xref: /openbmc/linux/arch/x86/events/intel/pt.c (revision 550987be)
1 /*
2  * Intel(R) Processor Trace PMU driver for perf
3  * Copyright (c) 2013-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * Intel PT is specified in the Intel Architecture Instruction Set Extensions
15  * Programming Reference:
16  * http://software.intel.com/en-us/intel-isa-extensions
17  */
18 
19 #undef DEBUG
20 
21 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22 
23 #include <linux/types.h>
24 #include <linux/slab.h>
25 #include <linux/device.h>
26 
27 #include <asm/perf_event.h>
28 #include <asm/insn.h>
29 #include <asm/io.h>
30 #include <asm/intel_pt.h>
31 #include <asm/intel-family.h>
32 
33 #include "../perf_event.h"
34 #include "pt.h"
35 
36 static DEFINE_PER_CPU(struct pt, pt_ctx);
37 
38 static struct pt_pmu pt_pmu;
39 
40 /*
41  * Capabilities of Intel PT hardware, such as number of address bits or
42  * supported output schemes, are cached and exported to userspace as "caps"
43  * attribute group of pt pmu device
44  * (/sys/bus/event_source/devices/intel_pt/caps/) so that userspace can store
45  * relevant bits together with intel_pt traces.
46  *
47  * These are necessary for both trace decoding (payloads_lip, contains address
48  * width encoded in IP-related packets), and event configuration (bitmasks with
49  * permitted values for certain bit fields).
50  */
51 #define PT_CAP(_n, _l, _r, _m)						\
52 	[PT_CAP_ ## _n] = { .name = __stringify(_n), .leaf = _l,	\
53 			    .reg = _r, .mask = _m }
54 
55 static struct pt_cap_desc {
56 	const char	*name;
57 	u32		leaf;
58 	u8		reg;
59 	u32		mask;
60 } pt_caps[] = {
61 	PT_CAP(max_subleaf,		0, CPUID_EAX, 0xffffffff),
62 	PT_CAP(cr3_filtering,		0, CPUID_EBX, BIT(0)),
63 	PT_CAP(psb_cyc,			0, CPUID_EBX, BIT(1)),
64 	PT_CAP(ip_filtering,		0, CPUID_EBX, BIT(2)),
65 	PT_CAP(mtc,			0, CPUID_EBX, BIT(3)),
66 	PT_CAP(ptwrite,			0, CPUID_EBX, BIT(4)),
67 	PT_CAP(power_event_trace,	0, CPUID_EBX, BIT(5)),
68 	PT_CAP(topa_output,		0, CPUID_ECX, BIT(0)),
69 	PT_CAP(topa_multiple_entries,	0, CPUID_ECX, BIT(1)),
70 	PT_CAP(single_range_output,	0, CPUID_ECX, BIT(2)),
71 	PT_CAP(payloads_lip,		0, CPUID_ECX, BIT(31)),
72 	PT_CAP(num_address_ranges,	1, CPUID_EAX, 0x3),
73 	PT_CAP(mtc_periods,		1, CPUID_EAX, 0xffff0000),
74 	PT_CAP(cycle_thresholds,	1, CPUID_EBX, 0xffff),
75 	PT_CAP(psb_periods,		1, CPUID_EBX, 0xffff0000),
76 };
77 
78 static u32 pt_cap_get(enum pt_capabilities cap)
79 {
80 	struct pt_cap_desc *cd = &pt_caps[cap];
81 	u32 c = pt_pmu.caps[cd->leaf * PT_CPUID_REGS_NUM + cd->reg];
82 	unsigned int shift = __ffs(cd->mask);
83 
84 	return (c & cd->mask) >> shift;
85 }
86 
87 static ssize_t pt_cap_show(struct device *cdev,
88 			   struct device_attribute *attr,
89 			   char *buf)
90 {
91 	struct dev_ext_attribute *ea =
92 		container_of(attr, struct dev_ext_attribute, attr);
93 	enum pt_capabilities cap = (long)ea->var;
94 
95 	return snprintf(buf, PAGE_SIZE, "%x\n", pt_cap_get(cap));
96 }
97 
98 static struct attribute_group pt_cap_group = {
99 	.name	= "caps",
100 };
101 
102 PMU_FORMAT_ATTR(pt,		"config:0"	);
103 PMU_FORMAT_ATTR(cyc,		"config:1"	);
104 PMU_FORMAT_ATTR(pwr_evt,	"config:4"	);
105 PMU_FORMAT_ATTR(fup_on_ptw,	"config:5"	);
106 PMU_FORMAT_ATTR(mtc,		"config:9"	);
107 PMU_FORMAT_ATTR(tsc,		"config:10"	);
108 PMU_FORMAT_ATTR(noretcomp,	"config:11"	);
109 PMU_FORMAT_ATTR(ptw,		"config:12"	);
110 PMU_FORMAT_ATTR(branch,		"config:13"	);
111 PMU_FORMAT_ATTR(mtc_period,	"config:14-17"	);
112 PMU_FORMAT_ATTR(cyc_thresh,	"config:19-22"	);
113 PMU_FORMAT_ATTR(psb_period,	"config:24-27"	);
114 
115 static struct attribute *pt_formats_attr[] = {
116 	&format_attr_pt.attr,
117 	&format_attr_cyc.attr,
118 	&format_attr_pwr_evt.attr,
119 	&format_attr_fup_on_ptw.attr,
120 	&format_attr_mtc.attr,
121 	&format_attr_tsc.attr,
122 	&format_attr_noretcomp.attr,
123 	&format_attr_ptw.attr,
124 	&format_attr_branch.attr,
125 	&format_attr_mtc_period.attr,
126 	&format_attr_cyc_thresh.attr,
127 	&format_attr_psb_period.attr,
128 	NULL,
129 };
130 
131 static struct attribute_group pt_format_group = {
132 	.name	= "format",
133 	.attrs	= pt_formats_attr,
134 };
135 
136 static ssize_t
137 pt_timing_attr_show(struct device *dev, struct device_attribute *attr,
138 		    char *page)
139 {
140 	struct perf_pmu_events_attr *pmu_attr =
141 		container_of(attr, struct perf_pmu_events_attr, attr);
142 
143 	switch (pmu_attr->id) {
144 	case 0:
145 		return sprintf(page, "%lu\n", pt_pmu.max_nonturbo_ratio);
146 	case 1:
147 		return sprintf(page, "%u:%u\n",
148 			       pt_pmu.tsc_art_num,
149 			       pt_pmu.tsc_art_den);
150 	default:
151 		break;
152 	}
153 
154 	return -EINVAL;
155 }
156 
157 PMU_EVENT_ATTR(max_nonturbo_ratio, timing_attr_max_nonturbo_ratio, 0,
158 	       pt_timing_attr_show);
159 PMU_EVENT_ATTR(tsc_art_ratio, timing_attr_tsc_art_ratio, 1,
160 	       pt_timing_attr_show);
161 
162 static struct attribute *pt_timing_attr[] = {
163 	&timing_attr_max_nonturbo_ratio.attr.attr,
164 	&timing_attr_tsc_art_ratio.attr.attr,
165 	NULL,
166 };
167 
168 static struct attribute_group pt_timing_group = {
169 	.attrs	= pt_timing_attr,
170 };
171 
172 static const struct attribute_group *pt_attr_groups[] = {
173 	&pt_cap_group,
174 	&pt_format_group,
175 	&pt_timing_group,
176 	NULL,
177 };
178 
179 static int __init pt_pmu_hw_init(void)
180 {
181 	struct dev_ext_attribute *de_attrs;
182 	struct attribute **attrs;
183 	size_t size;
184 	u64 reg;
185 	int ret;
186 	long i;
187 
188 	rdmsrl(MSR_PLATFORM_INFO, reg);
189 	pt_pmu.max_nonturbo_ratio = (reg & 0xff00) >> 8;
190 
191 	/*
192 	 * if available, read in TSC to core crystal clock ratio,
193 	 * otherwise, zero for numerator stands for "not enumerated"
194 	 * as per SDM
195 	 */
196 	if (boot_cpu_data.cpuid_level >= CPUID_TSC_LEAF) {
197 		u32 eax, ebx, ecx, edx;
198 
199 		cpuid(CPUID_TSC_LEAF, &eax, &ebx, &ecx, &edx);
200 
201 		pt_pmu.tsc_art_num = ebx;
202 		pt_pmu.tsc_art_den = eax;
203 	}
204 
205 	/* model-specific quirks */
206 	switch (boot_cpu_data.x86_model) {
207 	case INTEL_FAM6_BROADWELL_CORE:
208 	case INTEL_FAM6_BROADWELL_XEON_D:
209 	case INTEL_FAM6_BROADWELL_GT3E:
210 	case INTEL_FAM6_BROADWELL_X:
211 		/* not setting BRANCH_EN will #GP, erratum BDM106 */
212 		pt_pmu.branch_en_always_on = true;
213 		break;
214 	default:
215 		break;
216 	}
217 
218 	if (boot_cpu_has(X86_FEATURE_VMX)) {
219 		/*
220 		 * Intel SDM, 36.5 "Tracing post-VMXON" says that
221 		 * "IA32_VMX_MISC[bit 14]" being 1 means PT can trace
222 		 * post-VMXON.
223 		 */
224 		rdmsrl(MSR_IA32_VMX_MISC, reg);
225 		if (reg & BIT(14))
226 			pt_pmu.vmx = true;
227 	}
228 
229 	attrs = NULL;
230 
231 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
232 		cpuid_count(20, i,
233 			    &pt_pmu.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM],
234 			    &pt_pmu.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM],
235 			    &pt_pmu.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM],
236 			    &pt_pmu.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM]);
237 	}
238 
239 	ret = -ENOMEM;
240 	size = sizeof(struct attribute *) * (ARRAY_SIZE(pt_caps)+1);
241 	attrs = kzalloc(size, GFP_KERNEL);
242 	if (!attrs)
243 		goto fail;
244 
245 	size = sizeof(struct dev_ext_attribute) * (ARRAY_SIZE(pt_caps)+1);
246 	de_attrs = kzalloc(size, GFP_KERNEL);
247 	if (!de_attrs)
248 		goto fail;
249 
250 	for (i = 0; i < ARRAY_SIZE(pt_caps); i++) {
251 		struct dev_ext_attribute *de_attr = de_attrs + i;
252 
253 		de_attr->attr.attr.name = pt_caps[i].name;
254 
255 		sysfs_attr_init(&de_attr->attr.attr);
256 
257 		de_attr->attr.attr.mode		= S_IRUGO;
258 		de_attr->attr.show		= pt_cap_show;
259 		de_attr->var			= (void *)i;
260 
261 		attrs[i] = &de_attr->attr.attr;
262 	}
263 
264 	pt_cap_group.attrs = attrs;
265 
266 	return 0;
267 
268 fail:
269 	kfree(attrs);
270 
271 	return ret;
272 }
273 
274 #define RTIT_CTL_CYC_PSB (RTIT_CTL_CYCLEACC	| \
275 			  RTIT_CTL_CYC_THRESH	| \
276 			  RTIT_CTL_PSB_FREQ)
277 
278 #define RTIT_CTL_MTC	(RTIT_CTL_MTC_EN	| \
279 			 RTIT_CTL_MTC_RANGE)
280 
281 #define RTIT_CTL_PTW	(RTIT_CTL_PTW_EN	| \
282 			 RTIT_CTL_FUP_ON_PTW)
283 
284 /*
285  * Bit 0 (TraceEn) in the attr.config is meaningless as the
286  * corresponding bit in the RTIT_CTL can only be controlled
287  * by the driver; therefore, repurpose it to mean: pass
288  * through the bit that was previously assumed to be always
289  * on for PT, thereby allowing the user to *not* set it if
290  * they so wish. See also pt_event_valid() and pt_config().
291  */
292 #define RTIT_CTL_PASSTHROUGH RTIT_CTL_TRACEEN
293 
294 #define PT_CONFIG_MASK (RTIT_CTL_TRACEEN	| \
295 			RTIT_CTL_TSC_EN		| \
296 			RTIT_CTL_DISRETC	| \
297 			RTIT_CTL_BRANCH_EN	| \
298 			RTIT_CTL_CYC_PSB	| \
299 			RTIT_CTL_MTC		| \
300 			RTIT_CTL_PWR_EVT_EN	| \
301 			RTIT_CTL_FUP_ON_PTW	| \
302 			RTIT_CTL_PTW_EN)
303 
304 static bool pt_event_valid(struct perf_event *event)
305 {
306 	u64 config = event->attr.config;
307 	u64 allowed, requested;
308 
309 	if ((config & PT_CONFIG_MASK) != config)
310 		return false;
311 
312 	if (config & RTIT_CTL_CYC_PSB) {
313 		if (!pt_cap_get(PT_CAP_psb_cyc))
314 			return false;
315 
316 		allowed = pt_cap_get(PT_CAP_psb_periods);
317 		requested = (config & RTIT_CTL_PSB_FREQ) >>
318 			RTIT_CTL_PSB_FREQ_OFFSET;
319 		if (requested && (!(allowed & BIT(requested))))
320 			return false;
321 
322 		allowed = pt_cap_get(PT_CAP_cycle_thresholds);
323 		requested = (config & RTIT_CTL_CYC_THRESH) >>
324 			RTIT_CTL_CYC_THRESH_OFFSET;
325 		if (requested && (!(allowed & BIT(requested))))
326 			return false;
327 	}
328 
329 	if (config & RTIT_CTL_MTC) {
330 		/*
331 		 * In the unlikely case that CPUID lists valid mtc periods,
332 		 * but not the mtc capability, drop out here.
333 		 *
334 		 * Spec says that setting mtc period bits while mtc bit in
335 		 * CPUID is 0 will #GP, so better safe than sorry.
336 		 */
337 		if (!pt_cap_get(PT_CAP_mtc))
338 			return false;
339 
340 		allowed = pt_cap_get(PT_CAP_mtc_periods);
341 		if (!allowed)
342 			return false;
343 
344 		requested = (config & RTIT_CTL_MTC_RANGE) >>
345 			RTIT_CTL_MTC_RANGE_OFFSET;
346 
347 		if (!(allowed & BIT(requested)))
348 			return false;
349 	}
350 
351 	if (config & RTIT_CTL_PWR_EVT_EN &&
352 	    !pt_cap_get(PT_CAP_power_event_trace))
353 		return false;
354 
355 	if (config & RTIT_CTL_PTW) {
356 		if (!pt_cap_get(PT_CAP_ptwrite))
357 			return false;
358 
359 		/* FUPonPTW without PTW doesn't make sense */
360 		if ((config & RTIT_CTL_FUP_ON_PTW) &&
361 		    !(config & RTIT_CTL_PTW_EN))
362 			return false;
363 	}
364 
365 	/*
366 	 * Setting bit 0 (TraceEn in RTIT_CTL MSR) in the attr.config
367 	 * clears the assomption that BranchEn must always be enabled,
368 	 * as was the case with the first implementation of PT.
369 	 * If this bit is not set, the legacy behavior is preserved
370 	 * for compatibility with the older userspace.
371 	 *
372 	 * Re-using bit 0 for this purpose is fine because it is never
373 	 * directly set by the user; previous attempts at setting it in
374 	 * the attr.config resulted in -EINVAL.
375 	 */
376 	if (config & RTIT_CTL_PASSTHROUGH) {
377 		/*
378 		 * Disallow not setting BRANCH_EN where BRANCH_EN is
379 		 * always required.
380 		 */
381 		if (pt_pmu.branch_en_always_on &&
382 		    !(config & RTIT_CTL_BRANCH_EN))
383 			return false;
384 	} else {
385 		/*
386 		 * Disallow BRANCH_EN without the PASSTHROUGH.
387 		 */
388 		if (config & RTIT_CTL_BRANCH_EN)
389 			return false;
390 	}
391 
392 	return true;
393 }
394 
395 /*
396  * PT configuration helpers
397  * These all are cpu affine and operate on a local PT
398  */
399 
400 /* Address ranges and their corresponding msr configuration registers */
401 static const struct pt_address_range {
402 	unsigned long	msr_a;
403 	unsigned long	msr_b;
404 	unsigned int	reg_off;
405 } pt_address_ranges[] = {
406 	{
407 		.msr_a	 = MSR_IA32_RTIT_ADDR0_A,
408 		.msr_b	 = MSR_IA32_RTIT_ADDR0_B,
409 		.reg_off = RTIT_CTL_ADDR0_OFFSET,
410 	},
411 	{
412 		.msr_a	 = MSR_IA32_RTIT_ADDR1_A,
413 		.msr_b	 = MSR_IA32_RTIT_ADDR1_B,
414 		.reg_off = RTIT_CTL_ADDR1_OFFSET,
415 	},
416 	{
417 		.msr_a	 = MSR_IA32_RTIT_ADDR2_A,
418 		.msr_b	 = MSR_IA32_RTIT_ADDR2_B,
419 		.reg_off = RTIT_CTL_ADDR2_OFFSET,
420 	},
421 	{
422 		.msr_a	 = MSR_IA32_RTIT_ADDR3_A,
423 		.msr_b	 = MSR_IA32_RTIT_ADDR3_B,
424 		.reg_off = RTIT_CTL_ADDR3_OFFSET,
425 	}
426 };
427 
428 static u64 pt_config_filters(struct perf_event *event)
429 {
430 	struct pt_filters *filters = event->hw.addr_filters;
431 	struct pt *pt = this_cpu_ptr(&pt_ctx);
432 	unsigned int range = 0;
433 	u64 rtit_ctl = 0;
434 
435 	if (!filters)
436 		return 0;
437 
438 	perf_event_addr_filters_sync(event);
439 
440 	for (range = 0; range < filters->nr_filters; range++) {
441 		struct pt_filter *filter = &filters->filter[range];
442 
443 		/*
444 		 * Note, if the range has zero start/end addresses due
445 		 * to its dynamic object not being loaded yet, we just
446 		 * go ahead and program zeroed range, which will simply
447 		 * produce no data. Note^2: if executable code at 0x0
448 		 * is a concern, we can set up an "invalid" configuration
449 		 * such as msr_b < msr_a.
450 		 */
451 
452 		/* avoid redundant msr writes */
453 		if (pt->filters.filter[range].msr_a != filter->msr_a) {
454 			wrmsrl(pt_address_ranges[range].msr_a, filter->msr_a);
455 			pt->filters.filter[range].msr_a = filter->msr_a;
456 		}
457 
458 		if (pt->filters.filter[range].msr_b != filter->msr_b) {
459 			wrmsrl(pt_address_ranges[range].msr_b, filter->msr_b);
460 			pt->filters.filter[range].msr_b = filter->msr_b;
461 		}
462 
463 		rtit_ctl |= filter->config << pt_address_ranges[range].reg_off;
464 	}
465 
466 	return rtit_ctl;
467 }
468 
469 static void pt_config(struct perf_event *event)
470 {
471 	struct pt *pt = this_cpu_ptr(&pt_ctx);
472 	u64 reg;
473 
474 	/* First round: clear STATUS, in particular the PSB byte counter. */
475 	if (!event->hw.config) {
476 		perf_event_itrace_started(event);
477 		wrmsrl(MSR_IA32_RTIT_STATUS, 0);
478 	}
479 
480 	reg = pt_config_filters(event);
481 	reg |= RTIT_CTL_TOPA | RTIT_CTL_TRACEEN;
482 
483 	/*
484 	 * Previously, we had BRANCH_EN on by default, but now that PT has
485 	 * grown features outside of branch tracing, it is useful to allow
486 	 * the user to disable it. Setting bit 0 in the event's attr.config
487 	 * allows BRANCH_EN to pass through instead of being always on. See
488 	 * also the comment in pt_event_valid().
489 	 */
490 	if (event->attr.config & BIT(0)) {
491 		reg |= event->attr.config & RTIT_CTL_BRANCH_EN;
492 	} else {
493 		reg |= RTIT_CTL_BRANCH_EN;
494 	}
495 
496 	if (!event->attr.exclude_kernel)
497 		reg |= RTIT_CTL_OS;
498 	if (!event->attr.exclude_user)
499 		reg |= RTIT_CTL_USR;
500 
501 	reg |= (event->attr.config & PT_CONFIG_MASK);
502 
503 	event->hw.config = reg;
504 	if (READ_ONCE(pt->vmx_on))
505 		perf_aux_output_flag(&pt->handle, PERF_AUX_FLAG_PARTIAL);
506 	else
507 		wrmsrl(MSR_IA32_RTIT_CTL, reg);
508 }
509 
510 static void pt_config_stop(struct perf_event *event)
511 {
512 	struct pt *pt = this_cpu_ptr(&pt_ctx);
513 	u64 ctl = READ_ONCE(event->hw.config);
514 
515 	/* may be already stopped by a PMI */
516 	if (!(ctl & RTIT_CTL_TRACEEN))
517 		return;
518 
519 	ctl &= ~RTIT_CTL_TRACEEN;
520 	if (!READ_ONCE(pt->vmx_on))
521 		wrmsrl(MSR_IA32_RTIT_CTL, ctl);
522 
523 	WRITE_ONCE(event->hw.config, ctl);
524 
525 	/*
526 	 * A wrmsr that disables trace generation serializes other PT
527 	 * registers and causes all data packets to be written to memory,
528 	 * but a fence is required for the data to become globally visible.
529 	 *
530 	 * The below WMB, separating data store and aux_head store matches
531 	 * the consumer's RMB that separates aux_head load and data load.
532 	 */
533 	wmb();
534 }
535 
536 static void pt_config_buffer(void *buf, unsigned int topa_idx,
537 			     unsigned int output_off)
538 {
539 	u64 reg;
540 
541 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, virt_to_phys(buf));
542 
543 	reg = 0x7f | ((u64)topa_idx << 7) | ((u64)output_off << 32);
544 
545 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, reg);
546 }
547 
548 /*
549  * Keep ToPA table-related metadata on the same page as the actual table,
550  * taking up a few words from the top
551  */
552 
553 #define TENTS_PER_PAGE (((PAGE_SIZE - 40) / sizeof(struct topa_entry)) - 1)
554 
555 /**
556  * struct topa - page-sized ToPA table with metadata at the top
557  * @table:	actual ToPA table entries, as understood by PT hardware
558  * @list:	linkage to struct pt_buffer's list of tables
559  * @phys:	physical address of this page
560  * @offset:	offset of the first entry in this table in the buffer
561  * @size:	total size of all entries in this table
562  * @last:	index of the last initialized entry in this table
563  */
564 struct topa {
565 	struct topa_entry	table[TENTS_PER_PAGE];
566 	struct list_head	list;
567 	u64			phys;
568 	u64			offset;
569 	size_t			size;
570 	int			last;
571 };
572 
573 /* make -1 stand for the last table entry */
574 #define TOPA_ENTRY(t, i) ((i) == -1 ? &(t)->table[(t)->last] : &(t)->table[(i)])
575 
576 /**
577  * topa_alloc() - allocate page-sized ToPA table
578  * @cpu:	CPU on which to allocate.
579  * @gfp:	Allocation flags.
580  *
581  * Return:	On success, return the pointer to ToPA table page.
582  */
583 static struct topa *topa_alloc(int cpu, gfp_t gfp)
584 {
585 	int node = cpu_to_node(cpu);
586 	struct topa *topa;
587 	struct page *p;
588 
589 	p = alloc_pages_node(node, gfp | __GFP_ZERO, 0);
590 	if (!p)
591 		return NULL;
592 
593 	topa = page_address(p);
594 	topa->last = 0;
595 	topa->phys = page_to_phys(p);
596 
597 	/*
598 	 * In case of singe-entry ToPA, always put the self-referencing END
599 	 * link as the 2nd entry in the table
600 	 */
601 	if (!pt_cap_get(PT_CAP_topa_multiple_entries)) {
602 		TOPA_ENTRY(topa, 1)->base = topa->phys >> TOPA_SHIFT;
603 		TOPA_ENTRY(topa, 1)->end = 1;
604 	}
605 
606 	return topa;
607 }
608 
609 /**
610  * topa_free() - free a page-sized ToPA table
611  * @topa:	Table to deallocate.
612  */
613 static void topa_free(struct topa *topa)
614 {
615 	free_page((unsigned long)topa);
616 }
617 
618 /**
619  * topa_insert_table() - insert a ToPA table into a buffer
620  * @buf:	 PT buffer that's being extended.
621  * @topa:	 New topa table to be inserted.
622  *
623  * If it's the first table in this buffer, set up buffer's pointers
624  * accordingly; otherwise, add a END=1 link entry to @topa to the current
625  * "last" table and adjust the last table pointer to @topa.
626  */
627 static void topa_insert_table(struct pt_buffer *buf, struct topa *topa)
628 {
629 	struct topa *last = buf->last;
630 
631 	list_add_tail(&topa->list, &buf->tables);
632 
633 	if (!buf->first) {
634 		buf->first = buf->last = buf->cur = topa;
635 		return;
636 	}
637 
638 	topa->offset = last->offset + last->size;
639 	buf->last = topa;
640 
641 	if (!pt_cap_get(PT_CAP_topa_multiple_entries))
642 		return;
643 
644 	BUG_ON(last->last != TENTS_PER_PAGE - 1);
645 
646 	TOPA_ENTRY(last, -1)->base = topa->phys >> TOPA_SHIFT;
647 	TOPA_ENTRY(last, -1)->end = 1;
648 }
649 
650 /**
651  * topa_table_full() - check if a ToPA table is filled up
652  * @topa:	ToPA table.
653  */
654 static bool topa_table_full(struct topa *topa)
655 {
656 	/* single-entry ToPA is a special case */
657 	if (!pt_cap_get(PT_CAP_topa_multiple_entries))
658 		return !!topa->last;
659 
660 	return topa->last == TENTS_PER_PAGE - 1;
661 }
662 
663 /**
664  * topa_insert_pages() - create a list of ToPA tables
665  * @buf:	PT buffer being initialized.
666  * @gfp:	Allocation flags.
667  *
668  * This initializes a list of ToPA tables with entries from
669  * the data_pages provided by rb_alloc_aux().
670  *
671  * Return:	0 on success or error code.
672  */
673 static int topa_insert_pages(struct pt_buffer *buf, gfp_t gfp)
674 {
675 	struct topa *topa = buf->last;
676 	int order = 0;
677 	struct page *p;
678 
679 	p = virt_to_page(buf->data_pages[buf->nr_pages]);
680 	if (PagePrivate(p))
681 		order = page_private(p);
682 
683 	if (topa_table_full(topa)) {
684 		topa = topa_alloc(buf->cpu, gfp);
685 		if (!topa)
686 			return -ENOMEM;
687 
688 		topa_insert_table(buf, topa);
689 	}
690 
691 	TOPA_ENTRY(topa, -1)->base = page_to_phys(p) >> TOPA_SHIFT;
692 	TOPA_ENTRY(topa, -1)->size = order;
693 	if (!buf->snapshot && !pt_cap_get(PT_CAP_topa_multiple_entries)) {
694 		TOPA_ENTRY(topa, -1)->intr = 1;
695 		TOPA_ENTRY(topa, -1)->stop = 1;
696 	}
697 
698 	topa->last++;
699 	topa->size += sizes(order);
700 
701 	buf->nr_pages += 1ul << order;
702 
703 	return 0;
704 }
705 
706 /**
707  * pt_topa_dump() - print ToPA tables and their entries
708  * @buf:	PT buffer.
709  */
710 static void pt_topa_dump(struct pt_buffer *buf)
711 {
712 	struct topa *topa;
713 
714 	list_for_each_entry(topa, &buf->tables, list) {
715 		int i;
716 
717 		pr_debug("# table @%p (%016Lx), off %llx size %zx\n", topa->table,
718 			 topa->phys, topa->offset, topa->size);
719 		for (i = 0; i < TENTS_PER_PAGE; i++) {
720 			pr_debug("# entry @%p (%lx sz %u %c%c%c) raw=%16llx\n",
721 				 &topa->table[i],
722 				 (unsigned long)topa->table[i].base << TOPA_SHIFT,
723 				 sizes(topa->table[i].size),
724 				 topa->table[i].end ?  'E' : ' ',
725 				 topa->table[i].intr ? 'I' : ' ',
726 				 topa->table[i].stop ? 'S' : ' ',
727 				 *(u64 *)&topa->table[i]);
728 			if ((pt_cap_get(PT_CAP_topa_multiple_entries) &&
729 			     topa->table[i].stop) ||
730 			    topa->table[i].end)
731 				break;
732 		}
733 	}
734 }
735 
736 /**
737  * pt_buffer_advance() - advance to the next output region
738  * @buf:	PT buffer.
739  *
740  * Advance the current pointers in the buffer to the next ToPA entry.
741  */
742 static void pt_buffer_advance(struct pt_buffer *buf)
743 {
744 	buf->output_off = 0;
745 	buf->cur_idx++;
746 
747 	if (buf->cur_idx == buf->cur->last) {
748 		if (buf->cur == buf->last)
749 			buf->cur = buf->first;
750 		else
751 			buf->cur = list_entry(buf->cur->list.next, struct topa,
752 					      list);
753 		buf->cur_idx = 0;
754 	}
755 }
756 
757 /**
758  * pt_update_head() - calculate current offsets and sizes
759  * @pt:		Per-cpu pt context.
760  *
761  * Update buffer's current write pointer position and data size.
762  */
763 static void pt_update_head(struct pt *pt)
764 {
765 	struct pt_buffer *buf = perf_get_aux(&pt->handle);
766 	u64 topa_idx, base, old;
767 
768 	/* offset of the first region in this table from the beginning of buf */
769 	base = buf->cur->offset + buf->output_off;
770 
771 	/* offset of the current output region within this table */
772 	for (topa_idx = 0; topa_idx < buf->cur_idx; topa_idx++)
773 		base += sizes(buf->cur->table[topa_idx].size);
774 
775 	if (buf->snapshot) {
776 		local_set(&buf->data_size, base);
777 	} else {
778 		old = (local64_xchg(&buf->head, base) &
779 		       ((buf->nr_pages << PAGE_SHIFT) - 1));
780 		if (base < old)
781 			base += buf->nr_pages << PAGE_SHIFT;
782 
783 		local_add(base - old, &buf->data_size);
784 	}
785 }
786 
787 /**
788  * pt_buffer_region() - obtain current output region's address
789  * @buf:	PT buffer.
790  */
791 static void *pt_buffer_region(struct pt_buffer *buf)
792 {
793 	return phys_to_virt(buf->cur->table[buf->cur_idx].base << TOPA_SHIFT);
794 }
795 
796 /**
797  * pt_buffer_region_size() - obtain current output region's size
798  * @buf:	PT buffer.
799  */
800 static size_t pt_buffer_region_size(struct pt_buffer *buf)
801 {
802 	return sizes(buf->cur->table[buf->cur_idx].size);
803 }
804 
805 /**
806  * pt_handle_status() - take care of possible status conditions
807  * @pt:		Per-cpu pt context.
808  */
809 static void pt_handle_status(struct pt *pt)
810 {
811 	struct pt_buffer *buf = perf_get_aux(&pt->handle);
812 	int advance = 0;
813 	u64 status;
814 
815 	rdmsrl(MSR_IA32_RTIT_STATUS, status);
816 
817 	if (status & RTIT_STATUS_ERROR) {
818 		pr_err_ratelimited("ToPA ERROR encountered, trying to recover\n");
819 		pt_topa_dump(buf);
820 		status &= ~RTIT_STATUS_ERROR;
821 	}
822 
823 	if (status & RTIT_STATUS_STOPPED) {
824 		status &= ~RTIT_STATUS_STOPPED;
825 
826 		/*
827 		 * On systems that only do single-entry ToPA, hitting STOP
828 		 * means we are already losing data; need to let the decoder
829 		 * know.
830 		 */
831 		if (!pt_cap_get(PT_CAP_topa_multiple_entries) ||
832 		    buf->output_off == sizes(TOPA_ENTRY(buf->cur, buf->cur_idx)->size)) {
833 			perf_aux_output_flag(&pt->handle,
834 			                     PERF_AUX_FLAG_TRUNCATED);
835 			advance++;
836 		}
837 	}
838 
839 	/*
840 	 * Also on single-entry ToPA implementations, interrupt will come
841 	 * before the output reaches its output region's boundary.
842 	 */
843 	if (!pt_cap_get(PT_CAP_topa_multiple_entries) && !buf->snapshot &&
844 	    pt_buffer_region_size(buf) - buf->output_off <= TOPA_PMI_MARGIN) {
845 		void *head = pt_buffer_region(buf);
846 
847 		/* everything within this margin needs to be zeroed out */
848 		memset(head + buf->output_off, 0,
849 		       pt_buffer_region_size(buf) -
850 		       buf->output_off);
851 		advance++;
852 	}
853 
854 	if (advance)
855 		pt_buffer_advance(buf);
856 
857 	wrmsrl(MSR_IA32_RTIT_STATUS, status);
858 }
859 
860 /**
861  * pt_read_offset() - translate registers into buffer pointers
862  * @buf:	PT buffer.
863  *
864  * Set buffer's output pointers from MSR values.
865  */
866 static void pt_read_offset(struct pt_buffer *buf)
867 {
868 	u64 offset, base_topa;
869 
870 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, base_topa);
871 	buf->cur = phys_to_virt(base_topa);
872 
873 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, offset);
874 	/* offset within current output region */
875 	buf->output_off = offset >> 32;
876 	/* index of current output region within this table */
877 	buf->cur_idx = (offset & 0xffffff80) >> 7;
878 }
879 
880 /**
881  * pt_topa_next_entry() - obtain index of the first page in the next ToPA entry
882  * @buf:	PT buffer.
883  * @pg:		Page offset in the buffer.
884  *
885  * When advancing to the next output region (ToPA entry), given a page offset
886  * into the buffer, we need to find the offset of the first page in the next
887  * region.
888  */
889 static unsigned int pt_topa_next_entry(struct pt_buffer *buf, unsigned int pg)
890 {
891 	struct topa_entry *te = buf->topa_index[pg];
892 
893 	/* one region */
894 	if (buf->first == buf->last && buf->first->last == 1)
895 		return pg;
896 
897 	do {
898 		pg++;
899 		pg &= buf->nr_pages - 1;
900 	} while (buf->topa_index[pg] == te);
901 
902 	return pg;
903 }
904 
905 /**
906  * pt_buffer_reset_markers() - place interrupt and stop bits in the buffer
907  * @buf:	PT buffer.
908  * @handle:	Current output handle.
909  *
910  * Place INT and STOP marks to prevent overwriting old data that the consumer
911  * hasn't yet collected and waking up the consumer after a certain fraction of
912  * the buffer has filled up. Only needed and sensible for non-snapshot counters.
913  *
914  * This obviously relies on buf::head to figure out buffer markers, so it has
915  * to be called after pt_buffer_reset_offsets() and before the hardware tracing
916  * is enabled.
917  */
918 static int pt_buffer_reset_markers(struct pt_buffer *buf,
919 				   struct perf_output_handle *handle)
920 
921 {
922 	unsigned long head = local64_read(&buf->head);
923 	unsigned long idx, npages, wakeup;
924 
925 	/* can't stop in the middle of an output region */
926 	if (buf->output_off + handle->size + 1 <
927 	    sizes(TOPA_ENTRY(buf->cur, buf->cur_idx)->size)) {
928 		perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
929 		return -EINVAL;
930 	}
931 
932 
933 	/* single entry ToPA is handled by marking all regions STOP=1 INT=1 */
934 	if (!pt_cap_get(PT_CAP_topa_multiple_entries))
935 		return 0;
936 
937 	/* clear STOP and INT from current entry */
938 	buf->topa_index[buf->stop_pos]->stop = 0;
939 	buf->topa_index[buf->stop_pos]->intr = 0;
940 	buf->topa_index[buf->intr_pos]->intr = 0;
941 
942 	/* how many pages till the STOP marker */
943 	npages = handle->size >> PAGE_SHIFT;
944 
945 	/* if it's on a page boundary, fill up one more page */
946 	if (!offset_in_page(head + handle->size + 1))
947 		npages++;
948 
949 	idx = (head >> PAGE_SHIFT) + npages;
950 	idx &= buf->nr_pages - 1;
951 	buf->stop_pos = idx;
952 
953 	wakeup = handle->wakeup >> PAGE_SHIFT;
954 
955 	/* in the worst case, wake up the consumer one page before hard stop */
956 	idx = (head >> PAGE_SHIFT) + npages - 1;
957 	if (idx > wakeup)
958 		idx = wakeup;
959 
960 	idx &= buf->nr_pages - 1;
961 	buf->intr_pos = idx;
962 
963 	buf->topa_index[buf->stop_pos]->stop = 1;
964 	buf->topa_index[buf->stop_pos]->intr = 1;
965 	buf->topa_index[buf->intr_pos]->intr = 1;
966 
967 	return 0;
968 }
969 
970 /**
971  * pt_buffer_setup_topa_index() - build topa_index[] table of regions
972  * @buf:	PT buffer.
973  *
974  * topa_index[] references output regions indexed by offset into the
975  * buffer for purposes of quick reverse lookup.
976  */
977 static void pt_buffer_setup_topa_index(struct pt_buffer *buf)
978 {
979 	struct topa *cur = buf->first, *prev = buf->last;
980 	struct topa_entry *te_cur = TOPA_ENTRY(cur, 0),
981 		*te_prev = TOPA_ENTRY(prev, prev->last - 1);
982 	int pg = 0, idx = 0;
983 
984 	while (pg < buf->nr_pages) {
985 		int tidx;
986 
987 		/* pages within one topa entry */
988 		for (tidx = 0; tidx < 1 << te_cur->size; tidx++, pg++)
989 			buf->topa_index[pg] = te_prev;
990 
991 		te_prev = te_cur;
992 
993 		if (idx == cur->last - 1) {
994 			/* advance to next topa table */
995 			idx = 0;
996 			cur = list_entry(cur->list.next, struct topa, list);
997 		} else {
998 			idx++;
999 		}
1000 		te_cur = TOPA_ENTRY(cur, idx);
1001 	}
1002 
1003 }
1004 
1005 /**
1006  * pt_buffer_reset_offsets() - adjust buffer's write pointers from aux_head
1007  * @buf:	PT buffer.
1008  * @head:	Write pointer (aux_head) from AUX buffer.
1009  *
1010  * Find the ToPA table and entry corresponding to given @head and set buffer's
1011  * "current" pointers accordingly. This is done after we have obtained the
1012  * current aux_head position from a successful call to perf_aux_output_begin()
1013  * to make sure the hardware is writing to the right place.
1014  *
1015  * This function modifies buf::{cur,cur_idx,output_off} that will be programmed
1016  * into PT msrs when the tracing is enabled and buf::head and buf::data_size,
1017  * which are used to determine INT and STOP markers' locations by a subsequent
1018  * call to pt_buffer_reset_markers().
1019  */
1020 static void pt_buffer_reset_offsets(struct pt_buffer *buf, unsigned long head)
1021 {
1022 	int pg;
1023 
1024 	if (buf->snapshot)
1025 		head &= (buf->nr_pages << PAGE_SHIFT) - 1;
1026 
1027 	pg = (head >> PAGE_SHIFT) & (buf->nr_pages - 1);
1028 	pg = pt_topa_next_entry(buf, pg);
1029 
1030 	buf->cur = (struct topa *)((unsigned long)buf->topa_index[pg] & PAGE_MASK);
1031 	buf->cur_idx = ((unsigned long)buf->topa_index[pg] -
1032 			(unsigned long)buf->cur) / sizeof(struct topa_entry);
1033 	buf->output_off = head & (sizes(buf->cur->table[buf->cur_idx].size) - 1);
1034 
1035 	local64_set(&buf->head, head);
1036 	local_set(&buf->data_size, 0);
1037 }
1038 
1039 /**
1040  * pt_buffer_fini_topa() - deallocate ToPA structure of a buffer
1041  * @buf:	PT buffer.
1042  */
1043 static void pt_buffer_fini_topa(struct pt_buffer *buf)
1044 {
1045 	struct topa *topa, *iter;
1046 
1047 	list_for_each_entry_safe(topa, iter, &buf->tables, list) {
1048 		/*
1049 		 * right now, this is in free_aux() path only, so
1050 		 * no need to unlink this table from the list
1051 		 */
1052 		topa_free(topa);
1053 	}
1054 }
1055 
1056 /**
1057  * pt_buffer_init_topa() - initialize ToPA table for pt buffer
1058  * @buf:	PT buffer.
1059  * @size:	Total size of all regions within this ToPA.
1060  * @gfp:	Allocation flags.
1061  */
1062 static int pt_buffer_init_topa(struct pt_buffer *buf, unsigned long nr_pages,
1063 			       gfp_t gfp)
1064 {
1065 	struct topa *topa;
1066 	int err;
1067 
1068 	topa = topa_alloc(buf->cpu, gfp);
1069 	if (!topa)
1070 		return -ENOMEM;
1071 
1072 	topa_insert_table(buf, topa);
1073 
1074 	while (buf->nr_pages < nr_pages) {
1075 		err = topa_insert_pages(buf, gfp);
1076 		if (err) {
1077 			pt_buffer_fini_topa(buf);
1078 			return -ENOMEM;
1079 		}
1080 	}
1081 
1082 	pt_buffer_setup_topa_index(buf);
1083 
1084 	/* link last table to the first one, unless we're double buffering */
1085 	if (pt_cap_get(PT_CAP_topa_multiple_entries)) {
1086 		TOPA_ENTRY(buf->last, -1)->base = buf->first->phys >> TOPA_SHIFT;
1087 		TOPA_ENTRY(buf->last, -1)->end = 1;
1088 	}
1089 
1090 	pt_topa_dump(buf);
1091 	return 0;
1092 }
1093 
1094 /**
1095  * pt_buffer_setup_aux() - set up topa tables for a PT buffer
1096  * @cpu:	Cpu on which to allocate, -1 means current.
1097  * @pages:	Array of pointers to buffer pages passed from perf core.
1098  * @nr_pages:	Number of pages in the buffer.
1099  * @snapshot:	If this is a snapshot/overwrite counter.
1100  *
1101  * This is a pmu::setup_aux callback that sets up ToPA tables and all the
1102  * bookkeeping for an AUX buffer.
1103  *
1104  * Return:	Our private PT buffer structure.
1105  */
1106 static void *
1107 pt_buffer_setup_aux(int cpu, void **pages, int nr_pages, bool snapshot)
1108 {
1109 	struct pt_buffer *buf;
1110 	int node, ret;
1111 
1112 	if (!nr_pages)
1113 		return NULL;
1114 
1115 	if (cpu == -1)
1116 		cpu = raw_smp_processor_id();
1117 	node = cpu_to_node(cpu);
1118 
1119 	buf = kzalloc_node(offsetof(struct pt_buffer, topa_index[nr_pages]),
1120 			   GFP_KERNEL, node);
1121 	if (!buf)
1122 		return NULL;
1123 
1124 	buf->cpu = cpu;
1125 	buf->snapshot = snapshot;
1126 	buf->data_pages = pages;
1127 
1128 	INIT_LIST_HEAD(&buf->tables);
1129 
1130 	ret = pt_buffer_init_topa(buf, nr_pages, GFP_KERNEL);
1131 	if (ret) {
1132 		kfree(buf);
1133 		return NULL;
1134 	}
1135 
1136 	return buf;
1137 }
1138 
1139 /**
1140  * pt_buffer_free_aux() - perf AUX deallocation path callback
1141  * @data:	PT buffer.
1142  */
1143 static void pt_buffer_free_aux(void *data)
1144 {
1145 	struct pt_buffer *buf = data;
1146 
1147 	pt_buffer_fini_topa(buf);
1148 	kfree(buf);
1149 }
1150 
1151 static int pt_addr_filters_init(struct perf_event *event)
1152 {
1153 	struct pt_filters *filters;
1154 	int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
1155 
1156 	if (!pt_cap_get(PT_CAP_num_address_ranges))
1157 		return 0;
1158 
1159 	filters = kzalloc_node(sizeof(struct pt_filters), GFP_KERNEL, node);
1160 	if (!filters)
1161 		return -ENOMEM;
1162 
1163 	if (event->parent)
1164 		memcpy(filters, event->parent->hw.addr_filters,
1165 		       sizeof(*filters));
1166 
1167 	event->hw.addr_filters = filters;
1168 
1169 	return 0;
1170 }
1171 
1172 static void pt_addr_filters_fini(struct perf_event *event)
1173 {
1174 	kfree(event->hw.addr_filters);
1175 	event->hw.addr_filters = NULL;
1176 }
1177 
1178 static inline bool valid_kernel_ip(unsigned long ip)
1179 {
1180 	return virt_addr_valid(ip) && kernel_ip(ip);
1181 }
1182 
1183 static int pt_event_addr_filters_validate(struct list_head *filters)
1184 {
1185 	struct perf_addr_filter *filter;
1186 	int range = 0;
1187 
1188 	list_for_each_entry(filter, filters, entry) {
1189 		/* PT doesn't support single address triggers */
1190 		if (!filter->range || !filter->size)
1191 			return -EOPNOTSUPP;
1192 
1193 		if (!filter->inode) {
1194 			if (!valid_kernel_ip(filter->offset))
1195 				return -EINVAL;
1196 
1197 			if (!valid_kernel_ip(filter->offset + filter->size))
1198 				return -EINVAL;
1199 		}
1200 
1201 		if (++range > pt_cap_get(PT_CAP_num_address_ranges))
1202 			return -EOPNOTSUPP;
1203 	}
1204 
1205 	return 0;
1206 }
1207 
1208 static void pt_event_addr_filters_sync(struct perf_event *event)
1209 {
1210 	struct perf_addr_filters_head *head = perf_event_addr_filters(event);
1211 	unsigned long msr_a, msr_b, *offs = event->addr_filters_offs;
1212 	struct pt_filters *filters = event->hw.addr_filters;
1213 	struct perf_addr_filter *filter;
1214 	int range = 0;
1215 
1216 	if (!filters)
1217 		return;
1218 
1219 	list_for_each_entry(filter, &head->list, entry) {
1220 		if (filter->inode && !offs[range]) {
1221 			msr_a = msr_b = 0;
1222 		} else {
1223 			/* apply the offset */
1224 			msr_a = filter->offset + offs[range];
1225 			msr_b = filter->size + msr_a - 1;
1226 		}
1227 
1228 		filters->filter[range].msr_a  = msr_a;
1229 		filters->filter[range].msr_b  = msr_b;
1230 		filters->filter[range].config = filter->filter ? 1 : 2;
1231 		range++;
1232 	}
1233 
1234 	filters->nr_filters = range;
1235 }
1236 
1237 /**
1238  * intel_pt_interrupt() - PT PMI handler
1239  */
1240 void intel_pt_interrupt(void)
1241 {
1242 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1243 	struct pt_buffer *buf;
1244 	struct perf_event *event = pt->handle.event;
1245 
1246 	/*
1247 	 * There may be a dangling PT bit in the interrupt status register
1248 	 * after PT has been disabled by pt_event_stop(). Make sure we don't
1249 	 * do anything (particularly, re-enable) for this event here.
1250 	 */
1251 	if (!READ_ONCE(pt->handle_nmi))
1252 		return;
1253 
1254 	if (!event)
1255 		return;
1256 
1257 	pt_config_stop(event);
1258 
1259 	buf = perf_get_aux(&pt->handle);
1260 	if (!buf)
1261 		return;
1262 
1263 	pt_read_offset(buf);
1264 
1265 	pt_handle_status(pt);
1266 
1267 	pt_update_head(pt);
1268 
1269 	perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0));
1270 
1271 	if (!event->hw.state) {
1272 		int ret;
1273 
1274 		buf = perf_aux_output_begin(&pt->handle, event);
1275 		if (!buf) {
1276 			event->hw.state = PERF_HES_STOPPED;
1277 			return;
1278 		}
1279 
1280 		pt_buffer_reset_offsets(buf, pt->handle.head);
1281 		/* snapshot counters don't use PMI, so it's safe */
1282 		ret = pt_buffer_reset_markers(buf, &pt->handle);
1283 		if (ret) {
1284 			perf_aux_output_end(&pt->handle, 0);
1285 			return;
1286 		}
1287 
1288 		pt_config_buffer(buf->cur->table, buf->cur_idx,
1289 				 buf->output_off);
1290 		pt_config(event);
1291 	}
1292 }
1293 
1294 void intel_pt_handle_vmx(int on)
1295 {
1296 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1297 	struct perf_event *event;
1298 	unsigned long flags;
1299 
1300 	/* PT plays nice with VMX, do nothing */
1301 	if (pt_pmu.vmx)
1302 		return;
1303 
1304 	/*
1305 	 * VMXON will clear RTIT_CTL.TraceEn; we need to make
1306 	 * sure to not try to set it while VMX is on. Disable
1307 	 * interrupts to avoid racing with pmu callbacks;
1308 	 * concurrent PMI should be handled fine.
1309 	 */
1310 	local_irq_save(flags);
1311 	WRITE_ONCE(pt->vmx_on, on);
1312 
1313 	/*
1314 	 * If an AUX transaction is in progress, it will contain
1315 	 * gap(s), so flag it PARTIAL to inform the user.
1316 	 */
1317 	event = pt->handle.event;
1318 	if (event)
1319 		perf_aux_output_flag(&pt->handle,
1320 		                     PERF_AUX_FLAG_PARTIAL);
1321 
1322 	/* Turn PTs back on */
1323 	if (!on && event)
1324 		wrmsrl(MSR_IA32_RTIT_CTL, event->hw.config);
1325 
1326 	local_irq_restore(flags);
1327 }
1328 EXPORT_SYMBOL_GPL(intel_pt_handle_vmx);
1329 
1330 /*
1331  * PMU callbacks
1332  */
1333 
1334 static void pt_event_start(struct perf_event *event, int mode)
1335 {
1336 	struct hw_perf_event *hwc = &event->hw;
1337 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1338 	struct pt_buffer *buf;
1339 
1340 	buf = perf_aux_output_begin(&pt->handle, event);
1341 	if (!buf)
1342 		goto fail_stop;
1343 
1344 	pt_buffer_reset_offsets(buf, pt->handle.head);
1345 	if (!buf->snapshot) {
1346 		if (pt_buffer_reset_markers(buf, &pt->handle))
1347 			goto fail_end_stop;
1348 	}
1349 
1350 	WRITE_ONCE(pt->handle_nmi, 1);
1351 	hwc->state = 0;
1352 
1353 	pt_config_buffer(buf->cur->table, buf->cur_idx,
1354 			 buf->output_off);
1355 	pt_config(event);
1356 
1357 	return;
1358 
1359 fail_end_stop:
1360 	perf_aux_output_end(&pt->handle, 0);
1361 fail_stop:
1362 	hwc->state = PERF_HES_STOPPED;
1363 }
1364 
1365 static void pt_event_stop(struct perf_event *event, int mode)
1366 {
1367 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1368 
1369 	/*
1370 	 * Protect against the PMI racing with disabling wrmsr,
1371 	 * see comment in intel_pt_interrupt().
1372 	 */
1373 	WRITE_ONCE(pt->handle_nmi, 0);
1374 
1375 	pt_config_stop(event);
1376 
1377 	if (event->hw.state == PERF_HES_STOPPED)
1378 		return;
1379 
1380 	event->hw.state = PERF_HES_STOPPED;
1381 
1382 	if (mode & PERF_EF_UPDATE) {
1383 		struct pt_buffer *buf = perf_get_aux(&pt->handle);
1384 
1385 		if (!buf)
1386 			return;
1387 
1388 		if (WARN_ON_ONCE(pt->handle.event != event))
1389 			return;
1390 
1391 		pt_read_offset(buf);
1392 
1393 		pt_handle_status(pt);
1394 
1395 		pt_update_head(pt);
1396 
1397 		if (buf->snapshot)
1398 			pt->handle.head =
1399 				local_xchg(&buf->data_size,
1400 					   buf->nr_pages << PAGE_SHIFT);
1401 		perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0));
1402 	}
1403 }
1404 
1405 static void pt_event_del(struct perf_event *event, int mode)
1406 {
1407 	pt_event_stop(event, PERF_EF_UPDATE);
1408 }
1409 
1410 static int pt_event_add(struct perf_event *event, int mode)
1411 {
1412 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1413 	struct hw_perf_event *hwc = &event->hw;
1414 	int ret = -EBUSY;
1415 
1416 	if (pt->handle.event)
1417 		goto fail;
1418 
1419 	if (mode & PERF_EF_START) {
1420 		pt_event_start(event, 0);
1421 		ret = -EINVAL;
1422 		if (hwc->state == PERF_HES_STOPPED)
1423 			goto fail;
1424 	} else {
1425 		hwc->state = PERF_HES_STOPPED;
1426 	}
1427 
1428 	ret = 0;
1429 fail:
1430 
1431 	return ret;
1432 }
1433 
1434 static void pt_event_read(struct perf_event *event)
1435 {
1436 }
1437 
1438 static void pt_event_destroy(struct perf_event *event)
1439 {
1440 	pt_addr_filters_fini(event);
1441 	x86_del_exclusive(x86_lbr_exclusive_pt);
1442 }
1443 
1444 static int pt_event_init(struct perf_event *event)
1445 {
1446 	if (event->attr.type != pt_pmu.pmu.type)
1447 		return -ENOENT;
1448 
1449 	if (!pt_event_valid(event))
1450 		return -EINVAL;
1451 
1452 	if (x86_add_exclusive(x86_lbr_exclusive_pt))
1453 		return -EBUSY;
1454 
1455 	if (pt_addr_filters_init(event)) {
1456 		x86_del_exclusive(x86_lbr_exclusive_pt);
1457 		return -ENOMEM;
1458 	}
1459 
1460 	event->destroy = pt_event_destroy;
1461 
1462 	return 0;
1463 }
1464 
1465 void cpu_emergency_stop_pt(void)
1466 {
1467 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1468 
1469 	if (pt->handle.event)
1470 		pt_event_stop(pt->handle.event, PERF_EF_UPDATE);
1471 }
1472 
1473 static __init int pt_init(void)
1474 {
1475 	int ret, cpu, prior_warn = 0;
1476 
1477 	BUILD_BUG_ON(sizeof(struct topa) > PAGE_SIZE);
1478 
1479 	if (!boot_cpu_has(X86_FEATURE_INTEL_PT))
1480 		return -ENODEV;
1481 
1482 	get_online_cpus();
1483 	for_each_online_cpu(cpu) {
1484 		u64 ctl;
1485 
1486 		ret = rdmsrl_safe_on_cpu(cpu, MSR_IA32_RTIT_CTL, &ctl);
1487 		if (!ret && (ctl & RTIT_CTL_TRACEEN))
1488 			prior_warn++;
1489 	}
1490 	put_online_cpus();
1491 
1492 	if (prior_warn) {
1493 		x86_add_exclusive(x86_lbr_exclusive_pt);
1494 		pr_warn("PT is enabled at boot time, doing nothing\n");
1495 
1496 		return -EBUSY;
1497 	}
1498 
1499 	ret = pt_pmu_hw_init();
1500 	if (ret)
1501 		return ret;
1502 
1503 	if (!pt_cap_get(PT_CAP_topa_output)) {
1504 		pr_warn("ToPA output is not supported on this CPU\n");
1505 		return -ENODEV;
1506 	}
1507 
1508 	if (!pt_cap_get(PT_CAP_topa_multiple_entries))
1509 		pt_pmu.pmu.capabilities =
1510 			PERF_PMU_CAP_AUX_NO_SG | PERF_PMU_CAP_AUX_SW_DOUBLEBUF;
1511 
1512 	pt_pmu.pmu.capabilities	|= PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE;
1513 	pt_pmu.pmu.attr_groups		 = pt_attr_groups;
1514 	pt_pmu.pmu.task_ctx_nr		 = perf_sw_context;
1515 	pt_pmu.pmu.event_init		 = pt_event_init;
1516 	pt_pmu.pmu.add			 = pt_event_add;
1517 	pt_pmu.pmu.del			 = pt_event_del;
1518 	pt_pmu.pmu.start		 = pt_event_start;
1519 	pt_pmu.pmu.stop			 = pt_event_stop;
1520 	pt_pmu.pmu.read			 = pt_event_read;
1521 	pt_pmu.pmu.setup_aux		 = pt_buffer_setup_aux;
1522 	pt_pmu.pmu.free_aux		 = pt_buffer_free_aux;
1523 	pt_pmu.pmu.addr_filters_sync     = pt_event_addr_filters_sync;
1524 	pt_pmu.pmu.addr_filters_validate = pt_event_addr_filters_validate;
1525 	pt_pmu.pmu.nr_addr_filters       =
1526 		pt_cap_get(PT_CAP_num_address_ranges);
1527 
1528 	ret = perf_pmu_register(&pt_pmu.pmu, "intel_pt", -1);
1529 
1530 	return ret;
1531 }
1532 arch_initcall(pt_init);
1533