xref: /openbmc/linux/arch/x86/events/intel/pt.c (revision 1c2dd16a)
1 /*
2  * Intel(R) Processor Trace PMU driver for perf
3  * Copyright (c) 2013-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * Intel PT is specified in the Intel Architecture Instruction Set Extensions
15  * Programming Reference:
16  * http://software.intel.com/en-us/intel-isa-extensions
17  */
18 
19 #undef DEBUG
20 
21 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22 
23 #include <linux/types.h>
24 #include <linux/slab.h>
25 #include <linux/device.h>
26 
27 #include <asm/perf_event.h>
28 #include <asm/insn.h>
29 #include <asm/io.h>
30 #include <asm/intel_pt.h>
31 #include <asm/intel-family.h>
32 
33 #include "../perf_event.h"
34 #include "pt.h"
35 
36 static DEFINE_PER_CPU(struct pt, pt_ctx);
37 
38 static struct pt_pmu pt_pmu;
39 
40 /*
41  * Capabilities of Intel PT hardware, such as number of address bits or
42  * supported output schemes, are cached and exported to userspace as "caps"
43  * attribute group of pt pmu device
44  * (/sys/bus/event_source/devices/intel_pt/caps/) so that userspace can store
45  * relevant bits together with intel_pt traces.
46  *
47  * These are necessary for both trace decoding (payloads_lip, contains address
48  * width encoded in IP-related packets), and event configuration (bitmasks with
49  * permitted values for certain bit fields).
50  */
51 #define PT_CAP(_n, _l, _r, _m)						\
52 	[PT_CAP_ ## _n] = { .name = __stringify(_n), .leaf = _l,	\
53 			    .reg = _r, .mask = _m }
54 
55 static struct pt_cap_desc {
56 	const char	*name;
57 	u32		leaf;
58 	u8		reg;
59 	u32		mask;
60 } pt_caps[] = {
61 	PT_CAP(max_subleaf,		0, CPUID_EAX, 0xffffffff),
62 	PT_CAP(cr3_filtering,		0, CPUID_EBX, BIT(0)),
63 	PT_CAP(psb_cyc,			0, CPUID_EBX, BIT(1)),
64 	PT_CAP(ip_filtering,		0, CPUID_EBX, BIT(2)),
65 	PT_CAP(mtc,			0, CPUID_EBX, BIT(3)),
66 	PT_CAP(ptwrite,			0, CPUID_EBX, BIT(4)),
67 	PT_CAP(power_event_trace,	0, CPUID_EBX, BIT(5)),
68 	PT_CAP(topa_output,		0, CPUID_ECX, BIT(0)),
69 	PT_CAP(topa_multiple_entries,	0, CPUID_ECX, BIT(1)),
70 	PT_CAP(single_range_output,	0, CPUID_ECX, BIT(2)),
71 	PT_CAP(payloads_lip,		0, CPUID_ECX, BIT(31)),
72 	PT_CAP(num_address_ranges,	1, CPUID_EAX, 0x3),
73 	PT_CAP(mtc_periods,		1, CPUID_EAX, 0xffff0000),
74 	PT_CAP(cycle_thresholds,	1, CPUID_EBX, 0xffff),
75 	PT_CAP(psb_periods,		1, CPUID_EBX, 0xffff0000),
76 };
77 
78 static u32 pt_cap_get(enum pt_capabilities cap)
79 {
80 	struct pt_cap_desc *cd = &pt_caps[cap];
81 	u32 c = pt_pmu.caps[cd->leaf * PT_CPUID_REGS_NUM + cd->reg];
82 	unsigned int shift = __ffs(cd->mask);
83 
84 	return (c & cd->mask) >> shift;
85 }
86 
87 static ssize_t pt_cap_show(struct device *cdev,
88 			   struct device_attribute *attr,
89 			   char *buf)
90 {
91 	struct dev_ext_attribute *ea =
92 		container_of(attr, struct dev_ext_attribute, attr);
93 	enum pt_capabilities cap = (long)ea->var;
94 
95 	return snprintf(buf, PAGE_SIZE, "%x\n", pt_cap_get(cap));
96 }
97 
98 static struct attribute_group pt_cap_group = {
99 	.name	= "caps",
100 };
101 
102 PMU_FORMAT_ATTR(pt,		"config:0"	);
103 PMU_FORMAT_ATTR(cyc,		"config:1"	);
104 PMU_FORMAT_ATTR(pwr_evt,	"config:4"	);
105 PMU_FORMAT_ATTR(fup_on_ptw,	"config:5"	);
106 PMU_FORMAT_ATTR(mtc,		"config:9"	);
107 PMU_FORMAT_ATTR(tsc,		"config:10"	);
108 PMU_FORMAT_ATTR(noretcomp,	"config:11"	);
109 PMU_FORMAT_ATTR(ptw,		"config:12"	);
110 PMU_FORMAT_ATTR(branch,		"config:13"	);
111 PMU_FORMAT_ATTR(mtc_period,	"config:14-17"	);
112 PMU_FORMAT_ATTR(cyc_thresh,	"config:19-22"	);
113 PMU_FORMAT_ATTR(psb_period,	"config:24-27"	);
114 
115 static struct attribute *pt_formats_attr[] = {
116 	&format_attr_pt.attr,
117 	&format_attr_cyc.attr,
118 	&format_attr_pwr_evt.attr,
119 	&format_attr_fup_on_ptw.attr,
120 	&format_attr_mtc.attr,
121 	&format_attr_tsc.attr,
122 	&format_attr_noretcomp.attr,
123 	&format_attr_ptw.attr,
124 	&format_attr_branch.attr,
125 	&format_attr_mtc_period.attr,
126 	&format_attr_cyc_thresh.attr,
127 	&format_attr_psb_period.attr,
128 	NULL,
129 };
130 
131 static struct attribute_group pt_format_group = {
132 	.name	= "format",
133 	.attrs	= pt_formats_attr,
134 };
135 
136 static ssize_t
137 pt_timing_attr_show(struct device *dev, struct device_attribute *attr,
138 		    char *page)
139 {
140 	struct perf_pmu_events_attr *pmu_attr =
141 		container_of(attr, struct perf_pmu_events_attr, attr);
142 
143 	switch (pmu_attr->id) {
144 	case 0:
145 		return sprintf(page, "%lu\n", pt_pmu.max_nonturbo_ratio);
146 	case 1:
147 		return sprintf(page, "%u:%u\n",
148 			       pt_pmu.tsc_art_num,
149 			       pt_pmu.tsc_art_den);
150 	default:
151 		break;
152 	}
153 
154 	return -EINVAL;
155 }
156 
157 PMU_EVENT_ATTR(max_nonturbo_ratio, timing_attr_max_nonturbo_ratio, 0,
158 	       pt_timing_attr_show);
159 PMU_EVENT_ATTR(tsc_art_ratio, timing_attr_tsc_art_ratio, 1,
160 	       pt_timing_attr_show);
161 
162 static struct attribute *pt_timing_attr[] = {
163 	&timing_attr_max_nonturbo_ratio.attr.attr,
164 	&timing_attr_tsc_art_ratio.attr.attr,
165 	NULL,
166 };
167 
168 static struct attribute_group pt_timing_group = {
169 	.attrs	= pt_timing_attr,
170 };
171 
172 static const struct attribute_group *pt_attr_groups[] = {
173 	&pt_cap_group,
174 	&pt_format_group,
175 	&pt_timing_group,
176 	NULL,
177 };
178 
179 static int __init pt_pmu_hw_init(void)
180 {
181 	struct dev_ext_attribute *de_attrs;
182 	struct attribute **attrs;
183 	size_t size;
184 	u64 reg;
185 	int ret;
186 	long i;
187 
188 	rdmsrl(MSR_PLATFORM_INFO, reg);
189 	pt_pmu.max_nonturbo_ratio = (reg & 0xff00) >> 8;
190 
191 	/*
192 	 * if available, read in TSC to core crystal clock ratio,
193 	 * otherwise, zero for numerator stands for "not enumerated"
194 	 * as per SDM
195 	 */
196 	if (boot_cpu_data.cpuid_level >= CPUID_TSC_LEAF) {
197 		u32 eax, ebx, ecx, edx;
198 
199 		cpuid(CPUID_TSC_LEAF, &eax, &ebx, &ecx, &edx);
200 
201 		pt_pmu.tsc_art_num = ebx;
202 		pt_pmu.tsc_art_den = eax;
203 	}
204 
205 	/* model-specific quirks */
206 	switch (boot_cpu_data.x86_model) {
207 	case INTEL_FAM6_BROADWELL_CORE:
208 	case INTEL_FAM6_BROADWELL_XEON_D:
209 	case INTEL_FAM6_BROADWELL_GT3E:
210 	case INTEL_FAM6_BROADWELL_X:
211 		/* not setting BRANCH_EN will #GP, erratum BDM106 */
212 		pt_pmu.branch_en_always_on = true;
213 		break;
214 	default:
215 		break;
216 	}
217 
218 	if (boot_cpu_has(X86_FEATURE_VMX)) {
219 		/*
220 		 * Intel SDM, 36.5 "Tracing post-VMXON" says that
221 		 * "IA32_VMX_MISC[bit 14]" being 1 means PT can trace
222 		 * post-VMXON.
223 		 */
224 		rdmsrl(MSR_IA32_VMX_MISC, reg);
225 		if (reg & BIT(14))
226 			pt_pmu.vmx = true;
227 	}
228 
229 	attrs = NULL;
230 
231 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
232 		cpuid_count(20, i,
233 			    &pt_pmu.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM],
234 			    &pt_pmu.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM],
235 			    &pt_pmu.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM],
236 			    &pt_pmu.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM]);
237 	}
238 
239 	ret = -ENOMEM;
240 	size = sizeof(struct attribute *) * (ARRAY_SIZE(pt_caps)+1);
241 	attrs = kzalloc(size, GFP_KERNEL);
242 	if (!attrs)
243 		goto fail;
244 
245 	size = sizeof(struct dev_ext_attribute) * (ARRAY_SIZE(pt_caps)+1);
246 	de_attrs = kzalloc(size, GFP_KERNEL);
247 	if (!de_attrs)
248 		goto fail;
249 
250 	for (i = 0; i < ARRAY_SIZE(pt_caps); i++) {
251 		struct dev_ext_attribute *de_attr = de_attrs + i;
252 
253 		de_attr->attr.attr.name = pt_caps[i].name;
254 
255 		sysfs_attr_init(&de_attr->attr.attr);
256 
257 		de_attr->attr.attr.mode		= S_IRUGO;
258 		de_attr->attr.show		= pt_cap_show;
259 		de_attr->var			= (void *)i;
260 
261 		attrs[i] = &de_attr->attr.attr;
262 	}
263 
264 	pt_cap_group.attrs = attrs;
265 
266 	return 0;
267 
268 fail:
269 	kfree(attrs);
270 
271 	return ret;
272 }
273 
274 #define RTIT_CTL_CYC_PSB (RTIT_CTL_CYCLEACC	| \
275 			  RTIT_CTL_CYC_THRESH	| \
276 			  RTIT_CTL_PSB_FREQ)
277 
278 #define RTIT_CTL_MTC	(RTIT_CTL_MTC_EN	| \
279 			 RTIT_CTL_MTC_RANGE)
280 
281 #define RTIT_CTL_PTW	(RTIT_CTL_PTW_EN	| \
282 			 RTIT_CTL_FUP_ON_PTW)
283 
284 /*
285  * Bit 0 (TraceEn) in the attr.config is meaningless as the
286  * corresponding bit in the RTIT_CTL can only be controlled
287  * by the driver; therefore, repurpose it to mean: pass
288  * through the bit that was previously assumed to be always
289  * on for PT, thereby allowing the user to *not* set it if
290  * they so wish. See also pt_event_valid() and pt_config().
291  */
292 #define RTIT_CTL_PASSTHROUGH RTIT_CTL_TRACEEN
293 
294 #define PT_CONFIG_MASK (RTIT_CTL_TRACEEN	| \
295 			RTIT_CTL_TSC_EN		| \
296 			RTIT_CTL_DISRETC	| \
297 			RTIT_CTL_BRANCH_EN	| \
298 			RTIT_CTL_CYC_PSB	| \
299 			RTIT_CTL_MTC		| \
300 			RTIT_CTL_PWR_EVT_EN	| \
301 			RTIT_CTL_FUP_ON_PTW	| \
302 			RTIT_CTL_PTW_EN)
303 
304 static bool pt_event_valid(struct perf_event *event)
305 {
306 	u64 config = event->attr.config;
307 	u64 allowed, requested;
308 
309 	if ((config & PT_CONFIG_MASK) != config)
310 		return false;
311 
312 	if (config & RTIT_CTL_CYC_PSB) {
313 		if (!pt_cap_get(PT_CAP_psb_cyc))
314 			return false;
315 
316 		allowed = pt_cap_get(PT_CAP_psb_periods);
317 		requested = (config & RTIT_CTL_PSB_FREQ) >>
318 			RTIT_CTL_PSB_FREQ_OFFSET;
319 		if (requested && (!(allowed & BIT(requested))))
320 			return false;
321 
322 		allowed = pt_cap_get(PT_CAP_cycle_thresholds);
323 		requested = (config & RTIT_CTL_CYC_THRESH) >>
324 			RTIT_CTL_CYC_THRESH_OFFSET;
325 		if (requested && (!(allowed & BIT(requested))))
326 			return false;
327 	}
328 
329 	if (config & RTIT_CTL_MTC) {
330 		/*
331 		 * In the unlikely case that CPUID lists valid mtc periods,
332 		 * but not the mtc capability, drop out here.
333 		 *
334 		 * Spec says that setting mtc period bits while mtc bit in
335 		 * CPUID is 0 will #GP, so better safe than sorry.
336 		 */
337 		if (!pt_cap_get(PT_CAP_mtc))
338 			return false;
339 
340 		allowed = pt_cap_get(PT_CAP_mtc_periods);
341 		if (!allowed)
342 			return false;
343 
344 		requested = (config & RTIT_CTL_MTC_RANGE) >>
345 			RTIT_CTL_MTC_RANGE_OFFSET;
346 
347 		if (!(allowed & BIT(requested)))
348 			return false;
349 	}
350 
351 	if (config & RTIT_CTL_PWR_EVT_EN &&
352 	    !pt_cap_get(PT_CAP_power_event_trace))
353 		return false;
354 
355 	if (config & RTIT_CTL_PTW) {
356 		if (!pt_cap_get(PT_CAP_ptwrite))
357 			return false;
358 
359 		/* FUPonPTW without PTW doesn't make sense */
360 		if ((config & RTIT_CTL_FUP_ON_PTW) &&
361 		    !(config & RTIT_CTL_PTW_EN))
362 			return false;
363 	}
364 
365 	/*
366 	 * Setting bit 0 (TraceEn in RTIT_CTL MSR) in the attr.config
367 	 * clears the assomption that BranchEn must always be enabled,
368 	 * as was the case with the first implementation of PT.
369 	 * If this bit is not set, the legacy behavior is preserved
370 	 * for compatibility with the older userspace.
371 	 *
372 	 * Re-using bit 0 for this purpose is fine because it is never
373 	 * directly set by the user; previous attempts at setting it in
374 	 * the attr.config resulted in -EINVAL.
375 	 */
376 	if (config & RTIT_CTL_PASSTHROUGH) {
377 		/*
378 		 * Disallow not setting BRANCH_EN where BRANCH_EN is
379 		 * always required.
380 		 */
381 		if (pt_pmu.branch_en_always_on &&
382 		    !(config & RTIT_CTL_BRANCH_EN))
383 			return false;
384 	} else {
385 		/*
386 		 * Disallow BRANCH_EN without the PASSTHROUGH.
387 		 */
388 		if (config & RTIT_CTL_BRANCH_EN)
389 			return false;
390 	}
391 
392 	return true;
393 }
394 
395 /*
396  * PT configuration helpers
397  * These all are cpu affine and operate on a local PT
398  */
399 
400 /* Address ranges and their corresponding msr configuration registers */
401 static const struct pt_address_range {
402 	unsigned long	msr_a;
403 	unsigned long	msr_b;
404 	unsigned int	reg_off;
405 } pt_address_ranges[] = {
406 	{
407 		.msr_a	 = MSR_IA32_RTIT_ADDR0_A,
408 		.msr_b	 = MSR_IA32_RTIT_ADDR0_B,
409 		.reg_off = RTIT_CTL_ADDR0_OFFSET,
410 	},
411 	{
412 		.msr_a	 = MSR_IA32_RTIT_ADDR1_A,
413 		.msr_b	 = MSR_IA32_RTIT_ADDR1_B,
414 		.reg_off = RTIT_CTL_ADDR1_OFFSET,
415 	},
416 	{
417 		.msr_a	 = MSR_IA32_RTIT_ADDR2_A,
418 		.msr_b	 = MSR_IA32_RTIT_ADDR2_B,
419 		.reg_off = RTIT_CTL_ADDR2_OFFSET,
420 	},
421 	{
422 		.msr_a	 = MSR_IA32_RTIT_ADDR3_A,
423 		.msr_b	 = MSR_IA32_RTIT_ADDR3_B,
424 		.reg_off = RTIT_CTL_ADDR3_OFFSET,
425 	}
426 };
427 
428 static u64 pt_config_filters(struct perf_event *event)
429 {
430 	struct pt_filters *filters = event->hw.addr_filters;
431 	struct pt *pt = this_cpu_ptr(&pt_ctx);
432 	unsigned int range = 0;
433 	u64 rtit_ctl = 0;
434 
435 	if (!filters)
436 		return 0;
437 
438 	perf_event_addr_filters_sync(event);
439 
440 	for (range = 0; range < filters->nr_filters; range++) {
441 		struct pt_filter *filter = &filters->filter[range];
442 
443 		/*
444 		 * Note, if the range has zero start/end addresses due
445 		 * to its dynamic object not being loaded yet, we just
446 		 * go ahead and program zeroed range, which will simply
447 		 * produce no data. Note^2: if executable code at 0x0
448 		 * is a concern, we can set up an "invalid" configuration
449 		 * such as msr_b < msr_a.
450 		 */
451 
452 		/* avoid redundant msr writes */
453 		if (pt->filters.filter[range].msr_a != filter->msr_a) {
454 			wrmsrl(pt_address_ranges[range].msr_a, filter->msr_a);
455 			pt->filters.filter[range].msr_a = filter->msr_a;
456 		}
457 
458 		if (pt->filters.filter[range].msr_b != filter->msr_b) {
459 			wrmsrl(pt_address_ranges[range].msr_b, filter->msr_b);
460 			pt->filters.filter[range].msr_b = filter->msr_b;
461 		}
462 
463 		rtit_ctl |= filter->config << pt_address_ranges[range].reg_off;
464 	}
465 
466 	return rtit_ctl;
467 }
468 
469 static void pt_config(struct perf_event *event)
470 {
471 	struct pt *pt = this_cpu_ptr(&pt_ctx);
472 	u64 reg;
473 
474 	if (!event->hw.itrace_started) {
475 		event->hw.itrace_started = 1;
476 		wrmsrl(MSR_IA32_RTIT_STATUS, 0);
477 	}
478 
479 	reg = pt_config_filters(event);
480 	reg |= RTIT_CTL_TOPA | RTIT_CTL_TRACEEN;
481 
482 	/*
483 	 * Previously, we had BRANCH_EN on by default, but now that PT has
484 	 * grown features outside of branch tracing, it is useful to allow
485 	 * the user to disable it. Setting bit 0 in the event's attr.config
486 	 * allows BRANCH_EN to pass through instead of being always on. See
487 	 * also the comment in pt_event_valid().
488 	 */
489 	if (event->attr.config & BIT(0)) {
490 		reg |= event->attr.config & RTIT_CTL_BRANCH_EN;
491 	} else {
492 		reg |= RTIT_CTL_BRANCH_EN;
493 	}
494 
495 	if (!event->attr.exclude_kernel)
496 		reg |= RTIT_CTL_OS;
497 	if (!event->attr.exclude_user)
498 		reg |= RTIT_CTL_USR;
499 
500 	reg |= (event->attr.config & PT_CONFIG_MASK);
501 
502 	event->hw.config = reg;
503 	if (READ_ONCE(pt->vmx_on))
504 		perf_aux_output_flag(&pt->handle, PERF_AUX_FLAG_PARTIAL);
505 	else
506 		wrmsrl(MSR_IA32_RTIT_CTL, reg);
507 }
508 
509 static void pt_config_stop(struct perf_event *event)
510 {
511 	struct pt *pt = this_cpu_ptr(&pt_ctx);
512 	u64 ctl = READ_ONCE(event->hw.config);
513 
514 	/* may be already stopped by a PMI */
515 	if (!(ctl & RTIT_CTL_TRACEEN))
516 		return;
517 
518 	ctl &= ~RTIT_CTL_TRACEEN;
519 	if (!READ_ONCE(pt->vmx_on))
520 		wrmsrl(MSR_IA32_RTIT_CTL, ctl);
521 
522 	WRITE_ONCE(event->hw.config, ctl);
523 
524 	/*
525 	 * A wrmsr that disables trace generation serializes other PT
526 	 * registers and causes all data packets to be written to memory,
527 	 * but a fence is required for the data to become globally visible.
528 	 *
529 	 * The below WMB, separating data store and aux_head store matches
530 	 * the consumer's RMB that separates aux_head load and data load.
531 	 */
532 	wmb();
533 }
534 
535 static void pt_config_buffer(void *buf, unsigned int topa_idx,
536 			     unsigned int output_off)
537 {
538 	u64 reg;
539 
540 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, virt_to_phys(buf));
541 
542 	reg = 0x7f | ((u64)topa_idx << 7) | ((u64)output_off << 32);
543 
544 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, reg);
545 }
546 
547 /*
548  * Keep ToPA table-related metadata on the same page as the actual table,
549  * taking up a few words from the top
550  */
551 
552 #define TENTS_PER_PAGE (((PAGE_SIZE - 40) / sizeof(struct topa_entry)) - 1)
553 
554 /**
555  * struct topa - page-sized ToPA table with metadata at the top
556  * @table:	actual ToPA table entries, as understood by PT hardware
557  * @list:	linkage to struct pt_buffer's list of tables
558  * @phys:	physical address of this page
559  * @offset:	offset of the first entry in this table in the buffer
560  * @size:	total size of all entries in this table
561  * @last:	index of the last initialized entry in this table
562  */
563 struct topa {
564 	struct topa_entry	table[TENTS_PER_PAGE];
565 	struct list_head	list;
566 	u64			phys;
567 	u64			offset;
568 	size_t			size;
569 	int			last;
570 };
571 
572 /* make -1 stand for the last table entry */
573 #define TOPA_ENTRY(t, i) ((i) == -1 ? &(t)->table[(t)->last] : &(t)->table[(i)])
574 
575 /**
576  * topa_alloc() - allocate page-sized ToPA table
577  * @cpu:	CPU on which to allocate.
578  * @gfp:	Allocation flags.
579  *
580  * Return:	On success, return the pointer to ToPA table page.
581  */
582 static struct topa *topa_alloc(int cpu, gfp_t gfp)
583 {
584 	int node = cpu_to_node(cpu);
585 	struct topa *topa;
586 	struct page *p;
587 
588 	p = alloc_pages_node(node, gfp | __GFP_ZERO, 0);
589 	if (!p)
590 		return NULL;
591 
592 	topa = page_address(p);
593 	topa->last = 0;
594 	topa->phys = page_to_phys(p);
595 
596 	/*
597 	 * In case of singe-entry ToPA, always put the self-referencing END
598 	 * link as the 2nd entry in the table
599 	 */
600 	if (!pt_cap_get(PT_CAP_topa_multiple_entries)) {
601 		TOPA_ENTRY(topa, 1)->base = topa->phys >> TOPA_SHIFT;
602 		TOPA_ENTRY(topa, 1)->end = 1;
603 	}
604 
605 	return topa;
606 }
607 
608 /**
609  * topa_free() - free a page-sized ToPA table
610  * @topa:	Table to deallocate.
611  */
612 static void topa_free(struct topa *topa)
613 {
614 	free_page((unsigned long)topa);
615 }
616 
617 /**
618  * topa_insert_table() - insert a ToPA table into a buffer
619  * @buf:	 PT buffer that's being extended.
620  * @topa:	 New topa table to be inserted.
621  *
622  * If it's the first table in this buffer, set up buffer's pointers
623  * accordingly; otherwise, add a END=1 link entry to @topa to the current
624  * "last" table and adjust the last table pointer to @topa.
625  */
626 static void topa_insert_table(struct pt_buffer *buf, struct topa *topa)
627 {
628 	struct topa *last = buf->last;
629 
630 	list_add_tail(&topa->list, &buf->tables);
631 
632 	if (!buf->first) {
633 		buf->first = buf->last = buf->cur = topa;
634 		return;
635 	}
636 
637 	topa->offset = last->offset + last->size;
638 	buf->last = topa;
639 
640 	if (!pt_cap_get(PT_CAP_topa_multiple_entries))
641 		return;
642 
643 	BUG_ON(last->last != TENTS_PER_PAGE - 1);
644 
645 	TOPA_ENTRY(last, -1)->base = topa->phys >> TOPA_SHIFT;
646 	TOPA_ENTRY(last, -1)->end = 1;
647 }
648 
649 /**
650  * topa_table_full() - check if a ToPA table is filled up
651  * @topa:	ToPA table.
652  */
653 static bool topa_table_full(struct topa *topa)
654 {
655 	/* single-entry ToPA is a special case */
656 	if (!pt_cap_get(PT_CAP_topa_multiple_entries))
657 		return !!topa->last;
658 
659 	return topa->last == TENTS_PER_PAGE - 1;
660 }
661 
662 /**
663  * topa_insert_pages() - create a list of ToPA tables
664  * @buf:	PT buffer being initialized.
665  * @gfp:	Allocation flags.
666  *
667  * This initializes a list of ToPA tables with entries from
668  * the data_pages provided by rb_alloc_aux().
669  *
670  * Return:	0 on success or error code.
671  */
672 static int topa_insert_pages(struct pt_buffer *buf, gfp_t gfp)
673 {
674 	struct topa *topa = buf->last;
675 	int order = 0;
676 	struct page *p;
677 
678 	p = virt_to_page(buf->data_pages[buf->nr_pages]);
679 	if (PagePrivate(p))
680 		order = page_private(p);
681 
682 	if (topa_table_full(topa)) {
683 		topa = topa_alloc(buf->cpu, gfp);
684 		if (!topa)
685 			return -ENOMEM;
686 
687 		topa_insert_table(buf, topa);
688 	}
689 
690 	TOPA_ENTRY(topa, -1)->base = page_to_phys(p) >> TOPA_SHIFT;
691 	TOPA_ENTRY(topa, -1)->size = order;
692 	if (!buf->snapshot && !pt_cap_get(PT_CAP_topa_multiple_entries)) {
693 		TOPA_ENTRY(topa, -1)->intr = 1;
694 		TOPA_ENTRY(topa, -1)->stop = 1;
695 	}
696 
697 	topa->last++;
698 	topa->size += sizes(order);
699 
700 	buf->nr_pages += 1ul << order;
701 
702 	return 0;
703 }
704 
705 /**
706  * pt_topa_dump() - print ToPA tables and their entries
707  * @buf:	PT buffer.
708  */
709 static void pt_topa_dump(struct pt_buffer *buf)
710 {
711 	struct topa *topa;
712 
713 	list_for_each_entry(topa, &buf->tables, list) {
714 		int i;
715 
716 		pr_debug("# table @%p (%016Lx), off %llx size %zx\n", topa->table,
717 			 topa->phys, topa->offset, topa->size);
718 		for (i = 0; i < TENTS_PER_PAGE; i++) {
719 			pr_debug("# entry @%p (%lx sz %u %c%c%c) raw=%16llx\n",
720 				 &topa->table[i],
721 				 (unsigned long)topa->table[i].base << TOPA_SHIFT,
722 				 sizes(topa->table[i].size),
723 				 topa->table[i].end ?  'E' : ' ',
724 				 topa->table[i].intr ? 'I' : ' ',
725 				 topa->table[i].stop ? 'S' : ' ',
726 				 *(u64 *)&topa->table[i]);
727 			if ((pt_cap_get(PT_CAP_topa_multiple_entries) &&
728 			     topa->table[i].stop) ||
729 			    topa->table[i].end)
730 				break;
731 		}
732 	}
733 }
734 
735 /**
736  * pt_buffer_advance() - advance to the next output region
737  * @buf:	PT buffer.
738  *
739  * Advance the current pointers in the buffer to the next ToPA entry.
740  */
741 static void pt_buffer_advance(struct pt_buffer *buf)
742 {
743 	buf->output_off = 0;
744 	buf->cur_idx++;
745 
746 	if (buf->cur_idx == buf->cur->last) {
747 		if (buf->cur == buf->last)
748 			buf->cur = buf->first;
749 		else
750 			buf->cur = list_entry(buf->cur->list.next, struct topa,
751 					      list);
752 		buf->cur_idx = 0;
753 	}
754 }
755 
756 /**
757  * pt_update_head() - calculate current offsets and sizes
758  * @pt:		Per-cpu pt context.
759  *
760  * Update buffer's current write pointer position and data size.
761  */
762 static void pt_update_head(struct pt *pt)
763 {
764 	struct pt_buffer *buf = perf_get_aux(&pt->handle);
765 	u64 topa_idx, base, old;
766 
767 	/* offset of the first region in this table from the beginning of buf */
768 	base = buf->cur->offset + buf->output_off;
769 
770 	/* offset of the current output region within this table */
771 	for (topa_idx = 0; topa_idx < buf->cur_idx; topa_idx++)
772 		base += sizes(buf->cur->table[topa_idx].size);
773 
774 	if (buf->snapshot) {
775 		local_set(&buf->data_size, base);
776 	} else {
777 		old = (local64_xchg(&buf->head, base) &
778 		       ((buf->nr_pages << PAGE_SHIFT) - 1));
779 		if (base < old)
780 			base += buf->nr_pages << PAGE_SHIFT;
781 
782 		local_add(base - old, &buf->data_size);
783 	}
784 }
785 
786 /**
787  * pt_buffer_region() - obtain current output region's address
788  * @buf:	PT buffer.
789  */
790 static void *pt_buffer_region(struct pt_buffer *buf)
791 {
792 	return phys_to_virt(buf->cur->table[buf->cur_idx].base << TOPA_SHIFT);
793 }
794 
795 /**
796  * pt_buffer_region_size() - obtain current output region's size
797  * @buf:	PT buffer.
798  */
799 static size_t pt_buffer_region_size(struct pt_buffer *buf)
800 {
801 	return sizes(buf->cur->table[buf->cur_idx].size);
802 }
803 
804 /**
805  * pt_handle_status() - take care of possible status conditions
806  * @pt:		Per-cpu pt context.
807  */
808 static void pt_handle_status(struct pt *pt)
809 {
810 	struct pt_buffer *buf = perf_get_aux(&pt->handle);
811 	int advance = 0;
812 	u64 status;
813 
814 	rdmsrl(MSR_IA32_RTIT_STATUS, status);
815 
816 	if (status & RTIT_STATUS_ERROR) {
817 		pr_err_ratelimited("ToPA ERROR encountered, trying to recover\n");
818 		pt_topa_dump(buf);
819 		status &= ~RTIT_STATUS_ERROR;
820 	}
821 
822 	if (status & RTIT_STATUS_STOPPED) {
823 		status &= ~RTIT_STATUS_STOPPED;
824 
825 		/*
826 		 * On systems that only do single-entry ToPA, hitting STOP
827 		 * means we are already losing data; need to let the decoder
828 		 * know.
829 		 */
830 		if (!pt_cap_get(PT_CAP_topa_multiple_entries) ||
831 		    buf->output_off == sizes(TOPA_ENTRY(buf->cur, buf->cur_idx)->size)) {
832 			perf_aux_output_flag(&pt->handle,
833 			                     PERF_AUX_FLAG_TRUNCATED);
834 			advance++;
835 		}
836 	}
837 
838 	/*
839 	 * Also on single-entry ToPA implementations, interrupt will come
840 	 * before the output reaches its output region's boundary.
841 	 */
842 	if (!pt_cap_get(PT_CAP_topa_multiple_entries) && !buf->snapshot &&
843 	    pt_buffer_region_size(buf) - buf->output_off <= TOPA_PMI_MARGIN) {
844 		void *head = pt_buffer_region(buf);
845 
846 		/* everything within this margin needs to be zeroed out */
847 		memset(head + buf->output_off, 0,
848 		       pt_buffer_region_size(buf) -
849 		       buf->output_off);
850 		advance++;
851 	}
852 
853 	if (advance)
854 		pt_buffer_advance(buf);
855 
856 	wrmsrl(MSR_IA32_RTIT_STATUS, status);
857 }
858 
859 /**
860  * pt_read_offset() - translate registers into buffer pointers
861  * @buf:	PT buffer.
862  *
863  * Set buffer's output pointers from MSR values.
864  */
865 static void pt_read_offset(struct pt_buffer *buf)
866 {
867 	u64 offset, base_topa;
868 
869 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, base_topa);
870 	buf->cur = phys_to_virt(base_topa);
871 
872 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, offset);
873 	/* offset within current output region */
874 	buf->output_off = offset >> 32;
875 	/* index of current output region within this table */
876 	buf->cur_idx = (offset & 0xffffff80) >> 7;
877 }
878 
879 /**
880  * pt_topa_next_entry() - obtain index of the first page in the next ToPA entry
881  * @buf:	PT buffer.
882  * @pg:		Page offset in the buffer.
883  *
884  * When advancing to the next output region (ToPA entry), given a page offset
885  * into the buffer, we need to find the offset of the first page in the next
886  * region.
887  */
888 static unsigned int pt_topa_next_entry(struct pt_buffer *buf, unsigned int pg)
889 {
890 	struct topa_entry *te = buf->topa_index[pg];
891 
892 	/* one region */
893 	if (buf->first == buf->last && buf->first->last == 1)
894 		return pg;
895 
896 	do {
897 		pg++;
898 		pg &= buf->nr_pages - 1;
899 	} while (buf->topa_index[pg] == te);
900 
901 	return pg;
902 }
903 
904 /**
905  * pt_buffer_reset_markers() - place interrupt and stop bits in the buffer
906  * @buf:	PT buffer.
907  * @handle:	Current output handle.
908  *
909  * Place INT and STOP marks to prevent overwriting old data that the consumer
910  * hasn't yet collected and waking up the consumer after a certain fraction of
911  * the buffer has filled up. Only needed and sensible for non-snapshot counters.
912  *
913  * This obviously relies on buf::head to figure out buffer markers, so it has
914  * to be called after pt_buffer_reset_offsets() and before the hardware tracing
915  * is enabled.
916  */
917 static int pt_buffer_reset_markers(struct pt_buffer *buf,
918 				   struct perf_output_handle *handle)
919 
920 {
921 	unsigned long head = local64_read(&buf->head);
922 	unsigned long idx, npages, wakeup;
923 
924 	/* can't stop in the middle of an output region */
925 	if (buf->output_off + handle->size + 1 <
926 	    sizes(TOPA_ENTRY(buf->cur, buf->cur_idx)->size)) {
927 		perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
928 		return -EINVAL;
929 	}
930 
931 
932 	/* single entry ToPA is handled by marking all regions STOP=1 INT=1 */
933 	if (!pt_cap_get(PT_CAP_topa_multiple_entries))
934 		return 0;
935 
936 	/* clear STOP and INT from current entry */
937 	buf->topa_index[buf->stop_pos]->stop = 0;
938 	buf->topa_index[buf->stop_pos]->intr = 0;
939 	buf->topa_index[buf->intr_pos]->intr = 0;
940 
941 	/* how many pages till the STOP marker */
942 	npages = handle->size >> PAGE_SHIFT;
943 
944 	/* if it's on a page boundary, fill up one more page */
945 	if (!offset_in_page(head + handle->size + 1))
946 		npages++;
947 
948 	idx = (head >> PAGE_SHIFT) + npages;
949 	idx &= buf->nr_pages - 1;
950 	buf->stop_pos = idx;
951 
952 	wakeup = handle->wakeup >> PAGE_SHIFT;
953 
954 	/* in the worst case, wake up the consumer one page before hard stop */
955 	idx = (head >> PAGE_SHIFT) + npages - 1;
956 	if (idx > wakeup)
957 		idx = wakeup;
958 
959 	idx &= buf->nr_pages - 1;
960 	buf->intr_pos = idx;
961 
962 	buf->topa_index[buf->stop_pos]->stop = 1;
963 	buf->topa_index[buf->stop_pos]->intr = 1;
964 	buf->topa_index[buf->intr_pos]->intr = 1;
965 
966 	return 0;
967 }
968 
969 /**
970  * pt_buffer_setup_topa_index() - build topa_index[] table of regions
971  * @buf:	PT buffer.
972  *
973  * topa_index[] references output regions indexed by offset into the
974  * buffer for purposes of quick reverse lookup.
975  */
976 static void pt_buffer_setup_topa_index(struct pt_buffer *buf)
977 {
978 	struct topa *cur = buf->first, *prev = buf->last;
979 	struct topa_entry *te_cur = TOPA_ENTRY(cur, 0),
980 		*te_prev = TOPA_ENTRY(prev, prev->last - 1);
981 	int pg = 0, idx = 0;
982 
983 	while (pg < buf->nr_pages) {
984 		int tidx;
985 
986 		/* pages within one topa entry */
987 		for (tidx = 0; tidx < 1 << te_cur->size; tidx++, pg++)
988 			buf->topa_index[pg] = te_prev;
989 
990 		te_prev = te_cur;
991 
992 		if (idx == cur->last - 1) {
993 			/* advance to next topa table */
994 			idx = 0;
995 			cur = list_entry(cur->list.next, struct topa, list);
996 		} else {
997 			idx++;
998 		}
999 		te_cur = TOPA_ENTRY(cur, idx);
1000 	}
1001 
1002 }
1003 
1004 /**
1005  * pt_buffer_reset_offsets() - adjust buffer's write pointers from aux_head
1006  * @buf:	PT buffer.
1007  * @head:	Write pointer (aux_head) from AUX buffer.
1008  *
1009  * Find the ToPA table and entry corresponding to given @head and set buffer's
1010  * "current" pointers accordingly. This is done after we have obtained the
1011  * current aux_head position from a successful call to perf_aux_output_begin()
1012  * to make sure the hardware is writing to the right place.
1013  *
1014  * This function modifies buf::{cur,cur_idx,output_off} that will be programmed
1015  * into PT msrs when the tracing is enabled and buf::head and buf::data_size,
1016  * which are used to determine INT and STOP markers' locations by a subsequent
1017  * call to pt_buffer_reset_markers().
1018  */
1019 static void pt_buffer_reset_offsets(struct pt_buffer *buf, unsigned long head)
1020 {
1021 	int pg;
1022 
1023 	if (buf->snapshot)
1024 		head &= (buf->nr_pages << PAGE_SHIFT) - 1;
1025 
1026 	pg = (head >> PAGE_SHIFT) & (buf->nr_pages - 1);
1027 	pg = pt_topa_next_entry(buf, pg);
1028 
1029 	buf->cur = (struct topa *)((unsigned long)buf->topa_index[pg] & PAGE_MASK);
1030 	buf->cur_idx = ((unsigned long)buf->topa_index[pg] -
1031 			(unsigned long)buf->cur) / sizeof(struct topa_entry);
1032 	buf->output_off = head & (sizes(buf->cur->table[buf->cur_idx].size) - 1);
1033 
1034 	local64_set(&buf->head, head);
1035 	local_set(&buf->data_size, 0);
1036 }
1037 
1038 /**
1039  * pt_buffer_fini_topa() - deallocate ToPA structure of a buffer
1040  * @buf:	PT buffer.
1041  */
1042 static void pt_buffer_fini_topa(struct pt_buffer *buf)
1043 {
1044 	struct topa *topa, *iter;
1045 
1046 	list_for_each_entry_safe(topa, iter, &buf->tables, list) {
1047 		/*
1048 		 * right now, this is in free_aux() path only, so
1049 		 * no need to unlink this table from the list
1050 		 */
1051 		topa_free(topa);
1052 	}
1053 }
1054 
1055 /**
1056  * pt_buffer_init_topa() - initialize ToPA table for pt buffer
1057  * @buf:	PT buffer.
1058  * @size:	Total size of all regions within this ToPA.
1059  * @gfp:	Allocation flags.
1060  */
1061 static int pt_buffer_init_topa(struct pt_buffer *buf, unsigned long nr_pages,
1062 			       gfp_t gfp)
1063 {
1064 	struct topa *topa;
1065 	int err;
1066 
1067 	topa = topa_alloc(buf->cpu, gfp);
1068 	if (!topa)
1069 		return -ENOMEM;
1070 
1071 	topa_insert_table(buf, topa);
1072 
1073 	while (buf->nr_pages < nr_pages) {
1074 		err = topa_insert_pages(buf, gfp);
1075 		if (err) {
1076 			pt_buffer_fini_topa(buf);
1077 			return -ENOMEM;
1078 		}
1079 	}
1080 
1081 	pt_buffer_setup_topa_index(buf);
1082 
1083 	/* link last table to the first one, unless we're double buffering */
1084 	if (pt_cap_get(PT_CAP_topa_multiple_entries)) {
1085 		TOPA_ENTRY(buf->last, -1)->base = buf->first->phys >> TOPA_SHIFT;
1086 		TOPA_ENTRY(buf->last, -1)->end = 1;
1087 	}
1088 
1089 	pt_topa_dump(buf);
1090 	return 0;
1091 }
1092 
1093 /**
1094  * pt_buffer_setup_aux() - set up topa tables for a PT buffer
1095  * @cpu:	Cpu on which to allocate, -1 means current.
1096  * @pages:	Array of pointers to buffer pages passed from perf core.
1097  * @nr_pages:	Number of pages in the buffer.
1098  * @snapshot:	If this is a snapshot/overwrite counter.
1099  *
1100  * This is a pmu::setup_aux callback that sets up ToPA tables and all the
1101  * bookkeeping for an AUX buffer.
1102  *
1103  * Return:	Our private PT buffer structure.
1104  */
1105 static void *
1106 pt_buffer_setup_aux(int cpu, void **pages, int nr_pages, bool snapshot)
1107 {
1108 	struct pt_buffer *buf;
1109 	int node, ret;
1110 
1111 	if (!nr_pages)
1112 		return NULL;
1113 
1114 	if (cpu == -1)
1115 		cpu = raw_smp_processor_id();
1116 	node = cpu_to_node(cpu);
1117 
1118 	buf = kzalloc_node(offsetof(struct pt_buffer, topa_index[nr_pages]),
1119 			   GFP_KERNEL, node);
1120 	if (!buf)
1121 		return NULL;
1122 
1123 	buf->cpu = cpu;
1124 	buf->snapshot = snapshot;
1125 	buf->data_pages = pages;
1126 
1127 	INIT_LIST_HEAD(&buf->tables);
1128 
1129 	ret = pt_buffer_init_topa(buf, nr_pages, GFP_KERNEL);
1130 	if (ret) {
1131 		kfree(buf);
1132 		return NULL;
1133 	}
1134 
1135 	return buf;
1136 }
1137 
1138 /**
1139  * pt_buffer_free_aux() - perf AUX deallocation path callback
1140  * @data:	PT buffer.
1141  */
1142 static void pt_buffer_free_aux(void *data)
1143 {
1144 	struct pt_buffer *buf = data;
1145 
1146 	pt_buffer_fini_topa(buf);
1147 	kfree(buf);
1148 }
1149 
1150 static int pt_addr_filters_init(struct perf_event *event)
1151 {
1152 	struct pt_filters *filters;
1153 	int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
1154 
1155 	if (!pt_cap_get(PT_CAP_num_address_ranges))
1156 		return 0;
1157 
1158 	filters = kzalloc_node(sizeof(struct pt_filters), GFP_KERNEL, node);
1159 	if (!filters)
1160 		return -ENOMEM;
1161 
1162 	if (event->parent)
1163 		memcpy(filters, event->parent->hw.addr_filters,
1164 		       sizeof(*filters));
1165 
1166 	event->hw.addr_filters = filters;
1167 
1168 	return 0;
1169 }
1170 
1171 static void pt_addr_filters_fini(struct perf_event *event)
1172 {
1173 	kfree(event->hw.addr_filters);
1174 	event->hw.addr_filters = NULL;
1175 }
1176 
1177 static inline bool valid_kernel_ip(unsigned long ip)
1178 {
1179 	return virt_addr_valid(ip) && kernel_ip(ip);
1180 }
1181 
1182 static int pt_event_addr_filters_validate(struct list_head *filters)
1183 {
1184 	struct perf_addr_filter *filter;
1185 	int range = 0;
1186 
1187 	list_for_each_entry(filter, filters, entry) {
1188 		/* PT doesn't support single address triggers */
1189 		if (!filter->range || !filter->size)
1190 			return -EOPNOTSUPP;
1191 
1192 		if (!filter->inode) {
1193 			if (!valid_kernel_ip(filter->offset))
1194 				return -EINVAL;
1195 
1196 			if (!valid_kernel_ip(filter->offset + filter->size))
1197 				return -EINVAL;
1198 		}
1199 
1200 		if (++range > pt_cap_get(PT_CAP_num_address_ranges))
1201 			return -EOPNOTSUPP;
1202 	}
1203 
1204 	return 0;
1205 }
1206 
1207 static void pt_event_addr_filters_sync(struct perf_event *event)
1208 {
1209 	struct perf_addr_filters_head *head = perf_event_addr_filters(event);
1210 	unsigned long msr_a, msr_b, *offs = event->addr_filters_offs;
1211 	struct pt_filters *filters = event->hw.addr_filters;
1212 	struct perf_addr_filter *filter;
1213 	int range = 0;
1214 
1215 	if (!filters)
1216 		return;
1217 
1218 	list_for_each_entry(filter, &head->list, entry) {
1219 		if (filter->inode && !offs[range]) {
1220 			msr_a = msr_b = 0;
1221 		} else {
1222 			/* apply the offset */
1223 			msr_a = filter->offset + offs[range];
1224 			msr_b = filter->size + msr_a - 1;
1225 		}
1226 
1227 		filters->filter[range].msr_a  = msr_a;
1228 		filters->filter[range].msr_b  = msr_b;
1229 		filters->filter[range].config = filter->filter ? 1 : 2;
1230 		range++;
1231 	}
1232 
1233 	filters->nr_filters = range;
1234 }
1235 
1236 /**
1237  * intel_pt_interrupt() - PT PMI handler
1238  */
1239 void intel_pt_interrupt(void)
1240 {
1241 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1242 	struct pt_buffer *buf;
1243 	struct perf_event *event = pt->handle.event;
1244 
1245 	/*
1246 	 * There may be a dangling PT bit in the interrupt status register
1247 	 * after PT has been disabled by pt_event_stop(). Make sure we don't
1248 	 * do anything (particularly, re-enable) for this event here.
1249 	 */
1250 	if (!READ_ONCE(pt->handle_nmi))
1251 		return;
1252 
1253 	if (!event)
1254 		return;
1255 
1256 	pt_config_stop(event);
1257 
1258 	buf = perf_get_aux(&pt->handle);
1259 	if (!buf)
1260 		return;
1261 
1262 	pt_read_offset(buf);
1263 
1264 	pt_handle_status(pt);
1265 
1266 	pt_update_head(pt);
1267 
1268 	perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0));
1269 
1270 	if (!event->hw.state) {
1271 		int ret;
1272 
1273 		buf = perf_aux_output_begin(&pt->handle, event);
1274 		if (!buf) {
1275 			event->hw.state = PERF_HES_STOPPED;
1276 			return;
1277 		}
1278 
1279 		pt_buffer_reset_offsets(buf, pt->handle.head);
1280 		/* snapshot counters don't use PMI, so it's safe */
1281 		ret = pt_buffer_reset_markers(buf, &pt->handle);
1282 		if (ret) {
1283 			perf_aux_output_end(&pt->handle, 0);
1284 			return;
1285 		}
1286 
1287 		pt_config_buffer(buf->cur->table, buf->cur_idx,
1288 				 buf->output_off);
1289 		pt_config(event);
1290 	}
1291 }
1292 
1293 void intel_pt_handle_vmx(int on)
1294 {
1295 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1296 	struct perf_event *event;
1297 	unsigned long flags;
1298 
1299 	/* PT plays nice with VMX, do nothing */
1300 	if (pt_pmu.vmx)
1301 		return;
1302 
1303 	/*
1304 	 * VMXON will clear RTIT_CTL.TraceEn; we need to make
1305 	 * sure to not try to set it while VMX is on. Disable
1306 	 * interrupts to avoid racing with pmu callbacks;
1307 	 * concurrent PMI should be handled fine.
1308 	 */
1309 	local_irq_save(flags);
1310 	WRITE_ONCE(pt->vmx_on, on);
1311 
1312 	/*
1313 	 * If an AUX transaction is in progress, it will contain
1314 	 * gap(s), so flag it PARTIAL to inform the user.
1315 	 */
1316 	event = pt->handle.event;
1317 	if (event)
1318 		perf_aux_output_flag(&pt->handle,
1319 		                     PERF_AUX_FLAG_PARTIAL);
1320 
1321 	/* Turn PTs back on */
1322 	if (!on && event)
1323 		wrmsrl(MSR_IA32_RTIT_CTL, event->hw.config);
1324 
1325 	local_irq_restore(flags);
1326 }
1327 EXPORT_SYMBOL_GPL(intel_pt_handle_vmx);
1328 
1329 /*
1330  * PMU callbacks
1331  */
1332 
1333 static void pt_event_start(struct perf_event *event, int mode)
1334 {
1335 	struct hw_perf_event *hwc = &event->hw;
1336 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1337 	struct pt_buffer *buf;
1338 
1339 	buf = perf_aux_output_begin(&pt->handle, event);
1340 	if (!buf)
1341 		goto fail_stop;
1342 
1343 	pt_buffer_reset_offsets(buf, pt->handle.head);
1344 	if (!buf->snapshot) {
1345 		if (pt_buffer_reset_markers(buf, &pt->handle))
1346 			goto fail_end_stop;
1347 	}
1348 
1349 	WRITE_ONCE(pt->handle_nmi, 1);
1350 	hwc->state = 0;
1351 
1352 	pt_config_buffer(buf->cur->table, buf->cur_idx,
1353 			 buf->output_off);
1354 	pt_config(event);
1355 
1356 	return;
1357 
1358 fail_end_stop:
1359 	perf_aux_output_end(&pt->handle, 0);
1360 fail_stop:
1361 	hwc->state = PERF_HES_STOPPED;
1362 }
1363 
1364 static void pt_event_stop(struct perf_event *event, int mode)
1365 {
1366 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1367 
1368 	/*
1369 	 * Protect against the PMI racing with disabling wrmsr,
1370 	 * see comment in intel_pt_interrupt().
1371 	 */
1372 	WRITE_ONCE(pt->handle_nmi, 0);
1373 
1374 	pt_config_stop(event);
1375 
1376 	if (event->hw.state == PERF_HES_STOPPED)
1377 		return;
1378 
1379 	event->hw.state = PERF_HES_STOPPED;
1380 
1381 	if (mode & PERF_EF_UPDATE) {
1382 		struct pt_buffer *buf = perf_get_aux(&pt->handle);
1383 
1384 		if (!buf)
1385 			return;
1386 
1387 		if (WARN_ON_ONCE(pt->handle.event != event))
1388 			return;
1389 
1390 		pt_read_offset(buf);
1391 
1392 		pt_handle_status(pt);
1393 
1394 		pt_update_head(pt);
1395 
1396 		if (buf->snapshot)
1397 			pt->handle.head =
1398 				local_xchg(&buf->data_size,
1399 					   buf->nr_pages << PAGE_SHIFT);
1400 		perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0));
1401 	}
1402 }
1403 
1404 static void pt_event_del(struct perf_event *event, int mode)
1405 {
1406 	pt_event_stop(event, PERF_EF_UPDATE);
1407 }
1408 
1409 static int pt_event_add(struct perf_event *event, int mode)
1410 {
1411 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1412 	struct hw_perf_event *hwc = &event->hw;
1413 	int ret = -EBUSY;
1414 
1415 	if (pt->handle.event)
1416 		goto fail;
1417 
1418 	if (mode & PERF_EF_START) {
1419 		pt_event_start(event, 0);
1420 		ret = -EINVAL;
1421 		if (hwc->state == PERF_HES_STOPPED)
1422 			goto fail;
1423 	} else {
1424 		hwc->state = PERF_HES_STOPPED;
1425 	}
1426 
1427 	ret = 0;
1428 fail:
1429 
1430 	return ret;
1431 }
1432 
1433 static void pt_event_read(struct perf_event *event)
1434 {
1435 }
1436 
1437 static void pt_event_destroy(struct perf_event *event)
1438 {
1439 	pt_addr_filters_fini(event);
1440 	x86_del_exclusive(x86_lbr_exclusive_pt);
1441 }
1442 
1443 static int pt_event_init(struct perf_event *event)
1444 {
1445 	if (event->attr.type != pt_pmu.pmu.type)
1446 		return -ENOENT;
1447 
1448 	if (!pt_event_valid(event))
1449 		return -EINVAL;
1450 
1451 	if (x86_add_exclusive(x86_lbr_exclusive_pt))
1452 		return -EBUSY;
1453 
1454 	if (pt_addr_filters_init(event)) {
1455 		x86_del_exclusive(x86_lbr_exclusive_pt);
1456 		return -ENOMEM;
1457 	}
1458 
1459 	event->destroy = pt_event_destroy;
1460 
1461 	return 0;
1462 }
1463 
1464 void cpu_emergency_stop_pt(void)
1465 {
1466 	struct pt *pt = this_cpu_ptr(&pt_ctx);
1467 
1468 	if (pt->handle.event)
1469 		pt_event_stop(pt->handle.event, PERF_EF_UPDATE);
1470 }
1471 
1472 static __init int pt_init(void)
1473 {
1474 	int ret, cpu, prior_warn = 0;
1475 
1476 	BUILD_BUG_ON(sizeof(struct topa) > PAGE_SIZE);
1477 
1478 	if (!boot_cpu_has(X86_FEATURE_INTEL_PT))
1479 		return -ENODEV;
1480 
1481 	get_online_cpus();
1482 	for_each_online_cpu(cpu) {
1483 		u64 ctl;
1484 
1485 		ret = rdmsrl_safe_on_cpu(cpu, MSR_IA32_RTIT_CTL, &ctl);
1486 		if (!ret && (ctl & RTIT_CTL_TRACEEN))
1487 			prior_warn++;
1488 	}
1489 	put_online_cpus();
1490 
1491 	if (prior_warn) {
1492 		x86_add_exclusive(x86_lbr_exclusive_pt);
1493 		pr_warn("PT is enabled at boot time, doing nothing\n");
1494 
1495 		return -EBUSY;
1496 	}
1497 
1498 	ret = pt_pmu_hw_init();
1499 	if (ret)
1500 		return ret;
1501 
1502 	if (!pt_cap_get(PT_CAP_topa_output)) {
1503 		pr_warn("ToPA output is not supported on this CPU\n");
1504 		return -ENODEV;
1505 	}
1506 
1507 	if (!pt_cap_get(PT_CAP_topa_multiple_entries))
1508 		pt_pmu.pmu.capabilities =
1509 			PERF_PMU_CAP_AUX_NO_SG | PERF_PMU_CAP_AUX_SW_DOUBLEBUF;
1510 
1511 	pt_pmu.pmu.capabilities	|= PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE;
1512 	pt_pmu.pmu.attr_groups		 = pt_attr_groups;
1513 	pt_pmu.pmu.task_ctx_nr		 = perf_sw_context;
1514 	pt_pmu.pmu.event_init		 = pt_event_init;
1515 	pt_pmu.pmu.add			 = pt_event_add;
1516 	pt_pmu.pmu.del			 = pt_event_del;
1517 	pt_pmu.pmu.start		 = pt_event_start;
1518 	pt_pmu.pmu.stop			 = pt_event_stop;
1519 	pt_pmu.pmu.read			 = pt_event_read;
1520 	pt_pmu.pmu.setup_aux		 = pt_buffer_setup_aux;
1521 	pt_pmu.pmu.free_aux		 = pt_buffer_free_aux;
1522 	pt_pmu.pmu.addr_filters_sync     = pt_event_addr_filters_sync;
1523 	pt_pmu.pmu.addr_filters_validate = pt_event_addr_filters_validate;
1524 	pt_pmu.pmu.nr_addr_filters       =
1525 		pt_cap_get(PT_CAP_num_address_ranges);
1526 
1527 	ret = perf_pmu_register(&pt_pmu.pmu, "intel_pt", -1);
1528 
1529 	return ret;
1530 }
1531 arch_initcall(pt_init);
1532