1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Intel(R) Processor Trace PMU driver for perf 4 * Copyright (c) 2013-2014, Intel Corporation. 5 * 6 * Intel PT is specified in the Intel Architecture Instruction Set Extensions 7 * Programming Reference: 8 * http://software.intel.com/en-us/intel-isa-extensions 9 */ 10 11 #undef DEBUG 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/types.h> 16 #include <linux/slab.h> 17 #include <linux/device.h> 18 19 #include <asm/perf_event.h> 20 #include <asm/insn.h> 21 #include <asm/io.h> 22 #include <asm/intel_pt.h> 23 #include <asm/intel-family.h> 24 25 #include "../perf_event.h" 26 #include "pt.h" 27 28 static DEFINE_PER_CPU(struct pt, pt_ctx); 29 30 static struct pt_pmu pt_pmu; 31 32 /* 33 * Capabilities of Intel PT hardware, such as number of address bits or 34 * supported output schemes, are cached and exported to userspace as "caps" 35 * attribute group of pt pmu device 36 * (/sys/bus/event_source/devices/intel_pt/caps/) so that userspace can store 37 * relevant bits together with intel_pt traces. 38 * 39 * These are necessary for both trace decoding (payloads_lip, contains address 40 * width encoded in IP-related packets), and event configuration (bitmasks with 41 * permitted values for certain bit fields). 42 */ 43 #define PT_CAP(_n, _l, _r, _m) \ 44 [PT_CAP_ ## _n] = { .name = __stringify(_n), .leaf = _l, \ 45 .reg = _r, .mask = _m } 46 47 static struct pt_cap_desc { 48 const char *name; 49 u32 leaf; 50 u8 reg; 51 u32 mask; 52 } pt_caps[] = { 53 PT_CAP(max_subleaf, 0, CPUID_EAX, 0xffffffff), 54 PT_CAP(cr3_filtering, 0, CPUID_EBX, BIT(0)), 55 PT_CAP(psb_cyc, 0, CPUID_EBX, BIT(1)), 56 PT_CAP(ip_filtering, 0, CPUID_EBX, BIT(2)), 57 PT_CAP(mtc, 0, CPUID_EBX, BIT(3)), 58 PT_CAP(ptwrite, 0, CPUID_EBX, BIT(4)), 59 PT_CAP(power_event_trace, 0, CPUID_EBX, BIT(5)), 60 PT_CAP(topa_output, 0, CPUID_ECX, BIT(0)), 61 PT_CAP(topa_multiple_entries, 0, CPUID_ECX, BIT(1)), 62 PT_CAP(single_range_output, 0, CPUID_ECX, BIT(2)), 63 PT_CAP(output_subsys, 0, CPUID_ECX, BIT(3)), 64 PT_CAP(payloads_lip, 0, CPUID_ECX, BIT(31)), 65 PT_CAP(num_address_ranges, 1, CPUID_EAX, 0x7), 66 PT_CAP(mtc_periods, 1, CPUID_EAX, 0xffff0000), 67 PT_CAP(cycle_thresholds, 1, CPUID_EBX, 0xffff), 68 PT_CAP(psb_periods, 1, CPUID_EBX, 0xffff0000), 69 }; 70 71 u32 intel_pt_validate_cap(u32 *caps, enum pt_capabilities capability) 72 { 73 struct pt_cap_desc *cd = &pt_caps[capability]; 74 u32 c = caps[cd->leaf * PT_CPUID_REGS_NUM + cd->reg]; 75 unsigned int shift = __ffs(cd->mask); 76 77 return (c & cd->mask) >> shift; 78 } 79 EXPORT_SYMBOL_GPL(intel_pt_validate_cap); 80 81 u32 intel_pt_validate_hw_cap(enum pt_capabilities cap) 82 { 83 return intel_pt_validate_cap(pt_pmu.caps, cap); 84 } 85 EXPORT_SYMBOL_GPL(intel_pt_validate_hw_cap); 86 87 static ssize_t pt_cap_show(struct device *cdev, 88 struct device_attribute *attr, 89 char *buf) 90 { 91 struct dev_ext_attribute *ea = 92 container_of(attr, struct dev_ext_attribute, attr); 93 enum pt_capabilities cap = (long)ea->var; 94 95 return snprintf(buf, PAGE_SIZE, "%x\n", intel_pt_validate_hw_cap(cap)); 96 } 97 98 static struct attribute_group pt_cap_group __ro_after_init = { 99 .name = "caps", 100 }; 101 102 PMU_FORMAT_ATTR(pt, "config:0" ); 103 PMU_FORMAT_ATTR(cyc, "config:1" ); 104 PMU_FORMAT_ATTR(pwr_evt, "config:4" ); 105 PMU_FORMAT_ATTR(fup_on_ptw, "config:5" ); 106 PMU_FORMAT_ATTR(mtc, "config:9" ); 107 PMU_FORMAT_ATTR(tsc, "config:10" ); 108 PMU_FORMAT_ATTR(noretcomp, "config:11" ); 109 PMU_FORMAT_ATTR(ptw, "config:12" ); 110 PMU_FORMAT_ATTR(branch, "config:13" ); 111 PMU_FORMAT_ATTR(mtc_period, "config:14-17" ); 112 PMU_FORMAT_ATTR(cyc_thresh, "config:19-22" ); 113 PMU_FORMAT_ATTR(psb_period, "config:24-27" ); 114 115 static struct attribute *pt_formats_attr[] = { 116 &format_attr_pt.attr, 117 &format_attr_cyc.attr, 118 &format_attr_pwr_evt.attr, 119 &format_attr_fup_on_ptw.attr, 120 &format_attr_mtc.attr, 121 &format_attr_tsc.attr, 122 &format_attr_noretcomp.attr, 123 &format_attr_ptw.attr, 124 &format_attr_branch.attr, 125 &format_attr_mtc_period.attr, 126 &format_attr_cyc_thresh.attr, 127 &format_attr_psb_period.attr, 128 NULL, 129 }; 130 131 static struct attribute_group pt_format_group = { 132 .name = "format", 133 .attrs = pt_formats_attr, 134 }; 135 136 static ssize_t 137 pt_timing_attr_show(struct device *dev, struct device_attribute *attr, 138 char *page) 139 { 140 struct perf_pmu_events_attr *pmu_attr = 141 container_of(attr, struct perf_pmu_events_attr, attr); 142 143 switch (pmu_attr->id) { 144 case 0: 145 return sprintf(page, "%lu\n", pt_pmu.max_nonturbo_ratio); 146 case 1: 147 return sprintf(page, "%u:%u\n", 148 pt_pmu.tsc_art_num, 149 pt_pmu.tsc_art_den); 150 default: 151 break; 152 } 153 154 return -EINVAL; 155 } 156 157 PMU_EVENT_ATTR(max_nonturbo_ratio, timing_attr_max_nonturbo_ratio, 0, 158 pt_timing_attr_show); 159 PMU_EVENT_ATTR(tsc_art_ratio, timing_attr_tsc_art_ratio, 1, 160 pt_timing_attr_show); 161 162 static struct attribute *pt_timing_attr[] = { 163 &timing_attr_max_nonturbo_ratio.attr.attr, 164 &timing_attr_tsc_art_ratio.attr.attr, 165 NULL, 166 }; 167 168 static struct attribute_group pt_timing_group = { 169 .attrs = pt_timing_attr, 170 }; 171 172 static const struct attribute_group *pt_attr_groups[] = { 173 &pt_cap_group, 174 &pt_format_group, 175 &pt_timing_group, 176 NULL, 177 }; 178 179 static int __init pt_pmu_hw_init(void) 180 { 181 struct dev_ext_attribute *de_attrs; 182 struct attribute **attrs; 183 size_t size; 184 u64 reg; 185 int ret; 186 long i; 187 188 rdmsrl(MSR_PLATFORM_INFO, reg); 189 pt_pmu.max_nonturbo_ratio = (reg & 0xff00) >> 8; 190 191 /* 192 * if available, read in TSC to core crystal clock ratio, 193 * otherwise, zero for numerator stands for "not enumerated" 194 * as per SDM 195 */ 196 if (boot_cpu_data.cpuid_level >= CPUID_TSC_LEAF) { 197 u32 eax, ebx, ecx, edx; 198 199 cpuid(CPUID_TSC_LEAF, &eax, &ebx, &ecx, &edx); 200 201 pt_pmu.tsc_art_num = ebx; 202 pt_pmu.tsc_art_den = eax; 203 } 204 205 /* model-specific quirks */ 206 switch (boot_cpu_data.x86_model) { 207 case INTEL_FAM6_BROADWELL: 208 case INTEL_FAM6_BROADWELL_D: 209 case INTEL_FAM6_BROADWELL_G: 210 case INTEL_FAM6_BROADWELL_X: 211 /* not setting BRANCH_EN will #GP, erratum BDM106 */ 212 pt_pmu.branch_en_always_on = true; 213 break; 214 default: 215 break; 216 } 217 218 if (boot_cpu_has(X86_FEATURE_VMX)) { 219 /* 220 * Intel SDM, 36.5 "Tracing post-VMXON" says that 221 * "IA32_VMX_MISC[bit 14]" being 1 means PT can trace 222 * post-VMXON. 223 */ 224 rdmsrl(MSR_IA32_VMX_MISC, reg); 225 if (reg & BIT(14)) 226 pt_pmu.vmx = true; 227 } 228 229 for (i = 0; i < PT_CPUID_LEAVES; i++) { 230 cpuid_count(20, i, 231 &pt_pmu.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM], 232 &pt_pmu.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM], 233 &pt_pmu.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM], 234 &pt_pmu.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM]); 235 } 236 237 ret = -ENOMEM; 238 size = sizeof(struct attribute *) * (ARRAY_SIZE(pt_caps)+1); 239 attrs = kzalloc(size, GFP_KERNEL); 240 if (!attrs) 241 goto fail; 242 243 size = sizeof(struct dev_ext_attribute) * (ARRAY_SIZE(pt_caps)+1); 244 de_attrs = kzalloc(size, GFP_KERNEL); 245 if (!de_attrs) 246 goto fail; 247 248 for (i = 0; i < ARRAY_SIZE(pt_caps); i++) { 249 struct dev_ext_attribute *de_attr = de_attrs + i; 250 251 de_attr->attr.attr.name = pt_caps[i].name; 252 253 sysfs_attr_init(&de_attr->attr.attr); 254 255 de_attr->attr.attr.mode = S_IRUGO; 256 de_attr->attr.show = pt_cap_show; 257 de_attr->var = (void *)i; 258 259 attrs[i] = &de_attr->attr.attr; 260 } 261 262 pt_cap_group.attrs = attrs; 263 264 return 0; 265 266 fail: 267 kfree(attrs); 268 269 return ret; 270 } 271 272 #define RTIT_CTL_CYC_PSB (RTIT_CTL_CYCLEACC | \ 273 RTIT_CTL_CYC_THRESH | \ 274 RTIT_CTL_PSB_FREQ) 275 276 #define RTIT_CTL_MTC (RTIT_CTL_MTC_EN | \ 277 RTIT_CTL_MTC_RANGE) 278 279 #define RTIT_CTL_PTW (RTIT_CTL_PTW_EN | \ 280 RTIT_CTL_FUP_ON_PTW) 281 282 /* 283 * Bit 0 (TraceEn) in the attr.config is meaningless as the 284 * corresponding bit in the RTIT_CTL can only be controlled 285 * by the driver; therefore, repurpose it to mean: pass 286 * through the bit that was previously assumed to be always 287 * on for PT, thereby allowing the user to *not* set it if 288 * they so wish. See also pt_event_valid() and pt_config(). 289 */ 290 #define RTIT_CTL_PASSTHROUGH RTIT_CTL_TRACEEN 291 292 #define PT_CONFIG_MASK (RTIT_CTL_TRACEEN | \ 293 RTIT_CTL_TSC_EN | \ 294 RTIT_CTL_DISRETC | \ 295 RTIT_CTL_BRANCH_EN | \ 296 RTIT_CTL_CYC_PSB | \ 297 RTIT_CTL_MTC | \ 298 RTIT_CTL_PWR_EVT_EN | \ 299 RTIT_CTL_FUP_ON_PTW | \ 300 RTIT_CTL_PTW_EN) 301 302 static bool pt_event_valid(struct perf_event *event) 303 { 304 u64 config = event->attr.config; 305 u64 allowed, requested; 306 307 if ((config & PT_CONFIG_MASK) != config) 308 return false; 309 310 if (config & RTIT_CTL_CYC_PSB) { 311 if (!intel_pt_validate_hw_cap(PT_CAP_psb_cyc)) 312 return false; 313 314 allowed = intel_pt_validate_hw_cap(PT_CAP_psb_periods); 315 requested = (config & RTIT_CTL_PSB_FREQ) >> 316 RTIT_CTL_PSB_FREQ_OFFSET; 317 if (requested && (!(allowed & BIT(requested)))) 318 return false; 319 320 allowed = intel_pt_validate_hw_cap(PT_CAP_cycle_thresholds); 321 requested = (config & RTIT_CTL_CYC_THRESH) >> 322 RTIT_CTL_CYC_THRESH_OFFSET; 323 if (requested && (!(allowed & BIT(requested)))) 324 return false; 325 } 326 327 if (config & RTIT_CTL_MTC) { 328 /* 329 * In the unlikely case that CPUID lists valid mtc periods, 330 * but not the mtc capability, drop out here. 331 * 332 * Spec says that setting mtc period bits while mtc bit in 333 * CPUID is 0 will #GP, so better safe than sorry. 334 */ 335 if (!intel_pt_validate_hw_cap(PT_CAP_mtc)) 336 return false; 337 338 allowed = intel_pt_validate_hw_cap(PT_CAP_mtc_periods); 339 if (!allowed) 340 return false; 341 342 requested = (config & RTIT_CTL_MTC_RANGE) >> 343 RTIT_CTL_MTC_RANGE_OFFSET; 344 345 if (!(allowed & BIT(requested))) 346 return false; 347 } 348 349 if (config & RTIT_CTL_PWR_EVT_EN && 350 !intel_pt_validate_hw_cap(PT_CAP_power_event_trace)) 351 return false; 352 353 if (config & RTIT_CTL_PTW) { 354 if (!intel_pt_validate_hw_cap(PT_CAP_ptwrite)) 355 return false; 356 357 /* FUPonPTW without PTW doesn't make sense */ 358 if ((config & RTIT_CTL_FUP_ON_PTW) && 359 !(config & RTIT_CTL_PTW_EN)) 360 return false; 361 } 362 363 /* 364 * Setting bit 0 (TraceEn in RTIT_CTL MSR) in the attr.config 365 * clears the assumption that BranchEn must always be enabled, 366 * as was the case with the first implementation of PT. 367 * If this bit is not set, the legacy behavior is preserved 368 * for compatibility with the older userspace. 369 * 370 * Re-using bit 0 for this purpose is fine because it is never 371 * directly set by the user; previous attempts at setting it in 372 * the attr.config resulted in -EINVAL. 373 */ 374 if (config & RTIT_CTL_PASSTHROUGH) { 375 /* 376 * Disallow not setting BRANCH_EN where BRANCH_EN is 377 * always required. 378 */ 379 if (pt_pmu.branch_en_always_on && 380 !(config & RTIT_CTL_BRANCH_EN)) 381 return false; 382 } else { 383 /* 384 * Disallow BRANCH_EN without the PASSTHROUGH. 385 */ 386 if (config & RTIT_CTL_BRANCH_EN) 387 return false; 388 } 389 390 return true; 391 } 392 393 /* 394 * PT configuration helpers 395 * These all are cpu affine and operate on a local PT 396 */ 397 398 static void pt_config_start(struct perf_event *event) 399 { 400 struct pt *pt = this_cpu_ptr(&pt_ctx); 401 u64 ctl = event->hw.config; 402 403 ctl |= RTIT_CTL_TRACEEN; 404 if (READ_ONCE(pt->vmx_on)) 405 perf_aux_output_flag(&pt->handle, PERF_AUX_FLAG_PARTIAL); 406 else 407 wrmsrl(MSR_IA32_RTIT_CTL, ctl); 408 409 WRITE_ONCE(event->hw.config, ctl); 410 } 411 412 /* Address ranges and their corresponding msr configuration registers */ 413 static const struct pt_address_range { 414 unsigned long msr_a; 415 unsigned long msr_b; 416 unsigned int reg_off; 417 } pt_address_ranges[] = { 418 { 419 .msr_a = MSR_IA32_RTIT_ADDR0_A, 420 .msr_b = MSR_IA32_RTIT_ADDR0_B, 421 .reg_off = RTIT_CTL_ADDR0_OFFSET, 422 }, 423 { 424 .msr_a = MSR_IA32_RTIT_ADDR1_A, 425 .msr_b = MSR_IA32_RTIT_ADDR1_B, 426 .reg_off = RTIT_CTL_ADDR1_OFFSET, 427 }, 428 { 429 .msr_a = MSR_IA32_RTIT_ADDR2_A, 430 .msr_b = MSR_IA32_RTIT_ADDR2_B, 431 .reg_off = RTIT_CTL_ADDR2_OFFSET, 432 }, 433 { 434 .msr_a = MSR_IA32_RTIT_ADDR3_A, 435 .msr_b = MSR_IA32_RTIT_ADDR3_B, 436 .reg_off = RTIT_CTL_ADDR3_OFFSET, 437 } 438 }; 439 440 static u64 pt_config_filters(struct perf_event *event) 441 { 442 struct pt_filters *filters = event->hw.addr_filters; 443 struct pt *pt = this_cpu_ptr(&pt_ctx); 444 unsigned int range = 0; 445 u64 rtit_ctl = 0; 446 447 if (!filters) 448 return 0; 449 450 perf_event_addr_filters_sync(event); 451 452 for (range = 0; range < filters->nr_filters; range++) { 453 struct pt_filter *filter = &filters->filter[range]; 454 455 /* 456 * Note, if the range has zero start/end addresses due 457 * to its dynamic object not being loaded yet, we just 458 * go ahead and program zeroed range, which will simply 459 * produce no data. Note^2: if executable code at 0x0 460 * is a concern, we can set up an "invalid" configuration 461 * such as msr_b < msr_a. 462 */ 463 464 /* avoid redundant msr writes */ 465 if (pt->filters.filter[range].msr_a != filter->msr_a) { 466 wrmsrl(pt_address_ranges[range].msr_a, filter->msr_a); 467 pt->filters.filter[range].msr_a = filter->msr_a; 468 } 469 470 if (pt->filters.filter[range].msr_b != filter->msr_b) { 471 wrmsrl(pt_address_ranges[range].msr_b, filter->msr_b); 472 pt->filters.filter[range].msr_b = filter->msr_b; 473 } 474 475 rtit_ctl |= filter->config << pt_address_ranges[range].reg_off; 476 } 477 478 return rtit_ctl; 479 } 480 481 static void pt_config(struct perf_event *event) 482 { 483 struct pt *pt = this_cpu_ptr(&pt_ctx); 484 struct pt_buffer *buf = perf_get_aux(&pt->handle); 485 u64 reg; 486 487 /* First round: clear STATUS, in particular the PSB byte counter. */ 488 if (!event->hw.config) { 489 perf_event_itrace_started(event); 490 wrmsrl(MSR_IA32_RTIT_STATUS, 0); 491 } 492 493 reg = pt_config_filters(event); 494 reg |= RTIT_CTL_TRACEEN; 495 if (!buf->single) 496 reg |= RTIT_CTL_TOPA; 497 498 /* 499 * Previously, we had BRANCH_EN on by default, but now that PT has 500 * grown features outside of branch tracing, it is useful to allow 501 * the user to disable it. Setting bit 0 in the event's attr.config 502 * allows BRANCH_EN to pass through instead of being always on. See 503 * also the comment in pt_event_valid(). 504 */ 505 if (event->attr.config & BIT(0)) { 506 reg |= event->attr.config & RTIT_CTL_BRANCH_EN; 507 } else { 508 reg |= RTIT_CTL_BRANCH_EN; 509 } 510 511 if (!event->attr.exclude_kernel) 512 reg |= RTIT_CTL_OS; 513 if (!event->attr.exclude_user) 514 reg |= RTIT_CTL_USR; 515 516 reg |= (event->attr.config & PT_CONFIG_MASK); 517 518 event->hw.config = reg; 519 pt_config_start(event); 520 } 521 522 static void pt_config_stop(struct perf_event *event) 523 { 524 struct pt *pt = this_cpu_ptr(&pt_ctx); 525 u64 ctl = READ_ONCE(event->hw.config); 526 527 /* may be already stopped by a PMI */ 528 if (!(ctl & RTIT_CTL_TRACEEN)) 529 return; 530 531 ctl &= ~RTIT_CTL_TRACEEN; 532 if (!READ_ONCE(pt->vmx_on)) 533 wrmsrl(MSR_IA32_RTIT_CTL, ctl); 534 535 WRITE_ONCE(event->hw.config, ctl); 536 537 /* 538 * A wrmsr that disables trace generation serializes other PT 539 * registers and causes all data packets to be written to memory, 540 * but a fence is required for the data to become globally visible. 541 * 542 * The below WMB, separating data store and aux_head store matches 543 * the consumer's RMB that separates aux_head load and data load. 544 */ 545 wmb(); 546 } 547 548 /** 549 * struct topa - ToPA metadata 550 * @list: linkage to struct pt_buffer's list of tables 551 * @offset: offset of the first entry in this table in the buffer 552 * @size: total size of all entries in this table 553 * @last: index of the last initialized entry in this table 554 * @z_count: how many times the first entry repeats 555 */ 556 struct topa { 557 struct list_head list; 558 u64 offset; 559 size_t size; 560 int last; 561 unsigned int z_count; 562 }; 563 564 /* 565 * Keep ToPA table-related metadata on the same page as the actual table, 566 * taking up a few words from the top 567 */ 568 569 #define TENTS_PER_PAGE \ 570 ((PAGE_SIZE - sizeof(struct topa)) / sizeof(struct topa_entry)) 571 572 /** 573 * struct topa_page - page-sized ToPA table with metadata at the top 574 * @table: actual ToPA table entries, as understood by PT hardware 575 * @topa: metadata 576 */ 577 struct topa_page { 578 struct topa_entry table[TENTS_PER_PAGE]; 579 struct topa topa; 580 }; 581 582 static inline struct topa_page *topa_to_page(struct topa *topa) 583 { 584 return container_of(topa, struct topa_page, topa); 585 } 586 587 static inline struct topa_page *topa_entry_to_page(struct topa_entry *te) 588 { 589 return (struct topa_page *)((unsigned long)te & PAGE_MASK); 590 } 591 592 static inline phys_addr_t topa_pfn(struct topa *topa) 593 { 594 return PFN_DOWN(virt_to_phys(topa_to_page(topa))); 595 } 596 597 /* make -1 stand for the last table entry */ 598 #define TOPA_ENTRY(t, i) \ 599 ((i) == -1 \ 600 ? &topa_to_page(t)->table[(t)->last] \ 601 : &topa_to_page(t)->table[(i)]) 602 #define TOPA_ENTRY_SIZE(t, i) (sizes(TOPA_ENTRY((t), (i))->size)) 603 #define TOPA_ENTRY_PAGES(t, i) (1 << TOPA_ENTRY((t), (i))->size) 604 605 static void pt_config_buffer(struct pt_buffer *buf) 606 { 607 struct pt *pt = this_cpu_ptr(&pt_ctx); 608 u64 reg, mask; 609 void *base; 610 611 if (buf->single) { 612 base = buf->data_pages[0]; 613 mask = (buf->nr_pages * PAGE_SIZE - 1) >> 7; 614 } else { 615 base = topa_to_page(buf->cur)->table; 616 mask = (u64)buf->cur_idx; 617 } 618 619 reg = virt_to_phys(base); 620 if (pt->output_base != reg) { 621 pt->output_base = reg; 622 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, reg); 623 } 624 625 reg = 0x7f | (mask << 7) | ((u64)buf->output_off << 32); 626 if (pt->output_mask != reg) { 627 pt->output_mask = reg; 628 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, reg); 629 } 630 } 631 632 /** 633 * topa_alloc() - allocate page-sized ToPA table 634 * @cpu: CPU on which to allocate. 635 * @gfp: Allocation flags. 636 * 637 * Return: On success, return the pointer to ToPA table page. 638 */ 639 static struct topa *topa_alloc(int cpu, gfp_t gfp) 640 { 641 int node = cpu_to_node(cpu); 642 struct topa_page *tp; 643 struct page *p; 644 645 p = alloc_pages_node(node, gfp | __GFP_ZERO, 0); 646 if (!p) 647 return NULL; 648 649 tp = page_address(p); 650 tp->topa.last = 0; 651 652 /* 653 * In case of singe-entry ToPA, always put the self-referencing END 654 * link as the 2nd entry in the table 655 */ 656 if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) { 657 TOPA_ENTRY(&tp->topa, 1)->base = page_to_phys(p) >> TOPA_SHIFT; 658 TOPA_ENTRY(&tp->topa, 1)->end = 1; 659 } 660 661 return &tp->topa; 662 } 663 664 /** 665 * topa_free() - free a page-sized ToPA table 666 * @topa: Table to deallocate. 667 */ 668 static void topa_free(struct topa *topa) 669 { 670 free_page((unsigned long)topa); 671 } 672 673 /** 674 * topa_insert_table() - insert a ToPA table into a buffer 675 * @buf: PT buffer that's being extended. 676 * @topa: New topa table to be inserted. 677 * 678 * If it's the first table in this buffer, set up buffer's pointers 679 * accordingly; otherwise, add a END=1 link entry to @topa to the current 680 * "last" table and adjust the last table pointer to @topa. 681 */ 682 static void topa_insert_table(struct pt_buffer *buf, struct topa *topa) 683 { 684 struct topa *last = buf->last; 685 686 list_add_tail(&topa->list, &buf->tables); 687 688 if (!buf->first) { 689 buf->first = buf->last = buf->cur = topa; 690 return; 691 } 692 693 topa->offset = last->offset + last->size; 694 buf->last = topa; 695 696 if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) 697 return; 698 699 BUG_ON(last->last != TENTS_PER_PAGE - 1); 700 701 TOPA_ENTRY(last, -1)->base = topa_pfn(topa); 702 TOPA_ENTRY(last, -1)->end = 1; 703 } 704 705 /** 706 * topa_table_full() - check if a ToPA table is filled up 707 * @topa: ToPA table. 708 */ 709 static bool topa_table_full(struct topa *topa) 710 { 711 /* single-entry ToPA is a special case */ 712 if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) 713 return !!topa->last; 714 715 return topa->last == TENTS_PER_PAGE - 1; 716 } 717 718 /** 719 * topa_insert_pages() - create a list of ToPA tables 720 * @buf: PT buffer being initialized. 721 * @gfp: Allocation flags. 722 * 723 * This initializes a list of ToPA tables with entries from 724 * the data_pages provided by rb_alloc_aux(). 725 * 726 * Return: 0 on success or error code. 727 */ 728 static int topa_insert_pages(struct pt_buffer *buf, int cpu, gfp_t gfp) 729 { 730 struct topa *topa = buf->last; 731 int order = 0; 732 struct page *p; 733 734 p = virt_to_page(buf->data_pages[buf->nr_pages]); 735 if (PagePrivate(p)) 736 order = page_private(p); 737 738 if (topa_table_full(topa)) { 739 topa = topa_alloc(cpu, gfp); 740 if (!topa) 741 return -ENOMEM; 742 743 topa_insert_table(buf, topa); 744 } 745 746 if (topa->z_count == topa->last - 1) { 747 if (order == TOPA_ENTRY(topa, topa->last - 1)->size) 748 topa->z_count++; 749 } 750 751 TOPA_ENTRY(topa, -1)->base = page_to_phys(p) >> TOPA_SHIFT; 752 TOPA_ENTRY(topa, -1)->size = order; 753 if (!buf->snapshot && 754 !intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) { 755 TOPA_ENTRY(topa, -1)->intr = 1; 756 TOPA_ENTRY(topa, -1)->stop = 1; 757 } 758 759 topa->last++; 760 topa->size += sizes(order); 761 762 buf->nr_pages += 1ul << order; 763 764 return 0; 765 } 766 767 /** 768 * pt_topa_dump() - print ToPA tables and their entries 769 * @buf: PT buffer. 770 */ 771 static void pt_topa_dump(struct pt_buffer *buf) 772 { 773 struct topa *topa; 774 775 list_for_each_entry(topa, &buf->tables, list) { 776 struct topa_page *tp = topa_to_page(topa); 777 int i; 778 779 pr_debug("# table @%p, off %llx size %zx\n", tp->table, 780 topa->offset, topa->size); 781 for (i = 0; i < TENTS_PER_PAGE; i++) { 782 pr_debug("# entry @%p (%lx sz %u %c%c%c) raw=%16llx\n", 783 &tp->table[i], 784 (unsigned long)tp->table[i].base << TOPA_SHIFT, 785 sizes(tp->table[i].size), 786 tp->table[i].end ? 'E' : ' ', 787 tp->table[i].intr ? 'I' : ' ', 788 tp->table[i].stop ? 'S' : ' ', 789 *(u64 *)&tp->table[i]); 790 if ((intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) && 791 tp->table[i].stop) || 792 tp->table[i].end) 793 break; 794 if (!i && topa->z_count) 795 i += topa->z_count; 796 } 797 } 798 } 799 800 /** 801 * pt_buffer_advance() - advance to the next output region 802 * @buf: PT buffer. 803 * 804 * Advance the current pointers in the buffer to the next ToPA entry. 805 */ 806 static void pt_buffer_advance(struct pt_buffer *buf) 807 { 808 buf->output_off = 0; 809 buf->cur_idx++; 810 811 if (buf->cur_idx == buf->cur->last) { 812 if (buf->cur == buf->last) 813 buf->cur = buf->first; 814 else 815 buf->cur = list_entry(buf->cur->list.next, struct topa, 816 list); 817 buf->cur_idx = 0; 818 } 819 } 820 821 /** 822 * pt_update_head() - calculate current offsets and sizes 823 * @pt: Per-cpu pt context. 824 * 825 * Update buffer's current write pointer position and data size. 826 */ 827 static void pt_update_head(struct pt *pt) 828 { 829 struct pt_buffer *buf = perf_get_aux(&pt->handle); 830 u64 topa_idx, base, old; 831 832 if (buf->single) { 833 local_set(&buf->data_size, buf->output_off); 834 return; 835 } 836 837 /* offset of the first region in this table from the beginning of buf */ 838 base = buf->cur->offset + buf->output_off; 839 840 /* offset of the current output region within this table */ 841 for (topa_idx = 0; topa_idx < buf->cur_idx; topa_idx++) 842 base += TOPA_ENTRY_SIZE(buf->cur, topa_idx); 843 844 if (buf->snapshot) { 845 local_set(&buf->data_size, base); 846 } else { 847 old = (local64_xchg(&buf->head, base) & 848 ((buf->nr_pages << PAGE_SHIFT) - 1)); 849 if (base < old) 850 base += buf->nr_pages << PAGE_SHIFT; 851 852 local_add(base - old, &buf->data_size); 853 } 854 } 855 856 /** 857 * pt_buffer_region() - obtain current output region's address 858 * @buf: PT buffer. 859 */ 860 static void *pt_buffer_region(struct pt_buffer *buf) 861 { 862 return phys_to_virt(TOPA_ENTRY(buf->cur, buf->cur_idx)->base << TOPA_SHIFT); 863 } 864 865 /** 866 * pt_buffer_region_size() - obtain current output region's size 867 * @buf: PT buffer. 868 */ 869 static size_t pt_buffer_region_size(struct pt_buffer *buf) 870 { 871 return TOPA_ENTRY_SIZE(buf->cur, buf->cur_idx); 872 } 873 874 /** 875 * pt_handle_status() - take care of possible status conditions 876 * @pt: Per-cpu pt context. 877 */ 878 static void pt_handle_status(struct pt *pt) 879 { 880 struct pt_buffer *buf = perf_get_aux(&pt->handle); 881 int advance = 0; 882 u64 status; 883 884 rdmsrl(MSR_IA32_RTIT_STATUS, status); 885 886 if (status & RTIT_STATUS_ERROR) { 887 pr_err_ratelimited("ToPA ERROR encountered, trying to recover\n"); 888 pt_topa_dump(buf); 889 status &= ~RTIT_STATUS_ERROR; 890 } 891 892 if (status & RTIT_STATUS_STOPPED) { 893 status &= ~RTIT_STATUS_STOPPED; 894 895 /* 896 * On systems that only do single-entry ToPA, hitting STOP 897 * means we are already losing data; need to let the decoder 898 * know. 899 */ 900 if (!buf->single && 901 (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) || 902 buf->output_off == pt_buffer_region_size(buf))) { 903 perf_aux_output_flag(&pt->handle, 904 PERF_AUX_FLAG_TRUNCATED); 905 advance++; 906 } 907 } 908 909 /* 910 * Also on single-entry ToPA implementations, interrupt will come 911 * before the output reaches its output region's boundary. 912 */ 913 if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) && 914 !buf->snapshot && 915 pt_buffer_region_size(buf) - buf->output_off <= TOPA_PMI_MARGIN) { 916 void *head = pt_buffer_region(buf); 917 918 /* everything within this margin needs to be zeroed out */ 919 memset(head + buf->output_off, 0, 920 pt_buffer_region_size(buf) - 921 buf->output_off); 922 advance++; 923 } 924 925 if (advance) 926 pt_buffer_advance(buf); 927 928 wrmsrl(MSR_IA32_RTIT_STATUS, status); 929 } 930 931 /** 932 * pt_read_offset() - translate registers into buffer pointers 933 * @buf: PT buffer. 934 * 935 * Set buffer's output pointers from MSR values. 936 */ 937 static void pt_read_offset(struct pt_buffer *buf) 938 { 939 struct pt *pt = this_cpu_ptr(&pt_ctx); 940 struct topa_page *tp; 941 942 if (!buf->single) { 943 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, pt->output_base); 944 tp = phys_to_virt(pt->output_base); 945 buf->cur = &tp->topa; 946 } 947 948 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, pt->output_mask); 949 /* offset within current output region */ 950 buf->output_off = pt->output_mask >> 32; 951 /* index of current output region within this table */ 952 if (!buf->single) 953 buf->cur_idx = (pt->output_mask & 0xffffff80) >> 7; 954 } 955 956 static struct topa_entry * 957 pt_topa_entry_for_page(struct pt_buffer *buf, unsigned int pg) 958 { 959 struct topa_page *tp; 960 struct topa *topa; 961 unsigned int idx, cur_pg = 0, z_pg = 0, start_idx = 0; 962 963 /* 964 * Indicates a bug in the caller. 965 */ 966 if (WARN_ON_ONCE(pg >= buf->nr_pages)) 967 return NULL; 968 969 /* 970 * First, find the ToPA table where @pg fits. With high 971 * order allocations, there shouldn't be many of these. 972 */ 973 list_for_each_entry(topa, &buf->tables, list) { 974 if (topa->offset + topa->size > pg << PAGE_SHIFT) 975 goto found; 976 } 977 978 /* 979 * Hitting this means we have a problem in the ToPA 980 * allocation code. 981 */ 982 WARN_ON_ONCE(1); 983 984 return NULL; 985 986 found: 987 /* 988 * Indicates a problem in the ToPA allocation code. 989 */ 990 if (WARN_ON_ONCE(topa->last == -1)) 991 return NULL; 992 993 tp = topa_to_page(topa); 994 cur_pg = PFN_DOWN(topa->offset); 995 if (topa->z_count) { 996 z_pg = TOPA_ENTRY_PAGES(topa, 0) * (topa->z_count + 1); 997 start_idx = topa->z_count + 1; 998 } 999 1000 /* 1001 * Multiple entries at the beginning of the table have the same size, 1002 * ideally all of them; if @pg falls there, the search is done. 1003 */ 1004 if (pg >= cur_pg && pg < cur_pg + z_pg) { 1005 idx = (pg - cur_pg) / TOPA_ENTRY_PAGES(topa, 0); 1006 return &tp->table[idx]; 1007 } 1008 1009 /* 1010 * Otherwise, slow path: iterate through the remaining entries. 1011 */ 1012 for (idx = start_idx, cur_pg += z_pg; idx < topa->last; idx++) { 1013 if (cur_pg + TOPA_ENTRY_PAGES(topa, idx) > pg) 1014 return &tp->table[idx]; 1015 1016 cur_pg += TOPA_ENTRY_PAGES(topa, idx); 1017 } 1018 1019 /* 1020 * Means we couldn't find a ToPA entry in the table that does match. 1021 */ 1022 WARN_ON_ONCE(1); 1023 1024 return NULL; 1025 } 1026 1027 static struct topa_entry * 1028 pt_topa_prev_entry(struct pt_buffer *buf, struct topa_entry *te) 1029 { 1030 unsigned long table = (unsigned long)te & ~(PAGE_SIZE - 1); 1031 struct topa_page *tp; 1032 struct topa *topa; 1033 1034 tp = (struct topa_page *)table; 1035 if (tp->table != te) 1036 return --te; 1037 1038 topa = &tp->topa; 1039 if (topa == buf->first) 1040 topa = buf->last; 1041 else 1042 topa = list_prev_entry(topa, list); 1043 1044 tp = topa_to_page(topa); 1045 1046 return &tp->table[topa->last - 1]; 1047 } 1048 1049 /** 1050 * pt_buffer_reset_markers() - place interrupt and stop bits in the buffer 1051 * @buf: PT buffer. 1052 * @handle: Current output handle. 1053 * 1054 * Place INT and STOP marks to prevent overwriting old data that the consumer 1055 * hasn't yet collected and waking up the consumer after a certain fraction of 1056 * the buffer has filled up. Only needed and sensible for non-snapshot counters. 1057 * 1058 * This obviously relies on buf::head to figure out buffer markers, so it has 1059 * to be called after pt_buffer_reset_offsets() and before the hardware tracing 1060 * is enabled. 1061 */ 1062 static int pt_buffer_reset_markers(struct pt_buffer *buf, 1063 struct perf_output_handle *handle) 1064 1065 { 1066 unsigned long head = local64_read(&buf->head); 1067 unsigned long idx, npages, wakeup; 1068 1069 if (buf->single) 1070 return 0; 1071 1072 /* can't stop in the middle of an output region */ 1073 if (buf->output_off + handle->size + 1 < pt_buffer_region_size(buf)) { 1074 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED); 1075 return -EINVAL; 1076 } 1077 1078 1079 /* single entry ToPA is handled by marking all regions STOP=1 INT=1 */ 1080 if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) 1081 return 0; 1082 1083 /* clear STOP and INT from current entry */ 1084 if (buf->stop_te) { 1085 buf->stop_te->stop = 0; 1086 buf->stop_te->intr = 0; 1087 } 1088 1089 if (buf->intr_te) 1090 buf->intr_te->intr = 0; 1091 1092 /* how many pages till the STOP marker */ 1093 npages = handle->size >> PAGE_SHIFT; 1094 1095 /* if it's on a page boundary, fill up one more page */ 1096 if (!offset_in_page(head + handle->size + 1)) 1097 npages++; 1098 1099 idx = (head >> PAGE_SHIFT) + npages; 1100 idx &= buf->nr_pages - 1; 1101 1102 if (idx != buf->stop_pos) { 1103 buf->stop_pos = idx; 1104 buf->stop_te = pt_topa_entry_for_page(buf, idx); 1105 buf->stop_te = pt_topa_prev_entry(buf, buf->stop_te); 1106 } 1107 1108 wakeup = handle->wakeup >> PAGE_SHIFT; 1109 1110 /* in the worst case, wake up the consumer one page before hard stop */ 1111 idx = (head >> PAGE_SHIFT) + npages - 1; 1112 if (idx > wakeup) 1113 idx = wakeup; 1114 1115 idx &= buf->nr_pages - 1; 1116 if (idx != buf->intr_pos) { 1117 buf->intr_pos = idx; 1118 buf->intr_te = pt_topa_entry_for_page(buf, idx); 1119 buf->intr_te = pt_topa_prev_entry(buf, buf->intr_te); 1120 } 1121 1122 buf->stop_te->stop = 1; 1123 buf->stop_te->intr = 1; 1124 buf->intr_te->intr = 1; 1125 1126 return 0; 1127 } 1128 1129 /** 1130 * pt_buffer_reset_offsets() - adjust buffer's write pointers from aux_head 1131 * @buf: PT buffer. 1132 * @head: Write pointer (aux_head) from AUX buffer. 1133 * 1134 * Find the ToPA table and entry corresponding to given @head and set buffer's 1135 * "current" pointers accordingly. This is done after we have obtained the 1136 * current aux_head position from a successful call to perf_aux_output_begin() 1137 * to make sure the hardware is writing to the right place. 1138 * 1139 * This function modifies buf::{cur,cur_idx,output_off} that will be programmed 1140 * into PT msrs when the tracing is enabled and buf::head and buf::data_size, 1141 * which are used to determine INT and STOP markers' locations by a subsequent 1142 * call to pt_buffer_reset_markers(). 1143 */ 1144 static void pt_buffer_reset_offsets(struct pt_buffer *buf, unsigned long head) 1145 { 1146 struct topa_page *cur_tp; 1147 struct topa_entry *te; 1148 int pg; 1149 1150 if (buf->snapshot) 1151 head &= (buf->nr_pages << PAGE_SHIFT) - 1; 1152 1153 if (!buf->single) { 1154 pg = (head >> PAGE_SHIFT) & (buf->nr_pages - 1); 1155 te = pt_topa_entry_for_page(buf, pg); 1156 1157 cur_tp = topa_entry_to_page(te); 1158 buf->cur = &cur_tp->topa; 1159 buf->cur_idx = te - TOPA_ENTRY(buf->cur, 0); 1160 buf->output_off = head & (pt_buffer_region_size(buf) - 1); 1161 } else { 1162 buf->output_off = head; 1163 } 1164 1165 local64_set(&buf->head, head); 1166 local_set(&buf->data_size, 0); 1167 } 1168 1169 /** 1170 * pt_buffer_fini_topa() - deallocate ToPA structure of a buffer 1171 * @buf: PT buffer. 1172 */ 1173 static void pt_buffer_fini_topa(struct pt_buffer *buf) 1174 { 1175 struct topa *topa, *iter; 1176 1177 if (buf->single) 1178 return; 1179 1180 list_for_each_entry_safe(topa, iter, &buf->tables, list) { 1181 /* 1182 * right now, this is in free_aux() path only, so 1183 * no need to unlink this table from the list 1184 */ 1185 topa_free(topa); 1186 } 1187 } 1188 1189 /** 1190 * pt_buffer_init_topa() - initialize ToPA table for pt buffer 1191 * @buf: PT buffer. 1192 * @size: Total size of all regions within this ToPA. 1193 * @gfp: Allocation flags. 1194 */ 1195 static int pt_buffer_init_topa(struct pt_buffer *buf, int cpu, 1196 unsigned long nr_pages, gfp_t gfp) 1197 { 1198 struct topa *topa; 1199 int err; 1200 1201 topa = topa_alloc(cpu, gfp); 1202 if (!topa) 1203 return -ENOMEM; 1204 1205 topa_insert_table(buf, topa); 1206 1207 while (buf->nr_pages < nr_pages) { 1208 err = topa_insert_pages(buf, cpu, gfp); 1209 if (err) { 1210 pt_buffer_fini_topa(buf); 1211 return -ENOMEM; 1212 } 1213 } 1214 1215 /* link last table to the first one, unless we're double buffering */ 1216 if (intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) { 1217 TOPA_ENTRY(buf->last, -1)->base = topa_pfn(buf->first); 1218 TOPA_ENTRY(buf->last, -1)->end = 1; 1219 } 1220 1221 pt_topa_dump(buf); 1222 return 0; 1223 } 1224 1225 static int pt_buffer_try_single(struct pt_buffer *buf, int nr_pages) 1226 { 1227 struct page *p = virt_to_page(buf->data_pages[0]); 1228 int ret = -ENOTSUPP, order = 0; 1229 1230 /* 1231 * We can use single range output mode 1232 * + in snapshot mode, where we don't need interrupts; 1233 * + if the hardware supports it; 1234 * + if the entire buffer is one contiguous allocation. 1235 */ 1236 if (!buf->snapshot) 1237 goto out; 1238 1239 if (!intel_pt_validate_hw_cap(PT_CAP_single_range_output)) 1240 goto out; 1241 1242 if (PagePrivate(p)) 1243 order = page_private(p); 1244 1245 if (1 << order != nr_pages) 1246 goto out; 1247 1248 buf->single = true; 1249 buf->nr_pages = nr_pages; 1250 ret = 0; 1251 out: 1252 return ret; 1253 } 1254 1255 /** 1256 * pt_buffer_setup_aux() - set up topa tables for a PT buffer 1257 * @cpu: Cpu on which to allocate, -1 means current. 1258 * @pages: Array of pointers to buffer pages passed from perf core. 1259 * @nr_pages: Number of pages in the buffer. 1260 * @snapshot: If this is a snapshot/overwrite counter. 1261 * 1262 * This is a pmu::setup_aux callback that sets up ToPA tables and all the 1263 * bookkeeping for an AUX buffer. 1264 * 1265 * Return: Our private PT buffer structure. 1266 */ 1267 static void * 1268 pt_buffer_setup_aux(struct perf_event *event, void **pages, 1269 int nr_pages, bool snapshot) 1270 { 1271 struct pt_buffer *buf; 1272 int node, ret, cpu = event->cpu; 1273 1274 if (!nr_pages) 1275 return NULL; 1276 1277 /* 1278 * Only support AUX sampling in snapshot mode, where we don't 1279 * generate NMIs. 1280 */ 1281 if (event->attr.aux_sample_size && !snapshot) 1282 return NULL; 1283 1284 if (cpu == -1) 1285 cpu = raw_smp_processor_id(); 1286 node = cpu_to_node(cpu); 1287 1288 buf = kzalloc_node(sizeof(struct pt_buffer), GFP_KERNEL, node); 1289 if (!buf) 1290 return NULL; 1291 1292 buf->snapshot = snapshot; 1293 buf->data_pages = pages; 1294 buf->stop_pos = -1; 1295 buf->intr_pos = -1; 1296 1297 INIT_LIST_HEAD(&buf->tables); 1298 1299 ret = pt_buffer_try_single(buf, nr_pages); 1300 if (!ret) 1301 return buf; 1302 1303 ret = pt_buffer_init_topa(buf, cpu, nr_pages, GFP_KERNEL); 1304 if (ret) { 1305 kfree(buf); 1306 return NULL; 1307 } 1308 1309 return buf; 1310 } 1311 1312 /** 1313 * pt_buffer_free_aux() - perf AUX deallocation path callback 1314 * @data: PT buffer. 1315 */ 1316 static void pt_buffer_free_aux(void *data) 1317 { 1318 struct pt_buffer *buf = data; 1319 1320 pt_buffer_fini_topa(buf); 1321 kfree(buf); 1322 } 1323 1324 static int pt_addr_filters_init(struct perf_event *event) 1325 { 1326 struct pt_filters *filters; 1327 int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu); 1328 1329 if (!intel_pt_validate_hw_cap(PT_CAP_num_address_ranges)) 1330 return 0; 1331 1332 filters = kzalloc_node(sizeof(struct pt_filters), GFP_KERNEL, node); 1333 if (!filters) 1334 return -ENOMEM; 1335 1336 if (event->parent) 1337 memcpy(filters, event->parent->hw.addr_filters, 1338 sizeof(*filters)); 1339 1340 event->hw.addr_filters = filters; 1341 1342 return 0; 1343 } 1344 1345 static void pt_addr_filters_fini(struct perf_event *event) 1346 { 1347 kfree(event->hw.addr_filters); 1348 event->hw.addr_filters = NULL; 1349 } 1350 1351 static inline bool valid_kernel_ip(unsigned long ip) 1352 { 1353 return virt_addr_valid(ip) && kernel_ip(ip); 1354 } 1355 1356 static int pt_event_addr_filters_validate(struct list_head *filters) 1357 { 1358 struct perf_addr_filter *filter; 1359 int range = 0; 1360 1361 list_for_each_entry(filter, filters, entry) { 1362 /* 1363 * PT doesn't support single address triggers and 1364 * 'start' filters. 1365 */ 1366 if (!filter->size || 1367 filter->action == PERF_ADDR_FILTER_ACTION_START) 1368 return -EOPNOTSUPP; 1369 1370 if (!filter->path.dentry) { 1371 if (!valid_kernel_ip(filter->offset)) 1372 return -EINVAL; 1373 1374 if (!valid_kernel_ip(filter->offset + filter->size)) 1375 return -EINVAL; 1376 } 1377 1378 if (++range > intel_pt_validate_hw_cap(PT_CAP_num_address_ranges)) 1379 return -EOPNOTSUPP; 1380 } 1381 1382 return 0; 1383 } 1384 1385 static void pt_event_addr_filters_sync(struct perf_event *event) 1386 { 1387 struct perf_addr_filters_head *head = perf_event_addr_filters(event); 1388 unsigned long msr_a, msr_b; 1389 struct perf_addr_filter_range *fr = event->addr_filter_ranges; 1390 struct pt_filters *filters = event->hw.addr_filters; 1391 struct perf_addr_filter *filter; 1392 int range = 0; 1393 1394 if (!filters) 1395 return; 1396 1397 list_for_each_entry(filter, &head->list, entry) { 1398 if (filter->path.dentry && !fr[range].start) { 1399 msr_a = msr_b = 0; 1400 } else { 1401 /* apply the offset */ 1402 msr_a = fr[range].start; 1403 msr_b = msr_a + fr[range].size - 1; 1404 } 1405 1406 filters->filter[range].msr_a = msr_a; 1407 filters->filter[range].msr_b = msr_b; 1408 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER) 1409 filters->filter[range].config = 1; 1410 else 1411 filters->filter[range].config = 2; 1412 range++; 1413 } 1414 1415 filters->nr_filters = range; 1416 } 1417 1418 /** 1419 * intel_pt_interrupt() - PT PMI handler 1420 */ 1421 void intel_pt_interrupt(void) 1422 { 1423 struct pt *pt = this_cpu_ptr(&pt_ctx); 1424 struct pt_buffer *buf; 1425 struct perf_event *event = pt->handle.event; 1426 1427 /* 1428 * There may be a dangling PT bit in the interrupt status register 1429 * after PT has been disabled by pt_event_stop(). Make sure we don't 1430 * do anything (particularly, re-enable) for this event here. 1431 */ 1432 if (!READ_ONCE(pt->handle_nmi)) 1433 return; 1434 1435 if (!event) 1436 return; 1437 1438 pt_config_stop(event); 1439 1440 buf = perf_get_aux(&pt->handle); 1441 if (!buf) 1442 return; 1443 1444 pt_read_offset(buf); 1445 1446 pt_handle_status(pt); 1447 1448 pt_update_head(pt); 1449 1450 perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0)); 1451 1452 if (!event->hw.state) { 1453 int ret; 1454 1455 buf = perf_aux_output_begin(&pt->handle, event); 1456 if (!buf) { 1457 event->hw.state = PERF_HES_STOPPED; 1458 return; 1459 } 1460 1461 pt_buffer_reset_offsets(buf, pt->handle.head); 1462 /* snapshot counters don't use PMI, so it's safe */ 1463 ret = pt_buffer_reset_markers(buf, &pt->handle); 1464 if (ret) { 1465 perf_aux_output_end(&pt->handle, 0); 1466 return; 1467 } 1468 1469 pt_config_buffer(buf); 1470 pt_config_start(event); 1471 } 1472 } 1473 1474 void intel_pt_handle_vmx(int on) 1475 { 1476 struct pt *pt = this_cpu_ptr(&pt_ctx); 1477 struct perf_event *event; 1478 unsigned long flags; 1479 1480 /* PT plays nice with VMX, do nothing */ 1481 if (pt_pmu.vmx) 1482 return; 1483 1484 /* 1485 * VMXON will clear RTIT_CTL.TraceEn; we need to make 1486 * sure to not try to set it while VMX is on. Disable 1487 * interrupts to avoid racing with pmu callbacks; 1488 * concurrent PMI should be handled fine. 1489 */ 1490 local_irq_save(flags); 1491 WRITE_ONCE(pt->vmx_on, on); 1492 1493 /* 1494 * If an AUX transaction is in progress, it will contain 1495 * gap(s), so flag it PARTIAL to inform the user. 1496 */ 1497 event = pt->handle.event; 1498 if (event) 1499 perf_aux_output_flag(&pt->handle, 1500 PERF_AUX_FLAG_PARTIAL); 1501 1502 /* Turn PTs back on */ 1503 if (!on && event) 1504 wrmsrl(MSR_IA32_RTIT_CTL, event->hw.config); 1505 1506 local_irq_restore(flags); 1507 } 1508 EXPORT_SYMBOL_GPL(intel_pt_handle_vmx); 1509 1510 /* 1511 * PMU callbacks 1512 */ 1513 1514 static void pt_event_start(struct perf_event *event, int mode) 1515 { 1516 struct hw_perf_event *hwc = &event->hw; 1517 struct pt *pt = this_cpu_ptr(&pt_ctx); 1518 struct pt_buffer *buf; 1519 1520 buf = perf_aux_output_begin(&pt->handle, event); 1521 if (!buf) 1522 goto fail_stop; 1523 1524 pt_buffer_reset_offsets(buf, pt->handle.head); 1525 if (!buf->snapshot) { 1526 if (pt_buffer_reset_markers(buf, &pt->handle)) 1527 goto fail_end_stop; 1528 } 1529 1530 WRITE_ONCE(pt->handle_nmi, 1); 1531 hwc->state = 0; 1532 1533 pt_config_buffer(buf); 1534 pt_config(event); 1535 1536 return; 1537 1538 fail_end_stop: 1539 perf_aux_output_end(&pt->handle, 0); 1540 fail_stop: 1541 hwc->state = PERF_HES_STOPPED; 1542 } 1543 1544 static void pt_event_stop(struct perf_event *event, int mode) 1545 { 1546 struct pt *pt = this_cpu_ptr(&pt_ctx); 1547 1548 /* 1549 * Protect against the PMI racing with disabling wrmsr, 1550 * see comment in intel_pt_interrupt(). 1551 */ 1552 WRITE_ONCE(pt->handle_nmi, 0); 1553 1554 pt_config_stop(event); 1555 1556 if (event->hw.state == PERF_HES_STOPPED) 1557 return; 1558 1559 event->hw.state = PERF_HES_STOPPED; 1560 1561 if (mode & PERF_EF_UPDATE) { 1562 struct pt_buffer *buf = perf_get_aux(&pt->handle); 1563 1564 if (!buf) 1565 return; 1566 1567 if (WARN_ON_ONCE(pt->handle.event != event)) 1568 return; 1569 1570 pt_read_offset(buf); 1571 1572 pt_handle_status(pt); 1573 1574 pt_update_head(pt); 1575 1576 if (buf->snapshot) 1577 pt->handle.head = 1578 local_xchg(&buf->data_size, 1579 buf->nr_pages << PAGE_SHIFT); 1580 perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0)); 1581 } 1582 } 1583 1584 static long pt_event_snapshot_aux(struct perf_event *event, 1585 struct perf_output_handle *handle, 1586 unsigned long size) 1587 { 1588 struct pt *pt = this_cpu_ptr(&pt_ctx); 1589 struct pt_buffer *buf = perf_get_aux(&pt->handle); 1590 unsigned long from = 0, to; 1591 long ret; 1592 1593 if (WARN_ON_ONCE(!buf)) 1594 return 0; 1595 1596 /* 1597 * Sampling is only allowed on snapshot events; 1598 * see pt_buffer_setup_aux(). 1599 */ 1600 if (WARN_ON_ONCE(!buf->snapshot)) 1601 return 0; 1602 1603 /* 1604 * Here, handle_nmi tells us if the tracing is on 1605 */ 1606 if (READ_ONCE(pt->handle_nmi)) 1607 pt_config_stop(event); 1608 1609 pt_read_offset(buf); 1610 pt_update_head(pt); 1611 1612 to = local_read(&buf->data_size); 1613 if (to < size) 1614 from = buf->nr_pages << PAGE_SHIFT; 1615 from += to - size; 1616 1617 ret = perf_output_copy_aux(&pt->handle, handle, from, to); 1618 1619 /* 1620 * If the tracing was on when we turned up, restart it. 1621 * Compiler barrier not needed as we couldn't have been 1622 * preempted by anything that touches pt->handle_nmi. 1623 */ 1624 if (pt->handle_nmi) 1625 pt_config_start(event); 1626 1627 return ret; 1628 } 1629 1630 static void pt_event_del(struct perf_event *event, int mode) 1631 { 1632 pt_event_stop(event, PERF_EF_UPDATE); 1633 } 1634 1635 static int pt_event_add(struct perf_event *event, int mode) 1636 { 1637 struct pt *pt = this_cpu_ptr(&pt_ctx); 1638 struct hw_perf_event *hwc = &event->hw; 1639 int ret = -EBUSY; 1640 1641 if (pt->handle.event) 1642 goto fail; 1643 1644 if (mode & PERF_EF_START) { 1645 pt_event_start(event, 0); 1646 ret = -EINVAL; 1647 if (hwc->state == PERF_HES_STOPPED) 1648 goto fail; 1649 } else { 1650 hwc->state = PERF_HES_STOPPED; 1651 } 1652 1653 ret = 0; 1654 fail: 1655 1656 return ret; 1657 } 1658 1659 static void pt_event_read(struct perf_event *event) 1660 { 1661 } 1662 1663 static void pt_event_destroy(struct perf_event *event) 1664 { 1665 pt_addr_filters_fini(event); 1666 x86_del_exclusive(x86_lbr_exclusive_pt); 1667 } 1668 1669 static int pt_event_init(struct perf_event *event) 1670 { 1671 if (event->attr.type != pt_pmu.pmu.type) 1672 return -ENOENT; 1673 1674 if (!pt_event_valid(event)) 1675 return -EINVAL; 1676 1677 if (x86_add_exclusive(x86_lbr_exclusive_pt)) 1678 return -EBUSY; 1679 1680 if (pt_addr_filters_init(event)) { 1681 x86_del_exclusive(x86_lbr_exclusive_pt); 1682 return -ENOMEM; 1683 } 1684 1685 event->destroy = pt_event_destroy; 1686 1687 return 0; 1688 } 1689 1690 void cpu_emergency_stop_pt(void) 1691 { 1692 struct pt *pt = this_cpu_ptr(&pt_ctx); 1693 1694 if (pt->handle.event) 1695 pt_event_stop(pt->handle.event, PERF_EF_UPDATE); 1696 } 1697 1698 int is_intel_pt_event(struct perf_event *event) 1699 { 1700 return event->pmu == &pt_pmu.pmu; 1701 } 1702 1703 static __init int pt_init(void) 1704 { 1705 int ret, cpu, prior_warn = 0; 1706 1707 BUILD_BUG_ON(sizeof(struct topa) > PAGE_SIZE); 1708 1709 if (!boot_cpu_has(X86_FEATURE_INTEL_PT)) 1710 return -ENODEV; 1711 1712 cpus_read_lock(); 1713 for_each_online_cpu(cpu) { 1714 u64 ctl; 1715 1716 ret = rdmsrl_safe_on_cpu(cpu, MSR_IA32_RTIT_CTL, &ctl); 1717 if (!ret && (ctl & RTIT_CTL_TRACEEN)) 1718 prior_warn++; 1719 } 1720 cpus_read_unlock(); 1721 1722 if (prior_warn) { 1723 x86_add_exclusive(x86_lbr_exclusive_pt); 1724 pr_warn("PT is enabled at boot time, doing nothing\n"); 1725 1726 return -EBUSY; 1727 } 1728 1729 ret = pt_pmu_hw_init(); 1730 if (ret) 1731 return ret; 1732 1733 if (!intel_pt_validate_hw_cap(PT_CAP_topa_output)) { 1734 pr_warn("ToPA output is not supported on this CPU\n"); 1735 return -ENODEV; 1736 } 1737 1738 if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) 1739 pt_pmu.pmu.capabilities = PERF_PMU_CAP_AUX_NO_SG; 1740 1741 pt_pmu.pmu.capabilities |= PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE; 1742 pt_pmu.pmu.attr_groups = pt_attr_groups; 1743 pt_pmu.pmu.task_ctx_nr = perf_sw_context; 1744 pt_pmu.pmu.event_init = pt_event_init; 1745 pt_pmu.pmu.add = pt_event_add; 1746 pt_pmu.pmu.del = pt_event_del; 1747 pt_pmu.pmu.start = pt_event_start; 1748 pt_pmu.pmu.stop = pt_event_stop; 1749 pt_pmu.pmu.snapshot_aux = pt_event_snapshot_aux; 1750 pt_pmu.pmu.read = pt_event_read; 1751 pt_pmu.pmu.setup_aux = pt_buffer_setup_aux; 1752 pt_pmu.pmu.free_aux = pt_buffer_free_aux; 1753 pt_pmu.pmu.addr_filters_sync = pt_event_addr_filters_sync; 1754 pt_pmu.pmu.addr_filters_validate = pt_event_addr_filters_validate; 1755 pt_pmu.pmu.nr_addr_filters = 1756 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges); 1757 1758 ret = perf_pmu_register(&pt_pmu.pmu, "intel_pt", -1); 1759 1760 return ret; 1761 } 1762 arch_initcall(pt_init); 1763