xref: /openbmc/linux/arch/x86/events/intel/pt.c (revision 8781e5df)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel(R) Processor Trace PMU driver for perf
4  * Copyright (c) 2013-2014, Intel Corporation.
5  *
6  * Intel PT is specified in the Intel Architecture Instruction Set Extensions
7  * Programming Reference:
8  * http://software.intel.com/en-us/intel-isa-extensions
9  */
10 
11 #undef DEBUG
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/types.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 
19 #include <asm/perf_event.h>
20 #include <asm/insn.h>
21 #include <asm/io.h>
22 #include <asm/intel_pt.h>
23 #include <asm/intel-family.h>
24 
25 #include "../perf_event.h"
26 #include "pt.h"
27 
28 static DEFINE_PER_CPU(struct pt, pt_ctx);
29 
30 static struct pt_pmu pt_pmu;
31 
32 /*
33  * Capabilities of Intel PT hardware, such as number of address bits or
34  * supported output schemes, are cached and exported to userspace as "caps"
35  * attribute group of pt pmu device
36  * (/sys/bus/event_source/devices/intel_pt/caps/) so that userspace can store
37  * relevant bits together with intel_pt traces.
38  *
39  * These are necessary for both trace decoding (payloads_lip, contains address
40  * width encoded in IP-related packets), and event configuration (bitmasks with
41  * permitted values for certain bit fields).
42  */
43 #define PT_CAP(_n, _l, _r, _m)						\
44 	[PT_CAP_ ## _n] = { .name = __stringify(_n), .leaf = _l,	\
45 			    .reg = _r, .mask = _m }
46 
47 static struct pt_cap_desc {
48 	const char	*name;
49 	u32		leaf;
50 	u8		reg;
51 	u32		mask;
52 } pt_caps[] = {
53 	PT_CAP(max_subleaf,		0, CPUID_EAX, 0xffffffff),
54 	PT_CAP(cr3_filtering,		0, CPUID_EBX, BIT(0)),
55 	PT_CAP(psb_cyc,			0, CPUID_EBX, BIT(1)),
56 	PT_CAP(ip_filtering,		0, CPUID_EBX, BIT(2)),
57 	PT_CAP(mtc,			0, CPUID_EBX, BIT(3)),
58 	PT_CAP(ptwrite,			0, CPUID_EBX, BIT(4)),
59 	PT_CAP(power_event_trace,	0, CPUID_EBX, BIT(5)),
60 	PT_CAP(topa_output,		0, CPUID_ECX, BIT(0)),
61 	PT_CAP(topa_multiple_entries,	0, CPUID_ECX, BIT(1)),
62 	PT_CAP(single_range_output,	0, CPUID_ECX, BIT(2)),
63 	PT_CAP(output_subsys,		0, CPUID_ECX, BIT(3)),
64 	PT_CAP(payloads_lip,		0, CPUID_ECX, BIT(31)),
65 	PT_CAP(num_address_ranges,	1, CPUID_EAX, 0x3),
66 	PT_CAP(mtc_periods,		1, CPUID_EAX, 0xffff0000),
67 	PT_CAP(cycle_thresholds,	1, CPUID_EBX, 0xffff),
68 	PT_CAP(psb_periods,		1, CPUID_EBX, 0xffff0000),
69 };
70 
71 u32 intel_pt_validate_cap(u32 *caps, enum pt_capabilities capability)
72 {
73 	struct pt_cap_desc *cd = &pt_caps[capability];
74 	u32 c = caps[cd->leaf * PT_CPUID_REGS_NUM + cd->reg];
75 	unsigned int shift = __ffs(cd->mask);
76 
77 	return (c & cd->mask) >> shift;
78 }
79 EXPORT_SYMBOL_GPL(intel_pt_validate_cap);
80 
81 u32 intel_pt_validate_hw_cap(enum pt_capabilities cap)
82 {
83 	return intel_pt_validate_cap(pt_pmu.caps, cap);
84 }
85 EXPORT_SYMBOL_GPL(intel_pt_validate_hw_cap);
86 
87 static ssize_t pt_cap_show(struct device *cdev,
88 			   struct device_attribute *attr,
89 			   char *buf)
90 {
91 	struct dev_ext_attribute *ea =
92 		container_of(attr, struct dev_ext_attribute, attr);
93 	enum pt_capabilities cap = (long)ea->var;
94 
95 	return snprintf(buf, PAGE_SIZE, "%x\n", intel_pt_validate_hw_cap(cap));
96 }
97 
98 static struct attribute_group pt_cap_group __ro_after_init = {
99 	.name	= "caps",
100 };
101 
102 PMU_FORMAT_ATTR(pt,		"config:0"	);
103 PMU_FORMAT_ATTR(cyc,		"config:1"	);
104 PMU_FORMAT_ATTR(pwr_evt,	"config:4"	);
105 PMU_FORMAT_ATTR(fup_on_ptw,	"config:5"	);
106 PMU_FORMAT_ATTR(mtc,		"config:9"	);
107 PMU_FORMAT_ATTR(tsc,		"config:10"	);
108 PMU_FORMAT_ATTR(noretcomp,	"config:11"	);
109 PMU_FORMAT_ATTR(ptw,		"config:12"	);
110 PMU_FORMAT_ATTR(branch,		"config:13"	);
111 PMU_FORMAT_ATTR(mtc_period,	"config:14-17"	);
112 PMU_FORMAT_ATTR(cyc_thresh,	"config:19-22"	);
113 PMU_FORMAT_ATTR(psb_period,	"config:24-27"	);
114 
115 static struct attribute *pt_formats_attr[] = {
116 	&format_attr_pt.attr,
117 	&format_attr_cyc.attr,
118 	&format_attr_pwr_evt.attr,
119 	&format_attr_fup_on_ptw.attr,
120 	&format_attr_mtc.attr,
121 	&format_attr_tsc.attr,
122 	&format_attr_noretcomp.attr,
123 	&format_attr_ptw.attr,
124 	&format_attr_branch.attr,
125 	&format_attr_mtc_period.attr,
126 	&format_attr_cyc_thresh.attr,
127 	&format_attr_psb_period.attr,
128 	NULL,
129 };
130 
131 static struct attribute_group pt_format_group = {
132 	.name	= "format",
133 	.attrs	= pt_formats_attr,
134 };
135 
136 static ssize_t
137 pt_timing_attr_show(struct device *dev, struct device_attribute *attr,
138 		    char *page)
139 {
140 	struct perf_pmu_events_attr *pmu_attr =
141 		container_of(attr, struct perf_pmu_events_attr, attr);
142 
143 	switch (pmu_attr->id) {
144 	case 0:
145 		return sprintf(page, "%lu\n", pt_pmu.max_nonturbo_ratio);
146 	case 1:
147 		return sprintf(page, "%u:%u\n",
148 			       pt_pmu.tsc_art_num,
149 			       pt_pmu.tsc_art_den);
150 	default:
151 		break;
152 	}
153 
154 	return -EINVAL;
155 }
156 
157 PMU_EVENT_ATTR(max_nonturbo_ratio, timing_attr_max_nonturbo_ratio, 0,
158 	       pt_timing_attr_show);
159 PMU_EVENT_ATTR(tsc_art_ratio, timing_attr_tsc_art_ratio, 1,
160 	       pt_timing_attr_show);
161 
162 static struct attribute *pt_timing_attr[] = {
163 	&timing_attr_max_nonturbo_ratio.attr.attr,
164 	&timing_attr_tsc_art_ratio.attr.attr,
165 	NULL,
166 };
167 
168 static struct attribute_group pt_timing_group = {
169 	.attrs	= pt_timing_attr,
170 };
171 
172 static const struct attribute_group *pt_attr_groups[] = {
173 	&pt_cap_group,
174 	&pt_format_group,
175 	&pt_timing_group,
176 	NULL,
177 };
178 
179 static int __init pt_pmu_hw_init(void)
180 {
181 	struct dev_ext_attribute *de_attrs;
182 	struct attribute **attrs;
183 	size_t size;
184 	u64 reg;
185 	int ret;
186 	long i;
187 
188 	rdmsrl(MSR_PLATFORM_INFO, reg);
189 	pt_pmu.max_nonturbo_ratio = (reg & 0xff00) >> 8;
190 
191 	/*
192 	 * if available, read in TSC to core crystal clock ratio,
193 	 * otherwise, zero for numerator stands for "not enumerated"
194 	 * as per SDM
195 	 */
196 	if (boot_cpu_data.cpuid_level >= CPUID_TSC_LEAF) {
197 		u32 eax, ebx, ecx, edx;
198 
199 		cpuid(CPUID_TSC_LEAF, &eax, &ebx, &ecx, &edx);
200 
201 		pt_pmu.tsc_art_num = ebx;
202 		pt_pmu.tsc_art_den = eax;
203 	}
204 
205 	/* model-specific quirks */
206 	switch (boot_cpu_data.x86_model) {
207 	case INTEL_FAM6_BROADWELL:
208 	case INTEL_FAM6_BROADWELL_D:
209 	case INTEL_FAM6_BROADWELL_G:
210 	case INTEL_FAM6_BROADWELL_X:
211 		/* not setting BRANCH_EN will #GP, erratum BDM106 */
212 		pt_pmu.branch_en_always_on = true;
213 		break;
214 	default:
215 		break;
216 	}
217 
218 	if (boot_cpu_has(X86_FEATURE_VMX)) {
219 		/*
220 		 * Intel SDM, 36.5 "Tracing post-VMXON" says that
221 		 * "IA32_VMX_MISC[bit 14]" being 1 means PT can trace
222 		 * post-VMXON.
223 		 */
224 		rdmsrl(MSR_IA32_VMX_MISC, reg);
225 		if (reg & BIT(14))
226 			pt_pmu.vmx = true;
227 	}
228 
229 	attrs = NULL;
230 
231 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
232 		cpuid_count(20, i,
233 			    &pt_pmu.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM],
234 			    &pt_pmu.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM],
235 			    &pt_pmu.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM],
236 			    &pt_pmu.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM]);
237 	}
238 
239 	ret = -ENOMEM;
240 	size = sizeof(struct attribute *) * (ARRAY_SIZE(pt_caps)+1);
241 	attrs = kzalloc(size, GFP_KERNEL);
242 	if (!attrs)
243 		goto fail;
244 
245 	size = sizeof(struct dev_ext_attribute) * (ARRAY_SIZE(pt_caps)+1);
246 	de_attrs = kzalloc(size, GFP_KERNEL);
247 	if (!de_attrs)
248 		goto fail;
249 
250 	for (i = 0; i < ARRAY_SIZE(pt_caps); i++) {
251 		struct dev_ext_attribute *de_attr = de_attrs + i;
252 
253 		de_attr->attr.attr.name = pt_caps[i].name;
254 
255 		sysfs_attr_init(&de_attr->attr.attr);
256 
257 		de_attr->attr.attr.mode		= S_IRUGO;
258 		de_attr->attr.show		= pt_cap_show;
259 		de_attr->var			= (void *)i;
260 
261 		attrs[i] = &de_attr->attr.attr;
262 	}
263 
264 	pt_cap_group.attrs = attrs;
265 
266 	return 0;
267 
268 fail:
269 	kfree(attrs);
270 
271 	return ret;
272 }
273 
274 #define RTIT_CTL_CYC_PSB (RTIT_CTL_CYCLEACC	| \
275 			  RTIT_CTL_CYC_THRESH	| \
276 			  RTIT_CTL_PSB_FREQ)
277 
278 #define RTIT_CTL_MTC	(RTIT_CTL_MTC_EN	| \
279 			 RTIT_CTL_MTC_RANGE)
280 
281 #define RTIT_CTL_PTW	(RTIT_CTL_PTW_EN	| \
282 			 RTIT_CTL_FUP_ON_PTW)
283 
284 /*
285  * Bit 0 (TraceEn) in the attr.config is meaningless as the
286  * corresponding bit in the RTIT_CTL can only be controlled
287  * by the driver; therefore, repurpose it to mean: pass
288  * through the bit that was previously assumed to be always
289  * on for PT, thereby allowing the user to *not* set it if
290  * they so wish. See also pt_event_valid() and pt_config().
291  */
292 #define RTIT_CTL_PASSTHROUGH RTIT_CTL_TRACEEN
293 
294 #define PT_CONFIG_MASK (RTIT_CTL_TRACEEN	| \
295 			RTIT_CTL_TSC_EN		| \
296 			RTIT_CTL_DISRETC	| \
297 			RTIT_CTL_BRANCH_EN	| \
298 			RTIT_CTL_CYC_PSB	| \
299 			RTIT_CTL_MTC		| \
300 			RTIT_CTL_PWR_EVT_EN	| \
301 			RTIT_CTL_FUP_ON_PTW	| \
302 			RTIT_CTL_PTW_EN)
303 
304 static bool pt_event_valid(struct perf_event *event)
305 {
306 	u64 config = event->attr.config;
307 	u64 allowed, requested;
308 
309 	if ((config & PT_CONFIG_MASK) != config)
310 		return false;
311 
312 	if (config & RTIT_CTL_CYC_PSB) {
313 		if (!intel_pt_validate_hw_cap(PT_CAP_psb_cyc))
314 			return false;
315 
316 		allowed = intel_pt_validate_hw_cap(PT_CAP_psb_periods);
317 		requested = (config & RTIT_CTL_PSB_FREQ) >>
318 			RTIT_CTL_PSB_FREQ_OFFSET;
319 		if (requested && (!(allowed & BIT(requested))))
320 			return false;
321 
322 		allowed = intel_pt_validate_hw_cap(PT_CAP_cycle_thresholds);
323 		requested = (config & RTIT_CTL_CYC_THRESH) >>
324 			RTIT_CTL_CYC_THRESH_OFFSET;
325 		if (requested && (!(allowed & BIT(requested))))
326 			return false;
327 	}
328 
329 	if (config & RTIT_CTL_MTC) {
330 		/*
331 		 * In the unlikely case that CPUID lists valid mtc periods,
332 		 * but not the mtc capability, drop out here.
333 		 *
334 		 * Spec says that setting mtc period bits while mtc bit in
335 		 * CPUID is 0 will #GP, so better safe than sorry.
336 		 */
337 		if (!intel_pt_validate_hw_cap(PT_CAP_mtc))
338 			return false;
339 
340 		allowed = intel_pt_validate_hw_cap(PT_CAP_mtc_periods);
341 		if (!allowed)
342 			return false;
343 
344 		requested = (config & RTIT_CTL_MTC_RANGE) >>
345 			RTIT_CTL_MTC_RANGE_OFFSET;
346 
347 		if (!(allowed & BIT(requested)))
348 			return false;
349 	}
350 
351 	if (config & RTIT_CTL_PWR_EVT_EN &&
352 	    !intel_pt_validate_hw_cap(PT_CAP_power_event_trace))
353 		return false;
354 
355 	if (config & RTIT_CTL_PTW) {
356 		if (!intel_pt_validate_hw_cap(PT_CAP_ptwrite))
357 			return false;
358 
359 		/* FUPonPTW without PTW doesn't make sense */
360 		if ((config & RTIT_CTL_FUP_ON_PTW) &&
361 		    !(config & RTIT_CTL_PTW_EN))
362 			return false;
363 	}
364 
365 	/*
366 	 * Setting bit 0 (TraceEn in RTIT_CTL MSR) in the attr.config
367 	 * clears the assomption that BranchEn must always be enabled,
368 	 * as was the case with the first implementation of PT.
369 	 * If this bit is not set, the legacy behavior is preserved
370 	 * for compatibility with the older userspace.
371 	 *
372 	 * Re-using bit 0 for this purpose is fine because it is never
373 	 * directly set by the user; previous attempts at setting it in
374 	 * the attr.config resulted in -EINVAL.
375 	 */
376 	if (config & RTIT_CTL_PASSTHROUGH) {
377 		/*
378 		 * Disallow not setting BRANCH_EN where BRANCH_EN is
379 		 * always required.
380 		 */
381 		if (pt_pmu.branch_en_always_on &&
382 		    !(config & RTIT_CTL_BRANCH_EN))
383 			return false;
384 	} else {
385 		/*
386 		 * Disallow BRANCH_EN without the PASSTHROUGH.
387 		 */
388 		if (config & RTIT_CTL_BRANCH_EN)
389 			return false;
390 	}
391 
392 	return true;
393 }
394 
395 /*
396  * PT configuration helpers
397  * These all are cpu affine and operate on a local PT
398  */
399 
400 /* Address ranges and their corresponding msr configuration registers */
401 static const struct pt_address_range {
402 	unsigned long	msr_a;
403 	unsigned long	msr_b;
404 	unsigned int	reg_off;
405 } pt_address_ranges[] = {
406 	{
407 		.msr_a	 = MSR_IA32_RTIT_ADDR0_A,
408 		.msr_b	 = MSR_IA32_RTIT_ADDR0_B,
409 		.reg_off = RTIT_CTL_ADDR0_OFFSET,
410 	},
411 	{
412 		.msr_a	 = MSR_IA32_RTIT_ADDR1_A,
413 		.msr_b	 = MSR_IA32_RTIT_ADDR1_B,
414 		.reg_off = RTIT_CTL_ADDR1_OFFSET,
415 	},
416 	{
417 		.msr_a	 = MSR_IA32_RTIT_ADDR2_A,
418 		.msr_b	 = MSR_IA32_RTIT_ADDR2_B,
419 		.reg_off = RTIT_CTL_ADDR2_OFFSET,
420 	},
421 	{
422 		.msr_a	 = MSR_IA32_RTIT_ADDR3_A,
423 		.msr_b	 = MSR_IA32_RTIT_ADDR3_B,
424 		.reg_off = RTIT_CTL_ADDR3_OFFSET,
425 	}
426 };
427 
428 static u64 pt_config_filters(struct perf_event *event)
429 {
430 	struct pt_filters *filters = event->hw.addr_filters;
431 	struct pt *pt = this_cpu_ptr(&pt_ctx);
432 	unsigned int range = 0;
433 	u64 rtit_ctl = 0;
434 
435 	if (!filters)
436 		return 0;
437 
438 	perf_event_addr_filters_sync(event);
439 
440 	for (range = 0; range < filters->nr_filters; range++) {
441 		struct pt_filter *filter = &filters->filter[range];
442 
443 		/*
444 		 * Note, if the range has zero start/end addresses due
445 		 * to its dynamic object not being loaded yet, we just
446 		 * go ahead and program zeroed range, which will simply
447 		 * produce no data. Note^2: if executable code at 0x0
448 		 * is a concern, we can set up an "invalid" configuration
449 		 * such as msr_b < msr_a.
450 		 */
451 
452 		/* avoid redundant msr writes */
453 		if (pt->filters.filter[range].msr_a != filter->msr_a) {
454 			wrmsrl(pt_address_ranges[range].msr_a, filter->msr_a);
455 			pt->filters.filter[range].msr_a = filter->msr_a;
456 		}
457 
458 		if (pt->filters.filter[range].msr_b != filter->msr_b) {
459 			wrmsrl(pt_address_ranges[range].msr_b, filter->msr_b);
460 			pt->filters.filter[range].msr_b = filter->msr_b;
461 		}
462 
463 		rtit_ctl |= filter->config << pt_address_ranges[range].reg_off;
464 	}
465 
466 	return rtit_ctl;
467 }
468 
469 static void pt_config(struct perf_event *event)
470 {
471 	struct pt *pt = this_cpu_ptr(&pt_ctx);
472 	u64 reg;
473 
474 	/* First round: clear STATUS, in particular the PSB byte counter. */
475 	if (!event->hw.config) {
476 		perf_event_itrace_started(event);
477 		wrmsrl(MSR_IA32_RTIT_STATUS, 0);
478 	}
479 
480 	reg = pt_config_filters(event);
481 	reg |= RTIT_CTL_TOPA | RTIT_CTL_TRACEEN;
482 
483 	/*
484 	 * Previously, we had BRANCH_EN on by default, but now that PT has
485 	 * grown features outside of branch tracing, it is useful to allow
486 	 * the user to disable it. Setting bit 0 in the event's attr.config
487 	 * allows BRANCH_EN to pass through instead of being always on. See
488 	 * also the comment in pt_event_valid().
489 	 */
490 	if (event->attr.config & BIT(0)) {
491 		reg |= event->attr.config & RTIT_CTL_BRANCH_EN;
492 	} else {
493 		reg |= RTIT_CTL_BRANCH_EN;
494 	}
495 
496 	if (!event->attr.exclude_kernel)
497 		reg |= RTIT_CTL_OS;
498 	if (!event->attr.exclude_user)
499 		reg |= RTIT_CTL_USR;
500 
501 	reg |= (event->attr.config & PT_CONFIG_MASK);
502 
503 	event->hw.config = reg;
504 	if (READ_ONCE(pt->vmx_on))
505 		perf_aux_output_flag(&pt->handle, PERF_AUX_FLAG_PARTIAL);
506 	else
507 		wrmsrl(MSR_IA32_RTIT_CTL, reg);
508 }
509 
510 static void pt_config_stop(struct perf_event *event)
511 {
512 	struct pt *pt = this_cpu_ptr(&pt_ctx);
513 	u64 ctl = READ_ONCE(event->hw.config);
514 
515 	/* may be already stopped by a PMI */
516 	if (!(ctl & RTIT_CTL_TRACEEN))
517 		return;
518 
519 	ctl &= ~RTIT_CTL_TRACEEN;
520 	if (!READ_ONCE(pt->vmx_on))
521 		wrmsrl(MSR_IA32_RTIT_CTL, ctl);
522 
523 	WRITE_ONCE(event->hw.config, ctl);
524 
525 	/*
526 	 * A wrmsr that disables trace generation serializes other PT
527 	 * registers and causes all data packets to be written to memory,
528 	 * but a fence is required for the data to become globally visible.
529 	 *
530 	 * The below WMB, separating data store and aux_head store matches
531 	 * the consumer's RMB that separates aux_head load and data load.
532 	 */
533 	wmb();
534 }
535 
536 static void pt_config_buffer(void *buf, unsigned int topa_idx,
537 			     unsigned int output_off)
538 {
539 	u64 reg;
540 
541 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, virt_to_phys(buf));
542 
543 	reg = 0x7f | ((u64)topa_idx << 7) | ((u64)output_off << 32);
544 
545 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, reg);
546 }
547 
548 /**
549  * struct topa - ToPA metadata
550  * @list:	linkage to struct pt_buffer's list of tables
551  * @offset:	offset of the first entry in this table in the buffer
552  * @size:	total size of all entries in this table
553  * @last:	index of the last initialized entry in this table
554  * @z_count:	how many times the first entry repeats
555  */
556 struct topa {
557 	struct list_head	list;
558 	u64			offset;
559 	size_t			size;
560 	int			last;
561 	unsigned int		z_count;
562 };
563 
564 /*
565  * Keep ToPA table-related metadata on the same page as the actual table,
566  * taking up a few words from the top
567  */
568 
569 #define TENTS_PER_PAGE	\
570 	((PAGE_SIZE - sizeof(struct topa)) / sizeof(struct topa_entry))
571 
572 /**
573  * struct topa_page - page-sized ToPA table with metadata at the top
574  * @table:	actual ToPA table entries, as understood by PT hardware
575  * @topa:	metadata
576  */
577 struct topa_page {
578 	struct topa_entry	table[TENTS_PER_PAGE];
579 	struct topa		topa;
580 };
581 
582 static inline struct topa_page *topa_to_page(struct topa *topa)
583 {
584 	return container_of(topa, struct topa_page, topa);
585 }
586 
587 static inline struct topa_page *topa_entry_to_page(struct topa_entry *te)
588 {
589 	return (struct topa_page *)((unsigned long)te & PAGE_MASK);
590 }
591 
592 static inline phys_addr_t topa_pfn(struct topa *topa)
593 {
594 	return PFN_DOWN(virt_to_phys(topa_to_page(topa)));
595 }
596 
597 /* make -1 stand for the last table entry */
598 #define TOPA_ENTRY(t, i)				\
599 	((i) == -1					\
600 		? &topa_to_page(t)->table[(t)->last]	\
601 		: &topa_to_page(t)->table[(i)])
602 #define TOPA_ENTRY_SIZE(t, i) (sizes(TOPA_ENTRY((t), (i))->size))
603 #define TOPA_ENTRY_PAGES(t, i) (1 << TOPA_ENTRY((t), (i))->size)
604 
605 /**
606  * topa_alloc() - allocate page-sized ToPA table
607  * @cpu:	CPU on which to allocate.
608  * @gfp:	Allocation flags.
609  *
610  * Return:	On success, return the pointer to ToPA table page.
611  */
612 static struct topa *topa_alloc(int cpu, gfp_t gfp)
613 {
614 	int node = cpu_to_node(cpu);
615 	struct topa_page *tp;
616 	struct page *p;
617 
618 	p = alloc_pages_node(node, gfp | __GFP_ZERO, 0);
619 	if (!p)
620 		return NULL;
621 
622 	tp = page_address(p);
623 	tp->topa.last = 0;
624 
625 	/*
626 	 * In case of singe-entry ToPA, always put the self-referencing END
627 	 * link as the 2nd entry in the table
628 	 */
629 	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) {
630 		TOPA_ENTRY(&tp->topa, 1)->base = page_to_phys(p);
631 		TOPA_ENTRY(&tp->topa, 1)->end = 1;
632 	}
633 
634 	return &tp->topa;
635 }
636 
637 /**
638  * topa_free() - free a page-sized ToPA table
639  * @topa:	Table to deallocate.
640  */
641 static void topa_free(struct topa *topa)
642 {
643 	free_page((unsigned long)topa);
644 }
645 
646 /**
647  * topa_insert_table() - insert a ToPA table into a buffer
648  * @buf:	 PT buffer that's being extended.
649  * @topa:	 New topa table to be inserted.
650  *
651  * If it's the first table in this buffer, set up buffer's pointers
652  * accordingly; otherwise, add a END=1 link entry to @topa to the current
653  * "last" table and adjust the last table pointer to @topa.
654  */
655 static void topa_insert_table(struct pt_buffer *buf, struct topa *topa)
656 {
657 	struct topa *last = buf->last;
658 
659 	list_add_tail(&topa->list, &buf->tables);
660 
661 	if (!buf->first) {
662 		buf->first = buf->last = buf->cur = topa;
663 		return;
664 	}
665 
666 	topa->offset = last->offset + last->size;
667 	buf->last = topa;
668 
669 	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
670 		return;
671 
672 	BUG_ON(last->last != TENTS_PER_PAGE - 1);
673 
674 	TOPA_ENTRY(last, -1)->base = topa_pfn(topa);
675 	TOPA_ENTRY(last, -1)->end = 1;
676 }
677 
678 /**
679  * topa_table_full() - check if a ToPA table is filled up
680  * @topa:	ToPA table.
681  */
682 static bool topa_table_full(struct topa *topa)
683 {
684 	/* single-entry ToPA is a special case */
685 	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
686 		return !!topa->last;
687 
688 	return topa->last == TENTS_PER_PAGE - 1;
689 }
690 
691 /**
692  * topa_insert_pages() - create a list of ToPA tables
693  * @buf:	PT buffer being initialized.
694  * @gfp:	Allocation flags.
695  *
696  * This initializes a list of ToPA tables with entries from
697  * the data_pages provided by rb_alloc_aux().
698  *
699  * Return:	0 on success or error code.
700  */
701 static int topa_insert_pages(struct pt_buffer *buf, int cpu, gfp_t gfp)
702 {
703 	struct topa *topa = buf->last;
704 	int order = 0;
705 	struct page *p;
706 
707 	p = virt_to_page(buf->data_pages[buf->nr_pages]);
708 	if (PagePrivate(p))
709 		order = page_private(p);
710 
711 	if (topa_table_full(topa)) {
712 		topa = topa_alloc(cpu, gfp);
713 		if (!topa)
714 			return -ENOMEM;
715 
716 		topa_insert_table(buf, topa);
717 	}
718 
719 	if (topa->z_count == topa->last - 1) {
720 		if (order == TOPA_ENTRY(topa, topa->last - 1)->size)
721 			topa->z_count++;
722 	}
723 
724 	TOPA_ENTRY(topa, -1)->base = page_to_phys(p) >> TOPA_SHIFT;
725 	TOPA_ENTRY(topa, -1)->size = order;
726 	if (!buf->snapshot &&
727 	    !intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) {
728 		TOPA_ENTRY(topa, -1)->intr = 1;
729 		TOPA_ENTRY(topa, -1)->stop = 1;
730 	}
731 
732 	topa->last++;
733 	topa->size += sizes(order);
734 
735 	buf->nr_pages += 1ul << order;
736 
737 	return 0;
738 }
739 
740 /**
741  * pt_topa_dump() - print ToPA tables and their entries
742  * @buf:	PT buffer.
743  */
744 static void pt_topa_dump(struct pt_buffer *buf)
745 {
746 	struct topa *topa;
747 
748 	list_for_each_entry(topa, &buf->tables, list) {
749 		struct topa_page *tp = topa_to_page(topa);
750 		int i;
751 
752 		pr_debug("# table @%p, off %llx size %zx\n", tp->table,
753 			 topa->offset, topa->size);
754 		for (i = 0; i < TENTS_PER_PAGE; i++) {
755 			pr_debug("# entry @%p (%lx sz %u %c%c%c) raw=%16llx\n",
756 				 &tp->table[i],
757 				 (unsigned long)tp->table[i].base << TOPA_SHIFT,
758 				 sizes(tp->table[i].size),
759 				 tp->table[i].end ?  'E' : ' ',
760 				 tp->table[i].intr ? 'I' : ' ',
761 				 tp->table[i].stop ? 'S' : ' ',
762 				 *(u64 *)&tp->table[i]);
763 			if ((intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) &&
764 			     tp->table[i].stop) ||
765 			    tp->table[i].end)
766 				break;
767 			if (!i && topa->z_count)
768 				i += topa->z_count;
769 		}
770 	}
771 }
772 
773 /**
774  * pt_buffer_advance() - advance to the next output region
775  * @buf:	PT buffer.
776  *
777  * Advance the current pointers in the buffer to the next ToPA entry.
778  */
779 static void pt_buffer_advance(struct pt_buffer *buf)
780 {
781 	buf->output_off = 0;
782 	buf->cur_idx++;
783 
784 	if (buf->cur_idx == buf->cur->last) {
785 		if (buf->cur == buf->last)
786 			buf->cur = buf->first;
787 		else
788 			buf->cur = list_entry(buf->cur->list.next, struct topa,
789 					      list);
790 		buf->cur_idx = 0;
791 	}
792 }
793 
794 /**
795  * pt_update_head() - calculate current offsets and sizes
796  * @pt:		Per-cpu pt context.
797  *
798  * Update buffer's current write pointer position and data size.
799  */
800 static void pt_update_head(struct pt *pt)
801 {
802 	struct pt_buffer *buf = perf_get_aux(&pt->handle);
803 	u64 topa_idx, base, old;
804 
805 	/* offset of the first region in this table from the beginning of buf */
806 	base = buf->cur->offset + buf->output_off;
807 
808 	/* offset of the current output region within this table */
809 	for (topa_idx = 0; topa_idx < buf->cur_idx; topa_idx++)
810 		base += TOPA_ENTRY_SIZE(buf->cur, topa_idx);
811 
812 	if (buf->snapshot) {
813 		local_set(&buf->data_size, base);
814 	} else {
815 		old = (local64_xchg(&buf->head, base) &
816 		       ((buf->nr_pages << PAGE_SHIFT) - 1));
817 		if (base < old)
818 			base += buf->nr_pages << PAGE_SHIFT;
819 
820 		local_add(base - old, &buf->data_size);
821 	}
822 }
823 
824 /**
825  * pt_buffer_region() - obtain current output region's address
826  * @buf:	PT buffer.
827  */
828 static void *pt_buffer_region(struct pt_buffer *buf)
829 {
830 	return phys_to_virt(TOPA_ENTRY(buf->cur, buf->cur_idx)->base << TOPA_SHIFT);
831 }
832 
833 /**
834  * pt_buffer_region_size() - obtain current output region's size
835  * @buf:	PT buffer.
836  */
837 static size_t pt_buffer_region_size(struct pt_buffer *buf)
838 {
839 	return TOPA_ENTRY_SIZE(buf->cur, buf->cur_idx);
840 }
841 
842 /**
843  * pt_handle_status() - take care of possible status conditions
844  * @pt:		Per-cpu pt context.
845  */
846 static void pt_handle_status(struct pt *pt)
847 {
848 	struct pt_buffer *buf = perf_get_aux(&pt->handle);
849 	int advance = 0;
850 	u64 status;
851 
852 	rdmsrl(MSR_IA32_RTIT_STATUS, status);
853 
854 	if (status & RTIT_STATUS_ERROR) {
855 		pr_err_ratelimited("ToPA ERROR encountered, trying to recover\n");
856 		pt_topa_dump(buf);
857 		status &= ~RTIT_STATUS_ERROR;
858 	}
859 
860 	if (status & RTIT_STATUS_STOPPED) {
861 		status &= ~RTIT_STATUS_STOPPED;
862 
863 		/*
864 		 * On systems that only do single-entry ToPA, hitting STOP
865 		 * means we are already losing data; need to let the decoder
866 		 * know.
867 		 */
868 		if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) ||
869 		    buf->output_off == pt_buffer_region_size(buf)) {
870 			perf_aux_output_flag(&pt->handle,
871 			                     PERF_AUX_FLAG_TRUNCATED);
872 			advance++;
873 		}
874 	}
875 
876 	/*
877 	 * Also on single-entry ToPA implementations, interrupt will come
878 	 * before the output reaches its output region's boundary.
879 	 */
880 	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) &&
881 	    !buf->snapshot &&
882 	    pt_buffer_region_size(buf) - buf->output_off <= TOPA_PMI_MARGIN) {
883 		void *head = pt_buffer_region(buf);
884 
885 		/* everything within this margin needs to be zeroed out */
886 		memset(head + buf->output_off, 0,
887 		       pt_buffer_region_size(buf) -
888 		       buf->output_off);
889 		advance++;
890 	}
891 
892 	if (advance)
893 		pt_buffer_advance(buf);
894 
895 	wrmsrl(MSR_IA32_RTIT_STATUS, status);
896 }
897 
898 /**
899  * pt_read_offset() - translate registers into buffer pointers
900  * @buf:	PT buffer.
901  *
902  * Set buffer's output pointers from MSR values.
903  */
904 static void pt_read_offset(struct pt_buffer *buf)
905 {
906 	u64 offset, base_topa;
907 	struct topa_page *tp;
908 
909 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, base_topa);
910 	tp = phys_to_virt(base_topa);
911 	buf->cur = &tp->topa;
912 
913 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, offset);
914 	/* offset within current output region */
915 	buf->output_off = offset >> 32;
916 	/* index of current output region within this table */
917 	buf->cur_idx = (offset & 0xffffff80) >> 7;
918 }
919 
920 static struct topa_entry *
921 pt_topa_entry_for_page(struct pt_buffer *buf, unsigned int pg)
922 {
923 	struct topa_page *tp;
924 	struct topa *topa;
925 	unsigned int idx, cur_pg = 0, z_pg = 0, start_idx = 0;
926 
927 	/*
928 	 * Indicates a bug in the caller.
929 	 */
930 	if (WARN_ON_ONCE(pg >= buf->nr_pages))
931 		return NULL;
932 
933 	/*
934 	 * First, find the ToPA table where @pg fits. With high
935 	 * order allocations, there shouldn't be many of these.
936 	 */
937 	list_for_each_entry(topa, &buf->tables, list) {
938 		if (topa->offset + topa->size > pg << PAGE_SHIFT)
939 			goto found;
940 	}
941 
942 	/*
943 	 * Hitting this means we have a problem in the ToPA
944 	 * allocation code.
945 	 */
946 	WARN_ON_ONCE(1);
947 
948 	return NULL;
949 
950 found:
951 	/*
952 	 * Indicates a problem in the ToPA allocation code.
953 	 */
954 	if (WARN_ON_ONCE(topa->last == -1))
955 		return NULL;
956 
957 	tp = topa_to_page(topa);
958 	cur_pg = PFN_DOWN(topa->offset);
959 	if (topa->z_count) {
960 		z_pg = TOPA_ENTRY_PAGES(topa, 0) * (topa->z_count + 1);
961 		start_idx = topa->z_count + 1;
962 	}
963 
964 	/*
965 	 * Multiple entries at the beginning of the table have the same size,
966 	 * ideally all of them; if @pg falls there, the search is done.
967 	 */
968 	if (pg >= cur_pg && pg < cur_pg + z_pg) {
969 		idx = (pg - cur_pg) / TOPA_ENTRY_PAGES(topa, 0);
970 		return &tp->table[idx];
971 	}
972 
973 	/*
974 	 * Otherwise, slow path: iterate through the remaining entries.
975 	 */
976 	for (idx = start_idx, cur_pg += z_pg; idx < topa->last; idx++) {
977 		if (cur_pg + TOPA_ENTRY_PAGES(topa, idx) > pg)
978 			return &tp->table[idx];
979 
980 		cur_pg += TOPA_ENTRY_PAGES(topa, idx);
981 	}
982 
983 	/*
984 	 * Means we couldn't find a ToPA entry in the table that does match.
985 	 */
986 	WARN_ON_ONCE(1);
987 
988 	return NULL;
989 }
990 
991 static struct topa_entry *
992 pt_topa_prev_entry(struct pt_buffer *buf, struct topa_entry *te)
993 {
994 	unsigned long table = (unsigned long)te & ~(PAGE_SIZE - 1);
995 	struct topa_page *tp;
996 	struct topa *topa;
997 
998 	tp = (struct topa_page *)table;
999 	if (tp->table != te)
1000 		return --te;
1001 
1002 	topa = &tp->topa;
1003 	if (topa == buf->first)
1004 		topa = buf->last;
1005 	else
1006 		topa = list_prev_entry(topa, list);
1007 
1008 	tp = topa_to_page(topa);
1009 
1010 	return &tp->table[topa->last - 1];
1011 }
1012 
1013 /**
1014  * pt_buffer_reset_markers() - place interrupt and stop bits in the buffer
1015  * @buf:	PT buffer.
1016  * @handle:	Current output handle.
1017  *
1018  * Place INT and STOP marks to prevent overwriting old data that the consumer
1019  * hasn't yet collected and waking up the consumer after a certain fraction of
1020  * the buffer has filled up. Only needed and sensible for non-snapshot counters.
1021  *
1022  * This obviously relies on buf::head to figure out buffer markers, so it has
1023  * to be called after pt_buffer_reset_offsets() and before the hardware tracing
1024  * is enabled.
1025  */
1026 static int pt_buffer_reset_markers(struct pt_buffer *buf,
1027 				   struct perf_output_handle *handle)
1028 
1029 {
1030 	unsigned long head = local64_read(&buf->head);
1031 	unsigned long idx, npages, wakeup;
1032 
1033 	/* can't stop in the middle of an output region */
1034 	if (buf->output_off + handle->size + 1 < pt_buffer_region_size(buf)) {
1035 		perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
1036 		return -EINVAL;
1037 	}
1038 
1039 
1040 	/* single entry ToPA is handled by marking all regions STOP=1 INT=1 */
1041 	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
1042 		return 0;
1043 
1044 	/* clear STOP and INT from current entry */
1045 	if (buf->stop_te) {
1046 		buf->stop_te->stop = 0;
1047 		buf->stop_te->intr = 0;
1048 	}
1049 
1050 	if (buf->intr_te)
1051 		buf->intr_te->intr = 0;
1052 
1053 	/* how many pages till the STOP marker */
1054 	npages = handle->size >> PAGE_SHIFT;
1055 
1056 	/* if it's on a page boundary, fill up one more page */
1057 	if (!offset_in_page(head + handle->size + 1))
1058 		npages++;
1059 
1060 	idx = (head >> PAGE_SHIFT) + npages;
1061 	idx &= buf->nr_pages - 1;
1062 
1063 	if (idx != buf->stop_pos) {
1064 		buf->stop_pos = idx;
1065 		buf->stop_te = pt_topa_entry_for_page(buf, idx);
1066 		buf->stop_te = pt_topa_prev_entry(buf, buf->stop_te);
1067 	}
1068 
1069 	wakeup = handle->wakeup >> PAGE_SHIFT;
1070 
1071 	/* in the worst case, wake up the consumer one page before hard stop */
1072 	idx = (head >> PAGE_SHIFT) + npages - 1;
1073 	if (idx > wakeup)
1074 		idx = wakeup;
1075 
1076 	idx &= buf->nr_pages - 1;
1077 	if (idx != buf->intr_pos) {
1078 		buf->intr_pos = idx;
1079 		buf->intr_te = pt_topa_entry_for_page(buf, idx);
1080 		buf->intr_te = pt_topa_prev_entry(buf, buf->intr_te);
1081 	}
1082 
1083 	buf->stop_te->stop = 1;
1084 	buf->stop_te->intr = 1;
1085 	buf->intr_te->intr = 1;
1086 
1087 	return 0;
1088 }
1089 
1090 /**
1091  * pt_buffer_reset_offsets() - adjust buffer's write pointers from aux_head
1092  * @buf:	PT buffer.
1093  * @head:	Write pointer (aux_head) from AUX buffer.
1094  *
1095  * Find the ToPA table and entry corresponding to given @head and set buffer's
1096  * "current" pointers accordingly. This is done after we have obtained the
1097  * current aux_head position from a successful call to perf_aux_output_begin()
1098  * to make sure the hardware is writing to the right place.
1099  *
1100  * This function modifies buf::{cur,cur_idx,output_off} that will be programmed
1101  * into PT msrs when the tracing is enabled and buf::head and buf::data_size,
1102  * which are used to determine INT and STOP markers' locations by a subsequent
1103  * call to pt_buffer_reset_markers().
1104  */
1105 static void pt_buffer_reset_offsets(struct pt_buffer *buf, unsigned long head)
1106 {
1107 	struct topa_page *cur_tp;
1108 	struct topa_entry *te;
1109 	int pg;
1110 
1111 	if (buf->snapshot)
1112 		head &= (buf->nr_pages << PAGE_SHIFT) - 1;
1113 
1114 	pg = (head >> PAGE_SHIFT) & (buf->nr_pages - 1);
1115 	te = pt_topa_entry_for_page(buf, pg);
1116 
1117 	cur_tp = topa_entry_to_page(te);
1118 	buf->cur = &cur_tp->topa;
1119 	buf->cur_idx = te - TOPA_ENTRY(buf->cur, 0);
1120 	buf->output_off = head & (pt_buffer_region_size(buf) - 1);
1121 
1122 	local64_set(&buf->head, head);
1123 	local_set(&buf->data_size, 0);
1124 }
1125 
1126 /**
1127  * pt_buffer_fini_topa() - deallocate ToPA structure of a buffer
1128  * @buf:	PT buffer.
1129  */
1130 static void pt_buffer_fini_topa(struct pt_buffer *buf)
1131 {
1132 	struct topa *topa, *iter;
1133 
1134 	list_for_each_entry_safe(topa, iter, &buf->tables, list) {
1135 		/*
1136 		 * right now, this is in free_aux() path only, so
1137 		 * no need to unlink this table from the list
1138 		 */
1139 		topa_free(topa);
1140 	}
1141 }
1142 
1143 /**
1144  * pt_buffer_init_topa() - initialize ToPA table for pt buffer
1145  * @buf:	PT buffer.
1146  * @size:	Total size of all regions within this ToPA.
1147  * @gfp:	Allocation flags.
1148  */
1149 static int pt_buffer_init_topa(struct pt_buffer *buf, int cpu,
1150 			       unsigned long nr_pages, gfp_t gfp)
1151 {
1152 	struct topa *topa;
1153 	int err;
1154 
1155 	topa = topa_alloc(cpu, gfp);
1156 	if (!topa)
1157 		return -ENOMEM;
1158 
1159 	topa_insert_table(buf, topa);
1160 
1161 	while (buf->nr_pages < nr_pages) {
1162 		err = topa_insert_pages(buf, cpu, gfp);
1163 		if (err) {
1164 			pt_buffer_fini_topa(buf);
1165 			return -ENOMEM;
1166 		}
1167 	}
1168 
1169 	/* link last table to the first one, unless we're double buffering */
1170 	if (intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) {
1171 		TOPA_ENTRY(buf->last, -1)->base = topa_pfn(buf->first);
1172 		TOPA_ENTRY(buf->last, -1)->end = 1;
1173 	}
1174 
1175 	pt_topa_dump(buf);
1176 	return 0;
1177 }
1178 
1179 /**
1180  * pt_buffer_setup_aux() - set up topa tables for a PT buffer
1181  * @cpu:	Cpu on which to allocate, -1 means current.
1182  * @pages:	Array of pointers to buffer pages passed from perf core.
1183  * @nr_pages:	Number of pages in the buffer.
1184  * @snapshot:	If this is a snapshot/overwrite counter.
1185  *
1186  * This is a pmu::setup_aux callback that sets up ToPA tables and all the
1187  * bookkeeping for an AUX buffer.
1188  *
1189  * Return:	Our private PT buffer structure.
1190  */
1191 static void *
1192 pt_buffer_setup_aux(struct perf_event *event, void **pages,
1193 		    int nr_pages, bool snapshot)
1194 {
1195 	struct pt_buffer *buf;
1196 	int node, ret, cpu = event->cpu;
1197 
1198 	if (!nr_pages)
1199 		return NULL;
1200 
1201 	if (cpu == -1)
1202 		cpu = raw_smp_processor_id();
1203 	node = cpu_to_node(cpu);
1204 
1205 	buf = kzalloc_node(sizeof(struct pt_buffer), GFP_KERNEL, node);
1206 	if (!buf)
1207 		return NULL;
1208 
1209 	buf->snapshot = snapshot;
1210 	buf->data_pages = pages;
1211 	buf->stop_pos = -1;
1212 	buf->intr_pos = -1;
1213 
1214 	INIT_LIST_HEAD(&buf->tables);
1215 
1216 	ret = pt_buffer_init_topa(buf, cpu, nr_pages, GFP_KERNEL);
1217 	if (ret) {
1218 		kfree(buf);
1219 		return NULL;
1220 	}
1221 
1222 	return buf;
1223 }
1224 
1225 /**
1226  * pt_buffer_free_aux() - perf AUX deallocation path callback
1227  * @data:	PT buffer.
1228  */
1229 static void pt_buffer_free_aux(void *data)
1230 {
1231 	struct pt_buffer *buf = data;
1232 
1233 	pt_buffer_fini_topa(buf);
1234 	kfree(buf);
1235 }
1236 
1237 static int pt_addr_filters_init(struct perf_event *event)
1238 {
1239 	struct pt_filters *filters;
1240 	int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
1241 
1242 	if (!intel_pt_validate_hw_cap(PT_CAP_num_address_ranges))
1243 		return 0;
1244 
1245 	filters = kzalloc_node(sizeof(struct pt_filters), GFP_KERNEL, node);
1246 	if (!filters)
1247 		return -ENOMEM;
1248 
1249 	if (event->parent)
1250 		memcpy(filters, event->parent->hw.addr_filters,
1251 		       sizeof(*filters));
1252 
1253 	event->hw.addr_filters = filters;
1254 
1255 	return 0;
1256 }
1257 
1258 static void pt_addr_filters_fini(struct perf_event *event)
1259 {
1260 	kfree(event->hw.addr_filters);
1261 	event->hw.addr_filters = NULL;
1262 }
1263 
1264 static inline bool valid_kernel_ip(unsigned long ip)
1265 {
1266 	return virt_addr_valid(ip) && kernel_ip(ip);
1267 }
1268 
1269 static int pt_event_addr_filters_validate(struct list_head *filters)
1270 {
1271 	struct perf_addr_filter *filter;
1272 	int range = 0;
1273 
1274 	list_for_each_entry(filter, filters, entry) {
1275 		/*
1276 		 * PT doesn't support single address triggers and
1277 		 * 'start' filters.
1278 		 */
1279 		if (!filter->size ||
1280 		    filter->action == PERF_ADDR_FILTER_ACTION_START)
1281 			return -EOPNOTSUPP;
1282 
1283 		if (!filter->path.dentry) {
1284 			if (!valid_kernel_ip(filter->offset))
1285 				return -EINVAL;
1286 
1287 			if (!valid_kernel_ip(filter->offset + filter->size))
1288 				return -EINVAL;
1289 		}
1290 
1291 		if (++range > intel_pt_validate_hw_cap(PT_CAP_num_address_ranges))
1292 			return -EOPNOTSUPP;
1293 	}
1294 
1295 	return 0;
1296 }
1297 
1298 static void pt_event_addr_filters_sync(struct perf_event *event)
1299 {
1300 	struct perf_addr_filters_head *head = perf_event_addr_filters(event);
1301 	unsigned long msr_a, msr_b;
1302 	struct perf_addr_filter_range *fr = event->addr_filter_ranges;
1303 	struct pt_filters *filters = event->hw.addr_filters;
1304 	struct perf_addr_filter *filter;
1305 	int range = 0;
1306 
1307 	if (!filters)
1308 		return;
1309 
1310 	list_for_each_entry(filter, &head->list, entry) {
1311 		if (filter->path.dentry && !fr[range].start) {
1312 			msr_a = msr_b = 0;
1313 		} else {
1314 			/* apply the offset */
1315 			msr_a = fr[range].start;
1316 			msr_b = msr_a + fr[range].size - 1;
1317 		}
1318 
1319 		filters->filter[range].msr_a  = msr_a;
1320 		filters->filter[range].msr_b  = msr_b;
1321 		if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER)
1322 			filters->filter[range].config = 1;
1323 		else
1324 			filters->filter[range].config = 2;
1325 		range++;
1326 	}
1327 
1328 	filters->nr_filters = range;
1329 }
1330 
1331 /**
1332  * intel_pt_interrupt() - PT PMI handler
1333  */
1334 void intel_pt_interrupt(void)
1335 {
1336 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1337 	struct pt_buffer *buf;
1338 	struct perf_event *event = pt->handle.event;
1339 
1340 	/*
1341 	 * There may be a dangling PT bit in the interrupt status register
1342 	 * after PT has been disabled by pt_event_stop(). Make sure we don't
1343 	 * do anything (particularly, re-enable) for this event here.
1344 	 */
1345 	if (!READ_ONCE(pt->handle_nmi))
1346 		return;
1347 
1348 	if (!event)
1349 		return;
1350 
1351 	pt_config_stop(event);
1352 
1353 	buf = perf_get_aux(&pt->handle);
1354 	if (!buf)
1355 		return;
1356 
1357 	pt_read_offset(buf);
1358 
1359 	pt_handle_status(pt);
1360 
1361 	pt_update_head(pt);
1362 
1363 	perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0));
1364 
1365 	if (!event->hw.state) {
1366 		int ret;
1367 
1368 		buf = perf_aux_output_begin(&pt->handle, event);
1369 		if (!buf) {
1370 			event->hw.state = PERF_HES_STOPPED;
1371 			return;
1372 		}
1373 
1374 		pt_buffer_reset_offsets(buf, pt->handle.head);
1375 		/* snapshot counters don't use PMI, so it's safe */
1376 		ret = pt_buffer_reset_markers(buf, &pt->handle);
1377 		if (ret) {
1378 			perf_aux_output_end(&pt->handle, 0);
1379 			return;
1380 		}
1381 
1382 		pt_config_buffer(topa_to_page(buf->cur)->table, buf->cur_idx,
1383 				 buf->output_off);
1384 		pt_config(event);
1385 	}
1386 }
1387 
1388 void intel_pt_handle_vmx(int on)
1389 {
1390 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1391 	struct perf_event *event;
1392 	unsigned long flags;
1393 
1394 	/* PT plays nice with VMX, do nothing */
1395 	if (pt_pmu.vmx)
1396 		return;
1397 
1398 	/*
1399 	 * VMXON will clear RTIT_CTL.TraceEn; we need to make
1400 	 * sure to not try to set it while VMX is on. Disable
1401 	 * interrupts to avoid racing with pmu callbacks;
1402 	 * concurrent PMI should be handled fine.
1403 	 */
1404 	local_irq_save(flags);
1405 	WRITE_ONCE(pt->vmx_on, on);
1406 
1407 	/*
1408 	 * If an AUX transaction is in progress, it will contain
1409 	 * gap(s), so flag it PARTIAL to inform the user.
1410 	 */
1411 	event = pt->handle.event;
1412 	if (event)
1413 		perf_aux_output_flag(&pt->handle,
1414 		                     PERF_AUX_FLAG_PARTIAL);
1415 
1416 	/* Turn PTs back on */
1417 	if (!on && event)
1418 		wrmsrl(MSR_IA32_RTIT_CTL, event->hw.config);
1419 
1420 	local_irq_restore(flags);
1421 }
1422 EXPORT_SYMBOL_GPL(intel_pt_handle_vmx);
1423 
1424 /*
1425  * PMU callbacks
1426  */
1427 
1428 static void pt_event_start(struct perf_event *event, int mode)
1429 {
1430 	struct hw_perf_event *hwc = &event->hw;
1431 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1432 	struct pt_buffer *buf;
1433 
1434 	buf = perf_aux_output_begin(&pt->handle, event);
1435 	if (!buf)
1436 		goto fail_stop;
1437 
1438 	pt_buffer_reset_offsets(buf, pt->handle.head);
1439 	if (!buf->snapshot) {
1440 		if (pt_buffer_reset_markers(buf, &pt->handle))
1441 			goto fail_end_stop;
1442 	}
1443 
1444 	WRITE_ONCE(pt->handle_nmi, 1);
1445 	hwc->state = 0;
1446 
1447 	pt_config_buffer(topa_to_page(buf->cur)->table, buf->cur_idx,
1448 			 buf->output_off);
1449 	pt_config(event);
1450 
1451 	return;
1452 
1453 fail_end_stop:
1454 	perf_aux_output_end(&pt->handle, 0);
1455 fail_stop:
1456 	hwc->state = PERF_HES_STOPPED;
1457 }
1458 
1459 static void pt_event_stop(struct perf_event *event, int mode)
1460 {
1461 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1462 
1463 	/*
1464 	 * Protect against the PMI racing with disabling wrmsr,
1465 	 * see comment in intel_pt_interrupt().
1466 	 */
1467 	WRITE_ONCE(pt->handle_nmi, 0);
1468 
1469 	pt_config_stop(event);
1470 
1471 	if (event->hw.state == PERF_HES_STOPPED)
1472 		return;
1473 
1474 	event->hw.state = PERF_HES_STOPPED;
1475 
1476 	if (mode & PERF_EF_UPDATE) {
1477 		struct pt_buffer *buf = perf_get_aux(&pt->handle);
1478 
1479 		if (!buf)
1480 			return;
1481 
1482 		if (WARN_ON_ONCE(pt->handle.event != event))
1483 			return;
1484 
1485 		pt_read_offset(buf);
1486 
1487 		pt_handle_status(pt);
1488 
1489 		pt_update_head(pt);
1490 
1491 		if (buf->snapshot)
1492 			pt->handle.head =
1493 				local_xchg(&buf->data_size,
1494 					   buf->nr_pages << PAGE_SHIFT);
1495 		perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0));
1496 	}
1497 }
1498 
1499 static void pt_event_del(struct perf_event *event, int mode)
1500 {
1501 	pt_event_stop(event, PERF_EF_UPDATE);
1502 }
1503 
1504 static int pt_event_add(struct perf_event *event, int mode)
1505 {
1506 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1507 	struct hw_perf_event *hwc = &event->hw;
1508 	int ret = -EBUSY;
1509 
1510 	if (pt->handle.event)
1511 		goto fail;
1512 
1513 	if (mode & PERF_EF_START) {
1514 		pt_event_start(event, 0);
1515 		ret = -EINVAL;
1516 		if (hwc->state == PERF_HES_STOPPED)
1517 			goto fail;
1518 	} else {
1519 		hwc->state = PERF_HES_STOPPED;
1520 	}
1521 
1522 	ret = 0;
1523 fail:
1524 
1525 	return ret;
1526 }
1527 
1528 static void pt_event_read(struct perf_event *event)
1529 {
1530 }
1531 
1532 static void pt_event_destroy(struct perf_event *event)
1533 {
1534 	pt_addr_filters_fini(event);
1535 	x86_del_exclusive(x86_lbr_exclusive_pt);
1536 }
1537 
1538 static int pt_event_init(struct perf_event *event)
1539 {
1540 	if (event->attr.type != pt_pmu.pmu.type)
1541 		return -ENOENT;
1542 
1543 	if (!pt_event_valid(event))
1544 		return -EINVAL;
1545 
1546 	if (x86_add_exclusive(x86_lbr_exclusive_pt))
1547 		return -EBUSY;
1548 
1549 	if (pt_addr_filters_init(event)) {
1550 		x86_del_exclusive(x86_lbr_exclusive_pt);
1551 		return -ENOMEM;
1552 	}
1553 
1554 	event->destroy = pt_event_destroy;
1555 
1556 	return 0;
1557 }
1558 
1559 void cpu_emergency_stop_pt(void)
1560 {
1561 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1562 
1563 	if (pt->handle.event)
1564 		pt_event_stop(pt->handle.event, PERF_EF_UPDATE);
1565 }
1566 
1567 int is_intel_pt_event(struct perf_event *event)
1568 {
1569 	return event->pmu == &pt_pmu.pmu;
1570 }
1571 
1572 static __init int pt_init(void)
1573 {
1574 	int ret, cpu, prior_warn = 0;
1575 
1576 	BUILD_BUG_ON(sizeof(struct topa) > PAGE_SIZE);
1577 
1578 	if (!boot_cpu_has(X86_FEATURE_INTEL_PT))
1579 		return -ENODEV;
1580 
1581 	get_online_cpus();
1582 	for_each_online_cpu(cpu) {
1583 		u64 ctl;
1584 
1585 		ret = rdmsrl_safe_on_cpu(cpu, MSR_IA32_RTIT_CTL, &ctl);
1586 		if (!ret && (ctl & RTIT_CTL_TRACEEN))
1587 			prior_warn++;
1588 	}
1589 	put_online_cpus();
1590 
1591 	if (prior_warn) {
1592 		x86_add_exclusive(x86_lbr_exclusive_pt);
1593 		pr_warn("PT is enabled at boot time, doing nothing\n");
1594 
1595 		return -EBUSY;
1596 	}
1597 
1598 	ret = pt_pmu_hw_init();
1599 	if (ret)
1600 		return ret;
1601 
1602 	if (!intel_pt_validate_hw_cap(PT_CAP_topa_output)) {
1603 		pr_warn("ToPA output is not supported on this CPU\n");
1604 		return -ENODEV;
1605 	}
1606 
1607 	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
1608 		pt_pmu.pmu.capabilities = PERF_PMU_CAP_AUX_NO_SG;
1609 
1610 	pt_pmu.pmu.capabilities	|= PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE;
1611 	pt_pmu.pmu.attr_groups		 = pt_attr_groups;
1612 	pt_pmu.pmu.task_ctx_nr		 = perf_sw_context;
1613 	pt_pmu.pmu.event_init		 = pt_event_init;
1614 	pt_pmu.pmu.add			 = pt_event_add;
1615 	pt_pmu.pmu.del			 = pt_event_del;
1616 	pt_pmu.pmu.start		 = pt_event_start;
1617 	pt_pmu.pmu.stop			 = pt_event_stop;
1618 	pt_pmu.pmu.read			 = pt_event_read;
1619 	pt_pmu.pmu.setup_aux		 = pt_buffer_setup_aux;
1620 	pt_pmu.pmu.free_aux		 = pt_buffer_free_aux;
1621 	pt_pmu.pmu.addr_filters_sync     = pt_event_addr_filters_sync;
1622 	pt_pmu.pmu.addr_filters_validate = pt_event_addr_filters_validate;
1623 	pt_pmu.pmu.nr_addr_filters       =
1624 		intel_pt_validate_hw_cap(PT_CAP_num_address_ranges);
1625 
1626 	ret = perf_pmu_register(&pt_pmu.pmu, "intel_pt", -1);
1627 
1628 	return ret;
1629 }
1630 arch_initcall(pt_init);
1631