xref: /openbmc/linux/arch/x86/events/intel/lbr.c (revision 95b384f9)
1 #include <linux/perf_event.h>
2 #include <linux/types.h>
3 
4 #include <asm/perf_event.h>
5 #include <asm/msr.h>
6 #include <asm/insn.h>
7 
8 #include "../perf_event.h"
9 
10 enum {
11 	LBR_FORMAT_32		= 0x00,
12 	LBR_FORMAT_LIP		= 0x01,
13 	LBR_FORMAT_EIP		= 0x02,
14 	LBR_FORMAT_EIP_FLAGS	= 0x03,
15 	LBR_FORMAT_EIP_FLAGS2	= 0x04,
16 	LBR_FORMAT_INFO		= 0x05,
17 	LBR_FORMAT_TIME		= 0x06,
18 	LBR_FORMAT_MAX_KNOWN    = LBR_FORMAT_TIME,
19 };
20 
21 static enum {
22 	LBR_EIP_FLAGS		= 1,
23 	LBR_TSX			= 2,
24 } lbr_desc[LBR_FORMAT_MAX_KNOWN + 1] = {
25 	[LBR_FORMAT_EIP_FLAGS]  = LBR_EIP_FLAGS,
26 	[LBR_FORMAT_EIP_FLAGS2] = LBR_EIP_FLAGS | LBR_TSX,
27 };
28 
29 /*
30  * Intel LBR_SELECT bits
31  * Intel Vol3a, April 2011, Section 16.7 Table 16-10
32  *
33  * Hardware branch filter (not available on all CPUs)
34  */
35 #define LBR_KERNEL_BIT		0 /* do not capture at ring0 */
36 #define LBR_USER_BIT		1 /* do not capture at ring > 0 */
37 #define LBR_JCC_BIT		2 /* do not capture conditional branches */
38 #define LBR_REL_CALL_BIT	3 /* do not capture relative calls */
39 #define LBR_IND_CALL_BIT	4 /* do not capture indirect calls */
40 #define LBR_RETURN_BIT		5 /* do not capture near returns */
41 #define LBR_IND_JMP_BIT		6 /* do not capture indirect jumps */
42 #define LBR_REL_JMP_BIT		7 /* do not capture relative jumps */
43 #define LBR_FAR_BIT		8 /* do not capture far branches */
44 #define LBR_CALL_STACK_BIT	9 /* enable call stack */
45 
46 /*
47  * Following bit only exists in Linux; we mask it out before writing it to
48  * the actual MSR. But it helps the constraint perf code to understand
49  * that this is a separate configuration.
50  */
51 #define LBR_NO_INFO_BIT	       63 /* don't read LBR_INFO. */
52 
53 #define LBR_KERNEL	(1 << LBR_KERNEL_BIT)
54 #define LBR_USER	(1 << LBR_USER_BIT)
55 #define LBR_JCC		(1 << LBR_JCC_BIT)
56 #define LBR_REL_CALL	(1 << LBR_REL_CALL_BIT)
57 #define LBR_IND_CALL	(1 << LBR_IND_CALL_BIT)
58 #define LBR_RETURN	(1 << LBR_RETURN_BIT)
59 #define LBR_REL_JMP	(1 << LBR_REL_JMP_BIT)
60 #define LBR_IND_JMP	(1 << LBR_IND_JMP_BIT)
61 #define LBR_FAR		(1 << LBR_FAR_BIT)
62 #define LBR_CALL_STACK	(1 << LBR_CALL_STACK_BIT)
63 #define LBR_NO_INFO	(1ULL << LBR_NO_INFO_BIT)
64 
65 #define LBR_PLM (LBR_KERNEL | LBR_USER)
66 
67 #define LBR_SEL_MASK	0x3ff	/* valid bits in LBR_SELECT */
68 #define LBR_NOT_SUPP	-1	/* LBR filter not supported */
69 #define LBR_IGN		0	/* ignored */
70 
71 #define LBR_ANY		 \
72 	(LBR_JCC	|\
73 	 LBR_REL_CALL	|\
74 	 LBR_IND_CALL	|\
75 	 LBR_RETURN	|\
76 	 LBR_REL_JMP	|\
77 	 LBR_IND_JMP	|\
78 	 LBR_FAR)
79 
80 #define LBR_FROM_FLAG_MISPRED  (1ULL << 63)
81 #define LBR_FROM_FLAG_IN_TX    (1ULL << 62)
82 #define LBR_FROM_FLAG_ABORT    (1ULL << 61)
83 
84 /*
85  * x86control flow change classification
86  * x86control flow changes include branches, interrupts, traps, faults
87  */
88 enum {
89 	X86_BR_NONE		= 0,      /* unknown */
90 
91 	X86_BR_USER		= 1 << 0, /* branch target is user */
92 	X86_BR_KERNEL		= 1 << 1, /* branch target is kernel */
93 
94 	X86_BR_CALL		= 1 << 2, /* call */
95 	X86_BR_RET		= 1 << 3, /* return */
96 	X86_BR_SYSCALL		= 1 << 4, /* syscall */
97 	X86_BR_SYSRET		= 1 << 5, /* syscall return */
98 	X86_BR_INT		= 1 << 6, /* sw interrupt */
99 	X86_BR_IRET		= 1 << 7, /* return from interrupt */
100 	X86_BR_JCC		= 1 << 8, /* conditional */
101 	X86_BR_JMP		= 1 << 9, /* jump */
102 	X86_BR_IRQ		= 1 << 10,/* hw interrupt or trap or fault */
103 	X86_BR_IND_CALL		= 1 << 11,/* indirect calls */
104 	X86_BR_ABORT		= 1 << 12,/* transaction abort */
105 	X86_BR_IN_TX		= 1 << 13,/* in transaction */
106 	X86_BR_NO_TX		= 1 << 14,/* not in transaction */
107 	X86_BR_ZERO_CALL	= 1 << 15,/* zero length call */
108 	X86_BR_CALL_STACK	= 1 << 16,/* call stack */
109 	X86_BR_IND_JMP		= 1 << 17,/* indirect jump */
110 };
111 
112 #define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL)
113 #define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX)
114 
115 #define X86_BR_ANY       \
116 	(X86_BR_CALL    |\
117 	 X86_BR_RET     |\
118 	 X86_BR_SYSCALL |\
119 	 X86_BR_SYSRET  |\
120 	 X86_BR_INT     |\
121 	 X86_BR_IRET    |\
122 	 X86_BR_JCC     |\
123 	 X86_BR_JMP	 |\
124 	 X86_BR_IRQ	 |\
125 	 X86_BR_ABORT	 |\
126 	 X86_BR_IND_CALL |\
127 	 X86_BR_IND_JMP  |\
128 	 X86_BR_ZERO_CALL)
129 
130 #define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY)
131 
132 #define X86_BR_ANY_CALL		 \
133 	(X86_BR_CALL		|\
134 	 X86_BR_IND_CALL	|\
135 	 X86_BR_ZERO_CALL	|\
136 	 X86_BR_SYSCALL		|\
137 	 X86_BR_IRQ		|\
138 	 X86_BR_INT)
139 
140 static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);
141 
142 /*
143  * We only support LBR implementations that have FREEZE_LBRS_ON_PMI
144  * otherwise it becomes near impossible to get a reliable stack.
145  */
146 
147 static void __intel_pmu_lbr_enable(bool pmi)
148 {
149 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
150 	u64 debugctl, lbr_select = 0, orig_debugctl;
151 
152 	/*
153 	 * No need to unfreeze manually, as v4 can do that as part
154 	 * of the GLOBAL_STATUS ack.
155 	 */
156 	if (pmi && x86_pmu.version >= 4)
157 		return;
158 
159 	/*
160 	 * No need to reprogram LBR_SELECT in a PMI, as it
161 	 * did not change.
162 	 */
163 	if (cpuc->lbr_sel)
164 		lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask;
165 	if (!pmi && cpuc->lbr_sel)
166 		wrmsrl(MSR_LBR_SELECT, lbr_select);
167 
168 	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
169 	orig_debugctl = debugctl;
170 	debugctl |= DEBUGCTLMSR_LBR;
171 	/*
172 	 * LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
173 	 * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
174 	 * may cause superfluous increase/decrease of LBR_TOS.
175 	 */
176 	if (!(lbr_select & LBR_CALL_STACK))
177 		debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
178 	if (orig_debugctl != debugctl)
179 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
180 }
181 
182 static void __intel_pmu_lbr_disable(void)
183 {
184 	u64 debugctl;
185 
186 	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
187 	debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI);
188 	wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
189 }
190 
191 static void intel_pmu_lbr_reset_32(void)
192 {
193 	int i;
194 
195 	for (i = 0; i < x86_pmu.lbr_nr; i++)
196 		wrmsrl(x86_pmu.lbr_from + i, 0);
197 }
198 
199 static void intel_pmu_lbr_reset_64(void)
200 {
201 	int i;
202 
203 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
204 		wrmsrl(x86_pmu.lbr_from + i, 0);
205 		wrmsrl(x86_pmu.lbr_to   + i, 0);
206 		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
207 			wrmsrl(MSR_LBR_INFO_0 + i, 0);
208 	}
209 }
210 
211 void intel_pmu_lbr_reset(void)
212 {
213 	if (!x86_pmu.lbr_nr)
214 		return;
215 
216 	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
217 		intel_pmu_lbr_reset_32();
218 	else
219 		intel_pmu_lbr_reset_64();
220 }
221 
222 /*
223  * TOS = most recently recorded branch
224  */
225 static inline u64 intel_pmu_lbr_tos(void)
226 {
227 	u64 tos;
228 
229 	rdmsrl(x86_pmu.lbr_tos, tos);
230 	return tos;
231 }
232 
233 enum {
234 	LBR_NONE,
235 	LBR_VALID,
236 };
237 
238 static void __intel_pmu_lbr_restore(struct x86_perf_task_context *task_ctx)
239 {
240 	int i;
241 	unsigned lbr_idx, mask;
242 	u64 tos;
243 
244 	if (task_ctx->lbr_callstack_users == 0 ||
245 	    task_ctx->lbr_stack_state == LBR_NONE) {
246 		intel_pmu_lbr_reset();
247 		return;
248 	}
249 
250 	mask = x86_pmu.lbr_nr - 1;
251 	tos = task_ctx->tos;
252 	for (i = 0; i < tos; i++) {
253 		lbr_idx = (tos - i) & mask;
254 		wrmsrl(x86_pmu.lbr_from + lbr_idx, task_ctx->lbr_from[i]);
255 		wrmsrl(x86_pmu.lbr_to + lbr_idx, task_ctx->lbr_to[i]);
256 		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
257 			wrmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
258 	}
259 	wrmsrl(x86_pmu.lbr_tos, tos);
260 	task_ctx->lbr_stack_state = LBR_NONE;
261 }
262 
263 static void __intel_pmu_lbr_save(struct x86_perf_task_context *task_ctx)
264 {
265 	int i;
266 	unsigned lbr_idx, mask;
267 	u64 tos;
268 
269 	if (task_ctx->lbr_callstack_users == 0) {
270 		task_ctx->lbr_stack_state = LBR_NONE;
271 		return;
272 	}
273 
274 	mask = x86_pmu.lbr_nr - 1;
275 	tos = intel_pmu_lbr_tos();
276 	for (i = 0; i < tos; i++) {
277 		lbr_idx = (tos - i) & mask;
278 		rdmsrl(x86_pmu.lbr_from + lbr_idx, task_ctx->lbr_from[i]);
279 		rdmsrl(x86_pmu.lbr_to + lbr_idx, task_ctx->lbr_to[i]);
280 		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
281 			rdmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
282 	}
283 	task_ctx->tos = tos;
284 	task_ctx->lbr_stack_state = LBR_VALID;
285 }
286 
287 void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in)
288 {
289 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
290 	struct x86_perf_task_context *task_ctx;
291 
292 	/*
293 	 * If LBR callstack feature is enabled and the stack was saved when
294 	 * the task was scheduled out, restore the stack. Otherwise flush
295 	 * the LBR stack.
296 	 */
297 	task_ctx = ctx ? ctx->task_ctx_data : NULL;
298 	if (task_ctx) {
299 		if (sched_in) {
300 			__intel_pmu_lbr_restore(task_ctx);
301 			cpuc->lbr_context = ctx;
302 		} else {
303 			__intel_pmu_lbr_save(task_ctx);
304 		}
305 		return;
306 	}
307 
308 	/*
309 	 * When sampling the branck stack in system-wide, it may be
310 	 * necessary to flush the stack on context switch. This happens
311 	 * when the branch stack does not tag its entries with the pid
312 	 * of the current task. Otherwise it becomes impossible to
313 	 * associate a branch entry with a task. This ambiguity is more
314 	 * likely to appear when the branch stack supports priv level
315 	 * filtering and the user sets it to monitor only at the user
316 	 * level (which could be a useful measurement in system-wide
317 	 * mode). In that case, the risk is high of having a branch
318 	 * stack with branch from multiple tasks.
319  	 */
320 	if (sched_in) {
321 		intel_pmu_lbr_reset();
322 		cpuc->lbr_context = ctx;
323 	}
324 }
325 
326 static inline bool branch_user_callstack(unsigned br_sel)
327 {
328 	return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
329 }
330 
331 void intel_pmu_lbr_enable(struct perf_event *event)
332 {
333 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
334 	struct x86_perf_task_context *task_ctx;
335 
336 	if (!x86_pmu.lbr_nr)
337 		return;
338 
339 	/*
340 	 * Reset the LBR stack if we changed task context to
341 	 * avoid data leaks.
342 	 */
343 	if (event->ctx->task && cpuc->lbr_context != event->ctx) {
344 		intel_pmu_lbr_reset();
345 		cpuc->lbr_context = event->ctx;
346 	}
347 	cpuc->br_sel = event->hw.branch_reg.reg;
348 
349 	if (branch_user_callstack(cpuc->br_sel) && event->ctx &&
350 					event->ctx->task_ctx_data) {
351 		task_ctx = event->ctx->task_ctx_data;
352 		task_ctx->lbr_callstack_users++;
353 	}
354 
355 	cpuc->lbr_users++;
356 	perf_sched_cb_inc(event->ctx->pmu);
357 }
358 
359 void intel_pmu_lbr_disable(struct perf_event *event)
360 {
361 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
362 	struct x86_perf_task_context *task_ctx;
363 
364 	if (!x86_pmu.lbr_nr)
365 		return;
366 
367 	if (branch_user_callstack(cpuc->br_sel) && event->ctx &&
368 					event->ctx->task_ctx_data) {
369 		task_ctx = event->ctx->task_ctx_data;
370 		task_ctx->lbr_callstack_users--;
371 	}
372 
373 	cpuc->lbr_users--;
374 	WARN_ON_ONCE(cpuc->lbr_users < 0);
375 	perf_sched_cb_dec(event->ctx->pmu);
376 
377 	if (cpuc->enabled && !cpuc->lbr_users) {
378 		__intel_pmu_lbr_disable();
379 		/* avoid stale pointer */
380 		cpuc->lbr_context = NULL;
381 	}
382 }
383 
384 void intel_pmu_lbr_enable_all(bool pmi)
385 {
386 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
387 
388 	if (cpuc->lbr_users)
389 		__intel_pmu_lbr_enable(pmi);
390 }
391 
392 void intel_pmu_lbr_disable_all(void)
393 {
394 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
395 
396 	if (cpuc->lbr_users)
397 		__intel_pmu_lbr_disable();
398 }
399 
400 static void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
401 {
402 	unsigned long mask = x86_pmu.lbr_nr - 1;
403 	u64 tos = intel_pmu_lbr_tos();
404 	int i;
405 
406 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
407 		unsigned long lbr_idx = (tos - i) & mask;
408 		union {
409 			struct {
410 				u32 from;
411 				u32 to;
412 			};
413 			u64     lbr;
414 		} msr_lastbranch;
415 
416 		rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);
417 
418 		cpuc->lbr_entries[i].from	= msr_lastbranch.from;
419 		cpuc->lbr_entries[i].to		= msr_lastbranch.to;
420 		cpuc->lbr_entries[i].mispred	= 0;
421 		cpuc->lbr_entries[i].predicted	= 0;
422 		cpuc->lbr_entries[i].reserved	= 0;
423 	}
424 	cpuc->lbr_stack.nr = i;
425 }
426 
427 /*
428  * Due to lack of segmentation in Linux the effective address (offset)
429  * is the same as the linear address, allowing us to merge the LIP and EIP
430  * LBR formats.
431  */
432 static void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
433 {
434 	bool need_info = false;
435 	unsigned long mask = x86_pmu.lbr_nr - 1;
436 	int lbr_format = x86_pmu.intel_cap.lbr_format;
437 	u64 tos = intel_pmu_lbr_tos();
438 	int i;
439 	int out = 0;
440 	int num = x86_pmu.lbr_nr;
441 
442 	if (cpuc->lbr_sel) {
443 		need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO);
444 		if (cpuc->lbr_sel->config & LBR_CALL_STACK)
445 			num = tos;
446 	}
447 
448 	for (i = 0; i < num; i++) {
449 		unsigned long lbr_idx = (tos - i) & mask;
450 		u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
451 		int skip = 0;
452 		u16 cycles = 0;
453 		int lbr_flags = lbr_desc[lbr_format];
454 
455 		rdmsrl(x86_pmu.lbr_from + lbr_idx, from);
456 		rdmsrl(x86_pmu.lbr_to   + lbr_idx, to);
457 
458 		if (lbr_format == LBR_FORMAT_INFO && need_info) {
459 			u64 info;
460 
461 			rdmsrl(MSR_LBR_INFO_0 + lbr_idx, info);
462 			mis = !!(info & LBR_INFO_MISPRED);
463 			pred = !mis;
464 			in_tx = !!(info & LBR_INFO_IN_TX);
465 			abort = !!(info & LBR_INFO_ABORT);
466 			cycles = (info & LBR_INFO_CYCLES);
467 		}
468 
469 		if (lbr_format == LBR_FORMAT_TIME) {
470 			mis = !!(from & LBR_FROM_FLAG_MISPRED);
471 			pred = !mis;
472 			skip = 1;
473 			cycles = ((to >> 48) & LBR_INFO_CYCLES);
474 
475 			to = (u64)((((s64)to) << 16) >> 16);
476 		}
477 
478 		if (lbr_flags & LBR_EIP_FLAGS) {
479 			mis = !!(from & LBR_FROM_FLAG_MISPRED);
480 			pred = !mis;
481 			skip = 1;
482 		}
483 		if (lbr_flags & LBR_TSX) {
484 			in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
485 			abort = !!(from & LBR_FROM_FLAG_ABORT);
486 			skip = 3;
487 		}
488 		from = (u64)((((s64)from) << skip) >> skip);
489 
490 		/*
491 		 * Some CPUs report duplicated abort records,
492 		 * with the second entry not having an abort bit set.
493 		 * Skip them here. This loop runs backwards,
494 		 * so we need to undo the previous record.
495 		 * If the abort just happened outside the window
496 		 * the extra entry cannot be removed.
497 		 */
498 		if (abort && x86_pmu.lbr_double_abort && out > 0)
499 			out--;
500 
501 		cpuc->lbr_entries[out].from	 = from;
502 		cpuc->lbr_entries[out].to	 = to;
503 		cpuc->lbr_entries[out].mispred	 = mis;
504 		cpuc->lbr_entries[out].predicted = pred;
505 		cpuc->lbr_entries[out].in_tx	 = in_tx;
506 		cpuc->lbr_entries[out].abort	 = abort;
507 		cpuc->lbr_entries[out].cycles	 = cycles;
508 		cpuc->lbr_entries[out].reserved	 = 0;
509 		out++;
510 	}
511 	cpuc->lbr_stack.nr = out;
512 }
513 
514 void intel_pmu_lbr_read(void)
515 {
516 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
517 
518 	if (!cpuc->lbr_users)
519 		return;
520 
521 	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
522 		intel_pmu_lbr_read_32(cpuc);
523 	else
524 		intel_pmu_lbr_read_64(cpuc);
525 
526 	intel_pmu_lbr_filter(cpuc);
527 }
528 
529 /*
530  * SW filter is used:
531  * - in case there is no HW filter
532  * - in case the HW filter has errata or limitations
533  */
534 static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
535 {
536 	u64 br_type = event->attr.branch_sample_type;
537 	int mask = 0;
538 
539 	if (br_type & PERF_SAMPLE_BRANCH_USER)
540 		mask |= X86_BR_USER;
541 
542 	if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
543 		mask |= X86_BR_KERNEL;
544 
545 	/* we ignore BRANCH_HV here */
546 
547 	if (br_type & PERF_SAMPLE_BRANCH_ANY)
548 		mask |= X86_BR_ANY;
549 
550 	if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
551 		mask |= X86_BR_ANY_CALL;
552 
553 	if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
554 		mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;
555 
556 	if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
557 		mask |= X86_BR_IND_CALL;
558 
559 	if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
560 		mask |= X86_BR_ABORT;
561 
562 	if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
563 		mask |= X86_BR_IN_TX;
564 
565 	if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
566 		mask |= X86_BR_NO_TX;
567 
568 	if (br_type & PERF_SAMPLE_BRANCH_COND)
569 		mask |= X86_BR_JCC;
570 
571 	if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
572 		if (!x86_pmu_has_lbr_callstack())
573 			return -EOPNOTSUPP;
574 		if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
575 			return -EINVAL;
576 		mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
577 			X86_BR_CALL_STACK;
578 	}
579 
580 	if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP)
581 		mask |= X86_BR_IND_JMP;
582 
583 	if (br_type & PERF_SAMPLE_BRANCH_CALL)
584 		mask |= X86_BR_CALL | X86_BR_ZERO_CALL;
585 	/*
586 	 * stash actual user request into reg, it may
587 	 * be used by fixup code for some CPU
588 	 */
589 	event->hw.branch_reg.reg = mask;
590 	return 0;
591 }
592 
593 /*
594  * setup the HW LBR filter
595  * Used only when available, may not be enough to disambiguate
596  * all branches, may need the help of the SW filter
597  */
598 static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
599 {
600 	struct hw_perf_event_extra *reg;
601 	u64 br_type = event->attr.branch_sample_type;
602 	u64 mask = 0, v;
603 	int i;
604 
605 	for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) {
606 		if (!(br_type & (1ULL << i)))
607 			continue;
608 
609 		v = x86_pmu.lbr_sel_map[i];
610 		if (v == LBR_NOT_SUPP)
611 			return -EOPNOTSUPP;
612 
613 		if (v != LBR_IGN)
614 			mask |= v;
615 	}
616 
617 	reg = &event->hw.branch_reg;
618 	reg->idx = EXTRA_REG_LBR;
619 
620 	/*
621 	 * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
622 	 * in suppress mode. So LBR_SELECT should be set to
623 	 * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
624 	 * But the 10th bit LBR_CALL_STACK does not operate
625 	 * in suppress mode.
626 	 */
627 	reg->config = mask ^ (x86_pmu.lbr_sel_mask & ~LBR_CALL_STACK);
628 
629 	if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) &&
630 	    (br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) &&
631 	    (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO))
632 		reg->config |= LBR_NO_INFO;
633 
634 	return 0;
635 }
636 
637 int intel_pmu_setup_lbr_filter(struct perf_event *event)
638 {
639 	int ret = 0;
640 
641 	/*
642 	 * no LBR on this PMU
643 	 */
644 	if (!x86_pmu.lbr_nr)
645 		return -EOPNOTSUPP;
646 
647 	/*
648 	 * setup SW LBR filter
649 	 */
650 	ret = intel_pmu_setup_sw_lbr_filter(event);
651 	if (ret)
652 		return ret;
653 
654 	/*
655 	 * setup HW LBR filter, if any
656 	 */
657 	if (x86_pmu.lbr_sel_map)
658 		ret = intel_pmu_setup_hw_lbr_filter(event);
659 
660 	return ret;
661 }
662 
663 /*
664  * return the type of control flow change at address "from"
665  * instruction is not necessarily a branch (in case of interrupt).
666  *
667  * The branch type returned also includes the priv level of the
668  * target of the control flow change (X86_BR_USER, X86_BR_KERNEL).
669  *
670  * If a branch type is unknown OR the instruction cannot be
671  * decoded (e.g., text page not present), then X86_BR_NONE is
672  * returned.
673  */
674 static int branch_type(unsigned long from, unsigned long to, int abort)
675 {
676 	struct insn insn;
677 	void *addr;
678 	int bytes_read, bytes_left;
679 	int ret = X86_BR_NONE;
680 	int ext, to_plm, from_plm;
681 	u8 buf[MAX_INSN_SIZE];
682 	int is64 = 0;
683 
684 	to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
685 	from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER;
686 
687 	/*
688 	 * maybe zero if lbr did not fill up after a reset by the time
689 	 * we get a PMU interrupt
690 	 */
691 	if (from == 0 || to == 0)
692 		return X86_BR_NONE;
693 
694 	if (abort)
695 		return X86_BR_ABORT | to_plm;
696 
697 	if (from_plm == X86_BR_USER) {
698 		/*
699 		 * can happen if measuring at the user level only
700 		 * and we interrupt in a kernel thread, e.g., idle.
701 		 */
702 		if (!current->mm)
703 			return X86_BR_NONE;
704 
705 		/* may fail if text not present */
706 		bytes_left = copy_from_user_nmi(buf, (void __user *)from,
707 						MAX_INSN_SIZE);
708 		bytes_read = MAX_INSN_SIZE - bytes_left;
709 		if (!bytes_read)
710 			return X86_BR_NONE;
711 
712 		addr = buf;
713 	} else {
714 		/*
715 		 * The LBR logs any address in the IP, even if the IP just
716 		 * faulted. This means userspace can control the from address.
717 		 * Ensure we don't blindy read any address by validating it is
718 		 * a known text address.
719 		 */
720 		if (kernel_text_address(from)) {
721 			addr = (void *)from;
722 			/*
723 			 * Assume we can get the maximum possible size
724 			 * when grabbing kernel data.  This is not
725 			 * _strictly_ true since we could possibly be
726 			 * executing up next to a memory hole, but
727 			 * it is very unlikely to be a problem.
728 			 */
729 			bytes_read = MAX_INSN_SIZE;
730 		} else {
731 			return X86_BR_NONE;
732 		}
733 	}
734 
735 	/*
736 	 * decoder needs to know the ABI especially
737 	 * on 64-bit systems running 32-bit apps
738 	 */
739 #ifdef CONFIG_X86_64
740 	is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32);
741 #endif
742 	insn_init(&insn, addr, bytes_read, is64);
743 	insn_get_opcode(&insn);
744 	if (!insn.opcode.got)
745 		return X86_BR_ABORT;
746 
747 	switch (insn.opcode.bytes[0]) {
748 	case 0xf:
749 		switch (insn.opcode.bytes[1]) {
750 		case 0x05: /* syscall */
751 		case 0x34: /* sysenter */
752 			ret = X86_BR_SYSCALL;
753 			break;
754 		case 0x07: /* sysret */
755 		case 0x35: /* sysexit */
756 			ret = X86_BR_SYSRET;
757 			break;
758 		case 0x80 ... 0x8f: /* conditional */
759 			ret = X86_BR_JCC;
760 			break;
761 		default:
762 			ret = X86_BR_NONE;
763 		}
764 		break;
765 	case 0x70 ... 0x7f: /* conditional */
766 		ret = X86_BR_JCC;
767 		break;
768 	case 0xc2: /* near ret */
769 	case 0xc3: /* near ret */
770 	case 0xca: /* far ret */
771 	case 0xcb: /* far ret */
772 		ret = X86_BR_RET;
773 		break;
774 	case 0xcf: /* iret */
775 		ret = X86_BR_IRET;
776 		break;
777 	case 0xcc ... 0xce: /* int */
778 		ret = X86_BR_INT;
779 		break;
780 	case 0xe8: /* call near rel */
781 		insn_get_immediate(&insn);
782 		if (insn.immediate1.value == 0) {
783 			/* zero length call */
784 			ret = X86_BR_ZERO_CALL;
785 			break;
786 		}
787 	case 0x9a: /* call far absolute */
788 		ret = X86_BR_CALL;
789 		break;
790 	case 0xe0 ... 0xe3: /* loop jmp */
791 		ret = X86_BR_JCC;
792 		break;
793 	case 0xe9 ... 0xeb: /* jmp */
794 		ret = X86_BR_JMP;
795 		break;
796 	case 0xff: /* call near absolute, call far absolute ind */
797 		insn_get_modrm(&insn);
798 		ext = (insn.modrm.bytes[0] >> 3) & 0x7;
799 		switch (ext) {
800 		case 2: /* near ind call */
801 		case 3: /* far ind call */
802 			ret = X86_BR_IND_CALL;
803 			break;
804 		case 4:
805 		case 5:
806 			ret = X86_BR_IND_JMP;
807 			break;
808 		}
809 		break;
810 	default:
811 		ret = X86_BR_NONE;
812 	}
813 	/*
814 	 * interrupts, traps, faults (and thus ring transition) may
815 	 * occur on any instructions. Thus, to classify them correctly,
816 	 * we need to first look at the from and to priv levels. If they
817 	 * are different and to is in the kernel, then it indicates
818 	 * a ring transition. If the from instruction is not a ring
819 	 * transition instr (syscall, systenter, int), then it means
820 	 * it was a irq, trap or fault.
821 	 *
822 	 * we have no way of detecting kernel to kernel faults.
823 	 */
824 	if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL
825 	    && ret != X86_BR_SYSCALL && ret != X86_BR_INT)
826 		ret = X86_BR_IRQ;
827 
828 	/*
829 	 * branch priv level determined by target as
830 	 * is done by HW when LBR_SELECT is implemented
831 	 */
832 	if (ret != X86_BR_NONE)
833 		ret |= to_plm;
834 
835 	return ret;
836 }
837 
838 /*
839  * implement actual branch filter based on user demand.
840  * Hardware may not exactly satisfy that request, thus
841  * we need to inspect opcodes. Mismatched branches are
842  * discarded. Therefore, the number of branches returned
843  * in PERF_SAMPLE_BRANCH_STACK sample may vary.
844  */
845 static void
846 intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
847 {
848 	u64 from, to;
849 	int br_sel = cpuc->br_sel;
850 	int i, j, type;
851 	bool compress = false;
852 
853 	/* if sampling all branches, then nothing to filter */
854 	if ((br_sel & X86_BR_ALL) == X86_BR_ALL)
855 		return;
856 
857 	for (i = 0; i < cpuc->lbr_stack.nr; i++) {
858 
859 		from = cpuc->lbr_entries[i].from;
860 		to = cpuc->lbr_entries[i].to;
861 
862 		type = branch_type(from, to, cpuc->lbr_entries[i].abort);
863 		if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
864 			if (cpuc->lbr_entries[i].in_tx)
865 				type |= X86_BR_IN_TX;
866 			else
867 				type |= X86_BR_NO_TX;
868 		}
869 
870 		/* if type does not correspond, then discard */
871 		if (type == X86_BR_NONE || (br_sel & type) != type) {
872 			cpuc->lbr_entries[i].from = 0;
873 			compress = true;
874 		}
875 	}
876 
877 	if (!compress)
878 		return;
879 
880 	/* remove all entries with from=0 */
881 	for (i = 0; i < cpuc->lbr_stack.nr; ) {
882 		if (!cpuc->lbr_entries[i].from) {
883 			j = i;
884 			while (++j < cpuc->lbr_stack.nr)
885 				cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
886 			cpuc->lbr_stack.nr--;
887 			if (!cpuc->lbr_entries[i].from)
888 				continue;
889 		}
890 		i++;
891 	}
892 }
893 
894 /*
895  * Map interface branch filters onto LBR filters
896  */
897 static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
898 	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
899 	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
900 	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
901 	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
902 	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_REL_JMP
903 						| LBR_IND_JMP | LBR_FAR,
904 	/*
905 	 * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
906 	 */
907 	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
908 	 LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
909 	/*
910 	 * NHM/WSM erratum: must include IND_JMP to capture IND_CALL
911 	 */
912 	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
913 	[PERF_SAMPLE_BRANCH_COND_SHIFT]     = LBR_JCC,
914 	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
915 };
916 
917 static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
918 	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
919 	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
920 	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
921 	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
922 	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_FAR,
923 	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
924 						| LBR_FAR,
925 	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]	= LBR_IND_CALL,
926 	[PERF_SAMPLE_BRANCH_COND_SHIFT]		= LBR_JCC,
927 	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]	= LBR_IND_JMP,
928 	[PERF_SAMPLE_BRANCH_CALL_SHIFT]		= LBR_REL_CALL,
929 };
930 
931 static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
932 	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
933 	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
934 	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
935 	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
936 	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_FAR,
937 	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
938 						| LBR_FAR,
939 	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]	= LBR_IND_CALL,
940 	[PERF_SAMPLE_BRANCH_COND_SHIFT]		= LBR_JCC,
941 	[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
942 						| LBR_RETURN | LBR_CALL_STACK,
943 	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]	= LBR_IND_JMP,
944 	[PERF_SAMPLE_BRANCH_CALL_SHIFT]		= LBR_REL_CALL,
945 };
946 
947 /* core */
948 void __init intel_pmu_lbr_init_core(void)
949 {
950 	x86_pmu.lbr_nr     = 4;
951 	x86_pmu.lbr_tos    = MSR_LBR_TOS;
952 	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
953 	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
954 
955 	/*
956 	 * SW branch filter usage:
957 	 * - compensate for lack of HW filter
958 	 */
959 	pr_cont("4-deep LBR, ");
960 }
961 
962 /* nehalem/westmere */
963 void __init intel_pmu_lbr_init_nhm(void)
964 {
965 	x86_pmu.lbr_nr     = 16;
966 	x86_pmu.lbr_tos    = MSR_LBR_TOS;
967 	x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
968 	x86_pmu.lbr_to     = MSR_LBR_NHM_TO;
969 
970 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
971 	x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;
972 
973 	/*
974 	 * SW branch filter usage:
975 	 * - workaround LBR_SEL errata (see above)
976 	 * - support syscall, sysret capture.
977 	 *   That requires LBR_FAR but that means far
978 	 *   jmp need to be filtered out
979 	 */
980 	pr_cont("16-deep LBR, ");
981 }
982 
983 /* sandy bridge */
984 void __init intel_pmu_lbr_init_snb(void)
985 {
986 	x86_pmu.lbr_nr	 = 16;
987 	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
988 	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
989 	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
990 
991 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
992 	x86_pmu.lbr_sel_map  = snb_lbr_sel_map;
993 
994 	/*
995 	 * SW branch filter usage:
996 	 * - support syscall, sysret capture.
997 	 *   That requires LBR_FAR but that means far
998 	 *   jmp need to be filtered out
999 	 */
1000 	pr_cont("16-deep LBR, ");
1001 }
1002 
1003 /* haswell */
1004 void intel_pmu_lbr_init_hsw(void)
1005 {
1006 	x86_pmu.lbr_nr	 = 16;
1007 	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
1008 	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1009 	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
1010 
1011 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1012 	x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;
1013 
1014 	pr_cont("16-deep LBR, ");
1015 }
1016 
1017 /* skylake */
1018 __init void intel_pmu_lbr_init_skl(void)
1019 {
1020 	x86_pmu.lbr_nr	 = 32;
1021 	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
1022 	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1023 	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
1024 
1025 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1026 	x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;
1027 
1028 	/*
1029 	 * SW branch filter usage:
1030 	 * - support syscall, sysret capture.
1031 	 *   That requires LBR_FAR but that means far
1032 	 *   jmp need to be filtered out
1033 	 */
1034 	pr_cont("32-deep LBR, ");
1035 }
1036 
1037 /* atom */
1038 void __init intel_pmu_lbr_init_atom(void)
1039 {
1040 	/*
1041 	 * only models starting at stepping 10 seems
1042 	 * to have an operational LBR which can freeze
1043 	 * on PMU interrupt
1044 	 */
1045 	if (boot_cpu_data.x86_model == 28
1046 	    && boot_cpu_data.x86_mask < 10) {
1047 		pr_cont("LBR disabled due to erratum");
1048 		return;
1049 	}
1050 
1051 	x86_pmu.lbr_nr	   = 8;
1052 	x86_pmu.lbr_tos    = MSR_LBR_TOS;
1053 	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
1054 	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1055 
1056 	/*
1057 	 * SW branch filter usage:
1058 	 * - compensate for lack of HW filter
1059 	 */
1060 	pr_cont("8-deep LBR, ");
1061 }
1062 
1063 /* slm */
1064 void __init intel_pmu_lbr_init_slm(void)
1065 {
1066 	x86_pmu.lbr_nr	   = 8;
1067 	x86_pmu.lbr_tos    = MSR_LBR_TOS;
1068 	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
1069 	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1070 
1071 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1072 	x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;
1073 
1074 	/*
1075 	 * SW branch filter usage:
1076 	 * - compensate for lack of HW filter
1077 	 */
1078 	pr_cont("8-deep LBR, ");
1079 }
1080 
1081 /* Knights Landing */
1082 void intel_pmu_lbr_init_knl(void)
1083 {
1084 	x86_pmu.lbr_nr	   = 8;
1085 	x86_pmu.lbr_tos    = MSR_LBR_TOS;
1086 	x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
1087 	x86_pmu.lbr_to     = MSR_LBR_NHM_TO;
1088 
1089 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1090 	x86_pmu.lbr_sel_map  = snb_lbr_sel_map;
1091 
1092 	pr_cont("8-deep LBR, ");
1093 }
1094