1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Intel(R) Processor Trace PMU driver for perf 4 * Copyright (c) 2013-2014, Intel Corporation. 5 * 6 * Intel PT is specified in the Intel Architecture Instruction Set Extensions 7 * Programming Reference: 8 * http://software.intel.com/en-us/intel-isa-extensions 9 */ 10 11 #undef DEBUG 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/types.h> 16 #include <linux/slab.h> 17 #include <linux/device.h> 18 19 #include <asm/perf_event.h> 20 #include <asm/insn.h> 21 #include <asm/io.h> 22 #include <asm/intel_pt.h> 23 #include <asm/intel-family.h> 24 25 #include "../perf_event.h" 26 #include "pt.h" 27 28 static DEFINE_PER_CPU(struct pt, pt_ctx); 29 30 static struct pt_pmu pt_pmu; 31 32 /* 33 * Capabilities of Intel PT hardware, such as number of address bits or 34 * supported output schemes, are cached and exported to userspace as "caps" 35 * attribute group of pt pmu device 36 * (/sys/bus/event_source/devices/intel_pt/caps/) so that userspace can store 37 * relevant bits together with intel_pt traces. 38 * 39 * These are necessary for both trace decoding (payloads_lip, contains address 40 * width encoded in IP-related packets), and event configuration (bitmasks with 41 * permitted values for certain bit fields). 42 */ 43 #define PT_CAP(_n, _l, _r, _m) \ 44 [PT_CAP_ ## _n] = { .name = __stringify(_n), .leaf = _l, \ 45 .reg = _r, .mask = _m } 46 47 static struct pt_cap_desc { 48 const char *name; 49 u32 leaf; 50 u8 reg; 51 u32 mask; 52 } pt_caps[] = { 53 PT_CAP(max_subleaf, 0, CPUID_EAX, 0xffffffff), 54 PT_CAP(cr3_filtering, 0, CPUID_EBX, BIT(0)), 55 PT_CAP(psb_cyc, 0, CPUID_EBX, BIT(1)), 56 PT_CAP(ip_filtering, 0, CPUID_EBX, BIT(2)), 57 PT_CAP(mtc, 0, CPUID_EBX, BIT(3)), 58 PT_CAP(ptwrite, 0, CPUID_EBX, BIT(4)), 59 PT_CAP(power_event_trace, 0, CPUID_EBX, BIT(5)), 60 PT_CAP(topa_output, 0, CPUID_ECX, BIT(0)), 61 PT_CAP(topa_multiple_entries, 0, CPUID_ECX, BIT(1)), 62 PT_CAP(single_range_output, 0, CPUID_ECX, BIT(2)), 63 PT_CAP(output_subsys, 0, CPUID_ECX, BIT(3)), 64 PT_CAP(payloads_lip, 0, CPUID_ECX, BIT(31)), 65 PT_CAP(num_address_ranges, 1, CPUID_EAX, 0x7), 66 PT_CAP(mtc_periods, 1, CPUID_EAX, 0xffff0000), 67 PT_CAP(cycle_thresholds, 1, CPUID_EBX, 0xffff), 68 PT_CAP(psb_periods, 1, CPUID_EBX, 0xffff0000), 69 }; 70 71 u32 intel_pt_validate_cap(u32 *caps, enum pt_capabilities capability) 72 { 73 struct pt_cap_desc *cd = &pt_caps[capability]; 74 u32 c = caps[cd->leaf * PT_CPUID_REGS_NUM + cd->reg]; 75 unsigned int shift = __ffs(cd->mask); 76 77 return (c & cd->mask) >> shift; 78 } 79 EXPORT_SYMBOL_GPL(intel_pt_validate_cap); 80 81 u32 intel_pt_validate_hw_cap(enum pt_capabilities cap) 82 { 83 return intel_pt_validate_cap(pt_pmu.caps, cap); 84 } 85 EXPORT_SYMBOL_GPL(intel_pt_validate_hw_cap); 86 87 static ssize_t pt_cap_show(struct device *cdev, 88 struct device_attribute *attr, 89 char *buf) 90 { 91 struct dev_ext_attribute *ea = 92 container_of(attr, struct dev_ext_attribute, attr); 93 enum pt_capabilities cap = (long)ea->var; 94 95 return snprintf(buf, PAGE_SIZE, "%x\n", intel_pt_validate_hw_cap(cap)); 96 } 97 98 static struct attribute_group pt_cap_group __ro_after_init = { 99 .name = "caps", 100 }; 101 102 PMU_FORMAT_ATTR(pt, "config:0" ); 103 PMU_FORMAT_ATTR(cyc, "config:1" ); 104 PMU_FORMAT_ATTR(pwr_evt, "config:4" ); 105 PMU_FORMAT_ATTR(fup_on_ptw, "config:5" ); 106 PMU_FORMAT_ATTR(mtc, "config:9" ); 107 PMU_FORMAT_ATTR(tsc, "config:10" ); 108 PMU_FORMAT_ATTR(noretcomp, "config:11" ); 109 PMU_FORMAT_ATTR(ptw, "config:12" ); 110 PMU_FORMAT_ATTR(branch, "config:13" ); 111 PMU_FORMAT_ATTR(mtc_period, "config:14-17" ); 112 PMU_FORMAT_ATTR(cyc_thresh, "config:19-22" ); 113 PMU_FORMAT_ATTR(psb_period, "config:24-27" ); 114 115 static struct attribute *pt_formats_attr[] = { 116 &format_attr_pt.attr, 117 &format_attr_cyc.attr, 118 &format_attr_pwr_evt.attr, 119 &format_attr_fup_on_ptw.attr, 120 &format_attr_mtc.attr, 121 &format_attr_tsc.attr, 122 &format_attr_noretcomp.attr, 123 &format_attr_ptw.attr, 124 &format_attr_branch.attr, 125 &format_attr_mtc_period.attr, 126 &format_attr_cyc_thresh.attr, 127 &format_attr_psb_period.attr, 128 NULL, 129 }; 130 131 static struct attribute_group pt_format_group = { 132 .name = "format", 133 .attrs = pt_formats_attr, 134 }; 135 136 static ssize_t 137 pt_timing_attr_show(struct device *dev, struct device_attribute *attr, 138 char *page) 139 { 140 struct perf_pmu_events_attr *pmu_attr = 141 container_of(attr, struct perf_pmu_events_attr, attr); 142 143 switch (pmu_attr->id) { 144 case 0: 145 return sprintf(page, "%lu\n", pt_pmu.max_nonturbo_ratio); 146 case 1: 147 return sprintf(page, "%u:%u\n", 148 pt_pmu.tsc_art_num, 149 pt_pmu.tsc_art_den); 150 default: 151 break; 152 } 153 154 return -EINVAL; 155 } 156 157 PMU_EVENT_ATTR(max_nonturbo_ratio, timing_attr_max_nonturbo_ratio, 0, 158 pt_timing_attr_show); 159 PMU_EVENT_ATTR(tsc_art_ratio, timing_attr_tsc_art_ratio, 1, 160 pt_timing_attr_show); 161 162 static struct attribute *pt_timing_attr[] = { 163 &timing_attr_max_nonturbo_ratio.attr.attr, 164 &timing_attr_tsc_art_ratio.attr.attr, 165 NULL, 166 }; 167 168 static struct attribute_group pt_timing_group = { 169 .attrs = pt_timing_attr, 170 }; 171 172 static const struct attribute_group *pt_attr_groups[] = { 173 &pt_cap_group, 174 &pt_format_group, 175 &pt_timing_group, 176 NULL, 177 }; 178 179 static int __init pt_pmu_hw_init(void) 180 { 181 struct dev_ext_attribute *de_attrs; 182 struct attribute **attrs; 183 size_t size; 184 u64 reg; 185 int ret; 186 long i; 187 188 rdmsrl(MSR_PLATFORM_INFO, reg); 189 pt_pmu.max_nonturbo_ratio = (reg & 0xff00) >> 8; 190 191 /* 192 * if available, read in TSC to core crystal clock ratio, 193 * otherwise, zero for numerator stands for "not enumerated" 194 * as per SDM 195 */ 196 if (boot_cpu_data.cpuid_level >= CPUID_TSC_LEAF) { 197 u32 eax, ebx, ecx, edx; 198 199 cpuid(CPUID_TSC_LEAF, &eax, &ebx, &ecx, &edx); 200 201 pt_pmu.tsc_art_num = ebx; 202 pt_pmu.tsc_art_den = eax; 203 } 204 205 /* model-specific quirks */ 206 switch (boot_cpu_data.x86_model) { 207 case INTEL_FAM6_BROADWELL: 208 case INTEL_FAM6_BROADWELL_D: 209 case INTEL_FAM6_BROADWELL_G: 210 case INTEL_FAM6_BROADWELL_X: 211 /* not setting BRANCH_EN will #GP, erratum BDM106 */ 212 pt_pmu.branch_en_always_on = true; 213 break; 214 default: 215 break; 216 } 217 218 if (boot_cpu_has(X86_FEATURE_VMX)) { 219 /* 220 * Intel SDM, 36.5 "Tracing post-VMXON" says that 221 * "IA32_VMX_MISC[bit 14]" being 1 means PT can trace 222 * post-VMXON. 223 */ 224 rdmsrl(MSR_IA32_VMX_MISC, reg); 225 if (reg & BIT(14)) 226 pt_pmu.vmx = true; 227 } 228 229 for (i = 0; i < PT_CPUID_LEAVES; i++) { 230 cpuid_count(20, i, 231 &pt_pmu.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM], 232 &pt_pmu.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM], 233 &pt_pmu.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM], 234 &pt_pmu.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM]); 235 } 236 237 ret = -ENOMEM; 238 size = sizeof(struct attribute *) * (ARRAY_SIZE(pt_caps)+1); 239 attrs = kzalloc(size, GFP_KERNEL); 240 if (!attrs) 241 goto fail; 242 243 size = sizeof(struct dev_ext_attribute) * (ARRAY_SIZE(pt_caps)+1); 244 de_attrs = kzalloc(size, GFP_KERNEL); 245 if (!de_attrs) 246 goto fail; 247 248 for (i = 0; i < ARRAY_SIZE(pt_caps); i++) { 249 struct dev_ext_attribute *de_attr = de_attrs + i; 250 251 de_attr->attr.attr.name = pt_caps[i].name; 252 253 sysfs_attr_init(&de_attr->attr.attr); 254 255 de_attr->attr.attr.mode = S_IRUGO; 256 de_attr->attr.show = pt_cap_show; 257 de_attr->var = (void *)i; 258 259 attrs[i] = &de_attr->attr.attr; 260 } 261 262 pt_cap_group.attrs = attrs; 263 264 return 0; 265 266 fail: 267 kfree(attrs); 268 269 return ret; 270 } 271 272 #define RTIT_CTL_CYC_PSB (RTIT_CTL_CYCLEACC | \ 273 RTIT_CTL_CYC_THRESH | \ 274 RTIT_CTL_PSB_FREQ) 275 276 #define RTIT_CTL_MTC (RTIT_CTL_MTC_EN | \ 277 RTIT_CTL_MTC_RANGE) 278 279 #define RTIT_CTL_PTW (RTIT_CTL_PTW_EN | \ 280 RTIT_CTL_FUP_ON_PTW) 281 282 /* 283 * Bit 0 (TraceEn) in the attr.config is meaningless as the 284 * corresponding bit in the RTIT_CTL can only be controlled 285 * by the driver; therefore, repurpose it to mean: pass 286 * through the bit that was previously assumed to be always 287 * on for PT, thereby allowing the user to *not* set it if 288 * they so wish. See also pt_event_valid() and pt_config(). 289 */ 290 #define RTIT_CTL_PASSTHROUGH RTIT_CTL_TRACEEN 291 292 #define PT_CONFIG_MASK (RTIT_CTL_TRACEEN | \ 293 RTIT_CTL_TSC_EN | \ 294 RTIT_CTL_DISRETC | \ 295 RTIT_CTL_BRANCH_EN | \ 296 RTIT_CTL_CYC_PSB | \ 297 RTIT_CTL_MTC | \ 298 RTIT_CTL_PWR_EVT_EN | \ 299 RTIT_CTL_FUP_ON_PTW | \ 300 RTIT_CTL_PTW_EN) 301 302 static bool pt_event_valid(struct perf_event *event) 303 { 304 u64 config = event->attr.config; 305 u64 allowed, requested; 306 307 if ((config & PT_CONFIG_MASK) != config) 308 return false; 309 310 if (config & RTIT_CTL_CYC_PSB) { 311 if (!intel_pt_validate_hw_cap(PT_CAP_psb_cyc)) 312 return false; 313 314 allowed = intel_pt_validate_hw_cap(PT_CAP_psb_periods); 315 requested = (config & RTIT_CTL_PSB_FREQ) >> 316 RTIT_CTL_PSB_FREQ_OFFSET; 317 if (requested && (!(allowed & BIT(requested)))) 318 return false; 319 320 allowed = intel_pt_validate_hw_cap(PT_CAP_cycle_thresholds); 321 requested = (config & RTIT_CTL_CYC_THRESH) >> 322 RTIT_CTL_CYC_THRESH_OFFSET; 323 if (requested && (!(allowed & BIT(requested)))) 324 return false; 325 } 326 327 if (config & RTIT_CTL_MTC) { 328 /* 329 * In the unlikely case that CPUID lists valid mtc periods, 330 * but not the mtc capability, drop out here. 331 * 332 * Spec says that setting mtc period bits while mtc bit in 333 * CPUID is 0 will #GP, so better safe than sorry. 334 */ 335 if (!intel_pt_validate_hw_cap(PT_CAP_mtc)) 336 return false; 337 338 allowed = intel_pt_validate_hw_cap(PT_CAP_mtc_periods); 339 if (!allowed) 340 return false; 341 342 requested = (config & RTIT_CTL_MTC_RANGE) >> 343 RTIT_CTL_MTC_RANGE_OFFSET; 344 345 if (!(allowed & BIT(requested))) 346 return false; 347 } 348 349 if (config & RTIT_CTL_PWR_EVT_EN && 350 !intel_pt_validate_hw_cap(PT_CAP_power_event_trace)) 351 return false; 352 353 if (config & RTIT_CTL_PTW) { 354 if (!intel_pt_validate_hw_cap(PT_CAP_ptwrite)) 355 return false; 356 357 /* FUPonPTW without PTW doesn't make sense */ 358 if ((config & RTIT_CTL_FUP_ON_PTW) && 359 !(config & RTIT_CTL_PTW_EN)) 360 return false; 361 } 362 363 /* 364 * Setting bit 0 (TraceEn in RTIT_CTL MSR) in the attr.config 365 * clears the assumption that BranchEn must always be enabled, 366 * as was the case with the first implementation of PT. 367 * If this bit is not set, the legacy behavior is preserved 368 * for compatibility with the older userspace. 369 * 370 * Re-using bit 0 for this purpose is fine because it is never 371 * directly set by the user; previous attempts at setting it in 372 * the attr.config resulted in -EINVAL. 373 */ 374 if (config & RTIT_CTL_PASSTHROUGH) { 375 /* 376 * Disallow not setting BRANCH_EN where BRANCH_EN is 377 * always required. 378 */ 379 if (pt_pmu.branch_en_always_on && 380 !(config & RTIT_CTL_BRANCH_EN)) 381 return false; 382 } else { 383 /* 384 * Disallow BRANCH_EN without the PASSTHROUGH. 385 */ 386 if (config & RTIT_CTL_BRANCH_EN) 387 return false; 388 } 389 390 return true; 391 } 392 393 /* 394 * PT configuration helpers 395 * These all are cpu affine and operate on a local PT 396 */ 397 398 static void pt_config_start(struct perf_event *event) 399 { 400 struct pt *pt = this_cpu_ptr(&pt_ctx); 401 u64 ctl = event->hw.config; 402 403 ctl |= RTIT_CTL_TRACEEN; 404 if (READ_ONCE(pt->vmx_on)) 405 perf_aux_output_flag(&pt->handle, PERF_AUX_FLAG_PARTIAL); 406 else 407 wrmsrl(MSR_IA32_RTIT_CTL, ctl); 408 409 WRITE_ONCE(event->hw.config, ctl); 410 } 411 412 /* Address ranges and their corresponding msr configuration registers */ 413 static const struct pt_address_range { 414 unsigned long msr_a; 415 unsigned long msr_b; 416 unsigned int reg_off; 417 } pt_address_ranges[] = { 418 { 419 .msr_a = MSR_IA32_RTIT_ADDR0_A, 420 .msr_b = MSR_IA32_RTIT_ADDR0_B, 421 .reg_off = RTIT_CTL_ADDR0_OFFSET, 422 }, 423 { 424 .msr_a = MSR_IA32_RTIT_ADDR1_A, 425 .msr_b = MSR_IA32_RTIT_ADDR1_B, 426 .reg_off = RTIT_CTL_ADDR1_OFFSET, 427 }, 428 { 429 .msr_a = MSR_IA32_RTIT_ADDR2_A, 430 .msr_b = MSR_IA32_RTIT_ADDR2_B, 431 .reg_off = RTIT_CTL_ADDR2_OFFSET, 432 }, 433 { 434 .msr_a = MSR_IA32_RTIT_ADDR3_A, 435 .msr_b = MSR_IA32_RTIT_ADDR3_B, 436 .reg_off = RTIT_CTL_ADDR3_OFFSET, 437 } 438 }; 439 440 static u64 pt_config_filters(struct perf_event *event) 441 { 442 struct pt_filters *filters = event->hw.addr_filters; 443 struct pt *pt = this_cpu_ptr(&pt_ctx); 444 unsigned int range = 0; 445 u64 rtit_ctl = 0; 446 447 if (!filters) 448 return 0; 449 450 perf_event_addr_filters_sync(event); 451 452 for (range = 0; range < filters->nr_filters; range++) { 453 struct pt_filter *filter = &filters->filter[range]; 454 455 /* 456 * Note, if the range has zero start/end addresses due 457 * to its dynamic object not being loaded yet, we just 458 * go ahead and program zeroed range, which will simply 459 * produce no data. Note^2: if executable code at 0x0 460 * is a concern, we can set up an "invalid" configuration 461 * such as msr_b < msr_a. 462 */ 463 464 /* avoid redundant msr writes */ 465 if (pt->filters.filter[range].msr_a != filter->msr_a) { 466 wrmsrl(pt_address_ranges[range].msr_a, filter->msr_a); 467 pt->filters.filter[range].msr_a = filter->msr_a; 468 } 469 470 if (pt->filters.filter[range].msr_b != filter->msr_b) { 471 wrmsrl(pt_address_ranges[range].msr_b, filter->msr_b); 472 pt->filters.filter[range].msr_b = filter->msr_b; 473 } 474 475 rtit_ctl |= filter->config << pt_address_ranges[range].reg_off; 476 } 477 478 return rtit_ctl; 479 } 480 481 static void pt_config(struct perf_event *event) 482 { 483 struct pt *pt = this_cpu_ptr(&pt_ctx); 484 struct pt_buffer *buf = perf_get_aux(&pt->handle); 485 u64 reg; 486 487 /* First round: clear STATUS, in particular the PSB byte counter. */ 488 if (!event->hw.config) { 489 perf_event_itrace_started(event); 490 wrmsrl(MSR_IA32_RTIT_STATUS, 0); 491 } 492 493 reg = pt_config_filters(event); 494 reg |= RTIT_CTL_TRACEEN; 495 if (!buf->single) 496 reg |= RTIT_CTL_TOPA; 497 498 /* 499 * Previously, we had BRANCH_EN on by default, but now that PT has 500 * grown features outside of branch tracing, it is useful to allow 501 * the user to disable it. Setting bit 0 in the event's attr.config 502 * allows BRANCH_EN to pass through instead of being always on. See 503 * also the comment in pt_event_valid(). 504 */ 505 if (event->attr.config & BIT(0)) { 506 reg |= event->attr.config & RTIT_CTL_BRANCH_EN; 507 } else { 508 reg |= RTIT_CTL_BRANCH_EN; 509 } 510 511 if (!event->attr.exclude_kernel) 512 reg |= RTIT_CTL_OS; 513 if (!event->attr.exclude_user) 514 reg |= RTIT_CTL_USR; 515 516 reg |= (event->attr.config & PT_CONFIG_MASK); 517 518 event->hw.config = reg; 519 pt_config_start(event); 520 } 521 522 static void pt_config_stop(struct perf_event *event) 523 { 524 struct pt *pt = this_cpu_ptr(&pt_ctx); 525 u64 ctl = READ_ONCE(event->hw.config); 526 527 /* may be already stopped by a PMI */ 528 if (!(ctl & RTIT_CTL_TRACEEN)) 529 return; 530 531 ctl &= ~RTIT_CTL_TRACEEN; 532 if (!READ_ONCE(pt->vmx_on)) 533 wrmsrl(MSR_IA32_RTIT_CTL, ctl); 534 535 WRITE_ONCE(event->hw.config, ctl); 536 537 /* 538 * A wrmsr that disables trace generation serializes other PT 539 * registers and causes all data packets to be written to memory, 540 * but a fence is required for the data to become globally visible. 541 * 542 * The below WMB, separating data store and aux_head store matches 543 * the consumer's RMB that separates aux_head load and data load. 544 */ 545 wmb(); 546 } 547 548 /** 549 * struct topa - ToPA metadata 550 * @list: linkage to struct pt_buffer's list of tables 551 * @offset: offset of the first entry in this table in the buffer 552 * @size: total size of all entries in this table 553 * @last: index of the last initialized entry in this table 554 * @z_count: how many times the first entry repeats 555 */ 556 struct topa { 557 struct list_head list; 558 u64 offset; 559 size_t size; 560 int last; 561 unsigned int z_count; 562 }; 563 564 /* 565 * Keep ToPA table-related metadata on the same page as the actual table, 566 * taking up a few words from the top 567 */ 568 569 #define TENTS_PER_PAGE \ 570 ((PAGE_SIZE - sizeof(struct topa)) / sizeof(struct topa_entry)) 571 572 /** 573 * struct topa_page - page-sized ToPA table with metadata at the top 574 * @table: actual ToPA table entries, as understood by PT hardware 575 * @topa: metadata 576 */ 577 struct topa_page { 578 struct topa_entry table[TENTS_PER_PAGE]; 579 struct topa topa; 580 }; 581 582 static inline struct topa_page *topa_to_page(struct topa *topa) 583 { 584 return container_of(topa, struct topa_page, topa); 585 } 586 587 static inline struct topa_page *topa_entry_to_page(struct topa_entry *te) 588 { 589 return (struct topa_page *)((unsigned long)te & PAGE_MASK); 590 } 591 592 static inline phys_addr_t topa_pfn(struct topa *topa) 593 { 594 return PFN_DOWN(virt_to_phys(topa_to_page(topa))); 595 } 596 597 /* make -1 stand for the last table entry */ 598 #define TOPA_ENTRY(t, i) \ 599 ((i) == -1 \ 600 ? &topa_to_page(t)->table[(t)->last] \ 601 : &topa_to_page(t)->table[(i)]) 602 #define TOPA_ENTRY_SIZE(t, i) (sizes(TOPA_ENTRY((t), (i))->size)) 603 #define TOPA_ENTRY_PAGES(t, i) (1 << TOPA_ENTRY((t), (i))->size) 604 605 static void pt_config_buffer(struct pt_buffer *buf) 606 { 607 struct pt *pt = this_cpu_ptr(&pt_ctx); 608 u64 reg, mask; 609 void *base; 610 611 if (buf->single) { 612 base = buf->data_pages[0]; 613 mask = (buf->nr_pages * PAGE_SIZE - 1) >> 7; 614 } else { 615 base = topa_to_page(buf->cur)->table; 616 mask = (u64)buf->cur_idx; 617 } 618 619 reg = virt_to_phys(base); 620 if (pt->output_base != reg) { 621 pt->output_base = reg; 622 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, reg); 623 } 624 625 reg = 0x7f | (mask << 7) | ((u64)buf->output_off << 32); 626 if (pt->output_mask != reg) { 627 pt->output_mask = reg; 628 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, reg); 629 } 630 } 631 632 /** 633 * topa_alloc() - allocate page-sized ToPA table 634 * @cpu: CPU on which to allocate. 635 * @gfp: Allocation flags. 636 * 637 * Return: On success, return the pointer to ToPA table page. 638 */ 639 static struct topa *topa_alloc(int cpu, gfp_t gfp) 640 { 641 int node = cpu_to_node(cpu); 642 struct topa_page *tp; 643 struct page *p; 644 645 p = alloc_pages_node(node, gfp | __GFP_ZERO, 0); 646 if (!p) 647 return NULL; 648 649 tp = page_address(p); 650 tp->topa.last = 0; 651 652 /* 653 * In case of singe-entry ToPA, always put the self-referencing END 654 * link as the 2nd entry in the table 655 */ 656 if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) { 657 TOPA_ENTRY(&tp->topa, 1)->base = page_to_phys(p) >> TOPA_SHIFT; 658 TOPA_ENTRY(&tp->topa, 1)->end = 1; 659 } 660 661 return &tp->topa; 662 } 663 664 /** 665 * topa_free() - free a page-sized ToPA table 666 * @topa: Table to deallocate. 667 */ 668 static void topa_free(struct topa *topa) 669 { 670 free_page((unsigned long)topa); 671 } 672 673 /** 674 * topa_insert_table() - insert a ToPA table into a buffer 675 * @buf: PT buffer that's being extended. 676 * @topa: New topa table to be inserted. 677 * 678 * If it's the first table in this buffer, set up buffer's pointers 679 * accordingly; otherwise, add a END=1 link entry to @topa to the current 680 * "last" table and adjust the last table pointer to @topa. 681 */ 682 static void topa_insert_table(struct pt_buffer *buf, struct topa *topa) 683 { 684 struct topa *last = buf->last; 685 686 list_add_tail(&topa->list, &buf->tables); 687 688 if (!buf->first) { 689 buf->first = buf->last = buf->cur = topa; 690 return; 691 } 692 693 topa->offset = last->offset + last->size; 694 buf->last = topa; 695 696 if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) 697 return; 698 699 BUG_ON(last->last != TENTS_PER_PAGE - 1); 700 701 TOPA_ENTRY(last, -1)->base = topa_pfn(topa); 702 TOPA_ENTRY(last, -1)->end = 1; 703 } 704 705 /** 706 * topa_table_full() - check if a ToPA table is filled up 707 * @topa: ToPA table. 708 */ 709 static bool topa_table_full(struct topa *topa) 710 { 711 /* single-entry ToPA is a special case */ 712 if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) 713 return !!topa->last; 714 715 return topa->last == TENTS_PER_PAGE - 1; 716 } 717 718 /** 719 * topa_insert_pages() - create a list of ToPA tables 720 * @buf: PT buffer being initialized. 721 * @gfp: Allocation flags. 722 * 723 * This initializes a list of ToPA tables with entries from 724 * the data_pages provided by rb_alloc_aux(). 725 * 726 * Return: 0 on success or error code. 727 */ 728 static int topa_insert_pages(struct pt_buffer *buf, int cpu, gfp_t gfp) 729 { 730 struct topa *topa = buf->last; 731 int order = 0; 732 struct page *p; 733 734 p = virt_to_page(buf->data_pages[buf->nr_pages]); 735 if (PagePrivate(p)) 736 order = page_private(p); 737 738 if (topa_table_full(topa)) { 739 topa = topa_alloc(cpu, gfp); 740 if (!topa) 741 return -ENOMEM; 742 743 topa_insert_table(buf, topa); 744 } 745 746 if (topa->z_count == topa->last - 1) { 747 if (order == TOPA_ENTRY(topa, topa->last - 1)->size) 748 topa->z_count++; 749 } 750 751 TOPA_ENTRY(topa, -1)->base = page_to_phys(p) >> TOPA_SHIFT; 752 TOPA_ENTRY(topa, -1)->size = order; 753 if (!buf->snapshot && 754 !intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) { 755 TOPA_ENTRY(topa, -1)->intr = 1; 756 TOPA_ENTRY(topa, -1)->stop = 1; 757 } 758 759 topa->last++; 760 topa->size += sizes(order); 761 762 buf->nr_pages += 1ul << order; 763 764 return 0; 765 } 766 767 /** 768 * pt_topa_dump() - print ToPA tables and their entries 769 * @buf: PT buffer. 770 */ 771 static void pt_topa_dump(struct pt_buffer *buf) 772 { 773 struct topa *topa; 774 775 list_for_each_entry(topa, &buf->tables, list) { 776 struct topa_page *tp = topa_to_page(topa); 777 int i; 778 779 pr_debug("# table @%p, off %llx size %zx\n", tp->table, 780 topa->offset, topa->size); 781 for (i = 0; i < TENTS_PER_PAGE; i++) { 782 pr_debug("# entry @%p (%lx sz %u %c%c%c) raw=%16llx\n", 783 &tp->table[i], 784 (unsigned long)tp->table[i].base << TOPA_SHIFT, 785 sizes(tp->table[i].size), 786 tp->table[i].end ? 'E' : ' ', 787 tp->table[i].intr ? 'I' : ' ', 788 tp->table[i].stop ? 'S' : ' ', 789 *(u64 *)&tp->table[i]); 790 if ((intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) && 791 tp->table[i].stop) || 792 tp->table[i].end) 793 break; 794 if (!i && topa->z_count) 795 i += topa->z_count; 796 } 797 } 798 } 799 800 /** 801 * pt_buffer_advance() - advance to the next output region 802 * @buf: PT buffer. 803 * 804 * Advance the current pointers in the buffer to the next ToPA entry. 805 */ 806 static void pt_buffer_advance(struct pt_buffer *buf) 807 { 808 buf->output_off = 0; 809 buf->cur_idx++; 810 811 if (buf->cur_idx == buf->cur->last) { 812 if (buf->cur == buf->last) 813 buf->cur = buf->first; 814 else 815 buf->cur = list_entry(buf->cur->list.next, struct topa, 816 list); 817 buf->cur_idx = 0; 818 } 819 } 820 821 /** 822 * pt_update_head() - calculate current offsets and sizes 823 * @pt: Per-cpu pt context. 824 * 825 * Update buffer's current write pointer position and data size. 826 */ 827 static void pt_update_head(struct pt *pt) 828 { 829 struct pt_buffer *buf = perf_get_aux(&pt->handle); 830 u64 topa_idx, base, old; 831 832 if (buf->single) { 833 local_set(&buf->data_size, buf->output_off); 834 return; 835 } 836 837 /* offset of the first region in this table from the beginning of buf */ 838 base = buf->cur->offset + buf->output_off; 839 840 /* offset of the current output region within this table */ 841 for (topa_idx = 0; topa_idx < buf->cur_idx; topa_idx++) 842 base += TOPA_ENTRY_SIZE(buf->cur, topa_idx); 843 844 if (buf->snapshot) { 845 local_set(&buf->data_size, base); 846 } else { 847 old = (local64_xchg(&buf->head, base) & 848 ((buf->nr_pages << PAGE_SHIFT) - 1)); 849 if (base < old) 850 base += buf->nr_pages << PAGE_SHIFT; 851 852 local_add(base - old, &buf->data_size); 853 } 854 } 855 856 /** 857 * pt_buffer_region() - obtain current output region's address 858 * @buf: PT buffer. 859 */ 860 static void *pt_buffer_region(struct pt_buffer *buf) 861 { 862 return phys_to_virt(TOPA_ENTRY(buf->cur, buf->cur_idx)->base << TOPA_SHIFT); 863 } 864 865 /** 866 * pt_buffer_region_size() - obtain current output region's size 867 * @buf: PT buffer. 868 */ 869 static size_t pt_buffer_region_size(struct pt_buffer *buf) 870 { 871 return TOPA_ENTRY_SIZE(buf->cur, buf->cur_idx); 872 } 873 874 /** 875 * pt_handle_status() - take care of possible status conditions 876 * @pt: Per-cpu pt context. 877 */ 878 static void pt_handle_status(struct pt *pt) 879 { 880 struct pt_buffer *buf = perf_get_aux(&pt->handle); 881 int advance = 0; 882 u64 status; 883 884 rdmsrl(MSR_IA32_RTIT_STATUS, status); 885 886 if (status & RTIT_STATUS_ERROR) { 887 pr_err_ratelimited("ToPA ERROR encountered, trying to recover\n"); 888 pt_topa_dump(buf); 889 status &= ~RTIT_STATUS_ERROR; 890 } 891 892 if (status & RTIT_STATUS_STOPPED) { 893 status &= ~RTIT_STATUS_STOPPED; 894 895 /* 896 * On systems that only do single-entry ToPA, hitting STOP 897 * means we are already losing data; need to let the decoder 898 * know. 899 */ 900 if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) || 901 buf->output_off == pt_buffer_region_size(buf)) { 902 perf_aux_output_flag(&pt->handle, 903 PERF_AUX_FLAG_TRUNCATED); 904 advance++; 905 } 906 } 907 908 /* 909 * Also on single-entry ToPA implementations, interrupt will come 910 * before the output reaches its output region's boundary. 911 */ 912 if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) && 913 !buf->snapshot && 914 pt_buffer_region_size(buf) - buf->output_off <= TOPA_PMI_MARGIN) { 915 void *head = pt_buffer_region(buf); 916 917 /* everything within this margin needs to be zeroed out */ 918 memset(head + buf->output_off, 0, 919 pt_buffer_region_size(buf) - 920 buf->output_off); 921 advance++; 922 } 923 924 if (advance) 925 pt_buffer_advance(buf); 926 927 wrmsrl(MSR_IA32_RTIT_STATUS, status); 928 } 929 930 /** 931 * pt_read_offset() - translate registers into buffer pointers 932 * @buf: PT buffer. 933 * 934 * Set buffer's output pointers from MSR values. 935 */ 936 static void pt_read_offset(struct pt_buffer *buf) 937 { 938 struct pt *pt = this_cpu_ptr(&pt_ctx); 939 struct topa_page *tp; 940 941 if (!buf->single) { 942 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, pt->output_base); 943 tp = phys_to_virt(pt->output_base); 944 buf->cur = &tp->topa; 945 } 946 947 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, pt->output_mask); 948 /* offset within current output region */ 949 buf->output_off = pt->output_mask >> 32; 950 /* index of current output region within this table */ 951 if (!buf->single) 952 buf->cur_idx = (pt->output_mask & 0xffffff80) >> 7; 953 } 954 955 static struct topa_entry * 956 pt_topa_entry_for_page(struct pt_buffer *buf, unsigned int pg) 957 { 958 struct topa_page *tp; 959 struct topa *topa; 960 unsigned int idx, cur_pg = 0, z_pg = 0, start_idx = 0; 961 962 /* 963 * Indicates a bug in the caller. 964 */ 965 if (WARN_ON_ONCE(pg >= buf->nr_pages)) 966 return NULL; 967 968 /* 969 * First, find the ToPA table where @pg fits. With high 970 * order allocations, there shouldn't be many of these. 971 */ 972 list_for_each_entry(topa, &buf->tables, list) { 973 if (topa->offset + topa->size > pg << PAGE_SHIFT) 974 goto found; 975 } 976 977 /* 978 * Hitting this means we have a problem in the ToPA 979 * allocation code. 980 */ 981 WARN_ON_ONCE(1); 982 983 return NULL; 984 985 found: 986 /* 987 * Indicates a problem in the ToPA allocation code. 988 */ 989 if (WARN_ON_ONCE(topa->last == -1)) 990 return NULL; 991 992 tp = topa_to_page(topa); 993 cur_pg = PFN_DOWN(topa->offset); 994 if (topa->z_count) { 995 z_pg = TOPA_ENTRY_PAGES(topa, 0) * (topa->z_count + 1); 996 start_idx = topa->z_count + 1; 997 } 998 999 /* 1000 * Multiple entries at the beginning of the table have the same size, 1001 * ideally all of them; if @pg falls there, the search is done. 1002 */ 1003 if (pg >= cur_pg && pg < cur_pg + z_pg) { 1004 idx = (pg - cur_pg) / TOPA_ENTRY_PAGES(topa, 0); 1005 return &tp->table[idx]; 1006 } 1007 1008 /* 1009 * Otherwise, slow path: iterate through the remaining entries. 1010 */ 1011 for (idx = start_idx, cur_pg += z_pg; idx < topa->last; idx++) { 1012 if (cur_pg + TOPA_ENTRY_PAGES(topa, idx) > pg) 1013 return &tp->table[idx]; 1014 1015 cur_pg += TOPA_ENTRY_PAGES(topa, idx); 1016 } 1017 1018 /* 1019 * Means we couldn't find a ToPA entry in the table that does match. 1020 */ 1021 WARN_ON_ONCE(1); 1022 1023 return NULL; 1024 } 1025 1026 static struct topa_entry * 1027 pt_topa_prev_entry(struct pt_buffer *buf, struct topa_entry *te) 1028 { 1029 unsigned long table = (unsigned long)te & ~(PAGE_SIZE - 1); 1030 struct topa_page *tp; 1031 struct topa *topa; 1032 1033 tp = (struct topa_page *)table; 1034 if (tp->table != te) 1035 return --te; 1036 1037 topa = &tp->topa; 1038 if (topa == buf->first) 1039 topa = buf->last; 1040 else 1041 topa = list_prev_entry(topa, list); 1042 1043 tp = topa_to_page(topa); 1044 1045 return &tp->table[topa->last - 1]; 1046 } 1047 1048 /** 1049 * pt_buffer_reset_markers() - place interrupt and stop bits in the buffer 1050 * @buf: PT buffer. 1051 * @handle: Current output handle. 1052 * 1053 * Place INT and STOP marks to prevent overwriting old data that the consumer 1054 * hasn't yet collected and waking up the consumer after a certain fraction of 1055 * the buffer has filled up. Only needed and sensible for non-snapshot counters. 1056 * 1057 * This obviously relies on buf::head to figure out buffer markers, so it has 1058 * to be called after pt_buffer_reset_offsets() and before the hardware tracing 1059 * is enabled. 1060 */ 1061 static int pt_buffer_reset_markers(struct pt_buffer *buf, 1062 struct perf_output_handle *handle) 1063 1064 { 1065 unsigned long head = local64_read(&buf->head); 1066 unsigned long idx, npages, wakeup; 1067 1068 if (buf->single) 1069 return 0; 1070 1071 /* can't stop in the middle of an output region */ 1072 if (buf->output_off + handle->size + 1 < pt_buffer_region_size(buf)) { 1073 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED); 1074 return -EINVAL; 1075 } 1076 1077 1078 /* single entry ToPA is handled by marking all regions STOP=1 INT=1 */ 1079 if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) 1080 return 0; 1081 1082 /* clear STOP and INT from current entry */ 1083 if (buf->stop_te) { 1084 buf->stop_te->stop = 0; 1085 buf->stop_te->intr = 0; 1086 } 1087 1088 if (buf->intr_te) 1089 buf->intr_te->intr = 0; 1090 1091 /* how many pages till the STOP marker */ 1092 npages = handle->size >> PAGE_SHIFT; 1093 1094 /* if it's on a page boundary, fill up one more page */ 1095 if (!offset_in_page(head + handle->size + 1)) 1096 npages++; 1097 1098 idx = (head >> PAGE_SHIFT) + npages; 1099 idx &= buf->nr_pages - 1; 1100 1101 if (idx != buf->stop_pos) { 1102 buf->stop_pos = idx; 1103 buf->stop_te = pt_topa_entry_for_page(buf, idx); 1104 buf->stop_te = pt_topa_prev_entry(buf, buf->stop_te); 1105 } 1106 1107 wakeup = handle->wakeup >> PAGE_SHIFT; 1108 1109 /* in the worst case, wake up the consumer one page before hard stop */ 1110 idx = (head >> PAGE_SHIFT) + npages - 1; 1111 if (idx > wakeup) 1112 idx = wakeup; 1113 1114 idx &= buf->nr_pages - 1; 1115 if (idx != buf->intr_pos) { 1116 buf->intr_pos = idx; 1117 buf->intr_te = pt_topa_entry_for_page(buf, idx); 1118 buf->intr_te = pt_topa_prev_entry(buf, buf->intr_te); 1119 } 1120 1121 buf->stop_te->stop = 1; 1122 buf->stop_te->intr = 1; 1123 buf->intr_te->intr = 1; 1124 1125 return 0; 1126 } 1127 1128 /** 1129 * pt_buffer_reset_offsets() - adjust buffer's write pointers from aux_head 1130 * @buf: PT buffer. 1131 * @head: Write pointer (aux_head) from AUX buffer. 1132 * 1133 * Find the ToPA table and entry corresponding to given @head and set buffer's 1134 * "current" pointers accordingly. This is done after we have obtained the 1135 * current aux_head position from a successful call to perf_aux_output_begin() 1136 * to make sure the hardware is writing to the right place. 1137 * 1138 * This function modifies buf::{cur,cur_idx,output_off} that will be programmed 1139 * into PT msrs when the tracing is enabled and buf::head and buf::data_size, 1140 * which are used to determine INT and STOP markers' locations by a subsequent 1141 * call to pt_buffer_reset_markers(). 1142 */ 1143 static void pt_buffer_reset_offsets(struct pt_buffer *buf, unsigned long head) 1144 { 1145 struct topa_page *cur_tp; 1146 struct topa_entry *te; 1147 int pg; 1148 1149 if (buf->snapshot) 1150 head &= (buf->nr_pages << PAGE_SHIFT) - 1; 1151 1152 if (!buf->single) { 1153 pg = (head >> PAGE_SHIFT) & (buf->nr_pages - 1); 1154 te = pt_topa_entry_for_page(buf, pg); 1155 1156 cur_tp = topa_entry_to_page(te); 1157 buf->cur = &cur_tp->topa; 1158 buf->cur_idx = te - TOPA_ENTRY(buf->cur, 0); 1159 buf->output_off = head & (pt_buffer_region_size(buf) - 1); 1160 } else { 1161 buf->output_off = head; 1162 } 1163 1164 local64_set(&buf->head, head); 1165 local_set(&buf->data_size, 0); 1166 } 1167 1168 /** 1169 * pt_buffer_fini_topa() - deallocate ToPA structure of a buffer 1170 * @buf: PT buffer. 1171 */ 1172 static void pt_buffer_fini_topa(struct pt_buffer *buf) 1173 { 1174 struct topa *topa, *iter; 1175 1176 if (buf->single) 1177 return; 1178 1179 list_for_each_entry_safe(topa, iter, &buf->tables, list) { 1180 /* 1181 * right now, this is in free_aux() path only, so 1182 * no need to unlink this table from the list 1183 */ 1184 topa_free(topa); 1185 } 1186 } 1187 1188 /** 1189 * pt_buffer_init_topa() - initialize ToPA table for pt buffer 1190 * @buf: PT buffer. 1191 * @size: Total size of all regions within this ToPA. 1192 * @gfp: Allocation flags. 1193 */ 1194 static int pt_buffer_init_topa(struct pt_buffer *buf, int cpu, 1195 unsigned long nr_pages, gfp_t gfp) 1196 { 1197 struct topa *topa; 1198 int err; 1199 1200 topa = topa_alloc(cpu, gfp); 1201 if (!topa) 1202 return -ENOMEM; 1203 1204 topa_insert_table(buf, topa); 1205 1206 while (buf->nr_pages < nr_pages) { 1207 err = topa_insert_pages(buf, cpu, gfp); 1208 if (err) { 1209 pt_buffer_fini_topa(buf); 1210 return -ENOMEM; 1211 } 1212 } 1213 1214 /* link last table to the first one, unless we're double buffering */ 1215 if (intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) { 1216 TOPA_ENTRY(buf->last, -1)->base = topa_pfn(buf->first); 1217 TOPA_ENTRY(buf->last, -1)->end = 1; 1218 } 1219 1220 pt_topa_dump(buf); 1221 return 0; 1222 } 1223 1224 static int pt_buffer_try_single(struct pt_buffer *buf, int nr_pages) 1225 { 1226 struct page *p = virt_to_page(buf->data_pages[0]); 1227 int ret = -ENOTSUPP, order = 0; 1228 1229 /* 1230 * We can use single range output mode 1231 * + in snapshot mode, where we don't need interrupts; 1232 * + if the hardware supports it; 1233 * + if the entire buffer is one contiguous allocation. 1234 */ 1235 if (!buf->snapshot) 1236 goto out; 1237 1238 if (!intel_pt_validate_hw_cap(PT_CAP_single_range_output)) 1239 goto out; 1240 1241 if (PagePrivate(p)) 1242 order = page_private(p); 1243 1244 if (1 << order != nr_pages) 1245 goto out; 1246 1247 buf->single = true; 1248 buf->nr_pages = nr_pages; 1249 ret = 0; 1250 out: 1251 return ret; 1252 } 1253 1254 /** 1255 * pt_buffer_setup_aux() - set up topa tables for a PT buffer 1256 * @cpu: Cpu on which to allocate, -1 means current. 1257 * @pages: Array of pointers to buffer pages passed from perf core. 1258 * @nr_pages: Number of pages in the buffer. 1259 * @snapshot: If this is a snapshot/overwrite counter. 1260 * 1261 * This is a pmu::setup_aux callback that sets up ToPA tables and all the 1262 * bookkeeping for an AUX buffer. 1263 * 1264 * Return: Our private PT buffer structure. 1265 */ 1266 static void * 1267 pt_buffer_setup_aux(struct perf_event *event, void **pages, 1268 int nr_pages, bool snapshot) 1269 { 1270 struct pt_buffer *buf; 1271 int node, ret, cpu = event->cpu; 1272 1273 if (!nr_pages) 1274 return NULL; 1275 1276 /* 1277 * Only support AUX sampling in snapshot mode, where we don't 1278 * generate NMIs. 1279 */ 1280 if (event->attr.aux_sample_size && !snapshot) 1281 return NULL; 1282 1283 if (cpu == -1) 1284 cpu = raw_smp_processor_id(); 1285 node = cpu_to_node(cpu); 1286 1287 buf = kzalloc_node(sizeof(struct pt_buffer), GFP_KERNEL, node); 1288 if (!buf) 1289 return NULL; 1290 1291 buf->snapshot = snapshot; 1292 buf->data_pages = pages; 1293 buf->stop_pos = -1; 1294 buf->intr_pos = -1; 1295 1296 INIT_LIST_HEAD(&buf->tables); 1297 1298 ret = pt_buffer_try_single(buf, nr_pages); 1299 if (!ret) 1300 return buf; 1301 1302 ret = pt_buffer_init_topa(buf, cpu, nr_pages, GFP_KERNEL); 1303 if (ret) { 1304 kfree(buf); 1305 return NULL; 1306 } 1307 1308 return buf; 1309 } 1310 1311 /** 1312 * pt_buffer_free_aux() - perf AUX deallocation path callback 1313 * @data: PT buffer. 1314 */ 1315 static void pt_buffer_free_aux(void *data) 1316 { 1317 struct pt_buffer *buf = data; 1318 1319 pt_buffer_fini_topa(buf); 1320 kfree(buf); 1321 } 1322 1323 static int pt_addr_filters_init(struct perf_event *event) 1324 { 1325 struct pt_filters *filters; 1326 int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu); 1327 1328 if (!intel_pt_validate_hw_cap(PT_CAP_num_address_ranges)) 1329 return 0; 1330 1331 filters = kzalloc_node(sizeof(struct pt_filters), GFP_KERNEL, node); 1332 if (!filters) 1333 return -ENOMEM; 1334 1335 if (event->parent) 1336 memcpy(filters, event->parent->hw.addr_filters, 1337 sizeof(*filters)); 1338 1339 event->hw.addr_filters = filters; 1340 1341 return 0; 1342 } 1343 1344 static void pt_addr_filters_fini(struct perf_event *event) 1345 { 1346 kfree(event->hw.addr_filters); 1347 event->hw.addr_filters = NULL; 1348 } 1349 1350 static inline bool valid_kernel_ip(unsigned long ip) 1351 { 1352 return virt_addr_valid(ip) && kernel_ip(ip); 1353 } 1354 1355 static int pt_event_addr_filters_validate(struct list_head *filters) 1356 { 1357 struct perf_addr_filter *filter; 1358 int range = 0; 1359 1360 list_for_each_entry(filter, filters, entry) { 1361 /* 1362 * PT doesn't support single address triggers and 1363 * 'start' filters. 1364 */ 1365 if (!filter->size || 1366 filter->action == PERF_ADDR_FILTER_ACTION_START) 1367 return -EOPNOTSUPP; 1368 1369 if (!filter->path.dentry) { 1370 if (!valid_kernel_ip(filter->offset)) 1371 return -EINVAL; 1372 1373 if (!valid_kernel_ip(filter->offset + filter->size)) 1374 return -EINVAL; 1375 } 1376 1377 if (++range > intel_pt_validate_hw_cap(PT_CAP_num_address_ranges)) 1378 return -EOPNOTSUPP; 1379 } 1380 1381 return 0; 1382 } 1383 1384 static void pt_event_addr_filters_sync(struct perf_event *event) 1385 { 1386 struct perf_addr_filters_head *head = perf_event_addr_filters(event); 1387 unsigned long msr_a, msr_b; 1388 struct perf_addr_filter_range *fr = event->addr_filter_ranges; 1389 struct pt_filters *filters = event->hw.addr_filters; 1390 struct perf_addr_filter *filter; 1391 int range = 0; 1392 1393 if (!filters) 1394 return; 1395 1396 list_for_each_entry(filter, &head->list, entry) { 1397 if (filter->path.dentry && !fr[range].start) { 1398 msr_a = msr_b = 0; 1399 } else { 1400 /* apply the offset */ 1401 msr_a = fr[range].start; 1402 msr_b = msr_a + fr[range].size - 1; 1403 } 1404 1405 filters->filter[range].msr_a = msr_a; 1406 filters->filter[range].msr_b = msr_b; 1407 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER) 1408 filters->filter[range].config = 1; 1409 else 1410 filters->filter[range].config = 2; 1411 range++; 1412 } 1413 1414 filters->nr_filters = range; 1415 } 1416 1417 /** 1418 * intel_pt_interrupt() - PT PMI handler 1419 */ 1420 void intel_pt_interrupt(void) 1421 { 1422 struct pt *pt = this_cpu_ptr(&pt_ctx); 1423 struct pt_buffer *buf; 1424 struct perf_event *event = pt->handle.event; 1425 1426 /* 1427 * There may be a dangling PT bit in the interrupt status register 1428 * after PT has been disabled by pt_event_stop(). Make sure we don't 1429 * do anything (particularly, re-enable) for this event here. 1430 */ 1431 if (!READ_ONCE(pt->handle_nmi)) 1432 return; 1433 1434 if (!event) 1435 return; 1436 1437 pt_config_stop(event); 1438 1439 buf = perf_get_aux(&pt->handle); 1440 if (!buf) 1441 return; 1442 1443 pt_read_offset(buf); 1444 1445 pt_handle_status(pt); 1446 1447 pt_update_head(pt); 1448 1449 perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0)); 1450 1451 if (!event->hw.state) { 1452 int ret; 1453 1454 buf = perf_aux_output_begin(&pt->handle, event); 1455 if (!buf) { 1456 event->hw.state = PERF_HES_STOPPED; 1457 return; 1458 } 1459 1460 pt_buffer_reset_offsets(buf, pt->handle.head); 1461 /* snapshot counters don't use PMI, so it's safe */ 1462 ret = pt_buffer_reset_markers(buf, &pt->handle); 1463 if (ret) { 1464 perf_aux_output_end(&pt->handle, 0); 1465 return; 1466 } 1467 1468 pt_config_buffer(buf); 1469 pt_config_start(event); 1470 } 1471 } 1472 1473 void intel_pt_handle_vmx(int on) 1474 { 1475 struct pt *pt = this_cpu_ptr(&pt_ctx); 1476 struct perf_event *event; 1477 unsigned long flags; 1478 1479 /* PT plays nice with VMX, do nothing */ 1480 if (pt_pmu.vmx) 1481 return; 1482 1483 /* 1484 * VMXON will clear RTIT_CTL.TraceEn; we need to make 1485 * sure to not try to set it while VMX is on. Disable 1486 * interrupts to avoid racing with pmu callbacks; 1487 * concurrent PMI should be handled fine. 1488 */ 1489 local_irq_save(flags); 1490 WRITE_ONCE(pt->vmx_on, on); 1491 1492 /* 1493 * If an AUX transaction is in progress, it will contain 1494 * gap(s), so flag it PARTIAL to inform the user. 1495 */ 1496 event = pt->handle.event; 1497 if (event) 1498 perf_aux_output_flag(&pt->handle, 1499 PERF_AUX_FLAG_PARTIAL); 1500 1501 /* Turn PTs back on */ 1502 if (!on && event) 1503 wrmsrl(MSR_IA32_RTIT_CTL, event->hw.config); 1504 1505 local_irq_restore(flags); 1506 } 1507 EXPORT_SYMBOL_GPL(intel_pt_handle_vmx); 1508 1509 /* 1510 * PMU callbacks 1511 */ 1512 1513 static void pt_event_start(struct perf_event *event, int mode) 1514 { 1515 struct hw_perf_event *hwc = &event->hw; 1516 struct pt *pt = this_cpu_ptr(&pt_ctx); 1517 struct pt_buffer *buf; 1518 1519 buf = perf_aux_output_begin(&pt->handle, event); 1520 if (!buf) 1521 goto fail_stop; 1522 1523 pt_buffer_reset_offsets(buf, pt->handle.head); 1524 if (!buf->snapshot) { 1525 if (pt_buffer_reset_markers(buf, &pt->handle)) 1526 goto fail_end_stop; 1527 } 1528 1529 WRITE_ONCE(pt->handle_nmi, 1); 1530 hwc->state = 0; 1531 1532 pt_config_buffer(buf); 1533 pt_config(event); 1534 1535 return; 1536 1537 fail_end_stop: 1538 perf_aux_output_end(&pt->handle, 0); 1539 fail_stop: 1540 hwc->state = PERF_HES_STOPPED; 1541 } 1542 1543 static void pt_event_stop(struct perf_event *event, int mode) 1544 { 1545 struct pt *pt = this_cpu_ptr(&pt_ctx); 1546 1547 /* 1548 * Protect against the PMI racing with disabling wrmsr, 1549 * see comment in intel_pt_interrupt(). 1550 */ 1551 WRITE_ONCE(pt->handle_nmi, 0); 1552 1553 pt_config_stop(event); 1554 1555 if (event->hw.state == PERF_HES_STOPPED) 1556 return; 1557 1558 event->hw.state = PERF_HES_STOPPED; 1559 1560 if (mode & PERF_EF_UPDATE) { 1561 struct pt_buffer *buf = perf_get_aux(&pt->handle); 1562 1563 if (!buf) 1564 return; 1565 1566 if (WARN_ON_ONCE(pt->handle.event != event)) 1567 return; 1568 1569 pt_read_offset(buf); 1570 1571 pt_handle_status(pt); 1572 1573 pt_update_head(pt); 1574 1575 if (buf->snapshot) 1576 pt->handle.head = 1577 local_xchg(&buf->data_size, 1578 buf->nr_pages << PAGE_SHIFT); 1579 perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0)); 1580 } 1581 } 1582 1583 static long pt_event_snapshot_aux(struct perf_event *event, 1584 struct perf_output_handle *handle, 1585 unsigned long size) 1586 { 1587 struct pt *pt = this_cpu_ptr(&pt_ctx); 1588 struct pt_buffer *buf = perf_get_aux(&pt->handle); 1589 unsigned long from = 0, to; 1590 long ret; 1591 1592 if (WARN_ON_ONCE(!buf)) 1593 return 0; 1594 1595 /* 1596 * Sampling is only allowed on snapshot events; 1597 * see pt_buffer_setup_aux(). 1598 */ 1599 if (WARN_ON_ONCE(!buf->snapshot)) 1600 return 0; 1601 1602 /* 1603 * Here, handle_nmi tells us if the tracing is on 1604 */ 1605 if (READ_ONCE(pt->handle_nmi)) 1606 pt_config_stop(event); 1607 1608 pt_read_offset(buf); 1609 pt_update_head(pt); 1610 1611 to = local_read(&buf->data_size); 1612 if (to < size) 1613 from = buf->nr_pages << PAGE_SHIFT; 1614 from += to - size; 1615 1616 ret = perf_output_copy_aux(&pt->handle, handle, from, to); 1617 1618 /* 1619 * If the tracing was on when we turned up, restart it. 1620 * Compiler barrier not needed as we couldn't have been 1621 * preempted by anything that touches pt->handle_nmi. 1622 */ 1623 if (pt->handle_nmi) 1624 pt_config_start(event); 1625 1626 return ret; 1627 } 1628 1629 static void pt_event_del(struct perf_event *event, int mode) 1630 { 1631 pt_event_stop(event, PERF_EF_UPDATE); 1632 } 1633 1634 static int pt_event_add(struct perf_event *event, int mode) 1635 { 1636 struct pt *pt = this_cpu_ptr(&pt_ctx); 1637 struct hw_perf_event *hwc = &event->hw; 1638 int ret = -EBUSY; 1639 1640 if (pt->handle.event) 1641 goto fail; 1642 1643 if (mode & PERF_EF_START) { 1644 pt_event_start(event, 0); 1645 ret = -EINVAL; 1646 if (hwc->state == PERF_HES_STOPPED) 1647 goto fail; 1648 } else { 1649 hwc->state = PERF_HES_STOPPED; 1650 } 1651 1652 ret = 0; 1653 fail: 1654 1655 return ret; 1656 } 1657 1658 static void pt_event_read(struct perf_event *event) 1659 { 1660 } 1661 1662 static void pt_event_destroy(struct perf_event *event) 1663 { 1664 pt_addr_filters_fini(event); 1665 x86_del_exclusive(x86_lbr_exclusive_pt); 1666 } 1667 1668 static int pt_event_init(struct perf_event *event) 1669 { 1670 if (event->attr.type != pt_pmu.pmu.type) 1671 return -ENOENT; 1672 1673 if (!pt_event_valid(event)) 1674 return -EINVAL; 1675 1676 if (x86_add_exclusive(x86_lbr_exclusive_pt)) 1677 return -EBUSY; 1678 1679 if (pt_addr_filters_init(event)) { 1680 x86_del_exclusive(x86_lbr_exclusive_pt); 1681 return -ENOMEM; 1682 } 1683 1684 event->destroy = pt_event_destroy; 1685 1686 return 0; 1687 } 1688 1689 void cpu_emergency_stop_pt(void) 1690 { 1691 struct pt *pt = this_cpu_ptr(&pt_ctx); 1692 1693 if (pt->handle.event) 1694 pt_event_stop(pt->handle.event, PERF_EF_UPDATE); 1695 } 1696 1697 int is_intel_pt_event(struct perf_event *event) 1698 { 1699 return event->pmu == &pt_pmu.pmu; 1700 } 1701 1702 static __init int pt_init(void) 1703 { 1704 int ret, cpu, prior_warn = 0; 1705 1706 BUILD_BUG_ON(sizeof(struct topa) > PAGE_SIZE); 1707 1708 if (!boot_cpu_has(X86_FEATURE_INTEL_PT)) 1709 return -ENODEV; 1710 1711 cpus_read_lock(); 1712 for_each_online_cpu(cpu) { 1713 u64 ctl; 1714 1715 ret = rdmsrl_safe_on_cpu(cpu, MSR_IA32_RTIT_CTL, &ctl); 1716 if (!ret && (ctl & RTIT_CTL_TRACEEN)) 1717 prior_warn++; 1718 } 1719 cpus_read_unlock(); 1720 1721 if (prior_warn) { 1722 x86_add_exclusive(x86_lbr_exclusive_pt); 1723 pr_warn("PT is enabled at boot time, doing nothing\n"); 1724 1725 return -EBUSY; 1726 } 1727 1728 ret = pt_pmu_hw_init(); 1729 if (ret) 1730 return ret; 1731 1732 if (!intel_pt_validate_hw_cap(PT_CAP_topa_output)) { 1733 pr_warn("ToPA output is not supported on this CPU\n"); 1734 return -ENODEV; 1735 } 1736 1737 if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) 1738 pt_pmu.pmu.capabilities = PERF_PMU_CAP_AUX_NO_SG; 1739 1740 pt_pmu.pmu.capabilities |= PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE; 1741 pt_pmu.pmu.attr_groups = pt_attr_groups; 1742 pt_pmu.pmu.task_ctx_nr = perf_sw_context; 1743 pt_pmu.pmu.event_init = pt_event_init; 1744 pt_pmu.pmu.add = pt_event_add; 1745 pt_pmu.pmu.del = pt_event_del; 1746 pt_pmu.pmu.start = pt_event_start; 1747 pt_pmu.pmu.stop = pt_event_stop; 1748 pt_pmu.pmu.snapshot_aux = pt_event_snapshot_aux; 1749 pt_pmu.pmu.read = pt_event_read; 1750 pt_pmu.pmu.setup_aux = pt_buffer_setup_aux; 1751 pt_pmu.pmu.free_aux = pt_buffer_free_aux; 1752 pt_pmu.pmu.addr_filters_sync = pt_event_addr_filters_sync; 1753 pt_pmu.pmu.addr_filters_validate = pt_event_addr_filters_validate; 1754 pt_pmu.pmu.nr_addr_filters = 1755 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges); 1756 1757 ret = perf_pmu_register(&pt_pmu.pmu, "intel_pt", -1); 1758 1759 return ret; 1760 } 1761 arch_initcall(pt_init); 1762