIT_CTL_BRANCH_EN))
381 			return false;
382 	} else {
383 		/*
384 		 * Disallow BRANCH_EN without the PASSTHROUGH.
385 		 */
386 		if (config & RTIT_CTL_BRANCH_EN)
387 			return false;
388 	}
389 
390 	return true;
391 }
392 
393 /*
394  * PT configuration helpers
395  * These all are cpu affine and operate on a local PT
396  */
397 
398 static void pt_config_start(struct perf_event *event)
399 {
400 	struct pt *pt = this_cpu_ptr(&pt_ctx);
401 	u64 ctl = event->hw.config;
402 
403 	ctl |= RTIT_CTL_TRACEEN;
404 	if (READ_ONCE(pt->vmx_on))
405 		perf_aux_output_flag(&pt->handle, PERF_AUX_FLAG_PARTIAL);
406 	else
407 		wrmsrl(MSR_IA32_RTIT_CTL, ctl);
408 
409 	WRITE_ONCE(event->hw.config, ctl);
410 }
411 
412 /* Address ranges and their corresponding msr configuration registers */
413 static const struct pt_address_range {
414 	unsigned long	msr_a;
415 	unsigned long	msr_b;
416 	unsigned int	reg_off;
417 } pt_address_ranges[] = {
418 	{
419 		.msr_a	 = MSR_IA32_RTIT_ADDR0_A,
420 		.msr_b	 = MSR_IA32_RTIT_ADDR0_B,
421 		.reg_off = RTIT_CTL_ADDR0_OFFSET,
422 	},
423 	{
424 		.msr_a	 = MSR_IA32_RTIT_ADDR1_A,
425 		.msr_b	 = MSR_IA32_RTIT_ADDR1_B,
426 		.reg_off = RTIT_CTL_ADDR1_OFFSET,
427 	},
428 	{
429 		.msr_a	 = MSR_IA32_RTIT_ADDR2_A,
430 		.msr_b	 = MSR_IA32_RTIT_ADDR2_B,
431 		.reg_off = RTIT_CTL_ADDR2_OFFSET,
432 	},
433 	{
434 		.msr_a	 = MSR_IA32_RTIT_ADDR3_A,
435 		.msr_b	 = MSR_IA32_RTIT_ADDR3_B,
436 		.reg_off = RTIT_CTL_ADDR3_OFFSET,
437 	}
438 };
439 
440 static u64 pt_config_filters(struct perf_event *event)
441 {
442 	struct pt_filters *filters = event->hw.addr_filters;
443 	struct pt *pt = this_cpu_ptr(&pt_ctx);
444 	unsigned int range = 0;
445 	u64 rtit_ctl = 0;
446 
447 	if (!filters)
448 		return 0;
449 
450 	perf_event_addr_filters_sync(event);
451 
452 	for (range = 0; range < filters->nr_filters; range++) {
453 		struct pt_filter *filter = &filters->filter[range];
454 
455 		/*
456 		 * Note, if the range has zero start/end addresses due
457 		 * to its dynamic object not being loaded yet, we just
458 		 * go ahead and program zeroed range, which will simply
459 		 * produce no data. Note^2: if executable code at 0x0
460 		 * is a concern, we can set up an "invalid" configuration
461 		 * such as msr_b < msr_a.
462 		 */
463 
464 		/* avoid redundant msr writes */
465 		if (pt->filters.filter[range].msr_a != filter->msr_a) {
466 			wrmsrl(pt_address_ranges[range].msr_a, filter->msr_a);
467 			pt->filters.filter[range].msr_a = filter->msr_a;
468 		}
469 
470 		if (pt->filters.filter[range].msr_b != filter->msr_b) {
471 			wrmsrl(pt_address_ranges[range].msr_b, filter->msr_b);
472 			pt->filters.filter[range].msr_b = filter->msr_b;
473 		}
474 
475 		rtit_ctl |= filter->config << pt_address_ranges[range].reg_off;
476 	}
477 
478 	return rtit_ctl;
479 }
480 
481 static void pt_config(struct perf_event *event)
482 {
483 	struct pt *pt = this_cpu_ptr(&pt_ctx);
484 	struct pt_buffer *buf = perf_get_aux(&pt->handle);
485 	u64 reg;
486 
487 	/* First round: clear STATUS, in particular the PSB byte counter. */
488 	if (!event->hw.config) {
489 		perf_event_itrace_started(event);
490 		wrmsrl(MSR_IA32_RTIT_STATUS, 0);
491 	}
492 
493 	reg = pt_config_filters(event);
494 	reg |= RTIT_CTL_TRACEEN;
495 	if (!buf->single)
496 		reg |= RTIT_CTL_TOPA;
497 
498 	/*
499 	 * Previously, we had BRANCH_EN on by default, but now that PT has
500 	 * grown features outside of branch tracing, it is useful to allow
501 	 * the user to disable it. Setting bit 0 in the event's attr.config
502 	 * allows BRANCH_EN to pass through instead of being always on. See
503 	 * also the comment in pt_event_valid().
504 	 */
505 	if (event->attr.config & BIT(0)) {
506 		reg |= event->attr.config & RTIT_CTL_BRANCH_EN;
507 	} else {
508 		reg |= RTIT_CTL_BRANCH_EN;
509 	}
510 
511 	if (!event->attr.exclude_kernel)
512 		reg |= RTIT_CTL_OS;
513 	if (!event->attr.exclude_user)
514 		reg |= RTIT_CTL_USR;
515 
516 	reg |= (event->attr.config & PT_CONFIG_MASK);
517 
518 	event->hw.config = reg;
519 	pt_config_start(event);
520 }
521 
522 static void pt_config_stop(struct perf_event *event)
523 {
524 	struct pt *pt = this_cpu_ptr(&pt_ctx);
525 	u64 ctl = READ_ONCE(event->hw.config);
526 
527 	/* may be already stopped by a PMI */
528 	if (!(ctl & RTIT_CTL_TRACEEN))
529 		return;
530 
531 	ctl &= ~RTIT_CTL_TRACEEN;
532 	if (!READ_ONCE(pt->vmx_on))
533 		wrmsrl(MSR_IA32_RTIT_CTL, ctl);
534 
535 	WRITE_ONCE(event->hw.config, ctl);
536 
537 	/*
538 	 * A wrmsr that disables trace generation serializes other PT
539 	 * registers and causes all data packets to be written to memory,
540 	 * but a fence is required for the data to become globally visible.
541 	 *
542 	 * The below WMB, separating data store and aux_head store matches
543 	 * the consumer's RMB that separates aux_head load and data load.
544 	 */
545 	wmb();
546 }
547 
548 /**
549  * struct topa - ToPA metadata
550  * @list:	linkage to struct pt_buffer's list of tables
551  * @offset:	offset of the first entry in this table in the buffer
552  * @size:	total size of all entries in this table
553  * @last:	index of the last initialized entry in this table
554  * @z_count:	how many times the first entry repeats
555  */
556 struct topa {
557 	struct list_head	list;
558 	u64			offset;
559 	size_t			size;
560 	int			last;
561 	unsigned int		z_count;
562 };
563 
564 /*
565  * Keep ToPA table-related metadata on the same page as the actual table,
566  * taking up a few words from the top
567  */
568 
569 #define TENTS_PER_PAGE	\
570 	((PAGE_SIZE - sizeof(struct topa)) / sizeof(struct topa_entry))
571 
572 /**
573  * struct topa_page - page-sized ToPA table with metadata at the top
574  * @table:	actual ToPA table entries, as understood by PT hardware
575  * @topa:	metadata
576  */
577 struct topa_page {
578 	struct topa_entry	table[TENTS_PER_PAGE];
579 	struct topa		topa;
580 };
581 
582 static inline struct topa_page *topa_to_page(struct topa *topa)
583 {
584 	return container_of(topa, struct topa_page, topa);
585 }
586 
587 static inline struct topa_page *topa_entry_to_page(struct topa_entry *te)
588 {
589 	return (struct topa_page *)((unsigned long)te & PAGE_MASK);
590 }
591 
592 static inline phys_addr_t topa_pfn(struct topa *topa)
593 {
594 	return PFN_DOWN(virt_to_phys(topa_to_page(topa)));
595 }
596 
597 /* make -1 stand for the last table entry */
598 #define TOPA_ENTRY(t, i)				\
599 	((i) == -1					\
600 		? &topa_to_page(t)->table[(t)->last]	\
601 		: &topa_to_page(t)->table[(i)])
602 #define TOPA_ENTRY_SIZE(t, i) (sizes(TOPA_ENTRY((t), (i))->size))
603 #define TOPA_ENTRY_PAGES(t, i) (1 << TOPA_ENTRY((t), (i))->size)
604 
605 static void pt_config_buffer(struct pt_buffer *buf)
606 {
607 	struct pt *pt = this_cpu_ptr(&pt_ctx);
608 	u64 reg, mask;
609 	void *base;
610 
611 	if (buf->single) {
612 		base = buf->data_pages[0];
613 		mask = (buf->nr_pages * PAGE_SIZE - 1) >> 7;
614 	} else {
615 		base = topa_to_page(buf->cur)->table;
616 		mask = (u64)buf->cur_idx;
617 	}
618 
619 	reg = virt_to_phys(base);
620 	if (pt->output_base != reg) {
621 		pt->output_base = reg;
622 		wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, reg);
623 	}
624 
625 	reg = 0x7f | (mask << 7) | ((u64)buf->output_off << 32);
626 	if (pt->output_mask != reg) {
627 		pt->output_mask = reg;
628 		wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, reg);
629 	}
630 }
631 
632 /**
633  * topa_alloc() - allocate page-sized ToPA table
634  * @cpu:	CPU on which to allocate.
635  * @gfp:	Allocation flags.
636  *
637  * Return:	On success, return the pointer to ToPA table page.
638  */
639 static struct topa *topa_alloc(int cpu, gfp_t gfp)
640 {
641 	int node = cpu_to_node(cpu);
642 	struct topa_page *tp;
643 	struct page *p;
644 
645 	p = alloc_pages_node(node, gfp | __GFP_ZERO, 0);
646 	if (!p)
647 		return NULL;
648 
649 	tp = page_address(p);
650 	tp->topa.last = 0;
651 
652 	/*
653 	 * In case of singe-entry ToPA, always put the self-referencing END
654 	 * link as the 2nd entry in the table
655 	 */
656 	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) {
657 		TOPA_ENTRY(&tp->topa, 1)->base = page_to_phys(p) >> TOPA_SHIFT;
658 		TOPA_ENTRY(&tp->topa, 1)->end = 1;
659 	}
660 
661 	return &tp->topa;
662 }
663 
664 /**
665  * topa_free() - free a page-sized ToPA table
666  * @topa:	Table to deallocate.
667  */
668 static void topa_free(struct topa *topa)
669 {
670 	free_page((unsigned long)topa);
671 }
672 
673 /**
674  * topa_insert_table() - insert a ToPA table into a buffer
675  * @buf:	 PT buffer that's being extended.
676  * @topa:	 New topa table to be inserted.
677  *
678  * If it's the first table in this buffer, set up buffer's pointers
679  * accordingly; otherwise, add a END=1 link entry to @topa to the current
680  * "last" table and adjust the last table pointer to @topa.
681  */
682 static void topa_insert_table(struct pt_buffer *buf, struct topa *topa)
683 {
684 	struct topa *last = buf->last;
685 
686 	list_add_tail(&topa->list, &buf->tables);
687 
688 	if (!buf->first) {
689 		buf->first = buf->last = buf->cur = topa;
690 		return;
691 	}
692 
693 	topa->offset = last->offset + last->size;
694 	buf->last = topa;
695 
696 	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
697 		return;
698 
699 	BUG_ON(last->last != TENTS_PER_PAGE - 1);
700 
701 	TOPA_ENTRY(last, -1)->base = topa_pfn(topa);
702 	TOPA_ENTRY(last, -1)->end = 1;
703 }
704 
705 /**
706  * topa_table_full() - check if a ToPA table is filled up
707  * @topa:	ToPA table.
708  */
709 static bool topa_table_full(struct topa *topa)
710 {
711 	/* single-entry ToPA is a special case */
712 	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
713 		return !!topa->last;
714 
715 	return topa->last == TENTS_PER_PAGE - 1;
716 }
717 
718 /**
719  * topa_insert_pages() - create a list of ToPA tables
720  * @buf:	PT buffer being initialized.
721  * @gfp:	Allocation flags.
722  *
723  * This initializes a list of ToPA tables with entries from
724  * the data_pages provided by rb_alloc_aux().
725  *
726  * Return:	0 on success or error code.
727  */
728 static int topa_insert_pages(struct pt_buffer *buf, int cpu, gfp_t gfp)
729 {
730 	struct topa *topa = buf->last;
731 	int order = 0;
732 	struct page *p;
733 
734 	p = virt_to_page(buf->data_pages[buf->nr_pages]);
735 	if (PagePrivate(p))
736 		order = page_private(p);
737 
738 	if (topa_table_full(topa)) {
739 		topa = topa_alloc(cpu, gfp);
740 		if (!topa)
741 			return -ENOMEM;
742 
743 		topa_insert_table(buf, topa);
744 	}
745 
746 	if (topa->z_count == topa->last - 1) {
747 		if (order == TOPA_ENTRY(topa, topa->last - 1)->size)
748 			topa->z_count++;
749 	}
750 
751 	TOPA_ENTRY(topa, -1)->base = page_to_phys(p) >> TOPA_SHIFT;
752 	TOPA_ENTRY(topa, -1)->size = order;
753 	if (!buf->snapshot &&
754 	    !intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) {
755 		TOPA_ENTRY(topa, -1)->intr = 1;
756 		TOPA_ENTRY(topa, -1)->stop = 1;
757 	}
758 
759 	topa->last++;
760 	topa->size += sizes(order);
761 
762 	buf->nr_pages += 1ul << order;
763 
764 	return 0;
765 }
766 
767 /**
768  * pt_topa_dump() - print ToPA tables and their entries
769  * @buf:	PT buffer.
770  */
771 static void pt_topa_dump(struct pt_buffer *buf)
772 {
773 	struct topa *topa;
774 
775 	list_for_each_entry(topa, &buf->tables, list) {
776 		struct topa_page *tp = topa_to_page(topa);
777 		int i;
778 
779 		pr_debug("# table @%p, off %llx size %zx\n", tp->table,
780 			 topa->offset, topa->size);
781 		for (i = 0; i < TENTS_PER_PAGE; i++) {
782 			pr_debug("# entry @%p (%lx sz %u %c%c%c) raw=%16llx\n",
783 				 &tp->table[i],
784 				 (unsigned long)tp->table[i].base << TOPA_SHIFT,
785 				 sizes(tp->table[i].size),
786 				 tp->table[i].end ?  'E' : ' ',
787 				 tp->table[i].intr ? 'I' : ' ',
788 				 tp->table[i].stop ? 'S' : ' ',
789 				 *(u64 *)&tp->table[i]);
790 			if ((intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) &&
791 			     tp->table[i].stop) ||
792 			    tp->table[i].end)
793 				break;
794 			if (!i && topa->z_count)
795 				i += topa->z_count;
796 		}
797 	}
798 }
799 
800 /**
801  * pt_buffer_advance() - advance to the next output region
802  * @buf:	PT buffer.
803  *
804  * Advance the current pointers in the buffer to the next ToPA entry.
805  */
806 static void pt_buffer_advance(struct pt_buffer *buf)
807 {
808 	buf->output_off = 0;
809 	buf->cur_idx++;
810 
811 	if (buf->cur_idx == buf->cur->last) {
812 		if (buf->cur == buf->last)
813 			buf->cur = buf->first;
814 		else
815 			buf->cur = list_entry(buf->cur->list.next, struct topa,
816 					      list);
817 		buf->cur_idx = 0;
818 	}
819 }
820 
821 /**
822  * pt_update_head() - calculate current offsets and sizes
823  * @pt:		Per-cpu pt context.
824  *
825  * Update buffer's current write pointer position and data size.
826  */
827 static void pt_update_head(struct pt *pt)
828 {
829 	struct pt_buffer *buf = perf_get_aux(&pt->handle);
830 	u64 topa_idx, base, old;
831 
832 	if (buf->single) {
833 		local_set(&buf->data_size, buf->output_off);
834 		return;
835 	}
836 
837 	/* offset of the first region in this table from the beginning of buf */
838 	base = buf->cur->offset + buf->output_off;
839 
840 	/* offset of the current output region within this table */
841 	for (topa_idx = 0; topa_idx < buf->cur_idx; topa_idx++)
842 		base += TOPA_ENTRY_SIZE(buf->cur, topa_idx);
843 
844 	if (buf->snapshot) {
845 		local_set(&buf->data_size, base);
846 	} else {
847 		old = (local64_xchg(&buf->head, base) &
848 		       ((buf->nr_pages << PAGE_SHIFT) - 1));
849 		if (base < old)
850 			base += buf->nr_pages << PAGE_SHIFT;
851 
852 		local_add(base - old, &buf->data_size);
853 	}
854 }
855 
856 /**
857  * pt_buffer_region() - obtain current output region's address
858  * @buf:	PT buffer.
859  */
860 static void *pt_buffer_region(struct pt_buffer *buf)
861 {
862 	return phys_to_virt(TOPA_ENTRY(buf->cur, buf->cur_idx)->base << TOPA_SHIFT);
863 }
864 
865 /**
866  * pt_buffer_region_size() - obtain current output region's size
867  * @buf:	PT buffer.
868  */
869 static size_t pt_buffer_region_size(struct pt_buffer *buf)
870 {
871 	return TOPA_ENTRY_SIZE(buf->cur, buf->cur_idx);
872 }
873 
874 /**
875  * pt_handle_status() - take care of possible status conditions
876  * @pt:		Per-cpu pt context.
877  */
878 static void pt_handle_status(struct pt *pt)
879 {
880 	struct pt_buffer *buf = perf_get_aux(&pt->handle);
881 	int advance = 0;
882 	u64 status;
883 
884 	rdmsrl(MSR_IA32_RTIT_STATUS, status);
885 
886 	if (status & RTIT_STATUS_ERROR) {
887 		pr_err_ratelimited("ToPA ERROR encountered, trying to recover\n");
888 		pt_topa_dump(buf);
889 		status &= ~RTIT_STATUS_ERROR;
890 	}
891 
892 	if (status & RTIT_STATUS_STOPPED) {
893 		status &= ~RTIT_STATUS_STOPPED;
894 
895 		/*
896 		 * On systems that only do single-entry ToPA, hitting STOP
897 		 * means we are already losing data; need to let the decoder
898 		 * know.
899 		 */
900 		if (!buf->single &&
901 		    (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) ||
902 		     buf->output_off == pt_buffer_region_size(buf))) {
903 			perf_aux_output_flag(&pt->handle,
904 			                     PERF_AUX_FLAG_TRUNCATED);
905 			advance++;
906 		}
907 	}
908 
909 	/*
910 	 * Also on single-entry ToPA implementations, interrupt will come
911 	 * before the output reaches its output region's boundary.
912 	 */
913 	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) &&
914 	    !buf->snapshot &&
915 	    pt_buffer_region_size(buf) - buf->output_off <= TOPA_PMI_MARGIN) {
916 		void *head = pt_buffer_region(buf);
917 
918 		/* everything within this margin needs to be zeroed out */
919 		memset(head + buf->output_off, 0,
920 		       pt_buffer_region_size(buf) -
921 		       buf->output_off);
922 		advance++;
923 	}
924 
925 	if (advance)
926 		pt_buffer_advance(buf);
927 
928 	wrmsrl(MSR_IA32_RTIT_STATUS, status);
929 }
930 
931 /**
932  * pt_read_offset() - translate registers into buffer pointers
933  * @buf:	PT buffer.
934  *
935  * Set buffer's output pointers from MSR values.
936  */
937 static void pt_read_offset(struct pt_buffer *buf)
938 {
939 	struct pt *pt = this_cpu_ptr(&pt_ctx);
940 	struct topa_page *tp;
941 
942 	if (!buf->single) {
943 		rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, pt->output_base);
944 		tp = phys_to_virt(pt->output_base);
945 		buf->cur = &tp->topa;
946 	}
947 
948 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, pt->output_mask);
949 	/* offset within current output region */
950 	buf->output_off = pt->output_mask >> 32;
951 	/* index of current output region within this table */
952 	if (!buf->single)
953 		buf->cur_idx = (pt->output_mask & 0xffffff80) >> 7;
954 }
955 
956 static struct topa_entry *
957 pt_topa_entry_for_page(struct pt_buffer *buf, unsigned int pg)
958 {
959 	struct topa_page *tp;
960 	struct topa *topa;
961 	unsigned int idx, cur_pg = 0, z_pg = 0, start_idx = 0;
962 
963 	/*
964 	 * Indicates a bug in the caller.
965 	 */
966 	if (WARN_ON_ONCE(pg >= buf->nr_pages))
967 		return NULL;
968 
969 	/*
970 	 * First, find the ToPA table where @pg fits. With high
971 	 * order allocations, there shouldn't be many of these.
972 	 */
973 	list_for_each_entry(topa, &buf->tables, list) {
974 		if (topa->offset + topa->size > pg << PAGE_SHIFT)
975 			goto found;
976 	}
977 
978 	/*
979 	 * Hitting this means we have a problem in the ToPA
980 	 * allocation code.
981 	 */
982 	WARN_ON_ONCE(1);
983 
984 	return NULL;
985 
986 found:
987 	/*
988 	 * Indicates a problem in the ToPA allocation code.
989 	 */
990 	if (WARN_ON_ONCE(topa->last == -1))
991 		return NULL;
992 
993 	tp = topa_to_page(topa);
994 	cur_pg = PFN_DOWN(topa->offset);
995 	if (topa->z_count) {
996 		z_pg = TOPA_ENTRY_PAGES(topa, 0) * (topa->z_count + 1);
997 		start_idx = topa->z_count + 1;
998 	}
999 
1000 	/*
1001 	 * Multiple entries at the beginning of the table have the same size,
1002 	 * ideally all of them; if @pg falls there, the search is done.
1003 	 */
1004 	if (pg >= cur_pg && pg < cur_pg + z_pg) {
1005 		idx = (pg - cur_pg) / TOPA_ENTRY_PAGES(topa, 0);
1006 		return &tp->table[idx];
1007 	}
1008 
1009 	/*
1010 	 * Otherwise, slow path: iterate through the remaining entries.
1011 	 */
1012 	for (idx = start_idx, cur_pg += z_pg; idx < topa->last; idx++) {
1013 		if (cur_pg + TOPA_ENTRY_PAGES(topa, idx) > pg)
1014 			return &tp->table[idx];
1015 
1016 		cur_pg += TOPA_ENTRY_PAGES(topa, idx);
1017 	}
1018 
1019 	/*
1020 	 * Means we couldn't find a ToPA entry in the table that does match.
1021 	 */
1022 	WARN_ON_ONCE(1);
1023 
1024 	return NULL;
1025 }
1026 
1027 static struct topa_entry *
1028 pt_topa_prev_entry(struct pt_buffer *buf, struct topa_entry *te)
1029 {
1030 	unsigned long table = (unsigned long)te & ~(PAGE_SIZE - 1);
1031 	struct topa_page *tp;
1032 	struct topa *topa;
1033 
1034 	tp = (struct topa_page *)table;
1035 	if (tp->table != te)
1036 		return --te;
1037 
1038 	topa = &tp->topa;
1039 	if (topa == buf->first)
1040 		topa = buf->last;
1041 	else
1042 		topa = list_prev_entry(topa, list);
1043 
1044 	tp = topa_to_page(topa);
1045 
1046 	return &tp->table[topa->last - 1];
1047 }
1048 
1049 /**
1050  * pt_buffer_reset_markers() - place interrupt and stop bits in the buffer
1051  * @buf:	PT buffer.
1052  * @handle:	Current output handle.
1053  *
1054  * Place INT and STOP marks to prevent overwriting old data that the consumer
1055  * hasn't yet collected and waking up the consumer after a certain fraction of
1056  * the buffer has filled up. Only needed and sensible for non-snapshot counters.
1057  *
1058  * This obviously relies on buf::head to figure out buffer markers, so it has
1059  * to be called after pt_buffer_reset_offsets() and before the hardware tracing
1060  * is enabled.
1061  */
1062 static int pt_buffer_reset_markers(struct pt_buffer *buf,
1063 				   struct perf_output_handle *handle)
1064 
1065 {
1066 	unsigned long head = local64_read(&buf->head);
1067 	unsigned long idx, npages, wakeup;
1068 
1069 	if (buf->single)
1070 		return 0;
1071 
1072 	/* can't stop in the middle of an output region */
1073 	if (buf->output_off + handle->size + 1 < pt_buffer_region_size(buf)) {
1074 		perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
1075 		return -EINVAL;
1076 	}
1077 
1078 
1079 	/* single entry ToPA is handled by marking all regions STOP=1 INT=1 */
1080 	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
1081 		return 0;
1082 
1083 	/* clear STOP and INT from current entry */
1084 	if (buf->stop_te) {
1085 		buf->stop_te->stop = 0;
1086 		buf->stop_te->intr = 0;
1087 	}
1088 
1089 	if (buf->intr_te)
1090 		buf->intr_te->intr = 0;
1091 
1092 	/* how many pages till the STOP marker */
1093 	npages = handle->size >> PAGE_SHIFT;
1094 
1095 	/* if it's on a page boundary, fill up one more page */
1096 	if (!offset_in_page(head + handle->size + 1))
1097 		npages++;
1098 
1099 	idx = (head >> PAGE_SHIFT) + npages;
1100 	idx &= buf->nr_pages - 1;
1101 
1102 	if (idx != buf->stop_pos) {
1103 		buf->stop_pos = idx;
1104 		buf->stop_te = pt_topa_entry_for_page(buf, idx);
1105 		buf->stop_te = pt_topa_prev_entry(buf, buf->stop_te);
1106 	}
1107 
1108 	wakeup = handle->wakeup >> PAGE_SHIFT;
1109 
1110 	/* in the worst case, wake up the consumer one page before hard stop */
1111 	idx = (head >> PAGE_SHIFT) + npages - 1;
1112 	if (idx > wakeup)
1113 		idx = wakeup;
1114 
1115 	idx &= buf->nr_pages - 1;
1116 	if (idx != buf->intr_pos) {
1117 		buf->intr_pos = idx;
1118 		buf->intr_te = pt_topa_entry_for_page(buf, idx);
1119 		buf->intr_te = pt_topa_prev_entry(buf, buf->intr_te);
1120 	}
1121 
1122 	buf->stop_te->stop = 1;
1123 	buf->stop_te->intr = 1;
1124 	buf->intr_te->intr = 1;
1125 
1126 	return 0;
1127 }
1128 
1129 /**
1130  * pt_buffer_reset_offsets() - adjust buffer's write pointers from aux_head
1131  * @buf:	PT buffer.
1132  * @head:	Write pointer (aux_head) from AUX buffer.
1133  *
1134  * Find the ToPA table and entry corresponding to given @head and set buffer's
1135  * "current" pointers accordingly. This is done after we have obtained the
1136  * current aux_head position from a successful call to perf_aux_output_begin()
1137  * to make sure the hardware is writing to the right place.
1138  *
1139  * This function modifies buf::{cur,cur_idx,output_off} that will be programmed
1140  * into PT msrs when the tracing is enabled and buf::head and buf::data_size,
1141  * which are used to determine INT and STOP markers' locations by a subsequent
1142  * call to pt_buffer_reset_markers().
1143  */
1144 static void pt_buffer_reset_offsets(struct pt_buffer *buf, unsigned long head)
1145 {
1146 	struct topa_page *cur_tp;
1147 	struct topa_entry *te;
1148 	int pg;
1149 
1150 	if (buf->snapshot)
1151 		head &= (buf->nr_pages << PAGE_SHIFT) - 1;
1152 
1153 	if (!buf->single) {
1154 		pg = (head >> PAGE_SHIFT) & (buf->nr_pages - 1);
1155 		te = pt_topa_entry_for_page(buf, pg);
1156 
1157 		cur_tp = topa_entry_to_page(te);
1158 		buf->cur = &cur_tp->topa;
1159 		buf->cur_idx = te - TOPA_ENTRY(buf->cur, 0);
1160 		buf->output_off = head & (pt_buffer_region_size(buf) - 1);
1161 	} else {
1162 		buf->output_off = head;
1163 	}
1164 
1165 	local64_set(&buf->head, head);
1166 	local_set(&buf->data_size, 0);
1167 }
1168 
1169 /**
1170  * pt_buffer_fini_topa() - deallocate ToPA structure of a buffer
1171  * @buf:	PT buffer.
1172  */
1173 static void pt_buffer_fini_topa(struct pt_buffer *buf)
1174 {
1175 	struct topa *topa, *iter;
1176 
1177 	if (buf->single)
1178 		return;
1179 
1180 	list_for_each_entry_safe(topa, iter, &buf->tables, list) {
1181 		/*
1182 		 * right now, this is in free_aux() path only, so
1183 		 * no need to unlink this table from the list
1184 		 */
1185 		topa_free(topa);
1186 	}
1187 }
1188 
1189 /**
1190  * pt_buffer_init_topa() - initialize ToPA table for pt buffer
1191  * @buf:	PT buffer.
1192  * @size:	Total size of all regions within this ToPA.
1193  * @gfp:	Allocation flags.
1194  */
1195 static int pt_buffer_init_topa(struct pt_buffer *buf, int cpu,
1196 			       unsigned long nr_pages, gfp_t gfp)
1197 {
1198 	struct topa *topa;
1199 	int err;
1200 
1201 	topa = topa_alloc(cpu, gfp);
1202 	if (!topa)
1203 		return -ENOMEM;
1204 
1205 	topa_insert_table(buf, topa);
1206 
1207 	while (buf->nr_pages < nr_pages) {
1208 		err = topa_insert_pages(buf, cpu, gfp);
1209 		if (err) {
1210 			pt_buffer_fini_topa(buf);
1211 			return -ENOMEM;
1212 		}
1213 	}
1214 
1215 	/* link last table to the first one, unless we're double buffering */
1216 	if (intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) {
1217 		TOPA_ENTRY(buf->last, -1)->base = topa_pfn(buf->first);
1218 		TOPA_ENTRY(buf->last, -1)->end = 1;
1219 	}
1220 
1221 	pt_topa_dump(buf);
1222 	return 0;
1223 }
1224 
1225 static int pt_buffer_try_single(struct pt_buffer *buf, int nr_pages)
1226 {
1227 	struct page *p = virt_to_page(buf->data_pages[0]);
1228 	int ret = -ENOTSUPP, order = 0;
1229 
1230 	/*
1231 	 * We can use single range output mode
1232 	 * + in snapshot mode, where we don't need interrupts;
1233 	 * + if the hardware supports it;
1234 	 * + if the entire buffer is one contiguous allocation.
1235 	 */
1236 	if (!buf->snapshot)
1237 		goto out;
1238 
1239 	if (!intel_pt_validate_hw_cap(PT_CAP_single_range_output))
1240 		goto out;
1241 
1242 	if (PagePrivate(p))
1243 		order = page_private(p);
1244 
1245 	if (1 << order != nr_pages)
1246 		goto out;
1247 
1248 	buf->single = true;
1249 	buf->nr_pages = nr_pages;
1250 	ret = 0;
1251 out:
1252 	return ret;
1253 }
1254 
1255 /**
1256  * pt_buffer_setup_aux() - set up topa tables for a PT buffer
1257  * @cpu:	Cpu on which to allocate, -1 means current.
1258  * @pages:	Array of pointers to buffer pages passed from perf core.
1259  * @nr_pages:	Number of pages in the buffer.
1260  * @snapshot:	If this is a snapshot/overwrite counter.
1261  *
1262  * This is a pmu::setup_aux callback that sets up ToPA tables and all the
1263  * bookkeeping for an AUX buffer.
1264  *
1265  * Return:	Our private PT buffer structure.
1266  */
1267 static void *
1268 pt_buffer_setup_aux(struct perf_event *event, void **pages,
1269 		    int nr_pages, bool snapshot)
1270 {
1271 	struct pt_buffer *buf;
1272 	int node, ret, cpu = event->cpu;
1273 
1274 	if (!nr_pages)
1275 		return NULL;
1276 
1277 	/*
1278 	 * Only support AUX sampling in snapshot mode, where we don't
1279 	 * generate NMIs.
1280 	 */
1281 	if (event->attr.aux_sample_size && !snapshot)
1282 		return NULL;
1283 
1284 	if (cpu == -1)
1285 		cpu = raw_smp_processor_id();
1286 	node = cpu_to_node(cpu);
1287 
1288 	buf = kzalloc_node(sizeof(struct pt_buffer), GFP_KERNEL, node);
1289 	if (!buf)
1290 		return NULL;
1291 
1292 	buf->snapshot = snapshot;
1293 	buf->data_pages = pages;
1294 	buf->stop_pos = -1;
1295 	buf->intr_pos = -1;
1296 
1297 	INIT_LIST_HEAD(&buf->tables);
1298 
1299 	ret = pt_buffer_try_single(buf, nr_pages);
1300 	if (!ret)
1301 		return buf;
1302 
1303 	ret = pt_buffer_init_topa(buf, cpu, nr_pages, GFP_KERNEL);
1304 	if (ret) {
1305 		kfree(buf);
1306 		return NULL;
1307 	}
1308 
1309 	return buf;
1310 }
1311 
1312 /**
1313  * pt_buffer_free_aux() - perf AUX deallocation path callback
1314  * @data:	PT buffer.
1315  */
1316 static void pt_buffer_free_aux(void *data)
1317 {
1318 	struct pt_buffer *buf = data;
1319 
1320 	pt_buffer_fini_topa(buf);
1321 	kfree(buf);
1322 }
1323 
1324 static int pt_addr_filters_init(struct perf_event *event)
1325 {
1326 	struct pt_filters *filters;
1327 	int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
1328 
1329 	if (!intel_pt_validate_hw_cap(PT_CAP_num_address_ranges))
1330 		return 0;
1331 
1332 	filters = kzalloc_node(sizeof(struct pt_filters), GFP_KERNEL, node);
1333 	if (!filters)
1334 		return -ENOMEM;
1335 
1336 	if (event->parent)
1337 		memcpy(filters, event->parent->hw.addr_filters,
1338 		       sizeof(*filters));
1339 
1340 	event->hw.addr_filters = filters;
1341 
1342 	return 0;
1343 }
1344 
1345 static void pt_addr_filters_fini(struct perf_event *event)
1346 {
1347 	kfree(event->hw.addr_filters);
1348 	event->hw.addr_filters = NULL;
1349 }
1350 
1351 static inline bool valid_kernel_ip(unsigned long ip)
1352 {
1353 	return virt_addr_valid(ip) && kernel_ip(ip);
1354 }
1355 
1356 static int pt_event_addr_filters_validate(struct list_head *filters)
1357 {
1358 	struct perf_addr_filter *filter;
1359 	int range = 0;
1360 
1361 	list_for_each_entry(filter, filters, entry) {
1362 		/*
1363 		 * PT doesn't support single address triggers and
1364 		 * 'start' filters.
1365 		 */
1366 		if (!filter->size ||
1367 		    filter->action == PERF_ADDR_FILTER_ACTION_START)
1368 			return -EOPNOTSUPP;
1369 
1370 		if (!filter->path.dentry) {
1371 			if (!valid_kernel_ip(filter->offset))
1372 				return -EINVAL;
1373 
1374 			if (!valid_kernel_ip(filter->offset + filter->size))
1375 				return -EINVAL;
1376 		}
1377 
1378 		if (++range > intel_pt_validate_hw_cap(PT_CAP_num_address_ranges))
1379 			return -EOPNOTSUPP;
1380 	}
1381 
1382 	return 0;
1383 }
1384 
1385 static void pt_event_addr_filters_sync(struct perf_event *event)
1386 {
1387 	struct perf_addr_filters_head *head = perf_event_addr_filters(event);
1388 	unsigned long msr_a, msr_b;
1389 	struct perf_addr_filter_range *fr = event->addr_filter_ranges;
1390 	struct pt_filters *filters = event->hw.addr_filters;
1391 	struct perf_addr_filter *filter;
1392 	int range = 0;
1393 
1394 	if (!filters)
1395 		return;
1396 
1397 	list_for_each_entry(filter, &head->list, entry) {
1398 		if (filter->path.dentry && !fr[range].start) {
1399 			msr_a = msr_b = 0;
1400 		} else {
1401 			/* apply the offset */
1402 			msr_a = fr[range].start;
1403 			msr_b = msr_a + fr[range].size - 1;
1404 		}
1405 
1406 		filters->filter[range].msr_a  = msr_a;
1407 		filters->filter[range].msr_b  = msr_b;
1408 		if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER)
1409 			filters->filter[range].config = 1;
1410 		else
1411 			filters->filter[range].config = 2;
1412 		range++;
1413 	}
1414 
1415 	filters->nr_filters = range;
1416 }
1417 
1418 /**
1419  * intel_pt_interrupt() - PT PMI handler
1420  */
1421 void intel_pt_interrupt(void)
1422 {
1423 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1424 	struct pt_buffer *buf;
1425 	struct perf_event *event = pt->handle.event;
1426 
1427 	/*
1428 	 * There may be a dangling PT bit in the interrupt status register
1429 	 * after PT has been disabled by pt_event_stop(). Make sure we don't
1430 	 * do anything (particularly, re-enable) for this event here.
1431 	 */
1432 	if (!READ_ONCE(pt->handle_nmi))
1433 		return;
1434 
1435 	if (!event)
1436 		return;
1437 
1438 	pt_config_stop(event);
1439 
1440 	buf = perf_get_aux(&pt->handle);
1441 	if (!buf)
1442 		return;
1443 
1444 	pt_read_offset(buf);
1445 
1446 	pt_handle_status(pt);
1447 
1448 	pt_update_head(pt);
1449 
1450 	perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0));
1451 
1452 	if (!event->hw.state) {
1453 		int ret;
1454 
1455 		buf = perf_aux_output_begin(&pt->handle, event);
1456 		if (!buf) {
1457 			event->hw.state = PERF_HES_STOPPED;
1458 			return;
1459 		}
1460 
1461 		pt_buffer_reset_offsets(buf, pt->handle.head);
1462 		/* snapshot counters don't use PMI, so it's safe */
1463 		ret = pt_buffer_reset_markers(buf, &pt->handle);
1464 		if (ret) {
1465 			perf_aux_output_end(&pt->handle, 0);
1466 			return;
1467 		}
1468 
1469 		pt_config_buffer(buf);
1470 		pt_config_start(event);
1471 	}
1472 }
1473 
1474 void intel_pt_handle_vmx(int on)
1475 {
1476 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1477 	struct perf_event *event;
1478 	unsigned long flags;
1479 
1480 	/* PT plays nice with VMX, do nothing */
1481 	if (pt_pmu.vmx)
1482 		return;
1483 
1484 	/*
1485 	 * VMXON will clear RTIT_CTL.TraceEn; we need to make
1486 	 * sure to not try to set it while VMX is on. Disable
1487 	 * interrupts to avoid racing with pmu callbacks;
1488 	 * concurrent PMI should be handled fine.
1489 	 */
1490 	local_irq_save(flags);
1491 	WRITE_ONCE(pt->vmx_on, on);
1492 
1493 	/*
1494 	 * If an AUX transaction is in progress, it will contain
1495 	 * gap(s), so flag it PARTIAL to inform the user.
1496 	 */
1497 	event = pt->handle.event;
1498 	if (event)
1499 		perf_aux_output_flag(&pt->handle,
1500 		                     PERF_AUX_FLAG_PARTIAL);
1501 
1502 	/* Turn PTs back on */
1503 	if (!on && event)
1504 		wrmsrl(MSR_IA32_RTIT_CTL, event->hw.config);
1505 
1506 	local_irq_restore(flags);
1507 }
1508 EXPORT_SYMBOL_GPL(intel_pt_handle_vmx);
1509 
1510 /*
1511  * PMU callbacks
1512  */
1513 
1514 static void pt_event_start(struct perf_event *event, int mode)
1515 {
1516 	struct hw_perf_event *hwc = &event->hw;
1517 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1518 	struct pt_buffer *buf;
1519 
1520 	buf = perf_aux_output_begin(&pt->handle, event);
1521 	if (!buf)
1522 		goto fail_stop;
1523 
1524 	pt_buffer_reset_offsets(buf, pt->handle.head);
1525 	if (!buf->snapshot) {
1526 		if (pt_buffer_reset_markers(buf, &pt->handle))
1527 			goto fail_end_stop;
1528 	}
1529 
1530 	WRITE_ONCE(pt->handle_nmi, 1);
1531 	hwc->state = 0;
1532 
1533 	pt_config_buffer(buf);
1534 	pt_config(event);
1535 
1536 	return;
1537 
1538 fail_end_stop:
1539 	perf_aux_output_end(&pt->handle, 0);
1540 fail_stop:
1541 	hwc->state = PERF_HES_STOPPED;
1542 }
1543 
1544 static void pt_event_stop(struct perf_event *event, int mode)
1545 {
1546 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1547 
1548 	/*
1549 	 * Protect against the PMI racing with disabling wrmsr,
1550 	 * see comment in intel_pt_interrupt().
1551 	 */
1552 	WRITE_ONCE(pt->handle_nmi, 0);
1553 
1554 	pt_config_stop(event);
1555 
1556 	if (event->hw.state == PERF_HES_STOPPED)
1557 		return;
1558 
1559 	event->hw.state = PERF_HES_STOPPED;
1560 
1561 	if (mode & PERF_EF_UPDATE) {
1562 		struct pt_buffer *buf = perf_get_aux(&pt->handle);
1563 
1564 		if (!buf)
1565 			return;
1566 
1567 		if (WARN_ON_ONCE(pt->handle.event != event))
1568 			return;
1569 
1570 		pt_read_offset(buf);
1571 
1572 		pt_handle_status(pt);
1573 
1574 		pt_update_head(pt);
1575 
1576 		if (buf->snapshot)
1577 			pt->handle.head =
1578 				local_xchg(&buf->data_size,
1579 					   buf->nr_pages << PAGE_SHIFT);
1580 		perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0));
1581 	}
1582 }
1583 
1584 static long pt_event_snapshot_aux(struct perf_event *event,
1585 				  struct perf_output_handle *handle,
1586 				  unsigned long size)
1587 {
1588 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1589 	struct pt_buffer *buf = perf_get_aux(&pt->handle);
1590 	unsigned long from = 0, to;
1591 	long ret;
1592 
1593 	if (WARN_ON_ONCE(!buf))
1594 		return 0;
1595 
1596 	/*
1597 	 * Sampling is only allowed on snapshot events;
1598 	 * see pt_buffer_setup_aux().
1599 	 */
1600 	if (WARN_ON_ONCE(!buf->snapshot))
1601 		return 0;
1602 
1603 	/*
1604 	 * Here, handle_nmi tells us if the tracing is on
1605 	 */
1606 	if (READ_ONCE(pt->handle_nmi))
1607 		pt_config_stop(event);
1608 
1609 	pt_read_offset(buf);
1610 	pt_update_head(pt);
1611 
1612 	to = local_read(&buf->data_size);
1613 	if (to < size)
1614 		from = buf->nr_pages << PAGE_SHIFT;
1615 	from += to - size;
1616 
1617 	ret = perf_output_copy_aux(&pt->handle, handle, from, to);
1618 
1619 	/*
1620 	 * If the tracing was on when we turned up, restart it.
1621 	 * Compiler barrier not needed as we couldn't have been
1622 	 * preempted by anything that touches pt->handle_nmi.
1623 	 */
1624 	if (pt->handle_nmi)
1625 		pt_config_start(event);
1626 
1627 	return ret;
1628 }
1629 
1630 static void pt_event_del(struct perf_event *event, int mode)
1631 {
1632 	pt_event_stop(event, PERF_EF_UPDATE);
1633 }
1634 
1635 static int pt_event_add(struct perf_event *event, int mode)
1636 {
1637 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1638 	struct hw_perf_event *hwc = &event->hw;
1639 	int ret = -EBUSY;
1640 
1641 	if (pt->handle.event)
1642 		goto fail;
1643 
1644 	if (mode & PERF_EF_START) {
1645 		pt_event_start(event, 0);
1646 		ret = -EINVAL;
1647 		if (hwc->state == PERF_HES_STOPPED)
1648 			goto fail;
1649 	} else {
1650 		hwc->state = PERF_HES_STOPPED;
1651 	}
1652 
1653 	ret = 0;
1654 fail:
1655 
1656 	return ret;
1657 }
1658 
1659 static void pt_event_read(struct perf_event *event)
1660 {
1661 }
1662 
1663 static void pt_event_destroy(struct perf_event *event)
1664 {
1665 	pt_addr_filters_fini(event);
1666 	x86_del_exclusive(x86_lbr_exclusive_pt);
1667 }
1668 
1669 static int pt_event_init(struct perf_event *event)
1670 {
1671 	if (event->attr.type != pt_pmu.pmu.type)
1672 		return -ENOENT;
1673 
1674 	if (!pt_event_valid(event))
1675 		return -EINVAL;
1676 
1677 	if (x86_add_exclusive(x86_lbr_exclusive_pt))
1678 		return -EBUSY;
1679 
1680 	if (pt_addr_filters_init(event)) {
1681 		x86_del_exclusive(x86_lbr_exclusive_pt);
1682 		return -ENOMEM;
1683 	}
1684 
1685 	event->destroy = pt_event_destroy;
1686 
1687 	return 0;
1688 }
1689 
1690 void cpu_emergency_stop_pt(void)
1691 {
1692 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1693 
1694 	if (pt->handle.event)
1695 		pt_event_stop(pt->handle.event, PERF_EF_UPDATE);
1696 }
1697 
1698 int is_intel_pt_event(struct perf_event *event)
1699 {
1700 	return event->pmu == &pt_pmu.pmu;
1701 }
1702 
1703 static __init int pt_init(void)
1704 {
1705 	int ret, cpu, prior_warn = 0;
1706 
1707 	BUILD_BUG_ON(sizeof(struct topa) > PAGE_SIZE);
1708 
1709 	if (!boot_cpu_has(X86_FEATURE_INTEL_PT))
1710 		return -ENODEV;
1711 
1712 	cpus_read_lock();
1713 	for_each_online_cpu(cpu) {
1714 		u64 ctl;
1715 
1716 		ret = rdmsrl_safe_on_cpu(cpu, MSR_IA32_RTIT_CTL, &ctl);
1717 		if (!ret && (ctl & RTIT_CTL_TRACEEN))
1718 			prior_warn++;
1719 	}
1720 	cpus_read_unlock();
1721 
1722 	if (prior_warn) {
1723 		x86_add_exclusive(x86_lbr_exclusive_pt);
1724 		pr_warn("PT is enabled at boot time, doing nothing\n");
1725 
1726 		return -EBUSY;
1727 	}
1728 
1729 	ret = pt_pmu_hw_init();
1730 	if (ret)
1731 		return ret;
1732 
1733 	if (!intel_pt_validate_hw_cap(PT_CAP_topa_output)) {
1734 		pr_warn("ToPA output is not supported on this CPU\n");
1735 		return -ENODEV;
1736 	}
1737 
1738 	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
1739 		pt_pmu.pmu.capabilities = PERF_PMU_CAP_AUX_NO_SG;
1740 
1741 	pt_pmu.pmu.capabilities	|= PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE;
1742 	pt_pmu.pmu.attr_groups		 = pt_attr_groups;
1743 	pt_pmu.pmu.task_ctx_nr		 = perf_sw_context;
1744 	pt_pmu.pmu.event_init		 = pt_event_init;
1745 	pt_pmu.pmu.add			 = pt_event_add;
1746 	pt_pmu.pmu.del			 = pt_event_del;
1747 	pt_pmu.pmu.start		 = pt_event_start;
1748 	pt_pmu.pmu.stop			 = pt_event_stop;
1749 	pt_pmu.pmu.snapshot_aux		 = pt_event_snapshot_aux;
1750 	pt_pmu.pmu.read			 = pt_event_read;
1751 	pt_pmu.pmu.setup_aux		 = pt_buffer_setup_aux;
1752 	pt_pmu.pmu.free_aux		 = pt_buffer_free_aux;
1753 	pt_pmu.pmu.addr_filters_sync     = pt_event_addr_filters_sync;
1754 	pt_pmu.pmu.addr_filters_validate = pt_event_addr_filters_validate;
1755 	pt_pmu.pmu.nr_addr_filters       =
1756 		intel_pt_validate_hw_cap(PT_CAP_num_address_ranges);
1757 
1758 	ret = perf_pmu_register(&pt_pmu.pmu, "intel_pt", -1);
1759 
1760 	return ret;
1761 }
1762 arch_initcall(pt_init);
1763