1 #include <linux/perf_event.h> 2 #include <linux/types.h> 3 4 #include <asm/perf_event.h> 5 #include <asm/msr.h> 6 #include <asm/insn.h> 7 8 #include "../perf_event.h" 9 10 enum { 11 LBR_FORMAT_32 = 0x00, 12 LBR_FORMAT_LIP = 0x01, 13 LBR_FORMAT_EIP = 0x02, 14 LBR_FORMAT_EIP_FLAGS = 0x03, 15 LBR_FORMAT_EIP_FLAGS2 = 0x04, 16 LBR_FORMAT_INFO = 0x05, 17 LBR_FORMAT_TIME = 0x06, 18 LBR_FORMAT_MAX_KNOWN = LBR_FORMAT_TIME, 19 }; 20 21 static enum { 22 LBR_EIP_FLAGS = 1, 23 LBR_TSX = 2, 24 } lbr_desc[LBR_FORMAT_MAX_KNOWN + 1] = { 25 [LBR_FORMAT_EIP_FLAGS] = LBR_EIP_FLAGS, 26 [LBR_FORMAT_EIP_FLAGS2] = LBR_EIP_FLAGS | LBR_TSX, 27 }; 28 29 /* 30 * Intel LBR_SELECT bits 31 * Intel Vol3a, April 2011, Section 16.7 Table 16-10 32 * 33 * Hardware branch filter (not available on all CPUs) 34 */ 35 #define LBR_KERNEL_BIT 0 /* do not capture at ring0 */ 36 #define LBR_USER_BIT 1 /* do not capture at ring > 0 */ 37 #define LBR_JCC_BIT 2 /* do not capture conditional branches */ 38 #define LBR_REL_CALL_BIT 3 /* do not capture relative calls */ 39 #define LBR_IND_CALL_BIT 4 /* do not capture indirect calls */ 40 #define LBR_RETURN_BIT 5 /* do not capture near returns */ 41 #define LBR_IND_JMP_BIT 6 /* do not capture indirect jumps */ 42 #define LBR_REL_JMP_BIT 7 /* do not capture relative jumps */ 43 #define LBR_FAR_BIT 8 /* do not capture far branches */ 44 #define LBR_CALL_STACK_BIT 9 /* enable call stack */ 45 46 /* 47 * Following bit only exists in Linux; we mask it out before writing it to 48 * the actual MSR. But it helps the constraint perf code to understand 49 * that this is a separate configuration. 50 */ 51 #define LBR_NO_INFO_BIT 63 /* don't read LBR_INFO. */ 52 53 #define LBR_KERNEL (1 << LBR_KERNEL_BIT) 54 #define LBR_USER (1 << LBR_USER_BIT) 55 #define LBR_JCC (1 << LBR_JCC_BIT) 56 #define LBR_REL_CALL (1 << LBR_REL_CALL_BIT) 57 #define LBR_IND_CALL (1 << LBR_IND_CALL_BIT) 58 #define LBR_RETURN (1 << LBR_RETURN_BIT) 59 #define LBR_REL_JMP (1 << LBR_REL_JMP_BIT) 60 #define LBR_IND_JMP (1 << LBR_IND_JMP_BIT) 61 #define LBR_FAR (1 << LBR_FAR_BIT) 62 #define LBR_CALL_STACK (1 << LBR_CALL_STACK_BIT) 63 #define LBR_NO_INFO (1ULL << LBR_NO_INFO_BIT) 64 65 #define LBR_PLM (LBR_KERNEL | LBR_USER) 66 67 #define LBR_SEL_MASK 0x3ff /* valid bits in LBR_SELECT */ 68 #define LBR_NOT_SUPP -1 /* LBR filter not supported */ 69 #define LBR_IGN 0 /* ignored */ 70 71 #define LBR_ANY \ 72 (LBR_JCC |\ 73 LBR_REL_CALL |\ 74 LBR_IND_CALL |\ 75 LBR_RETURN |\ 76 LBR_REL_JMP |\ 77 LBR_IND_JMP |\ 78 LBR_FAR) 79 80 #define LBR_FROM_FLAG_MISPRED BIT_ULL(63) 81 #define LBR_FROM_FLAG_IN_TX BIT_ULL(62) 82 #define LBR_FROM_FLAG_ABORT BIT_ULL(61) 83 84 #define LBR_FROM_SIGNEXT_2MSB (BIT_ULL(60) | BIT_ULL(59)) 85 86 /* 87 * x86control flow change classification 88 * x86control flow changes include branches, interrupts, traps, faults 89 */ 90 enum { 91 X86_BR_NONE = 0, /* unknown */ 92 93 X86_BR_USER = 1 << 0, /* branch target is user */ 94 X86_BR_KERNEL = 1 << 1, /* branch target is kernel */ 95 96 X86_BR_CALL = 1 << 2, /* call */ 97 X86_BR_RET = 1 << 3, /* return */ 98 X86_BR_SYSCALL = 1 << 4, /* syscall */ 99 X86_BR_SYSRET = 1 << 5, /* syscall return */ 100 X86_BR_INT = 1 << 6, /* sw interrupt */ 101 X86_BR_IRET = 1 << 7, /* return from interrupt */ 102 X86_BR_JCC = 1 << 8, /* conditional */ 103 X86_BR_JMP = 1 << 9, /* jump */ 104 X86_BR_IRQ = 1 << 10,/* hw interrupt or trap or fault */ 105 X86_BR_IND_CALL = 1 << 11,/* indirect calls */ 106 X86_BR_ABORT = 1 << 12,/* transaction abort */ 107 X86_BR_IN_TX = 1 << 13,/* in transaction */ 108 X86_BR_NO_TX = 1 << 14,/* not in transaction */ 109 X86_BR_ZERO_CALL = 1 << 15,/* zero length call */ 110 X86_BR_CALL_STACK = 1 << 16,/* call stack */ 111 X86_BR_IND_JMP = 1 << 17,/* indirect jump */ 112 }; 113 114 #define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL) 115 #define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX) 116 117 #define X86_BR_ANY \ 118 (X86_BR_CALL |\ 119 X86_BR_RET |\ 120 X86_BR_SYSCALL |\ 121 X86_BR_SYSRET |\ 122 X86_BR_INT |\ 123 X86_BR_IRET |\ 124 X86_BR_JCC |\ 125 X86_BR_JMP |\ 126 X86_BR_IRQ |\ 127 X86_BR_ABORT |\ 128 X86_BR_IND_CALL |\ 129 X86_BR_IND_JMP |\ 130 X86_BR_ZERO_CALL) 131 132 #define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY) 133 134 #define X86_BR_ANY_CALL \ 135 (X86_BR_CALL |\ 136 X86_BR_IND_CALL |\ 137 X86_BR_ZERO_CALL |\ 138 X86_BR_SYSCALL |\ 139 X86_BR_IRQ |\ 140 X86_BR_INT) 141 142 static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc); 143 144 /* 145 * We only support LBR implementations that have FREEZE_LBRS_ON_PMI 146 * otherwise it becomes near impossible to get a reliable stack. 147 */ 148 149 static void __intel_pmu_lbr_enable(bool pmi) 150 { 151 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 152 u64 debugctl, lbr_select = 0, orig_debugctl; 153 154 /* 155 * No need to unfreeze manually, as v4 can do that as part 156 * of the GLOBAL_STATUS ack. 157 */ 158 if (pmi && x86_pmu.version >= 4) 159 return; 160 161 /* 162 * No need to reprogram LBR_SELECT in a PMI, as it 163 * did not change. 164 */ 165 if (cpuc->lbr_sel) 166 lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask; 167 if (!pmi && cpuc->lbr_sel) 168 wrmsrl(MSR_LBR_SELECT, lbr_select); 169 170 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 171 orig_debugctl = debugctl; 172 debugctl |= DEBUGCTLMSR_LBR; 173 /* 174 * LBR callstack does not work well with FREEZE_LBRS_ON_PMI. 175 * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions 176 * may cause superfluous increase/decrease of LBR_TOS. 177 */ 178 if (!(lbr_select & LBR_CALL_STACK)) 179 debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI; 180 if (orig_debugctl != debugctl) 181 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 182 } 183 184 static void __intel_pmu_lbr_disable(void) 185 { 186 u64 debugctl; 187 188 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 189 debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI); 190 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 191 } 192 193 static void intel_pmu_lbr_reset_32(void) 194 { 195 int i; 196 197 for (i = 0; i < x86_pmu.lbr_nr; i++) 198 wrmsrl(x86_pmu.lbr_from + i, 0); 199 } 200 201 static void intel_pmu_lbr_reset_64(void) 202 { 203 int i; 204 205 for (i = 0; i < x86_pmu.lbr_nr; i++) { 206 wrmsrl(x86_pmu.lbr_from + i, 0); 207 wrmsrl(x86_pmu.lbr_to + i, 0); 208 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO) 209 wrmsrl(MSR_LBR_INFO_0 + i, 0); 210 } 211 } 212 213 void intel_pmu_lbr_reset(void) 214 { 215 if (!x86_pmu.lbr_nr) 216 return; 217 218 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) 219 intel_pmu_lbr_reset_32(); 220 else 221 intel_pmu_lbr_reset_64(); 222 } 223 224 /* 225 * TOS = most recently recorded branch 226 */ 227 static inline u64 intel_pmu_lbr_tos(void) 228 { 229 u64 tos; 230 231 rdmsrl(x86_pmu.lbr_tos, tos); 232 return tos; 233 } 234 235 enum { 236 LBR_NONE, 237 LBR_VALID, 238 }; 239 240 /* 241 * For formats with LBR_TSX flags (e.g. LBR_FORMAT_EIP_FLAGS2), bits 61:62 in 242 * MSR_LAST_BRANCH_FROM_x are the TSX flags when TSX is supported, but when 243 * TSX is not supported they have no consistent behavior: 244 * 245 * - For wrmsr(), bits 61:62 are considered part of the sign extension. 246 * - For HW updates (branch captures) bits 61:62 are always OFF and are not 247 * part of the sign extension. 248 * 249 * Therefore, if: 250 * 251 * 1) LBR has TSX format 252 * 2) CPU has no TSX support enabled 253 * 254 * ... then any value passed to wrmsr() must be sign extended to 63 bits and any 255 * value from rdmsr() must be converted to have a 61 bits sign extension, 256 * ignoring the TSX flags. 257 */ 258 static inline bool lbr_from_signext_quirk_needed(void) 259 { 260 int lbr_format = x86_pmu.intel_cap.lbr_format; 261 bool tsx_support = boot_cpu_has(X86_FEATURE_HLE) || 262 boot_cpu_has(X86_FEATURE_RTM); 263 264 return !tsx_support && (lbr_desc[lbr_format] & LBR_TSX); 265 } 266 267 DEFINE_STATIC_KEY_FALSE(lbr_from_quirk_key); 268 269 /* If quirk is enabled, ensure sign extension is 63 bits: */ 270 inline u64 lbr_from_signext_quirk_wr(u64 val) 271 { 272 if (static_branch_unlikely(&lbr_from_quirk_key)) { 273 /* 274 * Sign extend into bits 61:62 while preserving bit 63. 275 * 276 * Quirk is enabled when TSX is disabled. Therefore TSX bits 277 * in val are always OFF and must be changed to be sign 278 * extension bits. Since bits 59:60 are guaranteed to be 279 * part of the sign extension bits, we can just copy them 280 * to 61:62. 281 */ 282 val |= (LBR_FROM_SIGNEXT_2MSB & val) << 2; 283 } 284 return val; 285 } 286 287 /* 288 * If quirk is needed, ensure sign extension is 61 bits: 289 */ 290 u64 lbr_from_signext_quirk_rd(u64 val) 291 { 292 if (static_branch_unlikely(&lbr_from_quirk_key)) { 293 /* 294 * Quirk is on when TSX is not enabled. Therefore TSX 295 * flags must be read as OFF. 296 */ 297 val &= ~(LBR_FROM_FLAG_IN_TX | LBR_FROM_FLAG_ABORT); 298 } 299 return val; 300 } 301 302 static inline void wrlbr_from(unsigned int idx, u64 val) 303 { 304 val = lbr_from_signext_quirk_wr(val); 305 wrmsrl(x86_pmu.lbr_from + idx, val); 306 } 307 308 static inline void wrlbr_to(unsigned int idx, u64 val) 309 { 310 wrmsrl(x86_pmu.lbr_to + idx, val); 311 } 312 313 static inline u64 rdlbr_from(unsigned int idx) 314 { 315 u64 val; 316 317 rdmsrl(x86_pmu.lbr_from + idx, val); 318 319 return lbr_from_signext_quirk_rd(val); 320 } 321 322 static inline u64 rdlbr_to(unsigned int idx) 323 { 324 u64 val; 325 326 rdmsrl(x86_pmu.lbr_to + idx, val); 327 328 return val; 329 } 330 331 static void __intel_pmu_lbr_restore(struct x86_perf_task_context *task_ctx) 332 { 333 int i; 334 unsigned lbr_idx, mask; 335 u64 tos; 336 337 if (task_ctx->lbr_callstack_users == 0 || 338 task_ctx->lbr_stack_state == LBR_NONE) { 339 intel_pmu_lbr_reset(); 340 return; 341 } 342 343 mask = x86_pmu.lbr_nr - 1; 344 tos = task_ctx->tos; 345 for (i = 0; i < tos; i++) { 346 lbr_idx = (tos - i) & mask; 347 wrlbr_from(lbr_idx, task_ctx->lbr_from[i]); 348 wrlbr_to (lbr_idx, task_ctx->lbr_to[i]); 349 350 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO) 351 wrmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]); 352 } 353 wrmsrl(x86_pmu.lbr_tos, tos); 354 task_ctx->lbr_stack_state = LBR_NONE; 355 } 356 357 static void __intel_pmu_lbr_save(struct x86_perf_task_context *task_ctx) 358 { 359 unsigned lbr_idx, mask; 360 u64 tos; 361 int i; 362 363 if (task_ctx->lbr_callstack_users == 0) { 364 task_ctx->lbr_stack_state = LBR_NONE; 365 return; 366 } 367 368 mask = x86_pmu.lbr_nr - 1; 369 tos = intel_pmu_lbr_tos(); 370 for (i = 0; i < tos; i++) { 371 lbr_idx = (tos - i) & mask; 372 task_ctx->lbr_from[i] = rdlbr_from(lbr_idx); 373 task_ctx->lbr_to[i] = rdlbr_to(lbr_idx); 374 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO) 375 rdmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]); 376 } 377 task_ctx->tos = tos; 378 task_ctx->lbr_stack_state = LBR_VALID; 379 } 380 381 void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in) 382 { 383 struct x86_perf_task_context *task_ctx; 384 385 /* 386 * If LBR callstack feature is enabled and the stack was saved when 387 * the task was scheduled out, restore the stack. Otherwise flush 388 * the LBR stack. 389 */ 390 task_ctx = ctx ? ctx->task_ctx_data : NULL; 391 if (task_ctx) { 392 if (sched_in) 393 __intel_pmu_lbr_restore(task_ctx); 394 else 395 __intel_pmu_lbr_save(task_ctx); 396 return; 397 } 398 399 /* 400 * Since a context switch can flip the address space and LBR entries 401 * are not tagged with an identifier, we need to wipe the LBR, even for 402 * per-cpu events. You simply cannot resolve the branches from the old 403 * address space. 404 */ 405 if (sched_in) 406 intel_pmu_lbr_reset(); 407 } 408 409 static inline bool branch_user_callstack(unsigned br_sel) 410 { 411 return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK); 412 } 413 414 void intel_pmu_lbr_add(struct perf_event *event) 415 { 416 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 417 struct x86_perf_task_context *task_ctx; 418 419 if (!x86_pmu.lbr_nr) 420 return; 421 422 cpuc->br_sel = event->hw.branch_reg.reg; 423 424 if (branch_user_callstack(cpuc->br_sel) && event->ctx->task_ctx_data) { 425 task_ctx = event->ctx->task_ctx_data; 426 task_ctx->lbr_callstack_users++; 427 } 428 429 /* 430 * Request pmu::sched_task() callback, which will fire inside the 431 * regular perf event scheduling, so that call will: 432 * 433 * - restore or wipe; when LBR-callstack, 434 * - wipe; otherwise, 435 * 436 * when this is from __perf_event_task_sched_in(). 437 * 438 * However, if this is from perf_install_in_context(), no such callback 439 * will follow and we'll need to reset the LBR here if this is the 440 * first LBR event. 441 * 442 * The problem is, we cannot tell these cases apart... but we can 443 * exclude the biggest chunk of cases by looking at 444 * event->total_time_running. An event that has accrued runtime cannot 445 * be 'new'. Conversely, a new event can get installed through the 446 * context switch path for the first time. 447 */ 448 perf_sched_cb_inc(event->ctx->pmu); 449 if (!cpuc->lbr_users++ && !event->total_time_running) 450 intel_pmu_lbr_reset(); 451 } 452 453 void intel_pmu_lbr_del(struct perf_event *event) 454 { 455 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 456 struct x86_perf_task_context *task_ctx; 457 458 if (!x86_pmu.lbr_nr) 459 return; 460 461 if (branch_user_callstack(cpuc->br_sel) && 462 event->ctx->task_ctx_data) { 463 task_ctx = event->ctx->task_ctx_data; 464 task_ctx->lbr_callstack_users--; 465 } 466 467 cpuc->lbr_users--; 468 WARN_ON_ONCE(cpuc->lbr_users < 0); 469 perf_sched_cb_dec(event->ctx->pmu); 470 } 471 472 void intel_pmu_lbr_enable_all(bool pmi) 473 { 474 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 475 476 if (cpuc->lbr_users) 477 __intel_pmu_lbr_enable(pmi); 478 } 479 480 void intel_pmu_lbr_disable_all(void) 481 { 482 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 483 484 if (cpuc->lbr_users) 485 __intel_pmu_lbr_disable(); 486 } 487 488 static void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc) 489 { 490 unsigned long mask = x86_pmu.lbr_nr - 1; 491 u64 tos = intel_pmu_lbr_tos(); 492 int i; 493 494 for (i = 0; i < x86_pmu.lbr_nr; i++) { 495 unsigned long lbr_idx = (tos - i) & mask; 496 union { 497 struct { 498 u32 from; 499 u32 to; 500 }; 501 u64 lbr; 502 } msr_lastbranch; 503 504 rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr); 505 506 cpuc->lbr_entries[i].from = msr_lastbranch.from; 507 cpuc->lbr_entries[i].to = msr_lastbranch.to; 508 cpuc->lbr_entries[i].mispred = 0; 509 cpuc->lbr_entries[i].predicted = 0; 510 cpuc->lbr_entries[i].reserved = 0; 511 } 512 cpuc->lbr_stack.nr = i; 513 } 514 515 /* 516 * Due to lack of segmentation in Linux the effective address (offset) 517 * is the same as the linear address, allowing us to merge the LIP and EIP 518 * LBR formats. 519 */ 520 static void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc) 521 { 522 bool need_info = false; 523 unsigned long mask = x86_pmu.lbr_nr - 1; 524 int lbr_format = x86_pmu.intel_cap.lbr_format; 525 u64 tos = intel_pmu_lbr_tos(); 526 int i; 527 int out = 0; 528 int num = x86_pmu.lbr_nr; 529 530 if (cpuc->lbr_sel) { 531 need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO); 532 if (cpuc->lbr_sel->config & LBR_CALL_STACK) 533 num = tos; 534 } 535 536 for (i = 0; i < num; i++) { 537 unsigned long lbr_idx = (tos - i) & mask; 538 u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0; 539 int skip = 0; 540 u16 cycles = 0; 541 int lbr_flags = lbr_desc[lbr_format]; 542 543 from = rdlbr_from(lbr_idx); 544 to = rdlbr_to(lbr_idx); 545 546 if (lbr_format == LBR_FORMAT_INFO && need_info) { 547 u64 info; 548 549 rdmsrl(MSR_LBR_INFO_0 + lbr_idx, info); 550 mis = !!(info & LBR_INFO_MISPRED); 551 pred = !mis; 552 in_tx = !!(info & LBR_INFO_IN_TX); 553 abort = !!(info & LBR_INFO_ABORT); 554 cycles = (info & LBR_INFO_CYCLES); 555 } 556 557 if (lbr_format == LBR_FORMAT_TIME) { 558 mis = !!(from & LBR_FROM_FLAG_MISPRED); 559 pred = !mis; 560 skip = 1; 561 cycles = ((to >> 48) & LBR_INFO_CYCLES); 562 563 to = (u64)((((s64)to) << 16) >> 16); 564 } 565 566 if (lbr_flags & LBR_EIP_FLAGS) { 567 mis = !!(from & LBR_FROM_FLAG_MISPRED); 568 pred = !mis; 569 skip = 1; 570 } 571 if (lbr_flags & LBR_TSX) { 572 in_tx = !!(from & LBR_FROM_FLAG_IN_TX); 573 abort = !!(from & LBR_FROM_FLAG_ABORT); 574 skip = 3; 575 } 576 from = (u64)((((s64)from) << skip) >> skip); 577 578 /* 579 * Some CPUs report duplicated abort records, 580 * with the second entry not having an abort bit set. 581 * Skip them here. This loop runs backwards, 582 * so we need to undo the previous record. 583 * If the abort just happened outside the window 584 * the extra entry cannot be removed. 585 */ 586 if (abort && x86_pmu.lbr_double_abort && out > 0) 587 out--; 588 589 cpuc->lbr_entries[out].from = from; 590 cpuc->lbr_entries[out].to = to; 591 cpuc->lbr_entries[out].mispred = mis; 592 cpuc->lbr_entries[out].predicted = pred; 593 cpuc->lbr_entries[out].in_tx = in_tx; 594 cpuc->lbr_entries[out].abort = abort; 595 cpuc->lbr_entries[out].cycles = cycles; 596 cpuc->lbr_entries[out].reserved = 0; 597 out++; 598 } 599 cpuc->lbr_stack.nr = out; 600 } 601 602 void intel_pmu_lbr_read(void) 603 { 604 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 605 606 if (!cpuc->lbr_users) 607 return; 608 609 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) 610 intel_pmu_lbr_read_32(cpuc); 611 else 612 intel_pmu_lbr_read_64(cpuc); 613 614 intel_pmu_lbr_filter(cpuc); 615 } 616 617 /* 618 * SW filter is used: 619 * - in case there is no HW filter 620 * - in case the HW filter has errata or limitations 621 */ 622 static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event) 623 { 624 u64 br_type = event->attr.branch_sample_type; 625 int mask = 0; 626 627 if (br_type & PERF_SAMPLE_BRANCH_USER) 628 mask |= X86_BR_USER; 629 630 if (br_type & PERF_SAMPLE_BRANCH_KERNEL) 631 mask |= X86_BR_KERNEL; 632 633 /* we ignore BRANCH_HV here */ 634 635 if (br_type & PERF_SAMPLE_BRANCH_ANY) 636 mask |= X86_BR_ANY; 637 638 if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL) 639 mask |= X86_BR_ANY_CALL; 640 641 if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN) 642 mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET; 643 644 if (br_type & PERF_SAMPLE_BRANCH_IND_CALL) 645 mask |= X86_BR_IND_CALL; 646 647 if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX) 648 mask |= X86_BR_ABORT; 649 650 if (br_type & PERF_SAMPLE_BRANCH_IN_TX) 651 mask |= X86_BR_IN_TX; 652 653 if (br_type & PERF_SAMPLE_BRANCH_NO_TX) 654 mask |= X86_BR_NO_TX; 655 656 if (br_type & PERF_SAMPLE_BRANCH_COND) 657 mask |= X86_BR_JCC; 658 659 if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) { 660 if (!x86_pmu_has_lbr_callstack()) 661 return -EOPNOTSUPP; 662 if (mask & ~(X86_BR_USER | X86_BR_KERNEL)) 663 return -EINVAL; 664 mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET | 665 X86_BR_CALL_STACK; 666 } 667 668 if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP) 669 mask |= X86_BR_IND_JMP; 670 671 if (br_type & PERF_SAMPLE_BRANCH_CALL) 672 mask |= X86_BR_CALL | X86_BR_ZERO_CALL; 673 /* 674 * stash actual user request into reg, it may 675 * be used by fixup code for some CPU 676 */ 677 event->hw.branch_reg.reg = mask; 678 return 0; 679 } 680 681 /* 682 * setup the HW LBR filter 683 * Used only when available, may not be enough to disambiguate 684 * all branches, may need the help of the SW filter 685 */ 686 static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event) 687 { 688 struct hw_perf_event_extra *reg; 689 u64 br_type = event->attr.branch_sample_type; 690 u64 mask = 0, v; 691 int i; 692 693 for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) { 694 if (!(br_type & (1ULL << i))) 695 continue; 696 697 v = x86_pmu.lbr_sel_map[i]; 698 if (v == LBR_NOT_SUPP) 699 return -EOPNOTSUPP; 700 701 if (v != LBR_IGN) 702 mask |= v; 703 } 704 705 reg = &event->hw.branch_reg; 706 reg->idx = EXTRA_REG_LBR; 707 708 /* 709 * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate 710 * in suppress mode. So LBR_SELECT should be set to 711 * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK) 712 * But the 10th bit LBR_CALL_STACK does not operate 713 * in suppress mode. 714 */ 715 reg->config = mask ^ (x86_pmu.lbr_sel_mask & ~LBR_CALL_STACK); 716 717 if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) && 718 (br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) && 719 (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)) 720 reg->config |= LBR_NO_INFO; 721 722 return 0; 723 } 724 725 int intel_pmu_setup_lbr_filter(struct perf_event *event) 726 { 727 int ret = 0; 728 729 /* 730 * no LBR on this PMU 731 */ 732 if (!x86_pmu.lbr_nr) 733 return -EOPNOTSUPP; 734 735 /* 736 * setup SW LBR filter 737 */ 738 ret = intel_pmu_setup_sw_lbr_filter(event); 739 if (ret) 740 return ret; 741 742 /* 743 * setup HW LBR filter, if any 744 */ 745 if (x86_pmu.lbr_sel_map) 746 ret = intel_pmu_setup_hw_lbr_filter(event); 747 748 return ret; 749 } 750 751 /* 752 * return the type of control flow change at address "from" 753 * instruction is not necessarily a branch (in case of interrupt). 754 * 755 * The branch type returned also includes the priv level of the 756 * target of the control flow change (X86_BR_USER, X86_BR_KERNEL). 757 * 758 * If a branch type is unknown OR the instruction cannot be 759 * decoded (e.g., text page not present), then X86_BR_NONE is 760 * returned. 761 */ 762 static int branch_type(unsigned long from, unsigned long to, int abort) 763 { 764 struct insn insn; 765 void *addr; 766 int bytes_read, bytes_left; 767 int ret = X86_BR_NONE; 768 int ext, to_plm, from_plm; 769 u8 buf[MAX_INSN_SIZE]; 770 int is64 = 0; 771 772 to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER; 773 from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER; 774 775 /* 776 * maybe zero if lbr did not fill up after a reset by the time 777 * we get a PMU interrupt 778 */ 779 if (from == 0 || to == 0) 780 return X86_BR_NONE; 781 782 if (abort) 783 return X86_BR_ABORT | to_plm; 784 785 if (from_plm == X86_BR_USER) { 786 /* 787 * can happen if measuring at the user level only 788 * and we interrupt in a kernel thread, e.g., idle. 789 */ 790 if (!current->mm) 791 return X86_BR_NONE; 792 793 /* may fail if text not present */ 794 bytes_left = copy_from_user_nmi(buf, (void __user *)from, 795 MAX_INSN_SIZE); 796 bytes_read = MAX_INSN_SIZE - bytes_left; 797 if (!bytes_read) 798 return X86_BR_NONE; 799 800 addr = buf; 801 } else { 802 /* 803 * The LBR logs any address in the IP, even if the IP just 804 * faulted. This means userspace can control the from address. 805 * Ensure we don't blindy read any address by validating it is 806 * a known text address. 807 */ 808 if (kernel_text_address(from)) { 809 addr = (void *)from; 810 /* 811 * Assume we can get the maximum possible size 812 * when grabbing kernel data. This is not 813 * _strictly_ true since we could possibly be 814 * executing up next to a memory hole, but 815 * it is very unlikely to be a problem. 816 */ 817 bytes_read = MAX_INSN_SIZE; 818 } else { 819 return X86_BR_NONE; 820 } 821 } 822 823 /* 824 * decoder needs to know the ABI especially 825 * on 64-bit systems running 32-bit apps 826 */ 827 #ifdef CONFIG_X86_64 828 is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32); 829 #endif 830 insn_init(&insn, addr, bytes_read, is64); 831 insn_get_opcode(&insn); 832 if (!insn.opcode.got) 833 return X86_BR_ABORT; 834 835 switch (insn.opcode.bytes[0]) { 836 case 0xf: 837 switch (insn.opcode.bytes[1]) { 838 case 0x05: /* syscall */ 839 case 0x34: /* sysenter */ 840 ret = X86_BR_SYSCALL; 841 break; 842 case 0x07: /* sysret */ 843 case 0x35: /* sysexit */ 844 ret = X86_BR_SYSRET; 845 break; 846 case 0x80 ... 0x8f: /* conditional */ 847 ret = X86_BR_JCC; 848 break; 849 default: 850 ret = X86_BR_NONE; 851 } 852 break; 853 case 0x70 ... 0x7f: /* conditional */ 854 ret = X86_BR_JCC; 855 break; 856 case 0xc2: /* near ret */ 857 case 0xc3: /* near ret */ 858 case 0xca: /* far ret */ 859 case 0xcb: /* far ret */ 860 ret = X86_BR_RET; 861 break; 862 case 0xcf: /* iret */ 863 ret = X86_BR_IRET; 864 break; 865 case 0xcc ... 0xce: /* int */ 866 ret = X86_BR_INT; 867 break; 868 case 0xe8: /* call near rel */ 869 insn_get_immediate(&insn); 870 if (insn.immediate1.value == 0) { 871 /* zero length call */ 872 ret = X86_BR_ZERO_CALL; 873 break; 874 } 875 case 0x9a: /* call far absolute */ 876 ret = X86_BR_CALL; 877 break; 878 case 0xe0 ... 0xe3: /* loop jmp */ 879 ret = X86_BR_JCC; 880 break; 881 case 0xe9 ... 0xeb: /* jmp */ 882 ret = X86_BR_JMP; 883 break; 884 case 0xff: /* call near absolute, call far absolute ind */ 885 insn_get_modrm(&insn); 886 ext = (insn.modrm.bytes[0] >> 3) & 0x7; 887 switch (ext) { 888 case 2: /* near ind call */ 889 case 3: /* far ind call */ 890 ret = X86_BR_IND_CALL; 891 break; 892 case 4: 893 case 5: 894 ret = X86_BR_IND_JMP; 895 break; 896 } 897 break; 898 default: 899 ret = X86_BR_NONE; 900 } 901 /* 902 * interrupts, traps, faults (and thus ring transition) may 903 * occur on any instructions. Thus, to classify them correctly, 904 * we need to first look at the from and to priv levels. If they 905 * are different and to is in the kernel, then it indicates 906 * a ring transition. If the from instruction is not a ring 907 * transition instr (syscall, systenter, int), then it means 908 * it was a irq, trap or fault. 909 * 910 * we have no way of detecting kernel to kernel faults. 911 */ 912 if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL 913 && ret != X86_BR_SYSCALL && ret != X86_BR_INT) 914 ret = X86_BR_IRQ; 915 916 /* 917 * branch priv level determined by target as 918 * is done by HW when LBR_SELECT is implemented 919 */ 920 if (ret != X86_BR_NONE) 921 ret |= to_plm; 922 923 return ret; 924 } 925 926 /* 927 * implement actual branch filter based on user demand. 928 * Hardware may not exactly satisfy that request, thus 929 * we need to inspect opcodes. Mismatched branches are 930 * discarded. Therefore, the number of branches returned 931 * in PERF_SAMPLE_BRANCH_STACK sample may vary. 932 */ 933 static void 934 intel_pmu_lbr_filter(struct cpu_hw_events *cpuc) 935 { 936 u64 from, to; 937 int br_sel = cpuc->br_sel; 938 int i, j, type; 939 bool compress = false; 940 941 /* if sampling all branches, then nothing to filter */ 942 if ((br_sel & X86_BR_ALL) == X86_BR_ALL) 943 return; 944 945 for (i = 0; i < cpuc->lbr_stack.nr; i++) { 946 947 from = cpuc->lbr_entries[i].from; 948 to = cpuc->lbr_entries[i].to; 949 950 type = branch_type(from, to, cpuc->lbr_entries[i].abort); 951 if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) { 952 if (cpuc->lbr_entries[i].in_tx) 953 type |= X86_BR_IN_TX; 954 else 955 type |= X86_BR_NO_TX; 956 } 957 958 /* if type does not correspond, then discard */ 959 if (type == X86_BR_NONE || (br_sel & type) != type) { 960 cpuc->lbr_entries[i].from = 0; 961 compress = true; 962 } 963 } 964 965 if (!compress) 966 return; 967 968 /* remove all entries with from=0 */ 969 for (i = 0; i < cpuc->lbr_stack.nr; ) { 970 if (!cpuc->lbr_entries[i].from) { 971 j = i; 972 while (++j < cpuc->lbr_stack.nr) 973 cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j]; 974 cpuc->lbr_stack.nr--; 975 if (!cpuc->lbr_entries[i].from) 976 continue; 977 } 978 i++; 979 } 980 } 981 982 /* 983 * Map interface branch filters onto LBR filters 984 */ 985 static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = { 986 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY, 987 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER, 988 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL, 989 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN, 990 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_REL_JMP 991 | LBR_IND_JMP | LBR_FAR, 992 /* 993 * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches 994 */ 995 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = 996 LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR, 997 /* 998 * NHM/WSM erratum: must include IND_JMP to capture IND_CALL 999 */ 1000 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP, 1001 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC, 1002 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP, 1003 }; 1004 1005 static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = { 1006 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY, 1007 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER, 1008 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL, 1009 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN, 1010 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR, 1011 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL 1012 | LBR_FAR, 1013 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL, 1014 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC, 1015 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP, 1016 [PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL, 1017 }; 1018 1019 static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = { 1020 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY, 1021 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER, 1022 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL, 1023 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN, 1024 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR, 1025 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL 1026 | LBR_FAR, 1027 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL, 1028 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC, 1029 [PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_REL_CALL | LBR_IND_CALL 1030 | LBR_RETURN | LBR_CALL_STACK, 1031 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP, 1032 [PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL, 1033 }; 1034 1035 /* core */ 1036 void __init intel_pmu_lbr_init_core(void) 1037 { 1038 x86_pmu.lbr_nr = 4; 1039 x86_pmu.lbr_tos = MSR_LBR_TOS; 1040 x86_pmu.lbr_from = MSR_LBR_CORE_FROM; 1041 x86_pmu.lbr_to = MSR_LBR_CORE_TO; 1042 1043 /* 1044 * SW branch filter usage: 1045 * - compensate for lack of HW filter 1046 */ 1047 } 1048 1049 /* nehalem/westmere */ 1050 void __init intel_pmu_lbr_init_nhm(void) 1051 { 1052 x86_pmu.lbr_nr = 16; 1053 x86_pmu.lbr_tos = MSR_LBR_TOS; 1054 x86_pmu.lbr_from = MSR_LBR_NHM_FROM; 1055 x86_pmu.lbr_to = MSR_LBR_NHM_TO; 1056 1057 x86_pmu.lbr_sel_mask = LBR_SEL_MASK; 1058 x86_pmu.lbr_sel_map = nhm_lbr_sel_map; 1059 1060 /* 1061 * SW branch filter usage: 1062 * - workaround LBR_SEL errata (see above) 1063 * - support syscall, sysret capture. 1064 * That requires LBR_FAR but that means far 1065 * jmp need to be filtered out 1066 */ 1067 } 1068 1069 /* sandy bridge */ 1070 void __init intel_pmu_lbr_init_snb(void) 1071 { 1072 x86_pmu.lbr_nr = 16; 1073 x86_pmu.lbr_tos = MSR_LBR_TOS; 1074 x86_pmu.lbr_from = MSR_LBR_NHM_FROM; 1075 x86_pmu.lbr_to = MSR_LBR_NHM_TO; 1076 1077 x86_pmu.lbr_sel_mask = LBR_SEL_MASK; 1078 x86_pmu.lbr_sel_map = snb_lbr_sel_map; 1079 1080 /* 1081 * SW branch filter usage: 1082 * - support syscall, sysret capture. 1083 * That requires LBR_FAR but that means far 1084 * jmp need to be filtered out 1085 */ 1086 } 1087 1088 /* haswell */ 1089 void intel_pmu_lbr_init_hsw(void) 1090 { 1091 x86_pmu.lbr_nr = 16; 1092 x86_pmu.lbr_tos = MSR_LBR_TOS; 1093 x86_pmu.lbr_from = MSR_LBR_NHM_FROM; 1094 x86_pmu.lbr_to = MSR_LBR_NHM_TO; 1095 1096 x86_pmu.lbr_sel_mask = LBR_SEL_MASK; 1097 x86_pmu.lbr_sel_map = hsw_lbr_sel_map; 1098 1099 if (lbr_from_signext_quirk_needed()) 1100 static_branch_enable(&lbr_from_quirk_key); 1101 } 1102 1103 /* skylake */ 1104 __init void intel_pmu_lbr_init_skl(void) 1105 { 1106 x86_pmu.lbr_nr = 32; 1107 x86_pmu.lbr_tos = MSR_LBR_TOS; 1108 x86_pmu.lbr_from = MSR_LBR_NHM_FROM; 1109 x86_pmu.lbr_to = MSR_LBR_NHM_TO; 1110 1111 x86_pmu.lbr_sel_mask = LBR_SEL_MASK; 1112 x86_pmu.lbr_sel_map = hsw_lbr_sel_map; 1113 1114 /* 1115 * SW branch filter usage: 1116 * - support syscall, sysret capture. 1117 * That requires LBR_FAR but that means far 1118 * jmp need to be filtered out 1119 */ 1120 } 1121 1122 /* atom */ 1123 void __init intel_pmu_lbr_init_atom(void) 1124 { 1125 /* 1126 * only models starting at stepping 10 seems 1127 * to have an operational LBR which can freeze 1128 * on PMU interrupt 1129 */ 1130 if (boot_cpu_data.x86_model == 28 1131 && boot_cpu_data.x86_mask < 10) { 1132 pr_cont("LBR disabled due to erratum"); 1133 return; 1134 } 1135 1136 x86_pmu.lbr_nr = 8; 1137 x86_pmu.lbr_tos = MSR_LBR_TOS; 1138 x86_pmu.lbr_from = MSR_LBR_CORE_FROM; 1139 x86_pmu.lbr_to = MSR_LBR_CORE_TO; 1140 1141 /* 1142 * SW branch filter usage: 1143 * - compensate for lack of HW filter 1144 */ 1145 } 1146 1147 /* slm */ 1148 void __init intel_pmu_lbr_init_slm(void) 1149 { 1150 x86_pmu.lbr_nr = 8; 1151 x86_pmu.lbr_tos = MSR_LBR_TOS; 1152 x86_pmu.lbr_from = MSR_LBR_CORE_FROM; 1153 x86_pmu.lbr_to = MSR_LBR_CORE_TO; 1154 1155 x86_pmu.lbr_sel_mask = LBR_SEL_MASK; 1156 x86_pmu.lbr_sel_map = nhm_lbr_sel_map; 1157 1158 /* 1159 * SW branch filter usage: 1160 * - compensate for lack of HW filter 1161 */ 1162 pr_cont("8-deep LBR, "); 1163 } 1164 1165 /* Knights Landing */ 1166 void intel_pmu_lbr_init_knl(void) 1167 { 1168 x86_pmu.lbr_nr = 8; 1169 x86_pmu.lbr_tos = MSR_LBR_TOS; 1170 x86_pmu.lbr_from = MSR_LBR_NHM_FROM; 1171 x86_pmu.lbr_to = MSR_LBR_NHM_TO; 1172 1173 x86_pmu.lbr_sel_mask = LBR_SEL_MASK; 1174 x86_pmu.lbr_sel_map = snb_lbr_sel_map; 1175 } 1176