xref: /openbmc/linux/arch/x86/events/intel/pt.c (revision 4f6cce39)
1 /*
2  * Intel(R) Processor Trace PMU driver for perf
3  * Copyright (c) 2013-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * Intel PT is specified in the Intel Architecture Instruction Set Extensions
15  * Programming Reference:
16  * http://software.intel.com/en-us/intel-isa-extensions
17  */
18 
19 #undef DEBUG
20 
21 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22 
23 #include <linux/types.h>
24 #include <linux/slab.h>
25 #include <linux/device.h>
26 
27 #include <asm/perf_event.h>
28 #include <asm/insn.h>
29 #include <asm/io.h>
30 #include <asm/intel_pt.h>
31 
32 #include "../perf_event.h"
33 #include "pt.h"
34 
35 static DEFINE_PER_CPU(struct pt, pt_ctx);
36 
37 static struct pt_pmu pt_pmu;
38 
39 /*
40  * Capabilities of Intel PT hardware, such as number of address bits or
41  * supported output schemes, are cached and exported to userspace as "caps"
42  * attribute group of pt pmu device
43  * (/sys/bus/event_source/devices/intel_pt/caps/) so that userspace can store
44  * relevant bits together with intel_pt traces.
45  *
46  * These are necessary for both trace decoding (payloads_lip, contains address
47  * width encoded in IP-related packets), and event configuration (bitmasks with
48  * permitted values for certain bit fields).
49  */
50 #define PT_CAP(_n, _l, _r, _m)						\
51 	[PT_CAP_ ## _n] = { .name = __stringify(_n), .leaf = _l,	\
52 			    .reg = _r, .mask = _m }
53 
54 static struct pt_cap_desc {
55 	const char	*name;
56 	u32		leaf;
57 	u8		reg;
58 	u32		mask;
59 } pt_caps[] = {
60 	PT_CAP(max_subleaf,		0, CPUID_EAX, 0xffffffff),
61 	PT_CAP(cr3_filtering,		0, CPUID_EBX, BIT(0)),
62 	PT_CAP(psb_cyc,			0, CPUID_EBX, BIT(1)),
63 	PT_CAP(ip_filtering,		0, CPUID_EBX, BIT(2)),
64 	PT_CAP(mtc,			0, CPUID_EBX, BIT(3)),
65 	PT_CAP(ptwrite,			0, CPUID_EBX, BIT(4)),
66 	PT_CAP(power_event_trace,	0, CPUID_EBX, BIT(5)),
67 	PT_CAP(topa_output,		0, CPUID_ECX, BIT(0)),
68 	PT_CAP(topa_multiple_entries,	0, CPUID_ECX, BIT(1)),
69 	PT_CAP(single_range_output,	0, CPUID_ECX, BIT(2)),
70 	PT_CAP(payloads_lip,		0, CPUID_ECX, BIT(31)),
71 	PT_CAP(num_address_ranges,	1, CPUID_EAX, 0x3),
72 	PT_CAP(mtc_periods,		1, CPUID_EAX, 0xffff0000),
73 	PT_CAP(cycle_thresholds,	1, CPUID_EBX, 0xffff),
74 	PT_CAP(psb_periods,		1, CPUID_EBX, 0xffff0000),
75 };
76 
77 static u32 pt_cap_get(enum pt_capabilities cap)
78 {
79 	struct pt_cap_desc *cd = &pt_caps[cap];
80 	u32 c = pt_pmu.caps[cd->leaf * PT_CPUID_REGS_NUM + cd->reg];
81 	unsigned int shift = __ffs(cd->mask);
82 
83 	return (c & cd->mask) >> shift;
84 }
85 
86 static ssize_t pt_cap_show(struct device *cdev,
87 			   struct device_attribute *attr,
88 			   char *buf)
89 {
90 	struct dev_ext_attribute *ea =
91 		container_of(attr, struct dev_ext_attribute, attr);
92 	enum pt_capabilities cap = (long)ea->var;
93 
94 	return snprintf(buf, PAGE_SIZE, "%x\n", pt_cap_get(cap));
95 }
96 
97 static struct attribute_group pt_cap_group = {
98 	.name	= "caps",
99 };
100 
101 PMU_FORMAT_ATTR(cyc,		"config:1"	);
102 PMU_FORMAT_ATTR(pwr_evt,	"config:4"	);
103 PMU_FORMAT_ATTR(fup_on_ptw,	"config:5"	);
104 PMU_FORMAT_ATTR(mtc,		"config:9"	);
105 PMU_FORMAT_ATTR(tsc,		"config:10"	);
106 PMU_FORMAT_ATTR(noretcomp,	"config:11"	);
107 PMU_FORMAT_ATTR(ptw,		"config:12"	);
108 PMU_FORMAT_ATTR(mtc_period,	"config:14-17"	);
109 PMU_FORMAT_ATTR(cyc_thresh,	"config:19-22"	);
110 PMU_FORMAT_ATTR(psb_period,	"config:24-27"	);
111 
112 static struct attribute *pt_formats_attr[] = {
113 	&format_attr_cyc.attr,
114 	&format_attr_pwr_evt.attr,
115 	&format_attr_fup_on_ptw.attr,
116 	&format_attr_mtc.attr,
117 	&format_attr_tsc.attr,
118 	&format_attr_noretcomp.attr,
119 	&format_attr_ptw.attr,
120 	&format_attr_mtc_period.attr,
121 	&format_attr_cyc_thresh.attr,
122 	&format_attr_psb_period.attr,
123 	NULL,
124 };
125 
126 static struct attribute_group pt_format_group = {
127 	.name	= "format",
128 	.attrs	= pt_formats_attr,
129 };
130 
131 static ssize_t
132 pt_timing_attr_show(struct device *dev, struct device_attribute *attr,
133 		    char *page)
134 {
135 	struct perf_pmu_events_attr *pmu_attr =
136 		container_of(attr, struct perf_pmu_events_attr, attr);
137 
138 	switch (pmu_attr->id) {
139 	case 0:
140 		return sprintf(page, "%lu\n", pt_pmu.max_nonturbo_ratio);
141 	case 1:
142 		return sprintf(page, "%u:%u\n",
143 			       pt_pmu.tsc_art_num,
144 			       pt_pmu.tsc_art_den);
145 	default:
146 		break;
147 	}
148 
149 	return -EINVAL;
150 }
151 
152 PMU_EVENT_ATTR(max_nonturbo_ratio, timing_attr_max_nonturbo_ratio, 0,
153 	       pt_timing_attr_show);
154 PMU_EVENT_ATTR(tsc_art_ratio, timing_attr_tsc_art_ratio, 1,
155 	       pt_timing_attr_show);
156 
157 static struct attribute *pt_timing_attr[] = {
158 	&timing_attr_max_nonturbo_ratio.attr.attr,
159 	&timing_attr_tsc_art_ratio.attr.attr,
160 	NULL,
161 };
162 
163 static struct attribute_group pt_timing_group = {
164 	.attrs	= pt_timing_attr,
165 };
166 
167 static const struct attribute_group *pt_attr_groups[] = {
168 	&pt_cap_group,
169 	&pt_format_group,
170 	&pt_timing_group,
171 	NULL,
172 };
173 
174 static int __init pt_pmu_hw_init(void)
175 {
176 	struct dev_ext_attribute *de_attrs;
177 	struct attribute **attrs;
178 	size_t size;
179 	u64 reg;
180 	int ret;
181 	long i;
182 
183 	rdmsrl(MSR_PLATFORM_INFO, reg);
184 	pt_pmu.max_nonturbo_ratio = (reg & 0xff00) >> 8;
185 
186 	/*
187 	 * if available, read in TSC to core crystal clock ratio,
188 	 * otherwise, zero for numerator stands for "not enumerated"
189 	 * as per SDM
190 	 */
191 	if (boot_cpu_data.cpuid_level >= CPUID_TSC_LEAF) {
192 		u32 eax, ebx, ecx, edx;
193 
194 		cpuid(CPUID_TSC_LEAF, &eax, &ebx, &ecx, &edx);
195 
196 		pt_pmu.tsc_art_num = ebx;
197 		pt_pmu.tsc_art_den = eax;
198 	}
199 
200 	if (boot_cpu_has(X86_FEATURE_VMX)) {
201 		/*
202 		 * Intel SDM, 36.5 "Tracing post-VMXON" says that
203 		 * "IA32_VMX_MISC[bit 14]" being 1 means PT can trace
204 		 * post-VMXON.
205 		 */
206 		rdmsrl(MSR_IA32_VMX_MISC, reg);
207 		if (reg & BIT(14))
208 			pt_pmu.vmx = true;
209 	}
210 
211 	attrs = NULL;
212 
213 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
214 		cpuid_count(20, i,
215 			    &pt_pmu.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM],
216 			    &pt_pmu.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM],
217 			    &pt_pmu.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM],
218 			    &pt_pmu.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM]);
219 	}
220 
221 	ret = -ENOMEM;
222 	size = sizeof(struct attribute *) * (ARRAY_SIZE(pt_caps)+1);
223 	attrs = kzalloc(size, GFP_KERNEL);
224 	if (!attrs)
225 		goto fail;
226 
227 	size = sizeof(struct dev_ext_attribute) * (ARRAY_SIZE(pt_caps)+1);
228 	de_attrs = kzalloc(size, GFP_KERNEL);
229 	if (!de_attrs)
230 		goto fail;
231 
232 	for (i = 0; i < ARRAY_SIZE(pt_caps); i++) {
233 		struct dev_ext_attribute *de_attr = de_attrs + i;
234 
235 		de_attr->attr.attr.name = pt_caps[i].name;
236 
237 		sysfs_attr_init(&de_attr->attr.attr);
238 
239 		de_attr->attr.attr.mode		= S_IRUGO;
240 		de_attr->attr.show		= pt_cap_show;
241 		de_attr->var			= (void *)i;
242 
243 		attrs[i] = &de_attr->attr.attr;
244 	}
245 
246 	pt_cap_group.attrs = attrs;
247 
248 	return 0;
249 
250 fail:
251 	kfree(attrs);
252 
253 	return ret;
254 }
255 
256 #define RTIT_CTL_CYC_PSB (RTIT_CTL_CYCLEACC	| \
257 			  RTIT_CTL_CYC_THRESH	| \
258 			  RTIT_CTL_PSB_FREQ)
259 
260 #define RTIT_CTL_MTC	(RTIT_CTL_MTC_EN	| \
261 			 RTIT_CTL_MTC_RANGE)
262 
263 #define RTIT_CTL_PTW	(RTIT_CTL_PTW_EN	| \
264 			 RTIT_CTL_FUP_ON_PTW)
265 
266 #define PT_CONFIG_MASK (RTIT_CTL_TSC_EN		| \
267 			RTIT_CTL_DISRETC	| \
268 			RTIT_CTL_CYC_PSB	| \
269 			RTIT_CTL_MTC		| \
270 			RTIT_CTL_PWR_EVT_EN	| \
271 			RTIT_CTL_FUP_ON_PTW	| \
272 			RTIT_CTL_PTW_EN)
273 
274 static bool pt_event_valid(struct perf_event *event)
275 {
276 	u64 config = event->attr.config;
277 	u64 allowed, requested;
278 
279 	if ((config & PT_CONFIG_MASK) != config)
280 		return false;
281 
282 	if (config & RTIT_CTL_CYC_PSB) {
283 		if (!pt_cap_get(PT_CAP_psb_cyc))
284 			return false;
285 
286 		allowed = pt_cap_get(PT_CAP_psb_periods);
287 		requested = (config & RTIT_CTL_PSB_FREQ) >>
288 			RTIT_CTL_PSB_FREQ_OFFSET;
289 		if (requested && (!(allowed & BIT(requested))))
290 			return false;
291 
292 		allowed = pt_cap_get(PT_CAP_cycle_thresholds);
293 		requested = (config & RTIT_CTL_CYC_THRESH) >>
294 			RTIT_CTL_CYC_THRESH_OFFSET;
295 		if (requested && (!(allowed & BIT(requested))))
296 			return false;
297 	}
298 
299 	if (config & RTIT_CTL_MTC) {
300 		/*
301 		 * In the unlikely case that CPUID lists valid mtc periods,
302 		 * but not the mtc capability, drop out here.
303 		 *
304 		 * Spec says that setting mtc period bits while mtc bit in
305 		 * CPUID is 0 will #GP, so better safe than sorry.
306 		 */
307 		if (!pt_cap_get(PT_CAP_mtc))
308 			return false;
309 
310 		allowed = pt_cap_get(PT_CAP_mtc_periods);
311 		if (!allowed)
312 			return false;
313 
314 		requested = (config & RTIT_CTL_MTC_RANGE) >>
315 			RTIT_CTL_MTC_RANGE_OFFSET;
316 
317 		if (!(allowed & BIT(requested)))
318 			return false;
319 	}
320 
321 	if (config & RTIT_CTL_PWR_EVT_EN &&
322 	    !pt_cap_get(PT_CAP_power_event_trace))
323 		return false;
324 
325 	if (config & RTIT_CTL_PTW) {
326 		if (!pt_cap_get(PT_CAP_ptwrite))
327 			return false;
328 
329 		/* FUPonPTW without PTW doesn't make sense */
330 		if ((config & RTIT_CTL_FUP_ON_PTW) &&
331 		    !(config & RTIT_CTL_PTW_EN))
332 			return false;
333 	}
334 
335 	return true;
336 }
337 
338 /*
339  * PT configuration helpers
340  * These all are cpu affine and operate on a local PT
341  */
342 
343 /* Address ranges and their corresponding msr configuration registers */
344 static const struct pt_address_range {
345 	unsigned long	msr_a;
346 	unsigned long	msr_b;
347 	unsigned int	reg_off;
348 } pt_address_ranges[] = {
349 	{
350 		.msr_a	 = MSR_IA32_RTIT_ADDR0_A,
351 		.msr_b	 = MSR_IA32_RTIT_ADDR0_B,
352 		.reg_off = RTIT_CTL_ADDR0_OFFSET,
353 	},
354 	{
355 		.msr_a	 = MSR_IA32_RTIT_ADDR1_A,
356 		.msr_b	 = MSR_IA32_RTIT_ADDR1_B,
357 		.reg_off = RTIT_CTL_ADDR1_OFFSET,
358 	},
359 	{
360 		.msr_a	 = MSR_IA32_RTIT_ADDR2_A,
361 		.msr_b	 = MSR_IA32_RTIT_ADDR2_B,
362 		.reg_off = RTIT_CTL_ADDR2_OFFSET,
363 	},
364 	{
365 		.msr_a	 = MSR_IA32_RTIT_ADDR3_A,
366 		.msr_b	 = MSR_IA32_RTIT_ADDR3_B,
367 		.reg_off = RTIT_CTL_ADDR3_OFFSET,
368 	}
369 };
370 
371 static u64 pt_config_filters(struct perf_event *event)
372 {
373 	struct pt_filters *filters = event->hw.addr_filters;
374 	struct pt *pt = this_cpu_ptr(&pt_ctx);
375 	unsigned int range = 0;
376 	u64 rtit_ctl = 0;
377 
378 	if (!filters)
379 		return 0;
380 
381 	perf_event_addr_filters_sync(event);
382 
383 	for (range = 0; range < filters->nr_filters; range++) {
384 		struct pt_filter *filter = &filters->filter[range];
385 
386 		/*
387 		 * Note, if the range has zero start/end addresses due
388 		 * to its dynamic object not being loaded yet, we just
389 		 * go ahead and program zeroed range, which will simply
390 		 * produce no data. Note^2: if executable code at 0x0
391 		 * is a concern, we can set up an "invalid" configuration
392 		 * such as msr_b < msr_a.
393 		 */
394 
395 		/* avoid redundant msr writes */
396 		if (pt->filters.filter[range].msr_a != filter->msr_a) {
397 			wrmsrl(pt_address_ranges[range].msr_a, filter->msr_a);
398 			pt->filters.filter[range].msr_a = filter->msr_a;
399 		}
400 
401 		if (pt->filters.filter[range].msr_b != filter->msr_b) {
402 			wrmsrl(pt_address_ranges[range].msr_b, filter->msr_b);
403 			pt->filters.filter[range].msr_b = filter->msr_b;
404 		}
405 
406 		rtit_ctl |= filter->config << pt_address_ranges[range].reg_off;
407 	}
408 
409 	return rtit_ctl;
410 }
411 
412 static void pt_config(struct perf_event *event)
413 {
414 	u64 reg;
415 
416 	if (!event->hw.itrace_started) {
417 		event->hw.itrace_started = 1;
418 		wrmsrl(MSR_IA32_RTIT_STATUS, 0);
419 	}
420 
421 	reg = pt_config_filters(event);
422 	reg |= RTIT_CTL_TOPA | RTIT_CTL_BRANCH_EN | RTIT_CTL_TRACEEN;
423 
424 	if (!event->attr.exclude_kernel)
425 		reg |= RTIT_CTL_OS;
426 	if (!event->attr.exclude_user)
427 		reg |= RTIT_CTL_USR;
428 
429 	reg |= (event->attr.config & PT_CONFIG_MASK);
430 
431 	event->hw.config = reg;
432 	wrmsrl(MSR_IA32_RTIT_CTL, reg);
433 }
434 
435 static void pt_config_stop(struct perf_event *event)
436 {
437 	u64 ctl = READ_ONCE(event->hw.config);
438 
439 	/* may be already stopped by a PMI */
440 	if (!(ctl & RTIT_CTL_TRACEEN))
441 		return;
442 
443 	ctl &= ~RTIT_CTL_TRACEEN;
444 	wrmsrl(MSR_IA32_RTIT_CTL, ctl);
445 
446 	WRITE_ONCE(event->hw.config, ctl);
447 
448 	/*
449 	 * A wrmsr that disables trace generation serializes other PT
450 	 * registers and causes all data packets to be written to memory,
451 	 * but a fence is required for the data to become globally visible.
452 	 *
453 	 * The below WMB, separating data store and aux_head store matches
454 	 * the consumer's RMB that separates aux_head load and data load.
455 	 */
456 	wmb();
457 }
458 
459 static void pt_config_buffer(void *buf, unsigned int topa_idx,
460 			     unsigned int output_off)
461 {
462 	u64 reg;
463 
464 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, virt_to_phys(buf));
465 
466 	reg = 0x7f | ((u64)topa_idx << 7) | ((u64)output_off << 32);
467 
468 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, reg);
469 }
470 
471 /*
472  * Keep ToPA table-related metadata on the same page as the actual table,
473  * taking up a few words from the top
474  */
475 
476 #define TENTS_PER_PAGE (((PAGE_SIZE - 40) / sizeof(struct topa_entry)) - 1)
477 
478 /**
479  * struct topa - page-sized ToPA table with metadata at the top
480  * @table:	actual ToPA table entries, as understood by PT hardware
481  * @list:	linkage to struct pt_buffer's list of tables
482  * @phys:	physical address of this page
483  * @offset:	offset of the first entry in this table in the buffer
484  * @size:	total size of all entries in this table
485  * @last:	index of the last initialized entry in this table
486  */
487 struct topa {
488 	struct topa_entry	table[TENTS_PER_PAGE];
489 	struct list_head	list;
490 	u64			phys;
491 	u64			offset;
492 	size_t			size;
493 	int			last;
494 };
495 
496 /* make -1 stand for the last table entry */
497 #define TOPA_ENTRY(t, i) ((i) == -1 ? &(t)->table[(t)->last] : &(t)->table[(i)])
498 
499 /**
500  * topa_alloc() - allocate page-sized ToPA table
501  * @cpu:	CPU on which to allocate.
502  * @gfp:	Allocation flags.
503  *
504  * Return:	On success, return the pointer to ToPA table page.
505  */
506 static struct topa *topa_alloc(int cpu, gfp_t gfp)
507 {
508 	int node = cpu_to_node(cpu);
509 	struct topa *topa;
510 	struct page *p;
511 
512 	p = alloc_pages_node(node, gfp | __GFP_ZERO, 0);
513 	if (!p)
514 		return NULL;
515 
516 	topa = page_address(p);
517 	topa->last = 0;
518 	topa->phys = page_to_phys(p);
519 
520 	/*
521 	 * In case of singe-entry ToPA, always put the self-referencing END
522 	 * link as the 2nd entry in the table
523 	 */
524 	if (!pt_cap_get(PT_CAP_topa_multiple_entries)) {
525 		TOPA_ENTRY(topa, 1)->base = topa->phys >> TOPA_SHIFT;
526 		TOPA_ENTRY(topa, 1)->end = 1;
527 	}
528 
529 	return topa;
530 }
531 
532 /**
533  * topa_free() - free a page-sized ToPA table
534  * @topa:	Table to deallocate.
535  */
536 static void topa_free(struct topa *topa)
537 {
538 	free_page((unsigned long)topa);
539 }
540 
541 /**
542  * topa_insert_table() - insert a ToPA table into a buffer
543  * @buf:	 PT buffer that's being extended.
544  * @topa:	 New topa table to be inserted.
545  *
546  * If it's the first table in this buffer, set up buffer's pointers
547  * accordingly; otherwise, add a END=1 link entry to @topa to the current
548  * "last" table and adjust the last table pointer to @topa.
549  */
550 static void topa_insert_table(struct pt_buffer *buf, struct topa *topa)
551 {
552 	struct topa *last = buf->last;
553 
554 	list_add_tail(&topa->list, &buf->tables);
555 
556 	if (!buf->first) {
557 		buf->first = buf->last = buf->cur = topa;
558 		return;
559 	}
560 
561 	topa->offset = last->offset + last->size;
562 	buf->last = topa;
563 
564 	if (!pt_cap_get(PT_CAP_topa_multiple_entries))
565 		return;
566 
567 	BUG_ON(last->last != TENTS_PER_PAGE - 1);
568 
569 	TOPA_ENTRY(last, -1)->base = topa->phys >> TOPA_SHIFT;
570 	TOPA_ENTRY(last, -1)->end = 1;
571 }
572 
573 /**
574  * topa_table_full() - check if a ToPA table is filled up
575  * @topa:	ToPA table.
576  */
577 static bool topa_table_full(struct topa *topa)
578 {
579 	/* single-entry ToPA is a special case */
580 	if (!pt_cap_get(PT_CAP_topa_multiple_entries))
581 		return !!topa->last;
582 
583 	return topa->last == TENTS_PER_PAGE - 1;
584 }
585 
586 /**
587  * topa_insert_pages() - create a list of ToPA tables
588  * @buf:	PT buffer being initialized.
589  * @gfp:	Allocation flags.
590  *
591  * This initializes a list of ToPA tables with entries from
592  * the data_pages provided by rb_alloc_aux().
593  *
594  * Return:	0 on success or error code.
595  */
596 static int topa_insert_pages(struct pt_buffer *buf, gfp_t gfp)
597 {
598 	struct topa *topa = buf->last;
599 	int order = 0;
600 	struct page *p;
601 
602 	p = virt_to_page(buf->data_pages[buf->nr_pages]);
603 	if (PagePrivate(p))
604 		order = page_private(p);
605 
606 	if (topa_table_full(topa)) {
607 		topa = topa_alloc(buf->cpu, gfp);
608 		if (!topa)
609 			return -ENOMEM;
610 
611 		topa_insert_table(buf, topa);
612 	}
613 
614 	TOPA_ENTRY(topa, -1)->base = page_to_phys(p) >> TOPA_SHIFT;
615 	TOPA_ENTRY(topa, -1)->size = order;
616 	if (!buf->snapshot && !pt_cap_get(PT_CAP_topa_multiple_entries)) {
617 		TOPA_ENTRY(topa, -1)->intr = 1;
618 		TOPA_ENTRY(topa, -1)->stop = 1;
619 	}
620 
621 	topa->last++;
622 	topa->size += sizes(order);
623 
624 	buf->nr_pages += 1ul << order;
625 
626 	return 0;
627 }
628 
629 /**
630  * pt_topa_dump() - print ToPA tables and their entries
631  * @buf:	PT buffer.
632  */
633 static void pt_topa_dump(struct pt_buffer *buf)
634 {
635 	struct topa *topa;
636 
637 	list_for_each_entry(topa, &buf->tables, list) {
638 		int i;
639 
640 		pr_debug("# table @%p (%016Lx), off %llx size %zx\n", topa->table,
641 			 topa->phys, topa->offset, topa->size);
642 		for (i = 0; i < TENTS_PER_PAGE; i++) {
643 			pr_debug("# entry @%p (%lx sz %u %c%c%c) raw=%16llx\n",
644 				 &topa->table[i],
645 				 (unsigned long)topa->table[i].base << TOPA_SHIFT,
646 				 sizes(topa->table[i].size),
647 				 topa->table[i].end ?  'E' : ' ',
648 				 topa->table[i].intr ? 'I' : ' ',
649 				 topa->table[i].stop ? 'S' : ' ',
650 				 *(u64 *)&topa->table[i]);
651 			if ((pt_cap_get(PT_CAP_topa_multiple_entries) &&
652 			     topa->table[i].stop) ||
653 			    topa->table[i].end)
654 				break;
655 		}
656 	}
657 }
658 
659 /**
660  * pt_buffer_advance() - advance to the next output region
661  * @buf:	PT buffer.
662  *
663  * Advance the current pointers in the buffer to the next ToPA entry.
664  */
665 static void pt_buffer_advance(struct pt_buffer *buf)
666 {
667 	buf->output_off = 0;
668 	buf->cur_idx++;
669 
670 	if (buf->cur_idx == buf->cur->last) {
671 		if (buf->cur == buf->last)
672 			buf->cur = buf->first;
673 		else
674 			buf->cur = list_entry(buf->cur->list.next, struct topa,
675 					      list);
676 		buf->cur_idx = 0;
677 	}
678 }
679 
680 /**
681  * pt_update_head() - calculate current offsets and sizes
682  * @pt:		Per-cpu pt context.
683  *
684  * Update buffer's current write pointer position and data size.
685  */
686 static void pt_update_head(struct pt *pt)
687 {
688 	struct pt_buffer *buf = perf_get_aux(&pt->handle);
689 	u64 topa_idx, base, old;
690 
691 	/* offset of the first region in this table from the beginning of buf */
692 	base = buf->cur->offset + buf->output_off;
693 
694 	/* offset of the current output region within this table */
695 	for (topa_idx = 0; topa_idx < buf->cur_idx; topa_idx++)
696 		base += sizes(buf->cur->table[topa_idx].size);
697 
698 	if (buf->snapshot) {
699 		local_set(&buf->data_size, base);
700 	} else {
701 		old = (local64_xchg(&buf->head, base) &
702 		       ((buf->nr_pages << PAGE_SHIFT) - 1));
703 		if (base < old)
704 			base += buf->nr_pages << PAGE_SHIFT;
705 
706 		local_add(base - old, &buf->data_size);
707 	}
708 }
709 
710 /**
711  * pt_buffer_region() - obtain current output region's address
712  * @buf:	PT buffer.
713  */
714 static void *pt_buffer_region(struct pt_buffer *buf)
715 {
716 	return phys_to_virt(buf->cur->table[buf->cur_idx].base << TOPA_SHIFT);
717 }
718 
719 /**
720  * pt_buffer_region_size() - obtain current output region's size
721  * @buf:	PT buffer.
722  */
723 static size_t pt_buffer_region_size(struct pt_buffer *buf)
724 {
725 	return sizes(buf->cur->table[buf->cur_idx].size);
726 }
727 
728 /**
729  * pt_handle_status() - take care of possible status conditions
730  * @pt:		Per-cpu pt context.
731  */
732 static void pt_handle_status(struct pt *pt)
733 {
734 	struct pt_buffer *buf = perf_get_aux(&pt->handle);
735 	int advance = 0;
736 	u64 status;
737 
738 	rdmsrl(MSR_IA32_RTIT_STATUS, status);
739 
740 	if (status & RTIT_STATUS_ERROR) {
741 		pr_err_ratelimited("ToPA ERROR encountered, trying to recover\n");
742 		pt_topa_dump(buf);
743 		status &= ~RTIT_STATUS_ERROR;
744 	}
745 
746 	if (status & RTIT_STATUS_STOPPED) {
747 		status &= ~RTIT_STATUS_STOPPED;
748 
749 		/*
750 		 * On systems that only do single-entry ToPA, hitting STOP
751 		 * means we are already losing data; need to let the decoder
752 		 * know.
753 		 */
754 		if (!pt_cap_get(PT_CAP_topa_multiple_entries) ||
755 		    buf->output_off == sizes(TOPA_ENTRY(buf->cur, buf->cur_idx)->size)) {
756 			local_inc(&buf->lost);
757 			advance++;
758 		}
759 	}
760 
761 	/*
762 	 * Also on single-entry ToPA implementations, interrupt will come
763 	 * before the output reaches its output region's boundary.
764 	 */
765 	if (!pt_cap_get(PT_CAP_topa_multiple_entries) && !buf->snapshot &&
766 	    pt_buffer_region_size(buf) - buf->output_off <= TOPA_PMI_MARGIN) {
767 		void *head = pt_buffer_region(buf);
768 
769 		/* everything within this margin needs to be zeroed out */
770 		memset(head + buf->output_off, 0,
771 		       pt_buffer_region_size(buf) -
772 		       buf->output_off);
773 		advance++;
774 	}
775 
776 	if (advance)
777 		pt_buffer_advance(buf);
778 
779 	wrmsrl(MSR_IA32_RTIT_STATUS, status);
780 }
781 
782 /**
783  * pt_read_offset() - translate registers into buffer pointers
784  * @buf:	PT buffer.
785  *
786  * Set buffer's output pointers from MSR values.
787  */
788 static void pt_read_offset(struct pt_buffer *buf)
789 {
790 	u64 offset, base_topa;
791 
792 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, base_topa);
793 	buf->cur = phys_to_virt(base_topa);
794 
795 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, offset);
796 	/* offset within current output region */
797 	buf->output_off = offset >> 32;
798 	/* index of current output region within this table */
799 	buf->cur_idx = (offset & 0xffffff80) >> 7;
800 }
801 
802 /**
803  * pt_topa_next_entry() - obtain index of the first page in the next ToPA entry
804  * @buf:	PT buffer.
805  * @pg:		Page offset in the buffer.
806  *
807  * When advancing to the next output region (ToPA entry), given a page offset
808  * into the buffer, we need to find the offset of the first page in the next
809  * region.
810  */
811 static unsigned int pt_topa_next_entry(struct pt_buffer *buf, unsigned int pg)
812 {
813 	struct topa_entry *te = buf->topa_index[pg];
814 
815 	/* one region */
816 	if (buf->first == buf->last && buf->first->last == 1)
817 		return pg;
818 
819 	do {
820 		pg++;
821 		pg &= buf->nr_pages - 1;
822 	} while (buf->topa_index[pg] == te);
823 
824 	return pg;
825 }
826 
827 /**
828  * pt_buffer_reset_markers() - place interrupt and stop bits in the buffer
829  * @buf:	PT buffer.
830  * @handle:	Current output handle.
831  *
832  * Place INT and STOP marks to prevent overwriting old data that the consumer
833  * hasn't yet collected and waking up the consumer after a certain fraction of
834  * the buffer has filled up. Only needed and sensible for non-snapshot counters.
835  *
836  * This obviously relies on buf::head to figure out buffer markers, so it has
837  * to be called after pt_buffer_reset_offsets() and before the hardware tracing
838  * is enabled.
839  */
840 static int pt_buffer_reset_markers(struct pt_buffer *buf,
841 				   struct perf_output_handle *handle)
842 
843 {
844 	unsigned long head = local64_read(&buf->head);
845 	unsigned long idx, npages, wakeup;
846 
847 	/* can't stop in the middle of an output region */
848 	if (buf->output_off + handle->size + 1 <
849 	    sizes(TOPA_ENTRY(buf->cur, buf->cur_idx)->size))
850 		return -EINVAL;
851 
852 
853 	/* single entry ToPA is handled by marking all regions STOP=1 INT=1 */
854 	if (!pt_cap_get(PT_CAP_topa_multiple_entries))
855 		return 0;
856 
857 	/* clear STOP and INT from current entry */
858 	buf->topa_index[buf->stop_pos]->stop = 0;
859 	buf->topa_index[buf->stop_pos]->intr = 0;
860 	buf->topa_index[buf->intr_pos]->intr = 0;
861 
862 	/* how many pages till the STOP marker */
863 	npages = handle->size >> PAGE_SHIFT;
864 
865 	/* if it's on a page boundary, fill up one more page */
866 	if (!offset_in_page(head + handle->size + 1))
867 		npages++;
868 
869 	idx = (head >> PAGE_SHIFT) + npages;
870 	idx &= buf->nr_pages - 1;
871 	buf->stop_pos = idx;
872 
873 	wakeup = handle->wakeup >> PAGE_SHIFT;
874 
875 	/* in the worst case, wake up the consumer one page before hard stop */
876 	idx = (head >> PAGE_SHIFT) + npages - 1;
877 	if (idx > wakeup)
878 		idx = wakeup;
879 
880 	idx &= buf->nr_pages - 1;
881 	buf->intr_pos = idx;
882 
883 	buf->topa_index[buf->stop_pos]->stop = 1;
884 	buf->topa_index[buf->stop_pos]->intr = 1;
885 	buf->topa_index[buf->intr_pos]->intr = 1;
886 
887 	return 0;
888 }
889 
890 /**
891  * pt_buffer_setup_topa_index() - build topa_index[] table of regions
892  * @buf:	PT buffer.
893  *
894  * topa_index[] references output regions indexed by offset into the
895  * buffer for purposes of quick reverse lookup.
896  */
897 static void pt_buffer_setup_topa_index(struct pt_buffer *buf)
898 {
899 	struct topa *cur = buf->first, *prev = buf->last;
900 	struct topa_entry *te_cur = TOPA_ENTRY(cur, 0),
901 		*te_prev = TOPA_ENTRY(prev, prev->last - 1);
902 	int pg = 0, idx = 0;
903 
904 	while (pg < buf->nr_pages) {
905 		int tidx;
906 
907 		/* pages within one topa entry */
908 		for (tidx = 0; tidx < 1 << te_cur->size; tidx++, pg++)
909 			buf->topa_index[pg] = te_prev;
910 
911 		te_prev = te_cur;
912 
913 		if (idx == cur->last - 1) {
914 			/* advance to next topa table */
915 			idx = 0;
916 			cur = list_entry(cur->list.next, struct topa, list);
917 		} else {
918 			idx++;
919 		}
920 		te_cur = TOPA_ENTRY(cur, idx);
921 	}
922 
923 }
924 
925 /**
926  * pt_buffer_reset_offsets() - adjust buffer's write pointers from aux_head
927  * @buf:	PT buffer.
928  * @head:	Write pointer (aux_head) from AUX buffer.
929  *
930  * Find the ToPA table and entry corresponding to given @head and set buffer's
931  * "current" pointers accordingly. This is done after we have obtained the
932  * current aux_head position from a successful call to perf_aux_output_begin()
933  * to make sure the hardware is writing to the right place.
934  *
935  * This function modifies buf::{cur,cur_idx,output_off} that will be programmed
936  * into PT msrs when the tracing is enabled and buf::head and buf::data_size,
937  * which are used to determine INT and STOP markers' locations by a subsequent
938  * call to pt_buffer_reset_markers().
939  */
940 static void pt_buffer_reset_offsets(struct pt_buffer *buf, unsigned long head)
941 {
942 	int pg;
943 
944 	if (buf->snapshot)
945 		head &= (buf->nr_pages << PAGE_SHIFT) - 1;
946 
947 	pg = (head >> PAGE_SHIFT) & (buf->nr_pages - 1);
948 	pg = pt_topa_next_entry(buf, pg);
949 
950 	buf->cur = (struct topa *)((unsigned long)buf->topa_index[pg] & PAGE_MASK);
951 	buf->cur_idx = ((unsigned long)buf->topa_index[pg] -
952 			(unsigned long)buf->cur) / sizeof(struct topa_entry);
953 	buf->output_off = head & (sizes(buf->cur->table[buf->cur_idx].size) - 1);
954 
955 	local64_set(&buf->head, head);
956 	local_set(&buf->data_size, 0);
957 }
958 
959 /**
960  * pt_buffer_fini_topa() - deallocate ToPA structure of a buffer
961  * @buf:	PT buffer.
962  */
963 static void pt_buffer_fini_topa(struct pt_buffer *buf)
964 {
965 	struct topa *topa, *iter;
966 
967 	list_for_each_entry_safe(topa, iter, &buf->tables, list) {
968 		/*
969 		 * right now, this is in free_aux() path only, so
970 		 * no need to unlink this table from the list
971 		 */
972 		topa_free(topa);
973 	}
974 }
975 
976 /**
977  * pt_buffer_init_topa() - initialize ToPA table for pt buffer
978  * @buf:	PT buffer.
979  * @size:	Total size of all regions within this ToPA.
980  * @gfp:	Allocation flags.
981  */
982 static int pt_buffer_init_topa(struct pt_buffer *buf, unsigned long nr_pages,
983 			       gfp_t gfp)
984 {
985 	struct topa *topa;
986 	int err;
987 
988 	topa = topa_alloc(buf->cpu, gfp);
989 	if (!topa)
990 		return -ENOMEM;
991 
992 	topa_insert_table(buf, topa);
993 
994 	while (buf->nr_pages < nr_pages) {
995 		err = topa_insert_pages(buf, gfp);
996 		if (err) {
997 			pt_buffer_fini_topa(buf);
998 			return -ENOMEM;
999 		}
1000 	}
1001 
1002 	pt_buffer_setup_topa_index(buf);
1003 
1004 	/* link last table to the first one, unless we're double buffering */
1005 	if (pt_cap_get(PT_CAP_topa_multiple_entries)) {
1006 		TOPA_ENTRY(buf->last, -1)->base = buf->first->phys >> TOPA_SHIFT;
1007 		TOPA_ENTRY(buf->last, -1)->end = 1;
1008 	}
1009 
1010 	pt_topa_dump(buf);
1011 	return 0;
1012 }
1013 
1014 /**
1015  * pt_buffer_setup_aux() - set up topa tables for a PT buffer
1016  * @cpu:	Cpu on which to allocate, -1 means current.
1017  * @pages:	Array of pointers to buffer pages passed from perf core.
1018  * @nr_pages:	Number of pages in the buffer.
1019  * @snapshot:	If this is a snapshot/overwrite counter.
1020  *
1021  * This is a pmu::setup_aux callback that sets up ToPA tables and all the
1022  * bookkeeping for an AUX buffer.
1023  *
1024  * Return:	Our private PT buffer structure.
1025  */
1026 static void *
1027 pt_buffer_setup_aux(int cpu, void **pages, int nr_pages, bool snapshot)
1028 {
1029 	struct pt_buffer *buf;
1030 	int node, ret;
1031 
1032 	if (!nr_pages)
1033 		return NULL;
1034 
1035 	if (cpu == -1)
1036 		cpu = raw_smp_processor_id();
1037 	node = cpu_to_node(cpu);
1038 
1039 	buf = kzalloc_node(offsetof(struct pt_buffer, topa_index[nr_pages]),
1040 			   GFP_KERNEL, node);
1041 	if (!buf)
1042 		return NULL;
1043 
1044 	buf->cpu = cpu;
1045 	buf->snapshot = snapshot;
1046 	buf->data_pages = pages;
1047 
1048 	INIT_LIST_HEAD(&buf->tables);
1049 
1050 	ret = pt_buffer_init_topa(buf, nr_pages, GFP_KERNEL);
1051 	if (ret) {
1052 		kfree(buf);
1053 		return NULL;
1054 	}
1055 
1056 	return buf;
1057 }
1058 
1059 /**
1060  * pt_buffer_free_aux() - perf AUX deallocation path callback
1061  * @data:	PT buffer.
1062  */
1063 static void pt_buffer_free_aux(void *data)
1064 {
1065 	struct pt_buffer *buf = data;
1066 
1067 	pt_buffer_fini_topa(buf);
1068 	kfree(buf);
1069 }
1070 
1071 static int pt_addr_filters_init(struct perf_event *event)
1072 {
1073 	struct pt_filters *filters;
1074 	int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
1075 
1076 	if (!pt_cap_get(PT_CAP_num_address_ranges))
1077 		return 0;
1078 
1079 	filters = kzalloc_node(sizeof(struct pt_filters), GFP_KERNEL, node);
1080 	if (!filters)
1081 		return -ENOMEM;
1082 
1083 	if (event->parent)
1084 		memcpy(filters, event->parent->hw.addr_filters,
1085 		       sizeof(*filters));
1086 
1087 	event->hw.addr_filters = filters;
1088 
1089 	return 0;
1090 }
1091 
1092 static void pt_addr_filters_fini(struct perf_event *event)
1093 {
1094 	kfree(event->hw.addr_filters);
1095 	event->hw.addr_filters = NULL;
1096 }
1097 
1098 static inline bool valid_kernel_ip(unsigned long ip)
1099 {
1100 	return virt_addr_valid(ip) && kernel_ip(ip);
1101 }
1102 
1103 static int pt_event_addr_filters_validate(struct list_head *filters)
1104 {
1105 	struct perf_addr_filter *filter;
1106 	int range = 0;
1107 
1108 	list_for_each_entry(filter, filters, entry) {
1109 		/* PT doesn't support single address triggers */
1110 		if (!filter->range || !filter->size)
1111 			return -EOPNOTSUPP;
1112 
1113 		if (!filter->inode) {
1114 			if (!valid_kernel_ip(filter->offset))
1115 				return -EINVAL;
1116 
1117 			if (!valid_kernel_ip(filter->offset + filter->size))
1118 				return -EINVAL;
1119 		}
1120 
1121 		if (++range > pt_cap_get(PT_CAP_num_address_ranges))
1122 			return -EOPNOTSUPP;
1123 	}
1124 
1125 	return 0;
1126 }
1127 
1128 static void pt_event_addr_filters_sync(struct perf_event *event)
1129 {
1130 	struct perf_addr_filters_head *head = perf_event_addr_filters(event);
1131 	unsigned long msr_a, msr_b, *offs = event->addr_filters_offs;
1132 	struct pt_filters *filters = event->hw.addr_filters;
1133 	struct perf_addr_filter *filter;
1134 	int range = 0;
1135 
1136 	if (!filters)
1137 		return;
1138 
1139 	list_for_each_entry(filter, &head->list, entry) {
1140 		if (filter->inode && !offs[range]) {
1141 			msr_a = msr_b = 0;
1142 		} else {
1143 			/* apply the offset */
1144 			msr_a = filter->offset + offs[range];
1145 			msr_b = filter->size + msr_a - 1;
1146 		}
1147 
1148 		filters->filter[range].msr_a  = msr_a;
1149 		filters->filter[range].msr_b  = msr_b;
1150 		filters->filter[range].config = filter->filter ? 1 : 2;
1151 		range++;
1152 	}
1153 
1154 	filters->nr_filters = range;
1155 }
1156 
1157 /**
1158  * intel_pt_interrupt() - PT PMI handler
1159  */
1160 void intel_pt_interrupt(void)
1161 {
1162 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1163 	struct pt_buffer *buf;
1164 	struct perf_event *event = pt->handle.event;
1165 
1166 	/*
1167 	 * There may be a dangling PT bit in the interrupt status register
1168 	 * after PT has been disabled by pt_event_stop(). Make sure we don't
1169 	 * do anything (particularly, re-enable) for this event here.
1170 	 */
1171 	if (!READ_ONCE(pt->handle_nmi))
1172 		return;
1173 
1174 	/*
1175 	 * If VMX is on and PT does not support it, don't touch anything.
1176 	 */
1177 	if (READ_ONCE(pt->vmx_on))
1178 		return;
1179 
1180 	if (!event)
1181 		return;
1182 
1183 	pt_config_stop(event);
1184 
1185 	buf = perf_get_aux(&pt->handle);
1186 	if (!buf)
1187 		return;
1188 
1189 	pt_read_offset(buf);
1190 
1191 	pt_handle_status(pt);
1192 
1193 	pt_update_head(pt);
1194 
1195 	perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0),
1196 			    local_xchg(&buf->lost, 0));
1197 
1198 	if (!event->hw.state) {
1199 		int ret;
1200 
1201 		buf = perf_aux_output_begin(&pt->handle, event);
1202 		if (!buf) {
1203 			event->hw.state = PERF_HES_STOPPED;
1204 			return;
1205 		}
1206 
1207 		pt_buffer_reset_offsets(buf, pt->handle.head);
1208 		/* snapshot counters don't use PMI, so it's safe */
1209 		ret = pt_buffer_reset_markers(buf, &pt->handle);
1210 		if (ret) {
1211 			perf_aux_output_end(&pt->handle, 0, true);
1212 			return;
1213 		}
1214 
1215 		pt_config_buffer(buf->cur->table, buf->cur_idx,
1216 				 buf->output_off);
1217 		pt_config(event);
1218 	}
1219 }
1220 
1221 void intel_pt_handle_vmx(int on)
1222 {
1223 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1224 	struct perf_event *event;
1225 	unsigned long flags;
1226 
1227 	/* PT plays nice with VMX, do nothing */
1228 	if (pt_pmu.vmx)
1229 		return;
1230 
1231 	/*
1232 	 * VMXON will clear RTIT_CTL.TraceEn; we need to make
1233 	 * sure to not try to set it while VMX is on. Disable
1234 	 * interrupts to avoid racing with pmu callbacks;
1235 	 * concurrent PMI should be handled fine.
1236 	 */
1237 	local_irq_save(flags);
1238 	WRITE_ONCE(pt->vmx_on, on);
1239 
1240 	if (on) {
1241 		/* prevent pt_config_stop() from writing RTIT_CTL */
1242 		event = pt->handle.event;
1243 		if (event)
1244 			event->hw.config = 0;
1245 	}
1246 	local_irq_restore(flags);
1247 }
1248 EXPORT_SYMBOL_GPL(intel_pt_handle_vmx);
1249 
1250 /*
1251  * PMU callbacks
1252  */
1253 
1254 static void pt_event_start(struct perf_event *event, int mode)
1255 {
1256 	struct hw_perf_event *hwc = &event->hw;
1257 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1258 	struct pt_buffer *buf;
1259 
1260 	if (READ_ONCE(pt->vmx_on))
1261 		return;
1262 
1263 	buf = perf_aux_output_begin(&pt->handle, event);
1264 	if (!buf)
1265 		goto fail_stop;
1266 
1267 	pt_buffer_reset_offsets(buf, pt->handle.head);
1268 	if (!buf->snapshot) {
1269 		if (pt_buffer_reset_markers(buf, &pt->handle))
1270 			goto fail_end_stop;
1271 	}
1272 
1273 	WRITE_ONCE(pt->handle_nmi, 1);
1274 	hwc->state = 0;
1275 
1276 	pt_config_buffer(buf->cur->table, buf->cur_idx,
1277 			 buf->output_off);
1278 	pt_config(event);
1279 
1280 	return;
1281 
1282 fail_end_stop:
1283 	perf_aux_output_end(&pt->handle, 0, true);
1284 fail_stop:
1285 	hwc->state = PERF_HES_STOPPED;
1286 }
1287 
1288 static void pt_event_stop(struct perf_event *event, int mode)
1289 {
1290 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1291 
1292 	/*
1293 	 * Protect against the PMI racing with disabling wrmsr,
1294 	 * see comment in intel_pt_interrupt().
1295 	 */
1296 	WRITE_ONCE(pt->handle_nmi, 0);
1297 
1298 	pt_config_stop(event);
1299 
1300 	if (event->hw.state == PERF_HES_STOPPED)
1301 		return;
1302 
1303 	event->hw.state = PERF_HES_STOPPED;
1304 
1305 	if (mode & PERF_EF_UPDATE) {
1306 		struct pt_buffer *buf = perf_get_aux(&pt->handle);
1307 
1308 		if (!buf)
1309 			return;
1310 
1311 		if (WARN_ON_ONCE(pt->handle.event != event))
1312 			return;
1313 
1314 		pt_read_offset(buf);
1315 
1316 		pt_handle_status(pt);
1317 
1318 		pt_update_head(pt);
1319 
1320 		if (buf->snapshot)
1321 			pt->handle.head =
1322 				local_xchg(&buf->data_size,
1323 					   buf->nr_pages << PAGE_SHIFT);
1324 		perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0),
1325 				    local_xchg(&buf->lost, 0));
1326 	}
1327 }
1328 
1329 static void pt_event_del(struct perf_event *event, int mode)
1330 {
1331 	pt_event_stop(event, PERF_EF_UPDATE);
1332 }
1333 
1334 static int pt_event_add(struct perf_event *event, int mode)
1335 {
1336 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1337 	struct hw_perf_event *hwc = &event->hw;
1338 	int ret = -EBUSY;
1339 
1340 	if (pt->handle.event)
1341 		goto fail;
1342 
1343 	if (mode & PERF_EF_START) {
1344 		pt_event_start(event, 0);
1345 		ret = -EINVAL;
1346 		if (hwc->state == PERF_HES_STOPPED)
1347 			goto fail;
1348 	} else {
1349 		hwc->state = PERF_HES_STOPPED;
1350 	}
1351 
1352 	ret = 0;
1353 fail:
1354 
1355 	return ret;
1356 }
1357 
1358 static void pt_event_read(struct perf_event *event)
1359 {
1360 }
1361 
1362 static void pt_event_destroy(struct perf_event *event)
1363 {
1364 	pt_addr_filters_fini(event);
1365 	x86_del_exclusive(x86_lbr_exclusive_pt);
1366 }
1367 
1368 static int pt_event_init(struct perf_event *event)
1369 {
1370 	if (event->attr.type != pt_pmu.pmu.type)
1371 		return -ENOENT;
1372 
1373 	if (!pt_event_valid(event))
1374 		return -EINVAL;
1375 
1376 	if (x86_add_exclusive(x86_lbr_exclusive_pt))
1377 		return -EBUSY;
1378 
1379 	if (pt_addr_filters_init(event)) {
1380 		x86_del_exclusive(x86_lbr_exclusive_pt);
1381 		return -ENOMEM;
1382 	}
1383 
1384 	event->destroy = pt_event_destroy;
1385 
1386 	return 0;
1387 }
1388 
1389 void cpu_emergency_stop_pt(void)
1390 {
1391 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1392 
1393 	if (pt->handle.event)
1394 		pt_event_stop(pt->handle.event, PERF_EF_UPDATE);
1395 }
1396 
1397 static __init int pt_init(void)
1398 {
1399 	int ret, cpu, prior_warn = 0;
1400 
1401 	BUILD_BUG_ON(sizeof(struct topa) > PAGE_SIZE);
1402 
1403 	if (!boot_cpu_has(X86_FEATURE_INTEL_PT))
1404 		return -ENODEV;
1405 
1406 	get_online_cpus();
1407 	for_each_online_cpu(cpu) {
1408 		u64 ctl;
1409 
1410 		ret = rdmsrl_safe_on_cpu(cpu, MSR_IA32_RTIT_CTL, &ctl);
1411 		if (!ret && (ctl & RTIT_CTL_TRACEEN))
1412 			prior_warn++;
1413 	}
1414 	put_online_cpus();
1415 
1416 	if (prior_warn) {
1417 		x86_add_exclusive(x86_lbr_exclusive_pt);
1418 		pr_warn("PT is enabled at boot time, doing nothing\n");
1419 
1420 		return -EBUSY;
1421 	}
1422 
1423 	ret = pt_pmu_hw_init();
1424 	if (ret)
1425 		return ret;
1426 
1427 	if (!pt_cap_get(PT_CAP_topa_output)) {
1428 		pr_warn("ToPA output is not supported on this CPU\n");
1429 		return -ENODEV;
1430 	}
1431 
1432 	if (!pt_cap_get(PT_CAP_topa_multiple_entries))
1433 		pt_pmu.pmu.capabilities =
1434 			PERF_PMU_CAP_AUX_NO_SG | PERF_PMU_CAP_AUX_SW_DOUBLEBUF;
1435 
1436 	pt_pmu.pmu.capabilities	|= PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE;
1437 	pt_pmu.pmu.attr_groups		 = pt_attr_groups;
1438 	pt_pmu.pmu.task_ctx_nr		 = perf_sw_context;
1439 	pt_pmu.pmu.event_init		 = pt_event_init;
1440 	pt_pmu.pmu.add			 = pt_event_add;
1441 	pt_pmu.pmu.del			 = pt_event_del;
1442 	pt_pmu.pmu.start		 = pt_event_start;
1443 	pt_pmu.pmu.stop			 = pt_event_stop;
1444 	pt_pmu.pmu.read			 = pt_event_read;
1445 	pt_pmu.pmu.setup_aux		 = pt_buffer_setup_aux;
1446 	pt_pmu.pmu.free_aux		 = pt_buffer_free_aux;
1447 	pt_pmu.pmu.addr_filters_sync     = pt_event_addr_filters_sync;
1448 	pt_pmu.pmu.addr_filters_validate = pt_event_addr_filters_validate;
1449 	pt_pmu.pmu.nr_addr_filters       =
1450 		pt_cap_get(PT_CAP_num_address_ranges);
1451 
1452 	ret = perf_pmu_register(&pt_pmu.pmu, "intel_pt", -1);
1453 
1454 	return ret;
1455 }
1456 arch_initcall(pt_init);
1457