xref: /openbmc/linux/arch/x86/events/intel/pt.c (revision 4f205687)
1 /*
2  * Intel(R) Processor Trace PMU driver for perf
3  * Copyright (c) 2013-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * Intel PT is specified in the Intel Architecture Instruction Set Extensions
15  * Programming Reference:
16  * http://software.intel.com/en-us/intel-isa-extensions
17  */
18 
19 #undef DEBUG
20 
21 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22 
23 #include <linux/types.h>
24 #include <linux/slab.h>
25 #include <linux/device.h>
26 
27 #include <asm/perf_event.h>
28 #include <asm/insn.h>
29 #include <asm/io.h>
30 #include <asm/intel_pt.h>
31 
32 #include "../perf_event.h"
33 #include "pt.h"
34 
35 static DEFINE_PER_CPU(struct pt, pt_ctx);
36 
37 static struct pt_pmu pt_pmu;
38 
39 enum cpuid_regs {
40 	CR_EAX = 0,
41 	CR_ECX,
42 	CR_EDX,
43 	CR_EBX
44 };
45 
46 /*
47  * Capabilities of Intel PT hardware, such as number of address bits or
48  * supported output schemes, are cached and exported to userspace as "caps"
49  * attribute group of pt pmu device
50  * (/sys/bus/event_source/devices/intel_pt/caps/) so that userspace can store
51  * relevant bits together with intel_pt traces.
52  *
53  * These are necessary for both trace decoding (payloads_lip, contains address
54  * width encoded in IP-related packets), and event configuration (bitmasks with
55  * permitted values for certain bit fields).
56  */
57 #define PT_CAP(_n, _l, _r, _m)						\
58 	[PT_CAP_ ## _n] = { .name = __stringify(_n), .leaf = _l,	\
59 			    .reg = _r, .mask = _m }
60 
61 static struct pt_cap_desc {
62 	const char	*name;
63 	u32		leaf;
64 	u8		reg;
65 	u32		mask;
66 } pt_caps[] = {
67 	PT_CAP(max_subleaf,		0, CR_EAX, 0xffffffff),
68 	PT_CAP(cr3_filtering,		0, CR_EBX, BIT(0)),
69 	PT_CAP(psb_cyc,			0, CR_EBX, BIT(1)),
70 	PT_CAP(ip_filtering,		0, CR_EBX, BIT(2)),
71 	PT_CAP(mtc,			0, CR_EBX, BIT(3)),
72 	PT_CAP(topa_output,		0, CR_ECX, BIT(0)),
73 	PT_CAP(topa_multiple_entries,	0, CR_ECX, BIT(1)),
74 	PT_CAP(single_range_output,	0, CR_ECX, BIT(2)),
75 	PT_CAP(payloads_lip,		0, CR_ECX, BIT(31)),
76 	PT_CAP(num_address_ranges,	1, CR_EAX, 0x3),
77 	PT_CAP(mtc_periods,		1, CR_EAX, 0xffff0000),
78 	PT_CAP(cycle_thresholds,	1, CR_EBX, 0xffff),
79 	PT_CAP(psb_periods,		1, CR_EBX, 0xffff0000),
80 };
81 
82 static u32 pt_cap_get(enum pt_capabilities cap)
83 {
84 	struct pt_cap_desc *cd = &pt_caps[cap];
85 	u32 c = pt_pmu.caps[cd->leaf * PT_CPUID_REGS_NUM + cd->reg];
86 	unsigned int shift = __ffs(cd->mask);
87 
88 	return (c & cd->mask) >> shift;
89 }
90 
91 static ssize_t pt_cap_show(struct device *cdev,
92 			   struct device_attribute *attr,
93 			   char *buf)
94 {
95 	struct dev_ext_attribute *ea =
96 		container_of(attr, struct dev_ext_attribute, attr);
97 	enum pt_capabilities cap = (long)ea->var;
98 
99 	return snprintf(buf, PAGE_SIZE, "%x\n", pt_cap_get(cap));
100 }
101 
102 static struct attribute_group pt_cap_group = {
103 	.name	= "caps",
104 };
105 
106 PMU_FORMAT_ATTR(cyc,		"config:1"	);
107 PMU_FORMAT_ATTR(mtc,		"config:9"	);
108 PMU_FORMAT_ATTR(tsc,		"config:10"	);
109 PMU_FORMAT_ATTR(noretcomp,	"config:11"	);
110 PMU_FORMAT_ATTR(mtc_period,	"config:14-17"	);
111 PMU_FORMAT_ATTR(cyc_thresh,	"config:19-22"	);
112 PMU_FORMAT_ATTR(psb_period,	"config:24-27"	);
113 
114 static struct attribute *pt_formats_attr[] = {
115 	&format_attr_cyc.attr,
116 	&format_attr_mtc.attr,
117 	&format_attr_tsc.attr,
118 	&format_attr_noretcomp.attr,
119 	&format_attr_mtc_period.attr,
120 	&format_attr_cyc_thresh.attr,
121 	&format_attr_psb_period.attr,
122 	NULL,
123 };
124 
125 static struct attribute_group pt_format_group = {
126 	.name	= "format",
127 	.attrs	= pt_formats_attr,
128 };
129 
130 static ssize_t
131 pt_timing_attr_show(struct device *dev, struct device_attribute *attr,
132 		    char *page)
133 {
134 	struct perf_pmu_events_attr *pmu_attr =
135 		container_of(attr, struct perf_pmu_events_attr, attr);
136 
137 	switch (pmu_attr->id) {
138 	case 0:
139 		return sprintf(page, "%lu\n", pt_pmu.max_nonturbo_ratio);
140 	case 1:
141 		return sprintf(page, "%u:%u\n",
142 			       pt_pmu.tsc_art_num,
143 			       pt_pmu.tsc_art_den);
144 	default:
145 		break;
146 	}
147 
148 	return -EINVAL;
149 }
150 
151 PMU_EVENT_ATTR(max_nonturbo_ratio, timing_attr_max_nonturbo_ratio, 0,
152 	       pt_timing_attr_show);
153 PMU_EVENT_ATTR(tsc_art_ratio, timing_attr_tsc_art_ratio, 1,
154 	       pt_timing_attr_show);
155 
156 static struct attribute *pt_timing_attr[] = {
157 	&timing_attr_max_nonturbo_ratio.attr.attr,
158 	&timing_attr_tsc_art_ratio.attr.attr,
159 	NULL,
160 };
161 
162 static struct attribute_group pt_timing_group = {
163 	.attrs	= pt_timing_attr,
164 };
165 
166 static const struct attribute_group *pt_attr_groups[] = {
167 	&pt_cap_group,
168 	&pt_format_group,
169 	&pt_timing_group,
170 	NULL,
171 };
172 
173 static int __init pt_pmu_hw_init(void)
174 {
175 	struct dev_ext_attribute *de_attrs;
176 	struct attribute **attrs;
177 	size_t size;
178 	u64 reg;
179 	int ret;
180 	long i;
181 
182 	rdmsrl(MSR_PLATFORM_INFO, reg);
183 	pt_pmu.max_nonturbo_ratio = (reg & 0xff00) >> 8;
184 
185 	/*
186 	 * if available, read in TSC to core crystal clock ratio,
187 	 * otherwise, zero for numerator stands for "not enumerated"
188 	 * as per SDM
189 	 */
190 	if (boot_cpu_data.cpuid_level >= CPUID_TSC_LEAF) {
191 		u32 eax, ebx, ecx, edx;
192 
193 		cpuid(CPUID_TSC_LEAF, &eax, &ebx, &ecx, &edx);
194 
195 		pt_pmu.tsc_art_num = ebx;
196 		pt_pmu.tsc_art_den = eax;
197 	}
198 
199 	if (boot_cpu_has(X86_FEATURE_VMX)) {
200 		/*
201 		 * Intel SDM, 36.5 "Tracing post-VMXON" says that
202 		 * "IA32_VMX_MISC[bit 14]" being 1 means PT can trace
203 		 * post-VMXON.
204 		 */
205 		rdmsrl(MSR_IA32_VMX_MISC, reg);
206 		if (reg & BIT(14))
207 			pt_pmu.vmx = true;
208 	}
209 
210 	attrs = NULL;
211 
212 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
213 		cpuid_count(20, i,
214 			    &pt_pmu.caps[CR_EAX + i*PT_CPUID_REGS_NUM],
215 			    &pt_pmu.caps[CR_EBX + i*PT_CPUID_REGS_NUM],
216 			    &pt_pmu.caps[CR_ECX + i*PT_CPUID_REGS_NUM],
217 			    &pt_pmu.caps[CR_EDX + i*PT_CPUID_REGS_NUM]);
218 	}
219 
220 	ret = -ENOMEM;
221 	size = sizeof(struct attribute *) * (ARRAY_SIZE(pt_caps)+1);
222 	attrs = kzalloc(size, GFP_KERNEL);
223 	if (!attrs)
224 		goto fail;
225 
226 	size = sizeof(struct dev_ext_attribute) * (ARRAY_SIZE(pt_caps)+1);
227 	de_attrs = kzalloc(size, GFP_KERNEL);
228 	if (!de_attrs)
229 		goto fail;
230 
231 	for (i = 0; i < ARRAY_SIZE(pt_caps); i++) {
232 		struct dev_ext_attribute *de_attr = de_attrs + i;
233 
234 		de_attr->attr.attr.name = pt_caps[i].name;
235 
236 		sysfs_attr_init(&de_attr->attr.attr);
237 
238 		de_attr->attr.attr.mode		= S_IRUGO;
239 		de_attr->attr.show		= pt_cap_show;
240 		de_attr->var			= (void *)i;
241 
242 		attrs[i] = &de_attr->attr.attr;
243 	}
244 
245 	pt_cap_group.attrs = attrs;
246 
247 	return 0;
248 
249 fail:
250 	kfree(attrs);
251 
252 	return ret;
253 }
254 
255 #define RTIT_CTL_CYC_PSB (RTIT_CTL_CYCLEACC	| \
256 			  RTIT_CTL_CYC_THRESH	| \
257 			  RTIT_CTL_PSB_FREQ)
258 
259 #define RTIT_CTL_MTC	(RTIT_CTL_MTC_EN	| \
260 			 RTIT_CTL_MTC_RANGE)
261 
262 #define PT_CONFIG_MASK (RTIT_CTL_TSC_EN		| \
263 			RTIT_CTL_DISRETC	| \
264 			RTIT_CTL_CYC_PSB	| \
265 			RTIT_CTL_MTC)
266 
267 static bool pt_event_valid(struct perf_event *event)
268 {
269 	u64 config = event->attr.config;
270 	u64 allowed, requested;
271 
272 	if ((config & PT_CONFIG_MASK) != config)
273 		return false;
274 
275 	if (config & RTIT_CTL_CYC_PSB) {
276 		if (!pt_cap_get(PT_CAP_psb_cyc))
277 			return false;
278 
279 		allowed = pt_cap_get(PT_CAP_psb_periods);
280 		requested = (config & RTIT_CTL_PSB_FREQ) >>
281 			RTIT_CTL_PSB_FREQ_OFFSET;
282 		if (requested && (!(allowed & BIT(requested))))
283 			return false;
284 
285 		allowed = pt_cap_get(PT_CAP_cycle_thresholds);
286 		requested = (config & RTIT_CTL_CYC_THRESH) >>
287 			RTIT_CTL_CYC_THRESH_OFFSET;
288 		if (requested && (!(allowed & BIT(requested))))
289 			return false;
290 	}
291 
292 	if (config & RTIT_CTL_MTC) {
293 		/*
294 		 * In the unlikely case that CPUID lists valid mtc periods,
295 		 * but not the mtc capability, drop out here.
296 		 *
297 		 * Spec says that setting mtc period bits while mtc bit in
298 		 * CPUID is 0 will #GP, so better safe than sorry.
299 		 */
300 		if (!pt_cap_get(PT_CAP_mtc))
301 			return false;
302 
303 		allowed = pt_cap_get(PT_CAP_mtc_periods);
304 		if (!allowed)
305 			return false;
306 
307 		requested = (config & RTIT_CTL_MTC_RANGE) >>
308 			RTIT_CTL_MTC_RANGE_OFFSET;
309 
310 		if (!(allowed & BIT(requested)))
311 			return false;
312 	}
313 
314 	return true;
315 }
316 
317 /*
318  * PT configuration helpers
319  * These all are cpu affine and operate on a local PT
320  */
321 
322 /* Address ranges and their corresponding msr configuration registers */
323 static const struct pt_address_range {
324 	unsigned long	msr_a;
325 	unsigned long	msr_b;
326 	unsigned int	reg_off;
327 } pt_address_ranges[] = {
328 	{
329 		.msr_a	 = MSR_IA32_RTIT_ADDR0_A,
330 		.msr_b	 = MSR_IA32_RTIT_ADDR0_B,
331 		.reg_off = RTIT_CTL_ADDR0_OFFSET,
332 	},
333 	{
334 		.msr_a	 = MSR_IA32_RTIT_ADDR1_A,
335 		.msr_b	 = MSR_IA32_RTIT_ADDR1_B,
336 		.reg_off = RTIT_CTL_ADDR1_OFFSET,
337 	},
338 	{
339 		.msr_a	 = MSR_IA32_RTIT_ADDR2_A,
340 		.msr_b	 = MSR_IA32_RTIT_ADDR2_B,
341 		.reg_off = RTIT_CTL_ADDR2_OFFSET,
342 	},
343 	{
344 		.msr_a	 = MSR_IA32_RTIT_ADDR3_A,
345 		.msr_b	 = MSR_IA32_RTIT_ADDR3_B,
346 		.reg_off = RTIT_CTL_ADDR3_OFFSET,
347 	}
348 };
349 
350 static u64 pt_config_filters(struct perf_event *event)
351 {
352 	struct pt_filters *filters = event->hw.addr_filters;
353 	struct pt *pt = this_cpu_ptr(&pt_ctx);
354 	unsigned int range = 0;
355 	u64 rtit_ctl = 0;
356 
357 	if (!filters)
358 		return 0;
359 
360 	perf_event_addr_filters_sync(event);
361 
362 	for (range = 0; range < filters->nr_filters; range++) {
363 		struct pt_filter *filter = &filters->filter[range];
364 
365 		/*
366 		 * Note, if the range has zero start/end addresses due
367 		 * to its dynamic object not being loaded yet, we just
368 		 * go ahead and program zeroed range, which will simply
369 		 * produce no data. Note^2: if executable code at 0x0
370 		 * is a concern, we can set up an "invalid" configuration
371 		 * such as msr_b < msr_a.
372 		 */
373 
374 		/* avoid redundant msr writes */
375 		if (pt->filters.filter[range].msr_a != filter->msr_a) {
376 			wrmsrl(pt_address_ranges[range].msr_a, filter->msr_a);
377 			pt->filters.filter[range].msr_a = filter->msr_a;
378 		}
379 
380 		if (pt->filters.filter[range].msr_b != filter->msr_b) {
381 			wrmsrl(pt_address_ranges[range].msr_b, filter->msr_b);
382 			pt->filters.filter[range].msr_b = filter->msr_b;
383 		}
384 
385 		rtit_ctl |= filter->config << pt_address_ranges[range].reg_off;
386 	}
387 
388 	return rtit_ctl;
389 }
390 
391 static void pt_config(struct perf_event *event)
392 {
393 	u64 reg;
394 
395 	if (!event->hw.itrace_started) {
396 		event->hw.itrace_started = 1;
397 		wrmsrl(MSR_IA32_RTIT_STATUS, 0);
398 	}
399 
400 	reg = pt_config_filters(event);
401 	reg |= RTIT_CTL_TOPA | RTIT_CTL_BRANCH_EN | RTIT_CTL_TRACEEN;
402 
403 	if (!event->attr.exclude_kernel)
404 		reg |= RTIT_CTL_OS;
405 	if (!event->attr.exclude_user)
406 		reg |= RTIT_CTL_USR;
407 
408 	reg |= (event->attr.config & PT_CONFIG_MASK);
409 
410 	event->hw.config = reg;
411 	wrmsrl(MSR_IA32_RTIT_CTL, reg);
412 }
413 
414 static void pt_config_stop(struct perf_event *event)
415 {
416 	u64 ctl = READ_ONCE(event->hw.config);
417 
418 	/* may be already stopped by a PMI */
419 	if (!(ctl & RTIT_CTL_TRACEEN))
420 		return;
421 
422 	ctl &= ~RTIT_CTL_TRACEEN;
423 	wrmsrl(MSR_IA32_RTIT_CTL, ctl);
424 
425 	WRITE_ONCE(event->hw.config, ctl);
426 
427 	/*
428 	 * A wrmsr that disables trace generation serializes other PT
429 	 * registers and causes all data packets to be written to memory,
430 	 * but a fence is required for the data to become globally visible.
431 	 *
432 	 * The below WMB, separating data store and aux_head store matches
433 	 * the consumer's RMB that separates aux_head load and data load.
434 	 */
435 	wmb();
436 }
437 
438 static void pt_config_buffer(void *buf, unsigned int topa_idx,
439 			     unsigned int output_off)
440 {
441 	u64 reg;
442 
443 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, virt_to_phys(buf));
444 
445 	reg = 0x7f | ((u64)topa_idx << 7) | ((u64)output_off << 32);
446 
447 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, reg);
448 }
449 
450 /*
451  * Keep ToPA table-related metadata on the same page as the actual table,
452  * taking up a few words from the top
453  */
454 
455 #define TENTS_PER_PAGE (((PAGE_SIZE - 40) / sizeof(struct topa_entry)) - 1)
456 
457 /**
458  * struct topa - page-sized ToPA table with metadata at the top
459  * @table:	actual ToPA table entries, as understood by PT hardware
460  * @list:	linkage to struct pt_buffer's list of tables
461  * @phys:	physical address of this page
462  * @offset:	offset of the first entry in this table in the buffer
463  * @size:	total size of all entries in this table
464  * @last:	index of the last initialized entry in this table
465  */
466 struct topa {
467 	struct topa_entry	table[TENTS_PER_PAGE];
468 	struct list_head	list;
469 	u64			phys;
470 	u64			offset;
471 	size_t			size;
472 	int			last;
473 };
474 
475 /* make -1 stand for the last table entry */
476 #define TOPA_ENTRY(t, i) ((i) == -1 ? &(t)->table[(t)->last] : &(t)->table[(i)])
477 
478 /**
479  * topa_alloc() - allocate page-sized ToPA table
480  * @cpu:	CPU on which to allocate.
481  * @gfp:	Allocation flags.
482  *
483  * Return:	On success, return the pointer to ToPA table page.
484  */
485 static struct topa *topa_alloc(int cpu, gfp_t gfp)
486 {
487 	int node = cpu_to_node(cpu);
488 	struct topa *topa;
489 	struct page *p;
490 
491 	p = alloc_pages_node(node, gfp | __GFP_ZERO, 0);
492 	if (!p)
493 		return NULL;
494 
495 	topa = page_address(p);
496 	topa->last = 0;
497 	topa->phys = page_to_phys(p);
498 
499 	/*
500 	 * In case of singe-entry ToPA, always put the self-referencing END
501 	 * link as the 2nd entry in the table
502 	 */
503 	if (!pt_cap_get(PT_CAP_topa_multiple_entries)) {
504 		TOPA_ENTRY(topa, 1)->base = topa->phys >> TOPA_SHIFT;
505 		TOPA_ENTRY(topa, 1)->end = 1;
506 	}
507 
508 	return topa;
509 }
510 
511 /**
512  * topa_free() - free a page-sized ToPA table
513  * @topa:	Table to deallocate.
514  */
515 static void topa_free(struct topa *topa)
516 {
517 	free_page((unsigned long)topa);
518 }
519 
520 /**
521  * topa_insert_table() - insert a ToPA table into a buffer
522  * @buf:	 PT buffer that's being extended.
523  * @topa:	 New topa table to be inserted.
524  *
525  * If it's the first table in this buffer, set up buffer's pointers
526  * accordingly; otherwise, add a END=1 link entry to @topa to the current
527  * "last" table and adjust the last table pointer to @topa.
528  */
529 static void topa_insert_table(struct pt_buffer *buf, struct topa *topa)
530 {
531 	struct topa *last = buf->last;
532 
533 	list_add_tail(&topa->list, &buf->tables);
534 
535 	if (!buf->first) {
536 		buf->first = buf->last = buf->cur = topa;
537 		return;
538 	}
539 
540 	topa->offset = last->offset + last->size;
541 	buf->last = topa;
542 
543 	if (!pt_cap_get(PT_CAP_topa_multiple_entries))
544 		return;
545 
546 	BUG_ON(last->last != TENTS_PER_PAGE - 1);
547 
548 	TOPA_ENTRY(last, -1)->base = topa->phys >> TOPA_SHIFT;
549 	TOPA_ENTRY(last, -1)->end = 1;
550 }
551 
552 /**
553  * topa_table_full() - check if a ToPA table is filled up
554  * @topa:	ToPA table.
555  */
556 static bool topa_table_full(struct topa *topa)
557 {
558 	/* single-entry ToPA is a special case */
559 	if (!pt_cap_get(PT_CAP_topa_multiple_entries))
560 		return !!topa->last;
561 
562 	return topa->last == TENTS_PER_PAGE - 1;
563 }
564 
565 /**
566  * topa_insert_pages() - create a list of ToPA tables
567  * @buf:	PT buffer being initialized.
568  * @gfp:	Allocation flags.
569  *
570  * This initializes a list of ToPA tables with entries from
571  * the data_pages provided by rb_alloc_aux().
572  *
573  * Return:	0 on success or error code.
574  */
575 static int topa_insert_pages(struct pt_buffer *buf, gfp_t gfp)
576 {
577 	struct topa *topa = buf->last;
578 	int order = 0;
579 	struct page *p;
580 
581 	p = virt_to_page(buf->data_pages[buf->nr_pages]);
582 	if (PagePrivate(p))
583 		order = page_private(p);
584 
585 	if (topa_table_full(topa)) {
586 		topa = topa_alloc(buf->cpu, gfp);
587 		if (!topa)
588 			return -ENOMEM;
589 
590 		topa_insert_table(buf, topa);
591 	}
592 
593 	TOPA_ENTRY(topa, -1)->base = page_to_phys(p) >> TOPA_SHIFT;
594 	TOPA_ENTRY(topa, -1)->size = order;
595 	if (!buf->snapshot && !pt_cap_get(PT_CAP_topa_multiple_entries)) {
596 		TOPA_ENTRY(topa, -1)->intr = 1;
597 		TOPA_ENTRY(topa, -1)->stop = 1;
598 	}
599 
600 	topa->last++;
601 	topa->size += sizes(order);
602 
603 	buf->nr_pages += 1ul << order;
604 
605 	return 0;
606 }
607 
608 /**
609  * pt_topa_dump() - print ToPA tables and their entries
610  * @buf:	PT buffer.
611  */
612 static void pt_topa_dump(struct pt_buffer *buf)
613 {
614 	struct topa *topa;
615 
616 	list_for_each_entry(topa, &buf->tables, list) {
617 		int i;
618 
619 		pr_debug("# table @%p (%016Lx), off %llx size %zx\n", topa->table,
620 			 topa->phys, topa->offset, topa->size);
621 		for (i = 0; i < TENTS_PER_PAGE; i++) {
622 			pr_debug("# entry @%p (%lx sz %u %c%c%c) raw=%16llx\n",
623 				 &topa->table[i],
624 				 (unsigned long)topa->table[i].base << TOPA_SHIFT,
625 				 sizes(topa->table[i].size),
626 				 topa->table[i].end ?  'E' : ' ',
627 				 topa->table[i].intr ? 'I' : ' ',
628 				 topa->table[i].stop ? 'S' : ' ',
629 				 *(u64 *)&topa->table[i]);
630 			if ((pt_cap_get(PT_CAP_topa_multiple_entries) &&
631 			     topa->table[i].stop) ||
632 			    topa->table[i].end)
633 				break;
634 		}
635 	}
636 }
637 
638 /**
639  * pt_buffer_advance() - advance to the next output region
640  * @buf:	PT buffer.
641  *
642  * Advance the current pointers in the buffer to the next ToPA entry.
643  */
644 static void pt_buffer_advance(struct pt_buffer *buf)
645 {
646 	buf->output_off = 0;
647 	buf->cur_idx++;
648 
649 	if (buf->cur_idx == buf->cur->last) {
650 		if (buf->cur == buf->last)
651 			buf->cur = buf->first;
652 		else
653 			buf->cur = list_entry(buf->cur->list.next, struct topa,
654 					      list);
655 		buf->cur_idx = 0;
656 	}
657 }
658 
659 /**
660  * pt_update_head() - calculate current offsets and sizes
661  * @pt:		Per-cpu pt context.
662  *
663  * Update buffer's current write pointer position and data size.
664  */
665 static void pt_update_head(struct pt *pt)
666 {
667 	struct pt_buffer *buf = perf_get_aux(&pt->handle);
668 	u64 topa_idx, base, old;
669 
670 	/* offset of the first region in this table from the beginning of buf */
671 	base = buf->cur->offset + buf->output_off;
672 
673 	/* offset of the current output region within this table */
674 	for (topa_idx = 0; topa_idx < buf->cur_idx; topa_idx++)
675 		base += sizes(buf->cur->table[topa_idx].size);
676 
677 	if (buf->snapshot) {
678 		local_set(&buf->data_size, base);
679 	} else {
680 		old = (local64_xchg(&buf->head, base) &
681 		       ((buf->nr_pages << PAGE_SHIFT) - 1));
682 		if (base < old)
683 			base += buf->nr_pages << PAGE_SHIFT;
684 
685 		local_add(base - old, &buf->data_size);
686 	}
687 }
688 
689 /**
690  * pt_buffer_region() - obtain current output region's address
691  * @buf:	PT buffer.
692  */
693 static void *pt_buffer_region(struct pt_buffer *buf)
694 {
695 	return phys_to_virt(buf->cur->table[buf->cur_idx].base << TOPA_SHIFT);
696 }
697 
698 /**
699  * pt_buffer_region_size() - obtain current output region's size
700  * @buf:	PT buffer.
701  */
702 static size_t pt_buffer_region_size(struct pt_buffer *buf)
703 {
704 	return sizes(buf->cur->table[buf->cur_idx].size);
705 }
706 
707 /**
708  * pt_handle_status() - take care of possible status conditions
709  * @pt:		Per-cpu pt context.
710  */
711 static void pt_handle_status(struct pt *pt)
712 {
713 	struct pt_buffer *buf = perf_get_aux(&pt->handle);
714 	int advance = 0;
715 	u64 status;
716 
717 	rdmsrl(MSR_IA32_RTIT_STATUS, status);
718 
719 	if (status & RTIT_STATUS_ERROR) {
720 		pr_err_ratelimited("ToPA ERROR encountered, trying to recover\n");
721 		pt_topa_dump(buf);
722 		status &= ~RTIT_STATUS_ERROR;
723 	}
724 
725 	if (status & RTIT_STATUS_STOPPED) {
726 		status &= ~RTIT_STATUS_STOPPED;
727 
728 		/*
729 		 * On systems that only do single-entry ToPA, hitting STOP
730 		 * means we are already losing data; need to let the decoder
731 		 * know.
732 		 */
733 		if (!pt_cap_get(PT_CAP_topa_multiple_entries) ||
734 		    buf->output_off == sizes(TOPA_ENTRY(buf->cur, buf->cur_idx)->size)) {
735 			local_inc(&buf->lost);
736 			advance++;
737 		}
738 	}
739 
740 	/*
741 	 * Also on single-entry ToPA implementations, interrupt will come
742 	 * before the output reaches its output region's boundary.
743 	 */
744 	if (!pt_cap_get(PT_CAP_topa_multiple_entries) && !buf->snapshot &&
745 	    pt_buffer_region_size(buf) - buf->output_off <= TOPA_PMI_MARGIN) {
746 		void *head = pt_buffer_region(buf);
747 
748 		/* everything within this margin needs to be zeroed out */
749 		memset(head + buf->output_off, 0,
750 		       pt_buffer_region_size(buf) -
751 		       buf->output_off);
752 		advance++;
753 	}
754 
755 	if (advance)
756 		pt_buffer_advance(buf);
757 
758 	wrmsrl(MSR_IA32_RTIT_STATUS, status);
759 }
760 
761 /**
762  * pt_read_offset() - translate registers into buffer pointers
763  * @buf:	PT buffer.
764  *
765  * Set buffer's output pointers from MSR values.
766  */
767 static void pt_read_offset(struct pt_buffer *buf)
768 {
769 	u64 offset, base_topa;
770 
771 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, base_topa);
772 	buf->cur = phys_to_virt(base_topa);
773 
774 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, offset);
775 	/* offset within current output region */
776 	buf->output_off = offset >> 32;
777 	/* index of current output region within this table */
778 	buf->cur_idx = (offset & 0xffffff80) >> 7;
779 }
780 
781 /**
782  * pt_topa_next_entry() - obtain index of the first page in the next ToPA entry
783  * @buf:	PT buffer.
784  * @pg:		Page offset in the buffer.
785  *
786  * When advancing to the next output region (ToPA entry), given a page offset
787  * into the buffer, we need to find the offset of the first page in the next
788  * region.
789  */
790 static unsigned int pt_topa_next_entry(struct pt_buffer *buf, unsigned int pg)
791 {
792 	struct topa_entry *te = buf->topa_index[pg];
793 
794 	/* one region */
795 	if (buf->first == buf->last && buf->first->last == 1)
796 		return pg;
797 
798 	do {
799 		pg++;
800 		pg &= buf->nr_pages - 1;
801 	} while (buf->topa_index[pg] == te);
802 
803 	return pg;
804 }
805 
806 /**
807  * pt_buffer_reset_markers() - place interrupt and stop bits in the buffer
808  * @buf:	PT buffer.
809  * @handle:	Current output handle.
810  *
811  * Place INT and STOP marks to prevent overwriting old data that the consumer
812  * hasn't yet collected and waking up the consumer after a certain fraction of
813  * the buffer has filled up. Only needed and sensible for non-snapshot counters.
814  *
815  * This obviously relies on buf::head to figure out buffer markers, so it has
816  * to be called after pt_buffer_reset_offsets() and before the hardware tracing
817  * is enabled.
818  */
819 static int pt_buffer_reset_markers(struct pt_buffer *buf,
820 				   struct perf_output_handle *handle)
821 
822 {
823 	unsigned long head = local64_read(&buf->head);
824 	unsigned long idx, npages, wakeup;
825 
826 	/* can't stop in the middle of an output region */
827 	if (buf->output_off + handle->size + 1 <
828 	    sizes(TOPA_ENTRY(buf->cur, buf->cur_idx)->size))
829 		return -EINVAL;
830 
831 
832 	/* single entry ToPA is handled by marking all regions STOP=1 INT=1 */
833 	if (!pt_cap_get(PT_CAP_topa_multiple_entries))
834 		return 0;
835 
836 	/* clear STOP and INT from current entry */
837 	buf->topa_index[buf->stop_pos]->stop = 0;
838 	buf->topa_index[buf->stop_pos]->intr = 0;
839 	buf->topa_index[buf->intr_pos]->intr = 0;
840 
841 	/* how many pages till the STOP marker */
842 	npages = handle->size >> PAGE_SHIFT;
843 
844 	/* if it's on a page boundary, fill up one more page */
845 	if (!offset_in_page(head + handle->size + 1))
846 		npages++;
847 
848 	idx = (head >> PAGE_SHIFT) + npages;
849 	idx &= buf->nr_pages - 1;
850 	buf->stop_pos = idx;
851 
852 	wakeup = handle->wakeup >> PAGE_SHIFT;
853 
854 	/* in the worst case, wake up the consumer one page before hard stop */
855 	idx = (head >> PAGE_SHIFT) + npages - 1;
856 	if (idx > wakeup)
857 		idx = wakeup;
858 
859 	idx &= buf->nr_pages - 1;
860 	buf->intr_pos = idx;
861 
862 	buf->topa_index[buf->stop_pos]->stop = 1;
863 	buf->topa_index[buf->stop_pos]->intr = 1;
864 	buf->topa_index[buf->intr_pos]->intr = 1;
865 
866 	return 0;
867 }
868 
869 /**
870  * pt_buffer_setup_topa_index() - build topa_index[] table of regions
871  * @buf:	PT buffer.
872  *
873  * topa_index[] references output regions indexed by offset into the
874  * buffer for purposes of quick reverse lookup.
875  */
876 static void pt_buffer_setup_topa_index(struct pt_buffer *buf)
877 {
878 	struct topa *cur = buf->first, *prev = buf->last;
879 	struct topa_entry *te_cur = TOPA_ENTRY(cur, 0),
880 		*te_prev = TOPA_ENTRY(prev, prev->last - 1);
881 	int pg = 0, idx = 0;
882 
883 	while (pg < buf->nr_pages) {
884 		int tidx;
885 
886 		/* pages within one topa entry */
887 		for (tidx = 0; tidx < 1 << te_cur->size; tidx++, pg++)
888 			buf->topa_index[pg] = te_prev;
889 
890 		te_prev = te_cur;
891 
892 		if (idx == cur->last - 1) {
893 			/* advance to next topa table */
894 			idx = 0;
895 			cur = list_entry(cur->list.next, struct topa, list);
896 		} else {
897 			idx++;
898 		}
899 		te_cur = TOPA_ENTRY(cur, idx);
900 	}
901 
902 }
903 
904 /**
905  * pt_buffer_reset_offsets() - adjust buffer's write pointers from aux_head
906  * @buf:	PT buffer.
907  * @head:	Write pointer (aux_head) from AUX buffer.
908  *
909  * Find the ToPA table and entry corresponding to given @head and set buffer's
910  * "current" pointers accordingly. This is done after we have obtained the
911  * current aux_head position from a successful call to perf_aux_output_begin()
912  * to make sure the hardware is writing to the right place.
913  *
914  * This function modifies buf::{cur,cur_idx,output_off} that will be programmed
915  * into PT msrs when the tracing is enabled and buf::head and buf::data_size,
916  * which are used to determine INT and STOP markers' locations by a subsequent
917  * call to pt_buffer_reset_markers().
918  */
919 static void pt_buffer_reset_offsets(struct pt_buffer *buf, unsigned long head)
920 {
921 	int pg;
922 
923 	if (buf->snapshot)
924 		head &= (buf->nr_pages << PAGE_SHIFT) - 1;
925 
926 	pg = (head >> PAGE_SHIFT) & (buf->nr_pages - 1);
927 	pg = pt_topa_next_entry(buf, pg);
928 
929 	buf->cur = (struct topa *)((unsigned long)buf->topa_index[pg] & PAGE_MASK);
930 	buf->cur_idx = ((unsigned long)buf->topa_index[pg] -
931 			(unsigned long)buf->cur) / sizeof(struct topa_entry);
932 	buf->output_off = head & (sizes(buf->cur->table[buf->cur_idx].size) - 1);
933 
934 	local64_set(&buf->head, head);
935 	local_set(&buf->data_size, 0);
936 }
937 
938 /**
939  * pt_buffer_fini_topa() - deallocate ToPA structure of a buffer
940  * @buf:	PT buffer.
941  */
942 static void pt_buffer_fini_topa(struct pt_buffer *buf)
943 {
944 	struct topa *topa, *iter;
945 
946 	list_for_each_entry_safe(topa, iter, &buf->tables, list) {
947 		/*
948 		 * right now, this is in free_aux() path only, so
949 		 * no need to unlink this table from the list
950 		 */
951 		topa_free(topa);
952 	}
953 }
954 
955 /**
956  * pt_buffer_init_topa() - initialize ToPA table for pt buffer
957  * @buf:	PT buffer.
958  * @size:	Total size of all regions within this ToPA.
959  * @gfp:	Allocation flags.
960  */
961 static int pt_buffer_init_topa(struct pt_buffer *buf, unsigned long nr_pages,
962 			       gfp_t gfp)
963 {
964 	struct topa *topa;
965 	int err;
966 
967 	topa = topa_alloc(buf->cpu, gfp);
968 	if (!topa)
969 		return -ENOMEM;
970 
971 	topa_insert_table(buf, topa);
972 
973 	while (buf->nr_pages < nr_pages) {
974 		err = topa_insert_pages(buf, gfp);
975 		if (err) {
976 			pt_buffer_fini_topa(buf);
977 			return -ENOMEM;
978 		}
979 	}
980 
981 	pt_buffer_setup_topa_index(buf);
982 
983 	/* link last table to the first one, unless we're double buffering */
984 	if (pt_cap_get(PT_CAP_topa_multiple_entries)) {
985 		TOPA_ENTRY(buf->last, -1)->base = buf->first->phys >> TOPA_SHIFT;
986 		TOPA_ENTRY(buf->last, -1)->end = 1;
987 	}
988 
989 	pt_topa_dump(buf);
990 	return 0;
991 }
992 
993 /**
994  * pt_buffer_setup_aux() - set up topa tables for a PT buffer
995  * @cpu:	Cpu on which to allocate, -1 means current.
996  * @pages:	Array of pointers to buffer pages passed from perf core.
997  * @nr_pages:	Number of pages in the buffer.
998  * @snapshot:	If this is a snapshot/overwrite counter.
999  *
1000  * This is a pmu::setup_aux callback that sets up ToPA tables and all the
1001  * bookkeeping for an AUX buffer.
1002  *
1003  * Return:	Our private PT buffer structure.
1004  */
1005 static void *
1006 pt_buffer_setup_aux(int cpu, void **pages, int nr_pages, bool snapshot)
1007 {
1008 	struct pt_buffer *buf;
1009 	int node, ret;
1010 
1011 	if (!nr_pages)
1012 		return NULL;
1013 
1014 	if (cpu == -1)
1015 		cpu = raw_smp_processor_id();
1016 	node = cpu_to_node(cpu);
1017 
1018 	buf = kzalloc_node(offsetof(struct pt_buffer, topa_index[nr_pages]),
1019 			   GFP_KERNEL, node);
1020 	if (!buf)
1021 		return NULL;
1022 
1023 	buf->cpu = cpu;
1024 	buf->snapshot = snapshot;
1025 	buf->data_pages = pages;
1026 
1027 	INIT_LIST_HEAD(&buf->tables);
1028 
1029 	ret = pt_buffer_init_topa(buf, nr_pages, GFP_KERNEL);
1030 	if (ret) {
1031 		kfree(buf);
1032 		return NULL;
1033 	}
1034 
1035 	return buf;
1036 }
1037 
1038 /**
1039  * pt_buffer_free_aux() - perf AUX deallocation path callback
1040  * @data:	PT buffer.
1041  */
1042 static void pt_buffer_free_aux(void *data)
1043 {
1044 	struct pt_buffer *buf = data;
1045 
1046 	pt_buffer_fini_topa(buf);
1047 	kfree(buf);
1048 }
1049 
1050 static int pt_addr_filters_init(struct perf_event *event)
1051 {
1052 	struct pt_filters *filters;
1053 	int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
1054 
1055 	if (!pt_cap_get(PT_CAP_num_address_ranges))
1056 		return 0;
1057 
1058 	filters = kzalloc_node(sizeof(struct pt_filters), GFP_KERNEL, node);
1059 	if (!filters)
1060 		return -ENOMEM;
1061 
1062 	if (event->parent)
1063 		memcpy(filters, event->parent->hw.addr_filters,
1064 		       sizeof(*filters));
1065 
1066 	event->hw.addr_filters = filters;
1067 
1068 	return 0;
1069 }
1070 
1071 static void pt_addr_filters_fini(struct perf_event *event)
1072 {
1073 	kfree(event->hw.addr_filters);
1074 	event->hw.addr_filters = NULL;
1075 }
1076 
1077 static int pt_event_addr_filters_validate(struct list_head *filters)
1078 {
1079 	struct perf_addr_filter *filter;
1080 	int range = 0;
1081 
1082 	list_for_each_entry(filter, filters, entry) {
1083 		/* PT doesn't support single address triggers */
1084 		if (!filter->range)
1085 			return -EOPNOTSUPP;
1086 
1087 		if (!filter->inode && !kernel_ip(filter->offset))
1088 			return -EINVAL;
1089 
1090 		if (++range > pt_cap_get(PT_CAP_num_address_ranges))
1091 			return -EOPNOTSUPP;
1092 	}
1093 
1094 	return 0;
1095 }
1096 
1097 static void pt_event_addr_filters_sync(struct perf_event *event)
1098 {
1099 	struct perf_addr_filters_head *head = perf_event_addr_filters(event);
1100 	unsigned long msr_a, msr_b, *offs = event->addr_filters_offs;
1101 	struct pt_filters *filters = event->hw.addr_filters;
1102 	struct perf_addr_filter *filter;
1103 	int range = 0;
1104 
1105 	if (!filters)
1106 		return;
1107 
1108 	list_for_each_entry(filter, &head->list, entry) {
1109 		if (filter->inode && !offs[range]) {
1110 			msr_a = msr_b = 0;
1111 		} else {
1112 			/* apply the offset */
1113 			msr_a = filter->offset + offs[range];
1114 			msr_b = filter->size + msr_a;
1115 		}
1116 
1117 		filters->filter[range].msr_a  = msr_a;
1118 		filters->filter[range].msr_b  = msr_b;
1119 		filters->filter[range].config = filter->filter ? 1 : 2;
1120 		range++;
1121 	}
1122 
1123 	filters->nr_filters = range;
1124 }
1125 
1126 /**
1127  * intel_pt_interrupt() - PT PMI handler
1128  */
1129 void intel_pt_interrupt(void)
1130 {
1131 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1132 	struct pt_buffer *buf;
1133 	struct perf_event *event = pt->handle.event;
1134 
1135 	/*
1136 	 * There may be a dangling PT bit in the interrupt status register
1137 	 * after PT has been disabled by pt_event_stop(). Make sure we don't
1138 	 * do anything (particularly, re-enable) for this event here.
1139 	 */
1140 	if (!READ_ONCE(pt->handle_nmi))
1141 		return;
1142 
1143 	/*
1144 	 * If VMX is on and PT does not support it, don't touch anything.
1145 	 */
1146 	if (READ_ONCE(pt->vmx_on))
1147 		return;
1148 
1149 	if (!event)
1150 		return;
1151 
1152 	pt_config_stop(event);
1153 
1154 	buf = perf_get_aux(&pt->handle);
1155 	if (!buf)
1156 		return;
1157 
1158 	pt_read_offset(buf);
1159 
1160 	pt_handle_status(pt);
1161 
1162 	pt_update_head(pt);
1163 
1164 	perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0),
1165 			    local_xchg(&buf->lost, 0));
1166 
1167 	if (!event->hw.state) {
1168 		int ret;
1169 
1170 		buf = perf_aux_output_begin(&pt->handle, event);
1171 		if (!buf) {
1172 			event->hw.state = PERF_HES_STOPPED;
1173 			return;
1174 		}
1175 
1176 		pt_buffer_reset_offsets(buf, pt->handle.head);
1177 		/* snapshot counters don't use PMI, so it's safe */
1178 		ret = pt_buffer_reset_markers(buf, &pt->handle);
1179 		if (ret) {
1180 			perf_aux_output_end(&pt->handle, 0, true);
1181 			return;
1182 		}
1183 
1184 		pt_config_buffer(buf->cur->table, buf->cur_idx,
1185 				 buf->output_off);
1186 		pt_config(event);
1187 	}
1188 }
1189 
1190 void intel_pt_handle_vmx(int on)
1191 {
1192 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1193 	struct perf_event *event;
1194 	unsigned long flags;
1195 
1196 	/* PT plays nice with VMX, do nothing */
1197 	if (pt_pmu.vmx)
1198 		return;
1199 
1200 	/*
1201 	 * VMXON will clear RTIT_CTL.TraceEn; we need to make
1202 	 * sure to not try to set it while VMX is on. Disable
1203 	 * interrupts to avoid racing with pmu callbacks;
1204 	 * concurrent PMI should be handled fine.
1205 	 */
1206 	local_irq_save(flags);
1207 	WRITE_ONCE(pt->vmx_on, on);
1208 
1209 	if (on) {
1210 		/* prevent pt_config_stop() from writing RTIT_CTL */
1211 		event = pt->handle.event;
1212 		if (event)
1213 			event->hw.config = 0;
1214 	}
1215 	local_irq_restore(flags);
1216 }
1217 EXPORT_SYMBOL_GPL(intel_pt_handle_vmx);
1218 
1219 /*
1220  * PMU callbacks
1221  */
1222 
1223 static void pt_event_start(struct perf_event *event, int mode)
1224 {
1225 	struct hw_perf_event *hwc = &event->hw;
1226 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1227 	struct pt_buffer *buf;
1228 
1229 	if (READ_ONCE(pt->vmx_on))
1230 		return;
1231 
1232 	buf = perf_aux_output_begin(&pt->handle, event);
1233 	if (!buf)
1234 		goto fail_stop;
1235 
1236 	pt_buffer_reset_offsets(buf, pt->handle.head);
1237 	if (!buf->snapshot) {
1238 		if (pt_buffer_reset_markers(buf, &pt->handle))
1239 			goto fail_end_stop;
1240 	}
1241 
1242 	WRITE_ONCE(pt->handle_nmi, 1);
1243 	hwc->state = 0;
1244 
1245 	pt_config_buffer(buf->cur->table, buf->cur_idx,
1246 			 buf->output_off);
1247 	pt_config(event);
1248 
1249 	return;
1250 
1251 fail_end_stop:
1252 	perf_aux_output_end(&pt->handle, 0, true);
1253 fail_stop:
1254 	hwc->state = PERF_HES_STOPPED;
1255 }
1256 
1257 static void pt_event_stop(struct perf_event *event, int mode)
1258 {
1259 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1260 
1261 	/*
1262 	 * Protect against the PMI racing with disabling wrmsr,
1263 	 * see comment in intel_pt_interrupt().
1264 	 */
1265 	WRITE_ONCE(pt->handle_nmi, 0);
1266 
1267 	pt_config_stop(event);
1268 
1269 	if (event->hw.state == PERF_HES_STOPPED)
1270 		return;
1271 
1272 	event->hw.state = PERF_HES_STOPPED;
1273 
1274 	if (mode & PERF_EF_UPDATE) {
1275 		struct pt_buffer *buf = perf_get_aux(&pt->handle);
1276 
1277 		if (!buf)
1278 			return;
1279 
1280 		if (WARN_ON_ONCE(pt->handle.event != event))
1281 			return;
1282 
1283 		pt_read_offset(buf);
1284 
1285 		pt_handle_status(pt);
1286 
1287 		pt_update_head(pt);
1288 
1289 		if (buf->snapshot)
1290 			pt->handle.head =
1291 				local_xchg(&buf->data_size,
1292 					   buf->nr_pages << PAGE_SHIFT);
1293 		perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0),
1294 				    local_xchg(&buf->lost, 0));
1295 	}
1296 }
1297 
1298 static void pt_event_del(struct perf_event *event, int mode)
1299 {
1300 	pt_event_stop(event, PERF_EF_UPDATE);
1301 }
1302 
1303 static int pt_event_add(struct perf_event *event, int mode)
1304 {
1305 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1306 	struct hw_perf_event *hwc = &event->hw;
1307 	int ret = -EBUSY;
1308 
1309 	if (pt->handle.event)
1310 		goto fail;
1311 
1312 	if (mode & PERF_EF_START) {
1313 		pt_event_start(event, 0);
1314 		ret = -EINVAL;
1315 		if (hwc->state == PERF_HES_STOPPED)
1316 			goto fail;
1317 	} else {
1318 		hwc->state = PERF_HES_STOPPED;
1319 	}
1320 
1321 	ret = 0;
1322 fail:
1323 
1324 	return ret;
1325 }
1326 
1327 static void pt_event_read(struct perf_event *event)
1328 {
1329 }
1330 
1331 static void pt_event_destroy(struct perf_event *event)
1332 {
1333 	pt_addr_filters_fini(event);
1334 	x86_del_exclusive(x86_lbr_exclusive_pt);
1335 }
1336 
1337 static int pt_event_init(struct perf_event *event)
1338 {
1339 	if (event->attr.type != pt_pmu.pmu.type)
1340 		return -ENOENT;
1341 
1342 	if (!pt_event_valid(event))
1343 		return -EINVAL;
1344 
1345 	if (x86_add_exclusive(x86_lbr_exclusive_pt))
1346 		return -EBUSY;
1347 
1348 	if (pt_addr_filters_init(event)) {
1349 		x86_del_exclusive(x86_lbr_exclusive_pt);
1350 		return -ENOMEM;
1351 	}
1352 
1353 	event->destroy = pt_event_destroy;
1354 
1355 	return 0;
1356 }
1357 
1358 void cpu_emergency_stop_pt(void)
1359 {
1360 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1361 
1362 	if (pt->handle.event)
1363 		pt_event_stop(pt->handle.event, PERF_EF_UPDATE);
1364 }
1365 
1366 static __init int pt_init(void)
1367 {
1368 	int ret, cpu, prior_warn = 0;
1369 
1370 	BUILD_BUG_ON(sizeof(struct topa) > PAGE_SIZE);
1371 
1372 	if (!boot_cpu_has(X86_FEATURE_INTEL_PT))
1373 		return -ENODEV;
1374 
1375 	get_online_cpus();
1376 	for_each_online_cpu(cpu) {
1377 		u64 ctl;
1378 
1379 		ret = rdmsrl_safe_on_cpu(cpu, MSR_IA32_RTIT_CTL, &ctl);
1380 		if (!ret && (ctl & RTIT_CTL_TRACEEN))
1381 			prior_warn++;
1382 	}
1383 	put_online_cpus();
1384 
1385 	if (prior_warn) {
1386 		x86_add_exclusive(x86_lbr_exclusive_pt);
1387 		pr_warn("PT is enabled at boot time, doing nothing\n");
1388 
1389 		return -EBUSY;
1390 	}
1391 
1392 	ret = pt_pmu_hw_init();
1393 	if (ret)
1394 		return ret;
1395 
1396 	if (!pt_cap_get(PT_CAP_topa_output)) {
1397 		pr_warn("ToPA output is not supported on this CPU\n");
1398 		return -ENODEV;
1399 	}
1400 
1401 	if (!pt_cap_get(PT_CAP_topa_multiple_entries))
1402 		pt_pmu.pmu.capabilities =
1403 			PERF_PMU_CAP_AUX_NO_SG | PERF_PMU_CAP_AUX_SW_DOUBLEBUF;
1404 
1405 	pt_pmu.pmu.capabilities	|= PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE;
1406 	pt_pmu.pmu.attr_groups		 = pt_attr_groups;
1407 	pt_pmu.pmu.task_ctx_nr		 = perf_sw_context;
1408 	pt_pmu.pmu.event_init		 = pt_event_init;
1409 	pt_pmu.pmu.add			 = pt_event_add;
1410 	pt_pmu.pmu.del			 = pt_event_del;
1411 	pt_pmu.pmu.start		 = pt_event_start;
1412 	pt_pmu.pmu.stop			 = pt_event_stop;
1413 	pt_pmu.pmu.read			 = pt_event_read;
1414 	pt_pmu.pmu.setup_aux		 = pt_buffer_setup_aux;
1415 	pt_pmu.pmu.free_aux		 = pt_buffer_free_aux;
1416 	pt_pmu.pmu.addr_filters_sync     = pt_event_addr_filters_sync;
1417 	pt_pmu.pmu.addr_filters_validate = pt_event_addr_filters_validate;
1418 	pt_pmu.pmu.nr_addr_filters       =
1419 		pt_cap_get(PT_CAP_num_address_ranges);
1420 
1421 	ret = perf_pmu_register(&pt_pmu.pmu, "intel_pt", -1);
1422 
1423 	return ret;
1424 }
1425 arch_initcall(pt_init);
1426