xref: /openbmc/linux/arch/x86/events/intel/lbr.c (revision f79e4d5f)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/perf_event.h>
3 #include <linux/types.h>
4 
5 #include <asm/perf_event.h>
6 #include <asm/msr.h>
7 #include <asm/insn.h>
8 
9 #include "../perf_event.h"
10 
11 enum {
12 	LBR_FORMAT_32		= 0x00,
13 	LBR_FORMAT_LIP		= 0x01,
14 	LBR_FORMAT_EIP		= 0x02,
15 	LBR_FORMAT_EIP_FLAGS	= 0x03,
16 	LBR_FORMAT_EIP_FLAGS2	= 0x04,
17 	LBR_FORMAT_INFO		= 0x05,
18 	LBR_FORMAT_TIME		= 0x06,
19 	LBR_FORMAT_MAX_KNOWN    = LBR_FORMAT_TIME,
20 };
21 
22 static const enum {
23 	LBR_EIP_FLAGS		= 1,
24 	LBR_TSX			= 2,
25 } lbr_desc[LBR_FORMAT_MAX_KNOWN + 1] = {
26 	[LBR_FORMAT_EIP_FLAGS]  = LBR_EIP_FLAGS,
27 	[LBR_FORMAT_EIP_FLAGS2] = LBR_EIP_FLAGS | LBR_TSX,
28 };
29 
30 /*
31  * Intel LBR_SELECT bits
32  * Intel Vol3a, April 2011, Section 16.7 Table 16-10
33  *
34  * Hardware branch filter (not available on all CPUs)
35  */
36 #define LBR_KERNEL_BIT		0 /* do not capture at ring0 */
37 #define LBR_USER_BIT		1 /* do not capture at ring > 0 */
38 #define LBR_JCC_BIT		2 /* do not capture conditional branches */
39 #define LBR_REL_CALL_BIT	3 /* do not capture relative calls */
40 #define LBR_IND_CALL_BIT	4 /* do not capture indirect calls */
41 #define LBR_RETURN_BIT		5 /* do not capture near returns */
42 #define LBR_IND_JMP_BIT		6 /* do not capture indirect jumps */
43 #define LBR_REL_JMP_BIT		7 /* do not capture relative jumps */
44 #define LBR_FAR_BIT		8 /* do not capture far branches */
45 #define LBR_CALL_STACK_BIT	9 /* enable call stack */
46 
47 /*
48  * Following bit only exists in Linux; we mask it out before writing it to
49  * the actual MSR. But it helps the constraint perf code to understand
50  * that this is a separate configuration.
51  */
52 #define LBR_NO_INFO_BIT	       63 /* don't read LBR_INFO. */
53 
54 #define LBR_KERNEL	(1 << LBR_KERNEL_BIT)
55 #define LBR_USER	(1 << LBR_USER_BIT)
56 #define LBR_JCC		(1 << LBR_JCC_BIT)
57 #define LBR_REL_CALL	(1 << LBR_REL_CALL_BIT)
58 #define LBR_IND_CALL	(1 << LBR_IND_CALL_BIT)
59 #define LBR_RETURN	(1 << LBR_RETURN_BIT)
60 #define LBR_REL_JMP	(1 << LBR_REL_JMP_BIT)
61 #define LBR_IND_JMP	(1 << LBR_IND_JMP_BIT)
62 #define LBR_FAR		(1 << LBR_FAR_BIT)
63 #define LBR_CALL_STACK	(1 << LBR_CALL_STACK_BIT)
64 #define LBR_NO_INFO	(1ULL << LBR_NO_INFO_BIT)
65 
66 #define LBR_PLM (LBR_KERNEL | LBR_USER)
67 
68 #define LBR_SEL_MASK	0x3ff	/* valid bits in LBR_SELECT */
69 #define LBR_NOT_SUPP	-1	/* LBR filter not supported */
70 #define LBR_IGN		0	/* ignored */
71 
72 #define LBR_ANY		 \
73 	(LBR_JCC	|\
74 	 LBR_REL_CALL	|\
75 	 LBR_IND_CALL	|\
76 	 LBR_RETURN	|\
77 	 LBR_REL_JMP	|\
78 	 LBR_IND_JMP	|\
79 	 LBR_FAR)
80 
81 #define LBR_FROM_FLAG_MISPRED	BIT_ULL(63)
82 #define LBR_FROM_FLAG_IN_TX	BIT_ULL(62)
83 #define LBR_FROM_FLAG_ABORT	BIT_ULL(61)
84 
85 #define LBR_FROM_SIGNEXT_2MSB	(BIT_ULL(60) | BIT_ULL(59))
86 
87 /*
88  * x86control flow change classification
89  * x86control flow changes include branches, interrupts, traps, faults
90  */
91 enum {
92 	X86_BR_NONE		= 0,      /* unknown */
93 
94 	X86_BR_USER		= 1 << 0, /* branch target is user */
95 	X86_BR_KERNEL		= 1 << 1, /* branch target is kernel */
96 
97 	X86_BR_CALL		= 1 << 2, /* call */
98 	X86_BR_RET		= 1 << 3, /* return */
99 	X86_BR_SYSCALL		= 1 << 4, /* syscall */
100 	X86_BR_SYSRET		= 1 << 5, /* syscall return */
101 	X86_BR_INT		= 1 << 6, /* sw interrupt */
102 	X86_BR_IRET		= 1 << 7, /* return from interrupt */
103 	X86_BR_JCC		= 1 << 8, /* conditional */
104 	X86_BR_JMP		= 1 << 9, /* jump */
105 	X86_BR_IRQ		= 1 << 10,/* hw interrupt or trap or fault */
106 	X86_BR_IND_CALL		= 1 << 11,/* indirect calls */
107 	X86_BR_ABORT		= 1 << 12,/* transaction abort */
108 	X86_BR_IN_TX		= 1 << 13,/* in transaction */
109 	X86_BR_NO_TX		= 1 << 14,/* not in transaction */
110 	X86_BR_ZERO_CALL	= 1 << 15,/* zero length call */
111 	X86_BR_CALL_STACK	= 1 << 16,/* call stack */
112 	X86_BR_IND_JMP		= 1 << 17,/* indirect jump */
113 
114 	X86_BR_TYPE_SAVE	= 1 << 18,/* indicate to save branch type */
115 
116 };
117 
118 #define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL)
119 #define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX)
120 
121 #define X86_BR_ANY       \
122 	(X86_BR_CALL    |\
123 	 X86_BR_RET     |\
124 	 X86_BR_SYSCALL |\
125 	 X86_BR_SYSRET  |\
126 	 X86_BR_INT     |\
127 	 X86_BR_IRET    |\
128 	 X86_BR_JCC     |\
129 	 X86_BR_JMP	 |\
130 	 X86_BR_IRQ	 |\
131 	 X86_BR_ABORT	 |\
132 	 X86_BR_IND_CALL |\
133 	 X86_BR_IND_JMP  |\
134 	 X86_BR_ZERO_CALL)
135 
136 #define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY)
137 
138 #define X86_BR_ANY_CALL		 \
139 	(X86_BR_CALL		|\
140 	 X86_BR_IND_CALL	|\
141 	 X86_BR_ZERO_CALL	|\
142 	 X86_BR_SYSCALL		|\
143 	 X86_BR_IRQ		|\
144 	 X86_BR_INT)
145 
146 static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);
147 
148 /*
149  * We only support LBR implementations that have FREEZE_LBRS_ON_PMI
150  * otherwise it becomes near impossible to get a reliable stack.
151  */
152 
153 static void __intel_pmu_lbr_enable(bool pmi)
154 {
155 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
156 	u64 debugctl, lbr_select = 0, orig_debugctl;
157 
158 	/*
159 	 * No need to unfreeze manually, as v4 can do that as part
160 	 * of the GLOBAL_STATUS ack.
161 	 */
162 	if (pmi && x86_pmu.version >= 4)
163 		return;
164 
165 	/*
166 	 * No need to reprogram LBR_SELECT in a PMI, as it
167 	 * did not change.
168 	 */
169 	if (cpuc->lbr_sel)
170 		lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask;
171 	if (!pmi && cpuc->lbr_sel)
172 		wrmsrl(MSR_LBR_SELECT, lbr_select);
173 
174 	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
175 	orig_debugctl = debugctl;
176 	debugctl |= DEBUGCTLMSR_LBR;
177 	/*
178 	 * LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
179 	 * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
180 	 * may cause superfluous increase/decrease of LBR_TOS.
181 	 */
182 	if (!(lbr_select & LBR_CALL_STACK))
183 		debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
184 	if (orig_debugctl != debugctl)
185 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
186 }
187 
188 static void __intel_pmu_lbr_disable(void)
189 {
190 	u64 debugctl;
191 
192 	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
193 	debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI);
194 	wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
195 }
196 
197 static void intel_pmu_lbr_reset_32(void)
198 {
199 	int i;
200 
201 	for (i = 0; i < x86_pmu.lbr_nr; i++)
202 		wrmsrl(x86_pmu.lbr_from + i, 0);
203 }
204 
205 static void intel_pmu_lbr_reset_64(void)
206 {
207 	int i;
208 
209 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
210 		wrmsrl(x86_pmu.lbr_from + i, 0);
211 		wrmsrl(x86_pmu.lbr_to   + i, 0);
212 		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
213 			wrmsrl(MSR_LBR_INFO_0 + i, 0);
214 	}
215 }
216 
217 void intel_pmu_lbr_reset(void)
218 {
219 	if (!x86_pmu.lbr_nr)
220 		return;
221 
222 	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
223 		intel_pmu_lbr_reset_32();
224 	else
225 		intel_pmu_lbr_reset_64();
226 }
227 
228 /*
229  * TOS = most recently recorded branch
230  */
231 static inline u64 intel_pmu_lbr_tos(void)
232 {
233 	u64 tos;
234 
235 	rdmsrl(x86_pmu.lbr_tos, tos);
236 	return tos;
237 }
238 
239 enum {
240 	LBR_NONE,
241 	LBR_VALID,
242 };
243 
244 /*
245  * For formats with LBR_TSX flags (e.g. LBR_FORMAT_EIP_FLAGS2), bits 61:62 in
246  * MSR_LAST_BRANCH_FROM_x are the TSX flags when TSX is supported, but when
247  * TSX is not supported they have no consistent behavior:
248  *
249  *   - For wrmsr(), bits 61:62 are considered part of the sign extension.
250  *   - For HW updates (branch captures) bits 61:62 are always OFF and are not
251  *     part of the sign extension.
252  *
253  * Therefore, if:
254  *
255  *   1) LBR has TSX format
256  *   2) CPU has no TSX support enabled
257  *
258  * ... then any value passed to wrmsr() must be sign extended to 63 bits and any
259  * value from rdmsr() must be converted to have a 61 bits sign extension,
260  * ignoring the TSX flags.
261  */
262 static inline bool lbr_from_signext_quirk_needed(void)
263 {
264 	int lbr_format = x86_pmu.intel_cap.lbr_format;
265 	bool tsx_support = boot_cpu_has(X86_FEATURE_HLE) ||
266 			   boot_cpu_has(X86_FEATURE_RTM);
267 
268 	return !tsx_support && (lbr_desc[lbr_format] & LBR_TSX);
269 }
270 
271 DEFINE_STATIC_KEY_FALSE(lbr_from_quirk_key);
272 
273 /* If quirk is enabled, ensure sign extension is 63 bits: */
274 inline u64 lbr_from_signext_quirk_wr(u64 val)
275 {
276 	if (static_branch_unlikely(&lbr_from_quirk_key)) {
277 		/*
278 		 * Sign extend into bits 61:62 while preserving bit 63.
279 		 *
280 		 * Quirk is enabled when TSX is disabled. Therefore TSX bits
281 		 * in val are always OFF and must be changed to be sign
282 		 * extension bits. Since bits 59:60 are guaranteed to be
283 		 * part of the sign extension bits, we can just copy them
284 		 * to 61:62.
285 		 */
286 		val |= (LBR_FROM_SIGNEXT_2MSB & val) << 2;
287 	}
288 	return val;
289 }
290 
291 /*
292  * If quirk is needed, ensure sign extension is 61 bits:
293  */
294 static u64 lbr_from_signext_quirk_rd(u64 val)
295 {
296 	if (static_branch_unlikely(&lbr_from_quirk_key)) {
297 		/*
298 		 * Quirk is on when TSX is not enabled. Therefore TSX
299 		 * flags must be read as OFF.
300 		 */
301 		val &= ~(LBR_FROM_FLAG_IN_TX | LBR_FROM_FLAG_ABORT);
302 	}
303 	return val;
304 }
305 
306 static inline void wrlbr_from(unsigned int idx, u64 val)
307 {
308 	val = lbr_from_signext_quirk_wr(val);
309 	wrmsrl(x86_pmu.lbr_from + idx, val);
310 }
311 
312 static inline void wrlbr_to(unsigned int idx, u64 val)
313 {
314 	wrmsrl(x86_pmu.lbr_to + idx, val);
315 }
316 
317 static inline u64 rdlbr_from(unsigned int idx)
318 {
319 	u64 val;
320 
321 	rdmsrl(x86_pmu.lbr_from + idx, val);
322 
323 	return lbr_from_signext_quirk_rd(val);
324 }
325 
326 static inline u64 rdlbr_to(unsigned int idx)
327 {
328 	u64 val;
329 
330 	rdmsrl(x86_pmu.lbr_to + idx, val);
331 
332 	return val;
333 }
334 
335 static void __intel_pmu_lbr_restore(struct x86_perf_task_context *task_ctx)
336 {
337 	int i;
338 	unsigned lbr_idx, mask;
339 	u64 tos;
340 
341 	if (task_ctx->lbr_callstack_users == 0 ||
342 	    task_ctx->lbr_stack_state == LBR_NONE) {
343 		intel_pmu_lbr_reset();
344 		return;
345 	}
346 
347 	mask = x86_pmu.lbr_nr - 1;
348 	tos = task_ctx->tos;
349 	for (i = 0; i < tos; i++) {
350 		lbr_idx = (tos - i) & mask;
351 		wrlbr_from(lbr_idx, task_ctx->lbr_from[i]);
352 		wrlbr_to  (lbr_idx, task_ctx->lbr_to[i]);
353 
354 		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
355 			wrmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
356 	}
357 	wrmsrl(x86_pmu.lbr_tos, tos);
358 	task_ctx->lbr_stack_state = LBR_NONE;
359 }
360 
361 static void __intel_pmu_lbr_save(struct x86_perf_task_context *task_ctx)
362 {
363 	unsigned lbr_idx, mask;
364 	u64 tos;
365 	int i;
366 
367 	if (task_ctx->lbr_callstack_users == 0) {
368 		task_ctx->lbr_stack_state = LBR_NONE;
369 		return;
370 	}
371 
372 	mask = x86_pmu.lbr_nr - 1;
373 	tos = intel_pmu_lbr_tos();
374 	for (i = 0; i < tos; i++) {
375 		lbr_idx = (tos - i) & mask;
376 		task_ctx->lbr_from[i] = rdlbr_from(lbr_idx);
377 		task_ctx->lbr_to[i]   = rdlbr_to(lbr_idx);
378 		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
379 			rdmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
380 	}
381 	task_ctx->tos = tos;
382 	task_ctx->lbr_stack_state = LBR_VALID;
383 }
384 
385 void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in)
386 {
387 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
388 	struct x86_perf_task_context *task_ctx;
389 
390 	if (!cpuc->lbr_users)
391 		return;
392 
393 	/*
394 	 * If LBR callstack feature is enabled and the stack was saved when
395 	 * the task was scheduled out, restore the stack. Otherwise flush
396 	 * the LBR stack.
397 	 */
398 	task_ctx = ctx ? ctx->task_ctx_data : NULL;
399 	if (task_ctx) {
400 		if (sched_in)
401 			__intel_pmu_lbr_restore(task_ctx);
402 		else
403 			__intel_pmu_lbr_save(task_ctx);
404 		return;
405 	}
406 
407 	/*
408 	 * Since a context switch can flip the address space and LBR entries
409 	 * are not tagged with an identifier, we need to wipe the LBR, even for
410 	 * per-cpu events. You simply cannot resolve the branches from the old
411 	 * address space.
412 	 */
413 	if (sched_in)
414 		intel_pmu_lbr_reset();
415 }
416 
417 static inline bool branch_user_callstack(unsigned br_sel)
418 {
419 	return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
420 }
421 
422 void intel_pmu_lbr_add(struct perf_event *event)
423 {
424 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
425 	struct x86_perf_task_context *task_ctx;
426 
427 	if (!x86_pmu.lbr_nr)
428 		return;
429 
430 	cpuc->br_sel = event->hw.branch_reg.reg;
431 
432 	if (branch_user_callstack(cpuc->br_sel) && event->ctx->task_ctx_data) {
433 		task_ctx = event->ctx->task_ctx_data;
434 		task_ctx->lbr_callstack_users++;
435 	}
436 
437 	/*
438 	 * Request pmu::sched_task() callback, which will fire inside the
439 	 * regular perf event scheduling, so that call will:
440 	 *
441 	 *  - restore or wipe; when LBR-callstack,
442 	 *  - wipe; otherwise,
443 	 *
444 	 * when this is from __perf_event_task_sched_in().
445 	 *
446 	 * However, if this is from perf_install_in_context(), no such callback
447 	 * will follow and we'll need to reset the LBR here if this is the
448 	 * first LBR event.
449 	 *
450 	 * The problem is, we cannot tell these cases apart... but we can
451 	 * exclude the biggest chunk of cases by looking at
452 	 * event->total_time_running. An event that has accrued runtime cannot
453 	 * be 'new'. Conversely, a new event can get installed through the
454 	 * context switch path for the first time.
455 	 */
456 	perf_sched_cb_inc(event->ctx->pmu);
457 	if (!cpuc->lbr_users++ && !event->total_time_running)
458 		intel_pmu_lbr_reset();
459 }
460 
461 void intel_pmu_lbr_del(struct perf_event *event)
462 {
463 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
464 	struct x86_perf_task_context *task_ctx;
465 
466 	if (!x86_pmu.lbr_nr)
467 		return;
468 
469 	if (branch_user_callstack(cpuc->br_sel) &&
470 	    event->ctx->task_ctx_data) {
471 		task_ctx = event->ctx->task_ctx_data;
472 		task_ctx->lbr_callstack_users--;
473 	}
474 
475 	cpuc->lbr_users--;
476 	WARN_ON_ONCE(cpuc->lbr_users < 0);
477 	perf_sched_cb_dec(event->ctx->pmu);
478 }
479 
480 void intel_pmu_lbr_enable_all(bool pmi)
481 {
482 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
483 
484 	if (cpuc->lbr_users)
485 		__intel_pmu_lbr_enable(pmi);
486 }
487 
488 void intel_pmu_lbr_disable_all(void)
489 {
490 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
491 
492 	if (cpuc->lbr_users)
493 		__intel_pmu_lbr_disable();
494 }
495 
496 static void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
497 {
498 	unsigned long mask = x86_pmu.lbr_nr - 1;
499 	u64 tos = intel_pmu_lbr_tos();
500 	int i;
501 
502 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
503 		unsigned long lbr_idx = (tos - i) & mask;
504 		union {
505 			struct {
506 				u32 from;
507 				u32 to;
508 			};
509 			u64     lbr;
510 		} msr_lastbranch;
511 
512 		rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);
513 
514 		cpuc->lbr_entries[i].from	= msr_lastbranch.from;
515 		cpuc->lbr_entries[i].to		= msr_lastbranch.to;
516 		cpuc->lbr_entries[i].mispred	= 0;
517 		cpuc->lbr_entries[i].predicted	= 0;
518 		cpuc->lbr_entries[i].in_tx	= 0;
519 		cpuc->lbr_entries[i].abort	= 0;
520 		cpuc->lbr_entries[i].cycles	= 0;
521 		cpuc->lbr_entries[i].type	= 0;
522 		cpuc->lbr_entries[i].reserved	= 0;
523 	}
524 	cpuc->lbr_stack.nr = i;
525 }
526 
527 /*
528  * Due to lack of segmentation in Linux the effective address (offset)
529  * is the same as the linear address, allowing us to merge the LIP and EIP
530  * LBR formats.
531  */
532 static void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
533 {
534 	bool need_info = false;
535 	unsigned long mask = x86_pmu.lbr_nr - 1;
536 	int lbr_format = x86_pmu.intel_cap.lbr_format;
537 	u64 tos = intel_pmu_lbr_tos();
538 	int i;
539 	int out = 0;
540 	int num = x86_pmu.lbr_nr;
541 
542 	if (cpuc->lbr_sel) {
543 		need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO);
544 		if (cpuc->lbr_sel->config & LBR_CALL_STACK)
545 			num = tos;
546 	}
547 
548 	for (i = 0; i < num; i++) {
549 		unsigned long lbr_idx = (tos - i) & mask;
550 		u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
551 		int skip = 0;
552 		u16 cycles = 0;
553 		int lbr_flags = lbr_desc[lbr_format];
554 
555 		from = rdlbr_from(lbr_idx);
556 		to   = rdlbr_to(lbr_idx);
557 
558 		if (lbr_format == LBR_FORMAT_INFO && need_info) {
559 			u64 info;
560 
561 			rdmsrl(MSR_LBR_INFO_0 + lbr_idx, info);
562 			mis = !!(info & LBR_INFO_MISPRED);
563 			pred = !mis;
564 			in_tx = !!(info & LBR_INFO_IN_TX);
565 			abort = !!(info & LBR_INFO_ABORT);
566 			cycles = (info & LBR_INFO_CYCLES);
567 		}
568 
569 		if (lbr_format == LBR_FORMAT_TIME) {
570 			mis = !!(from & LBR_FROM_FLAG_MISPRED);
571 			pred = !mis;
572 			skip = 1;
573 			cycles = ((to >> 48) & LBR_INFO_CYCLES);
574 
575 			to = (u64)((((s64)to) << 16) >> 16);
576 		}
577 
578 		if (lbr_flags & LBR_EIP_FLAGS) {
579 			mis = !!(from & LBR_FROM_FLAG_MISPRED);
580 			pred = !mis;
581 			skip = 1;
582 		}
583 		if (lbr_flags & LBR_TSX) {
584 			in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
585 			abort = !!(from & LBR_FROM_FLAG_ABORT);
586 			skip = 3;
587 		}
588 		from = (u64)((((s64)from) << skip) >> skip);
589 
590 		/*
591 		 * Some CPUs report duplicated abort records,
592 		 * with the second entry not having an abort bit set.
593 		 * Skip them here. This loop runs backwards,
594 		 * so we need to undo the previous record.
595 		 * If the abort just happened outside the window
596 		 * the extra entry cannot be removed.
597 		 */
598 		if (abort && x86_pmu.lbr_double_abort && out > 0)
599 			out--;
600 
601 		cpuc->lbr_entries[out].from	 = from;
602 		cpuc->lbr_entries[out].to	 = to;
603 		cpuc->lbr_entries[out].mispred	 = mis;
604 		cpuc->lbr_entries[out].predicted = pred;
605 		cpuc->lbr_entries[out].in_tx	 = in_tx;
606 		cpuc->lbr_entries[out].abort	 = abort;
607 		cpuc->lbr_entries[out].cycles	 = cycles;
608 		cpuc->lbr_entries[out].type	 = 0;
609 		cpuc->lbr_entries[out].reserved	 = 0;
610 		out++;
611 	}
612 	cpuc->lbr_stack.nr = out;
613 }
614 
615 void intel_pmu_lbr_read(void)
616 {
617 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
618 
619 	if (!cpuc->lbr_users)
620 		return;
621 
622 	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
623 		intel_pmu_lbr_read_32(cpuc);
624 	else
625 		intel_pmu_lbr_read_64(cpuc);
626 
627 	intel_pmu_lbr_filter(cpuc);
628 }
629 
630 /*
631  * SW filter is used:
632  * - in case there is no HW filter
633  * - in case the HW filter has errata or limitations
634  */
635 static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
636 {
637 	u64 br_type = event->attr.branch_sample_type;
638 	int mask = 0;
639 
640 	if (br_type & PERF_SAMPLE_BRANCH_USER)
641 		mask |= X86_BR_USER;
642 
643 	if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
644 		mask |= X86_BR_KERNEL;
645 
646 	/* we ignore BRANCH_HV here */
647 
648 	if (br_type & PERF_SAMPLE_BRANCH_ANY)
649 		mask |= X86_BR_ANY;
650 
651 	if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
652 		mask |= X86_BR_ANY_CALL;
653 
654 	if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
655 		mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;
656 
657 	if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
658 		mask |= X86_BR_IND_CALL;
659 
660 	if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
661 		mask |= X86_BR_ABORT;
662 
663 	if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
664 		mask |= X86_BR_IN_TX;
665 
666 	if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
667 		mask |= X86_BR_NO_TX;
668 
669 	if (br_type & PERF_SAMPLE_BRANCH_COND)
670 		mask |= X86_BR_JCC;
671 
672 	if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
673 		if (!x86_pmu_has_lbr_callstack())
674 			return -EOPNOTSUPP;
675 		if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
676 			return -EINVAL;
677 		mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
678 			X86_BR_CALL_STACK;
679 	}
680 
681 	if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP)
682 		mask |= X86_BR_IND_JMP;
683 
684 	if (br_type & PERF_SAMPLE_BRANCH_CALL)
685 		mask |= X86_BR_CALL | X86_BR_ZERO_CALL;
686 
687 	if (br_type & PERF_SAMPLE_BRANCH_TYPE_SAVE)
688 		mask |= X86_BR_TYPE_SAVE;
689 
690 	/*
691 	 * stash actual user request into reg, it may
692 	 * be used by fixup code for some CPU
693 	 */
694 	event->hw.branch_reg.reg = mask;
695 	return 0;
696 }
697 
698 /*
699  * setup the HW LBR filter
700  * Used only when available, may not be enough to disambiguate
701  * all branches, may need the help of the SW filter
702  */
703 static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
704 {
705 	struct hw_perf_event_extra *reg;
706 	u64 br_type = event->attr.branch_sample_type;
707 	u64 mask = 0, v;
708 	int i;
709 
710 	for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) {
711 		if (!(br_type & (1ULL << i)))
712 			continue;
713 
714 		v = x86_pmu.lbr_sel_map[i];
715 		if (v == LBR_NOT_SUPP)
716 			return -EOPNOTSUPP;
717 
718 		if (v != LBR_IGN)
719 			mask |= v;
720 	}
721 
722 	reg = &event->hw.branch_reg;
723 	reg->idx = EXTRA_REG_LBR;
724 
725 	/*
726 	 * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
727 	 * in suppress mode. So LBR_SELECT should be set to
728 	 * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
729 	 * But the 10th bit LBR_CALL_STACK does not operate
730 	 * in suppress mode.
731 	 */
732 	reg->config = mask ^ (x86_pmu.lbr_sel_mask & ~LBR_CALL_STACK);
733 
734 	if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) &&
735 	    (br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) &&
736 	    (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO))
737 		reg->config |= LBR_NO_INFO;
738 
739 	return 0;
740 }
741 
742 int intel_pmu_setup_lbr_filter(struct perf_event *event)
743 {
744 	int ret = 0;
745 
746 	/*
747 	 * no LBR on this PMU
748 	 */
749 	if (!x86_pmu.lbr_nr)
750 		return -EOPNOTSUPP;
751 
752 	/*
753 	 * setup SW LBR filter
754 	 */
755 	ret = intel_pmu_setup_sw_lbr_filter(event);
756 	if (ret)
757 		return ret;
758 
759 	/*
760 	 * setup HW LBR filter, if any
761 	 */
762 	if (x86_pmu.lbr_sel_map)
763 		ret = intel_pmu_setup_hw_lbr_filter(event);
764 
765 	return ret;
766 }
767 
768 /*
769  * return the type of control flow change at address "from"
770  * instruction is not necessarily a branch (in case of interrupt).
771  *
772  * The branch type returned also includes the priv level of the
773  * target of the control flow change (X86_BR_USER, X86_BR_KERNEL).
774  *
775  * If a branch type is unknown OR the instruction cannot be
776  * decoded (e.g., text page not present), then X86_BR_NONE is
777  * returned.
778  */
779 static int branch_type(unsigned long from, unsigned long to, int abort)
780 {
781 	struct insn insn;
782 	void *addr;
783 	int bytes_read, bytes_left;
784 	int ret = X86_BR_NONE;
785 	int ext, to_plm, from_plm;
786 	u8 buf[MAX_INSN_SIZE];
787 	int is64 = 0;
788 
789 	to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
790 	from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER;
791 
792 	/*
793 	 * maybe zero if lbr did not fill up after a reset by the time
794 	 * we get a PMU interrupt
795 	 */
796 	if (from == 0 || to == 0)
797 		return X86_BR_NONE;
798 
799 	if (abort)
800 		return X86_BR_ABORT | to_plm;
801 
802 	if (from_plm == X86_BR_USER) {
803 		/*
804 		 * can happen if measuring at the user level only
805 		 * and we interrupt in a kernel thread, e.g., idle.
806 		 */
807 		if (!current->mm)
808 			return X86_BR_NONE;
809 
810 		/* may fail if text not present */
811 		bytes_left = copy_from_user_nmi(buf, (void __user *)from,
812 						MAX_INSN_SIZE);
813 		bytes_read = MAX_INSN_SIZE - bytes_left;
814 		if (!bytes_read)
815 			return X86_BR_NONE;
816 
817 		addr = buf;
818 	} else {
819 		/*
820 		 * The LBR logs any address in the IP, even if the IP just
821 		 * faulted. This means userspace can control the from address.
822 		 * Ensure we don't blindy read any address by validating it is
823 		 * a known text address.
824 		 */
825 		if (kernel_text_address(from)) {
826 			addr = (void *)from;
827 			/*
828 			 * Assume we can get the maximum possible size
829 			 * when grabbing kernel data.  This is not
830 			 * _strictly_ true since we could possibly be
831 			 * executing up next to a memory hole, but
832 			 * it is very unlikely to be a problem.
833 			 */
834 			bytes_read = MAX_INSN_SIZE;
835 		} else {
836 			return X86_BR_NONE;
837 		}
838 	}
839 
840 	/*
841 	 * decoder needs to know the ABI especially
842 	 * on 64-bit systems running 32-bit apps
843 	 */
844 #ifdef CONFIG_X86_64
845 	is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32);
846 #endif
847 	insn_init(&insn, addr, bytes_read, is64);
848 	insn_get_opcode(&insn);
849 	if (!insn.opcode.got)
850 		return X86_BR_ABORT;
851 
852 	switch (insn.opcode.bytes[0]) {
853 	case 0xf:
854 		switch (insn.opcode.bytes[1]) {
855 		case 0x05: /* syscall */
856 		case 0x34: /* sysenter */
857 			ret = X86_BR_SYSCALL;
858 			break;
859 		case 0x07: /* sysret */
860 		case 0x35: /* sysexit */
861 			ret = X86_BR_SYSRET;
862 			break;
863 		case 0x80 ... 0x8f: /* conditional */
864 			ret = X86_BR_JCC;
865 			break;
866 		default:
867 			ret = X86_BR_NONE;
868 		}
869 		break;
870 	case 0x70 ... 0x7f: /* conditional */
871 		ret = X86_BR_JCC;
872 		break;
873 	case 0xc2: /* near ret */
874 	case 0xc3: /* near ret */
875 	case 0xca: /* far ret */
876 	case 0xcb: /* far ret */
877 		ret = X86_BR_RET;
878 		break;
879 	case 0xcf: /* iret */
880 		ret = X86_BR_IRET;
881 		break;
882 	case 0xcc ... 0xce: /* int */
883 		ret = X86_BR_INT;
884 		break;
885 	case 0xe8: /* call near rel */
886 		insn_get_immediate(&insn);
887 		if (insn.immediate1.value == 0) {
888 			/* zero length call */
889 			ret = X86_BR_ZERO_CALL;
890 			break;
891 		}
892 	case 0x9a: /* call far absolute */
893 		ret = X86_BR_CALL;
894 		break;
895 	case 0xe0 ... 0xe3: /* loop jmp */
896 		ret = X86_BR_JCC;
897 		break;
898 	case 0xe9 ... 0xeb: /* jmp */
899 		ret = X86_BR_JMP;
900 		break;
901 	case 0xff: /* call near absolute, call far absolute ind */
902 		insn_get_modrm(&insn);
903 		ext = (insn.modrm.bytes[0] >> 3) & 0x7;
904 		switch (ext) {
905 		case 2: /* near ind call */
906 		case 3: /* far ind call */
907 			ret = X86_BR_IND_CALL;
908 			break;
909 		case 4:
910 		case 5:
911 			ret = X86_BR_IND_JMP;
912 			break;
913 		}
914 		break;
915 	default:
916 		ret = X86_BR_NONE;
917 	}
918 	/*
919 	 * interrupts, traps, faults (and thus ring transition) may
920 	 * occur on any instructions. Thus, to classify them correctly,
921 	 * we need to first look at the from and to priv levels. If they
922 	 * are different and to is in the kernel, then it indicates
923 	 * a ring transition. If the from instruction is not a ring
924 	 * transition instr (syscall, systenter, int), then it means
925 	 * it was a irq, trap or fault.
926 	 *
927 	 * we have no way of detecting kernel to kernel faults.
928 	 */
929 	if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL
930 	    && ret != X86_BR_SYSCALL && ret != X86_BR_INT)
931 		ret = X86_BR_IRQ;
932 
933 	/*
934 	 * branch priv level determined by target as
935 	 * is done by HW when LBR_SELECT is implemented
936 	 */
937 	if (ret != X86_BR_NONE)
938 		ret |= to_plm;
939 
940 	return ret;
941 }
942 
943 #define X86_BR_TYPE_MAP_MAX	16
944 
945 static int branch_map[X86_BR_TYPE_MAP_MAX] = {
946 	PERF_BR_CALL,		/* X86_BR_CALL */
947 	PERF_BR_RET,		/* X86_BR_RET */
948 	PERF_BR_SYSCALL,	/* X86_BR_SYSCALL */
949 	PERF_BR_SYSRET,		/* X86_BR_SYSRET */
950 	PERF_BR_UNKNOWN,	/* X86_BR_INT */
951 	PERF_BR_UNKNOWN,	/* X86_BR_IRET */
952 	PERF_BR_COND,		/* X86_BR_JCC */
953 	PERF_BR_UNCOND,		/* X86_BR_JMP */
954 	PERF_BR_UNKNOWN,	/* X86_BR_IRQ */
955 	PERF_BR_IND_CALL,	/* X86_BR_IND_CALL */
956 	PERF_BR_UNKNOWN,	/* X86_BR_ABORT */
957 	PERF_BR_UNKNOWN,	/* X86_BR_IN_TX */
958 	PERF_BR_UNKNOWN,	/* X86_BR_NO_TX */
959 	PERF_BR_CALL,		/* X86_BR_ZERO_CALL */
960 	PERF_BR_UNKNOWN,	/* X86_BR_CALL_STACK */
961 	PERF_BR_IND,		/* X86_BR_IND_JMP */
962 };
963 
964 static int
965 common_branch_type(int type)
966 {
967 	int i;
968 
969 	type >>= 2; /* skip X86_BR_USER and X86_BR_KERNEL */
970 
971 	if (type) {
972 		i = __ffs(type);
973 		if (i < X86_BR_TYPE_MAP_MAX)
974 			return branch_map[i];
975 	}
976 
977 	return PERF_BR_UNKNOWN;
978 }
979 
980 /*
981  * implement actual branch filter based on user demand.
982  * Hardware may not exactly satisfy that request, thus
983  * we need to inspect opcodes. Mismatched branches are
984  * discarded. Therefore, the number of branches returned
985  * in PERF_SAMPLE_BRANCH_STACK sample may vary.
986  */
987 static void
988 intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
989 {
990 	u64 from, to;
991 	int br_sel = cpuc->br_sel;
992 	int i, j, type;
993 	bool compress = false;
994 
995 	/* if sampling all branches, then nothing to filter */
996 	if (((br_sel & X86_BR_ALL) == X86_BR_ALL) &&
997 	    ((br_sel & X86_BR_TYPE_SAVE) != X86_BR_TYPE_SAVE))
998 		return;
999 
1000 	for (i = 0; i < cpuc->lbr_stack.nr; i++) {
1001 
1002 		from = cpuc->lbr_entries[i].from;
1003 		to = cpuc->lbr_entries[i].to;
1004 
1005 		type = branch_type(from, to, cpuc->lbr_entries[i].abort);
1006 		if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
1007 			if (cpuc->lbr_entries[i].in_tx)
1008 				type |= X86_BR_IN_TX;
1009 			else
1010 				type |= X86_BR_NO_TX;
1011 		}
1012 
1013 		/* if type does not correspond, then discard */
1014 		if (type == X86_BR_NONE || (br_sel & type) != type) {
1015 			cpuc->lbr_entries[i].from = 0;
1016 			compress = true;
1017 		}
1018 
1019 		if ((br_sel & X86_BR_TYPE_SAVE) == X86_BR_TYPE_SAVE)
1020 			cpuc->lbr_entries[i].type = common_branch_type(type);
1021 	}
1022 
1023 	if (!compress)
1024 		return;
1025 
1026 	/* remove all entries with from=0 */
1027 	for (i = 0; i < cpuc->lbr_stack.nr; ) {
1028 		if (!cpuc->lbr_entries[i].from) {
1029 			j = i;
1030 			while (++j < cpuc->lbr_stack.nr)
1031 				cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
1032 			cpuc->lbr_stack.nr--;
1033 			if (!cpuc->lbr_entries[i].from)
1034 				continue;
1035 		}
1036 		i++;
1037 	}
1038 }
1039 
1040 /*
1041  * Map interface branch filters onto LBR filters
1042  */
1043 static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1044 	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
1045 	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
1046 	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
1047 	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
1048 	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_REL_JMP
1049 						| LBR_IND_JMP | LBR_FAR,
1050 	/*
1051 	 * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
1052 	 */
1053 	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
1054 	 LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
1055 	/*
1056 	 * NHM/WSM erratum: must include IND_JMP to capture IND_CALL
1057 	 */
1058 	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
1059 	[PERF_SAMPLE_BRANCH_COND_SHIFT]     = LBR_JCC,
1060 	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
1061 };
1062 
1063 static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1064 	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
1065 	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
1066 	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
1067 	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
1068 	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_FAR,
1069 	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
1070 						| LBR_FAR,
1071 	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]	= LBR_IND_CALL,
1072 	[PERF_SAMPLE_BRANCH_COND_SHIFT]		= LBR_JCC,
1073 	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]	= LBR_IND_JMP,
1074 	[PERF_SAMPLE_BRANCH_CALL_SHIFT]		= LBR_REL_CALL,
1075 };
1076 
1077 static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1078 	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
1079 	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
1080 	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
1081 	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
1082 	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_FAR,
1083 	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
1084 						| LBR_FAR,
1085 	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]	= LBR_IND_CALL,
1086 	[PERF_SAMPLE_BRANCH_COND_SHIFT]		= LBR_JCC,
1087 	[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
1088 						| LBR_RETURN | LBR_CALL_STACK,
1089 	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]	= LBR_IND_JMP,
1090 	[PERF_SAMPLE_BRANCH_CALL_SHIFT]		= LBR_REL_CALL,
1091 };
1092 
1093 /* core */
1094 void __init intel_pmu_lbr_init_core(void)
1095 {
1096 	x86_pmu.lbr_nr     = 4;
1097 	x86_pmu.lbr_tos    = MSR_LBR_TOS;
1098 	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
1099 	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1100 
1101 	/*
1102 	 * SW branch filter usage:
1103 	 * - compensate for lack of HW filter
1104 	 */
1105 }
1106 
1107 /* nehalem/westmere */
1108 void __init intel_pmu_lbr_init_nhm(void)
1109 {
1110 	x86_pmu.lbr_nr     = 16;
1111 	x86_pmu.lbr_tos    = MSR_LBR_TOS;
1112 	x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
1113 	x86_pmu.lbr_to     = MSR_LBR_NHM_TO;
1114 
1115 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1116 	x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;
1117 
1118 	/*
1119 	 * SW branch filter usage:
1120 	 * - workaround LBR_SEL errata (see above)
1121 	 * - support syscall, sysret capture.
1122 	 *   That requires LBR_FAR but that means far
1123 	 *   jmp need to be filtered out
1124 	 */
1125 }
1126 
1127 /* sandy bridge */
1128 void __init intel_pmu_lbr_init_snb(void)
1129 {
1130 	x86_pmu.lbr_nr	 = 16;
1131 	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
1132 	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1133 	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
1134 
1135 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1136 	x86_pmu.lbr_sel_map  = snb_lbr_sel_map;
1137 
1138 	/*
1139 	 * SW branch filter usage:
1140 	 * - support syscall, sysret capture.
1141 	 *   That requires LBR_FAR but that means far
1142 	 *   jmp need to be filtered out
1143 	 */
1144 }
1145 
1146 /* haswell */
1147 void intel_pmu_lbr_init_hsw(void)
1148 {
1149 	x86_pmu.lbr_nr	 = 16;
1150 	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
1151 	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1152 	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
1153 
1154 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1155 	x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;
1156 
1157 	if (lbr_from_signext_quirk_needed())
1158 		static_branch_enable(&lbr_from_quirk_key);
1159 }
1160 
1161 /* skylake */
1162 __init void intel_pmu_lbr_init_skl(void)
1163 {
1164 	x86_pmu.lbr_nr	 = 32;
1165 	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
1166 	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1167 	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
1168 
1169 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1170 	x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;
1171 
1172 	/*
1173 	 * SW branch filter usage:
1174 	 * - support syscall, sysret capture.
1175 	 *   That requires LBR_FAR but that means far
1176 	 *   jmp need to be filtered out
1177 	 */
1178 }
1179 
1180 /* atom */
1181 void __init intel_pmu_lbr_init_atom(void)
1182 {
1183 	/*
1184 	 * only models starting at stepping 10 seems
1185 	 * to have an operational LBR which can freeze
1186 	 * on PMU interrupt
1187 	 */
1188 	if (boot_cpu_data.x86_model == 28
1189 	    && boot_cpu_data.x86_stepping < 10) {
1190 		pr_cont("LBR disabled due to erratum");
1191 		return;
1192 	}
1193 
1194 	x86_pmu.lbr_nr	   = 8;
1195 	x86_pmu.lbr_tos    = MSR_LBR_TOS;
1196 	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
1197 	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1198 
1199 	/*
1200 	 * SW branch filter usage:
1201 	 * - compensate for lack of HW filter
1202 	 */
1203 }
1204 
1205 /* slm */
1206 void __init intel_pmu_lbr_init_slm(void)
1207 {
1208 	x86_pmu.lbr_nr	   = 8;
1209 	x86_pmu.lbr_tos    = MSR_LBR_TOS;
1210 	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
1211 	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1212 
1213 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1214 	x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;
1215 
1216 	/*
1217 	 * SW branch filter usage:
1218 	 * - compensate for lack of HW filter
1219 	 */
1220 	pr_cont("8-deep LBR, ");
1221 }
1222 
1223 /* Knights Landing */
1224 void intel_pmu_lbr_init_knl(void)
1225 {
1226 	x86_pmu.lbr_nr	   = 8;
1227 	x86_pmu.lbr_tos    = MSR_LBR_TOS;
1228 	x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
1229 	x86_pmu.lbr_to     = MSR_LBR_NHM_TO;
1230 
1231 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1232 	x86_pmu.lbr_sel_map  = snb_lbr_sel_map;
1233 }
1234