1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/perf_event.h> 3 #include <linux/types.h> 4 5 #include <asm/perf_event.h> 6 #include <asm/msr.h> 7 #include <asm/insn.h> 8 9 #include "../perf_event.h" 10 11 enum { 12 LBR_FORMAT_32 = 0x00, 13 LBR_FORMAT_LIP = 0x01, 14 LBR_FORMAT_EIP = 0x02, 15 LBR_FORMAT_EIP_FLAGS = 0x03, 16 LBR_FORMAT_EIP_FLAGS2 = 0x04, 17 LBR_FORMAT_INFO = 0x05, 18 LBR_FORMAT_TIME = 0x06, 19 LBR_FORMAT_MAX_KNOWN = LBR_FORMAT_TIME, 20 }; 21 22 static const enum { 23 LBR_EIP_FLAGS = 1, 24 LBR_TSX = 2, 25 } lbr_desc[LBR_FORMAT_MAX_KNOWN + 1] = { 26 [LBR_FORMAT_EIP_FLAGS] = LBR_EIP_FLAGS, 27 [LBR_FORMAT_EIP_FLAGS2] = LBR_EIP_FLAGS | LBR_TSX, 28 }; 29 30 /* 31 * Intel LBR_SELECT bits 32 * Intel Vol3a, April 2011, Section 16.7 Table 16-10 33 * 34 * Hardware branch filter (not available on all CPUs) 35 */ 36 #define LBR_KERNEL_BIT 0 /* do not capture at ring0 */ 37 #define LBR_USER_BIT 1 /* do not capture at ring > 0 */ 38 #define LBR_JCC_BIT 2 /* do not capture conditional branches */ 39 #define LBR_REL_CALL_BIT 3 /* do not capture relative calls */ 40 #define LBR_IND_CALL_BIT 4 /* do not capture indirect calls */ 41 #define LBR_RETURN_BIT 5 /* do not capture near returns */ 42 #define LBR_IND_JMP_BIT 6 /* do not capture indirect jumps */ 43 #define LBR_REL_JMP_BIT 7 /* do not capture relative jumps */ 44 #define LBR_FAR_BIT 8 /* do not capture far branches */ 45 #define LBR_CALL_STACK_BIT 9 /* enable call stack */ 46 47 /* 48 * Following bit only exists in Linux; we mask it out before writing it to 49 * the actual MSR. But it helps the constraint perf code to understand 50 * that this is a separate configuration. 51 */ 52 #define LBR_NO_INFO_BIT 63 /* don't read LBR_INFO. */ 53 54 #define LBR_KERNEL (1 << LBR_KERNEL_BIT) 55 #define LBR_USER (1 << LBR_USER_BIT) 56 #define LBR_JCC (1 << LBR_JCC_BIT) 57 #define LBR_REL_CALL (1 << LBR_REL_CALL_BIT) 58 #define LBR_IND_CALL (1 << LBR_IND_CALL_BIT) 59 #define LBR_RETURN (1 << LBR_RETURN_BIT) 60 #define LBR_REL_JMP (1 << LBR_REL_JMP_BIT) 61 #define LBR_IND_JMP (1 << LBR_IND_JMP_BIT) 62 #define LBR_FAR (1 << LBR_FAR_BIT) 63 #define LBR_CALL_STACK (1 << LBR_CALL_STACK_BIT) 64 #define LBR_NO_INFO (1ULL << LBR_NO_INFO_BIT) 65 66 #define LBR_PLM (LBR_KERNEL | LBR_USER) 67 68 #define LBR_SEL_MASK 0x3ff /* valid bits in LBR_SELECT */ 69 #define LBR_NOT_SUPP -1 /* LBR filter not supported */ 70 #define LBR_IGN 0 /* ignored */ 71 72 #define LBR_ANY \ 73 (LBR_JCC |\ 74 LBR_REL_CALL |\ 75 LBR_IND_CALL |\ 76 LBR_RETURN |\ 77 LBR_REL_JMP |\ 78 LBR_IND_JMP |\ 79 LBR_FAR) 80 81 #define LBR_FROM_FLAG_MISPRED BIT_ULL(63) 82 #define LBR_FROM_FLAG_IN_TX BIT_ULL(62) 83 #define LBR_FROM_FLAG_ABORT BIT_ULL(61) 84 85 #define LBR_FROM_SIGNEXT_2MSB (BIT_ULL(60) | BIT_ULL(59)) 86 87 /* 88 * x86control flow change classification 89 * x86control flow changes include branches, interrupts, traps, faults 90 */ 91 enum { 92 X86_BR_NONE = 0, /* unknown */ 93 94 X86_BR_USER = 1 << 0, /* branch target is user */ 95 X86_BR_KERNEL = 1 << 1, /* branch target is kernel */ 96 97 X86_BR_CALL = 1 << 2, /* call */ 98 X86_BR_RET = 1 << 3, /* return */ 99 X86_BR_SYSCALL = 1 << 4, /* syscall */ 100 X86_BR_SYSRET = 1 << 5, /* syscall return */ 101 X86_BR_INT = 1 << 6, /* sw interrupt */ 102 X86_BR_IRET = 1 << 7, /* return from interrupt */ 103 X86_BR_JCC = 1 << 8, /* conditional */ 104 X86_BR_JMP = 1 << 9, /* jump */ 105 X86_BR_IRQ = 1 << 10,/* hw interrupt or trap or fault */ 106 X86_BR_IND_CALL = 1 << 11,/* indirect calls */ 107 X86_BR_ABORT = 1 << 12,/* transaction abort */ 108 X86_BR_IN_TX = 1 << 13,/* in transaction */ 109 X86_BR_NO_TX = 1 << 14,/* not in transaction */ 110 X86_BR_ZERO_CALL = 1 << 15,/* zero length call */ 111 X86_BR_CALL_STACK = 1 << 16,/* call stack */ 112 X86_BR_IND_JMP = 1 << 17,/* indirect jump */ 113 114 X86_BR_TYPE_SAVE = 1 << 18,/* indicate to save branch type */ 115 116 }; 117 118 #define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL) 119 #define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX) 120 121 #define X86_BR_ANY \ 122 (X86_BR_CALL |\ 123 X86_BR_RET |\ 124 X86_BR_SYSCALL |\ 125 X86_BR_SYSRET |\ 126 X86_BR_INT |\ 127 X86_BR_IRET |\ 128 X86_BR_JCC |\ 129 X86_BR_JMP |\ 130 X86_BR_IRQ |\ 131 X86_BR_ABORT |\ 132 X86_BR_IND_CALL |\ 133 X86_BR_IND_JMP |\ 134 X86_BR_ZERO_CALL) 135 136 #define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY) 137 138 #define X86_BR_ANY_CALL \ 139 (X86_BR_CALL |\ 140 X86_BR_IND_CALL |\ 141 X86_BR_ZERO_CALL |\ 142 X86_BR_SYSCALL |\ 143 X86_BR_IRQ |\ 144 X86_BR_INT) 145 146 static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc); 147 148 /* 149 * We only support LBR implementations that have FREEZE_LBRS_ON_PMI 150 * otherwise it becomes near impossible to get a reliable stack. 151 */ 152 153 static void __intel_pmu_lbr_enable(bool pmi) 154 { 155 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 156 u64 debugctl, lbr_select = 0, orig_debugctl; 157 158 /* 159 * No need to unfreeze manually, as v4 can do that as part 160 * of the GLOBAL_STATUS ack. 161 */ 162 if (pmi && x86_pmu.version >= 4) 163 return; 164 165 /* 166 * No need to reprogram LBR_SELECT in a PMI, as it 167 * did not change. 168 */ 169 if (cpuc->lbr_sel) 170 lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask; 171 if (!pmi && cpuc->lbr_sel) 172 wrmsrl(MSR_LBR_SELECT, lbr_select); 173 174 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 175 orig_debugctl = debugctl; 176 debugctl |= DEBUGCTLMSR_LBR; 177 /* 178 * LBR callstack does not work well with FREEZE_LBRS_ON_PMI. 179 * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions 180 * may cause superfluous increase/decrease of LBR_TOS. 181 */ 182 if (!(lbr_select & LBR_CALL_STACK)) 183 debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI; 184 if (orig_debugctl != debugctl) 185 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 186 } 187 188 static void __intel_pmu_lbr_disable(void) 189 { 190 u64 debugctl; 191 192 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 193 debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI); 194 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 195 } 196 197 static void intel_pmu_lbr_reset_32(void) 198 { 199 int i; 200 201 for (i = 0; i < x86_pmu.lbr_nr; i++) 202 wrmsrl(x86_pmu.lbr_from + i, 0); 203 } 204 205 static void intel_pmu_lbr_reset_64(void) 206 { 207 int i; 208 209 for (i = 0; i < x86_pmu.lbr_nr; i++) { 210 wrmsrl(x86_pmu.lbr_from + i, 0); 211 wrmsrl(x86_pmu.lbr_to + i, 0); 212 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO) 213 wrmsrl(MSR_LBR_INFO_0 + i, 0); 214 } 215 } 216 217 void intel_pmu_lbr_reset(void) 218 { 219 if (!x86_pmu.lbr_nr) 220 return; 221 222 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) 223 intel_pmu_lbr_reset_32(); 224 else 225 intel_pmu_lbr_reset_64(); 226 } 227 228 /* 229 * TOS = most recently recorded branch 230 */ 231 static inline u64 intel_pmu_lbr_tos(void) 232 { 233 u64 tos; 234 235 rdmsrl(x86_pmu.lbr_tos, tos); 236 return tos; 237 } 238 239 enum { 240 LBR_NONE, 241 LBR_VALID, 242 }; 243 244 /* 245 * For formats with LBR_TSX flags (e.g. LBR_FORMAT_EIP_FLAGS2), bits 61:62 in 246 * MSR_LAST_BRANCH_FROM_x are the TSX flags when TSX is supported, but when 247 * TSX is not supported they have no consistent behavior: 248 * 249 * - For wrmsr(), bits 61:62 are considered part of the sign extension. 250 * - For HW updates (branch captures) bits 61:62 are always OFF and are not 251 * part of the sign extension. 252 * 253 * Therefore, if: 254 * 255 * 1) LBR has TSX format 256 * 2) CPU has no TSX support enabled 257 * 258 * ... then any value passed to wrmsr() must be sign extended to 63 bits and any 259 * value from rdmsr() must be converted to have a 61 bits sign extension, 260 * ignoring the TSX flags. 261 */ 262 static inline bool lbr_from_signext_quirk_needed(void) 263 { 264 int lbr_format = x86_pmu.intel_cap.lbr_format; 265 bool tsx_support = boot_cpu_has(X86_FEATURE_HLE) || 266 boot_cpu_has(X86_FEATURE_RTM); 267 268 return !tsx_support && (lbr_desc[lbr_format] & LBR_TSX); 269 } 270 271 DEFINE_STATIC_KEY_FALSE(lbr_from_quirk_key); 272 273 /* If quirk is enabled, ensure sign extension is 63 bits: */ 274 inline u64 lbr_from_signext_quirk_wr(u64 val) 275 { 276 if (static_branch_unlikely(&lbr_from_quirk_key)) { 277 /* 278 * Sign extend into bits 61:62 while preserving bit 63. 279 * 280 * Quirk is enabled when TSX is disabled. Therefore TSX bits 281 * in val are always OFF and must be changed to be sign 282 * extension bits. Since bits 59:60 are guaranteed to be 283 * part of the sign extension bits, we can just copy them 284 * to 61:62. 285 */ 286 val |= (LBR_FROM_SIGNEXT_2MSB & val) << 2; 287 } 288 return val; 289 } 290 291 /* 292 * If quirk is needed, ensure sign extension is 61 bits: 293 */ 294 static u64 lbr_from_signext_quirk_rd(u64 val) 295 { 296 if (static_branch_unlikely(&lbr_from_quirk_key)) { 297 /* 298 * Quirk is on when TSX is not enabled. Therefore TSX 299 * flags must be read as OFF. 300 */ 301 val &= ~(LBR_FROM_FLAG_IN_TX | LBR_FROM_FLAG_ABORT); 302 } 303 return val; 304 } 305 306 static inline void wrlbr_from(unsigned int idx, u64 val) 307 { 308 val = lbr_from_signext_quirk_wr(val); 309 wrmsrl(x86_pmu.lbr_from + idx, val); 310 } 311 312 static inline void wrlbr_to(unsigned int idx, u64 val) 313 { 314 wrmsrl(x86_pmu.lbr_to + idx, val); 315 } 316 317 static inline u64 rdlbr_from(unsigned int idx) 318 { 319 u64 val; 320 321 rdmsrl(x86_pmu.lbr_from + idx, val); 322 323 return lbr_from_signext_quirk_rd(val); 324 } 325 326 static inline u64 rdlbr_to(unsigned int idx) 327 { 328 u64 val; 329 330 rdmsrl(x86_pmu.lbr_to + idx, val); 331 332 return val; 333 } 334 335 static void __intel_pmu_lbr_restore(struct x86_perf_task_context *task_ctx) 336 { 337 int i; 338 unsigned lbr_idx, mask; 339 u64 tos; 340 341 if (task_ctx->lbr_callstack_users == 0 || 342 task_ctx->lbr_stack_state == LBR_NONE) { 343 intel_pmu_lbr_reset(); 344 return; 345 } 346 347 mask = x86_pmu.lbr_nr - 1; 348 tos = task_ctx->tos; 349 for (i = 0; i < tos; i++) { 350 lbr_idx = (tos - i) & mask; 351 wrlbr_from(lbr_idx, task_ctx->lbr_from[i]); 352 wrlbr_to (lbr_idx, task_ctx->lbr_to[i]); 353 354 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO) 355 wrmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]); 356 } 357 wrmsrl(x86_pmu.lbr_tos, tos); 358 task_ctx->lbr_stack_state = LBR_NONE; 359 } 360 361 static void __intel_pmu_lbr_save(struct x86_perf_task_context *task_ctx) 362 { 363 unsigned lbr_idx, mask; 364 u64 tos; 365 int i; 366 367 if (task_ctx->lbr_callstack_users == 0) { 368 task_ctx->lbr_stack_state = LBR_NONE; 369 return; 370 } 371 372 mask = x86_pmu.lbr_nr - 1; 373 tos = intel_pmu_lbr_tos(); 374 for (i = 0; i < tos; i++) { 375 lbr_idx = (tos - i) & mask; 376 task_ctx->lbr_from[i] = rdlbr_from(lbr_idx); 377 task_ctx->lbr_to[i] = rdlbr_to(lbr_idx); 378 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO) 379 rdmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]); 380 } 381 task_ctx->tos = tos; 382 task_ctx->lbr_stack_state = LBR_VALID; 383 } 384 385 void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in) 386 { 387 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 388 struct x86_perf_task_context *task_ctx; 389 390 if (!cpuc->lbr_users) 391 return; 392 393 /* 394 * If LBR callstack feature is enabled and the stack was saved when 395 * the task was scheduled out, restore the stack. Otherwise flush 396 * the LBR stack. 397 */ 398 task_ctx = ctx ? ctx->task_ctx_data : NULL; 399 if (task_ctx) { 400 if (sched_in) 401 __intel_pmu_lbr_restore(task_ctx); 402 else 403 __intel_pmu_lbr_save(task_ctx); 404 return; 405 } 406 407 /* 408 * Since a context switch can flip the address space and LBR entries 409 * are not tagged with an identifier, we need to wipe the LBR, even for 410 * per-cpu events. You simply cannot resolve the branches from the old 411 * address space. 412 */ 413 if (sched_in) 414 intel_pmu_lbr_reset(); 415 } 416 417 static inline bool branch_user_callstack(unsigned br_sel) 418 { 419 return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK); 420 } 421 422 void intel_pmu_lbr_add(struct perf_event *event) 423 { 424 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 425 struct x86_perf_task_context *task_ctx; 426 427 if (!x86_pmu.lbr_nr) 428 return; 429 430 cpuc->br_sel = event->hw.branch_reg.reg; 431 432 if (branch_user_callstack(cpuc->br_sel) && event->ctx->task_ctx_data) { 433 task_ctx = event->ctx->task_ctx_data; 434 task_ctx->lbr_callstack_users++; 435 } 436 437 /* 438 * Request pmu::sched_task() callback, which will fire inside the 439 * regular perf event scheduling, so that call will: 440 * 441 * - restore or wipe; when LBR-callstack, 442 * - wipe; otherwise, 443 * 444 * when this is from __perf_event_task_sched_in(). 445 * 446 * However, if this is from perf_install_in_context(), no such callback 447 * will follow and we'll need to reset the LBR here if this is the 448 * first LBR event. 449 * 450 * The problem is, we cannot tell these cases apart... but we can 451 * exclude the biggest chunk of cases by looking at 452 * event->total_time_running. An event that has accrued runtime cannot 453 * be 'new'. Conversely, a new event can get installed through the 454 * context switch path for the first time. 455 */ 456 perf_sched_cb_inc(event->ctx->pmu); 457 if (!cpuc->lbr_users++ && !event->total_time_running) 458 intel_pmu_lbr_reset(); 459 } 460 461 void intel_pmu_lbr_del(struct perf_event *event) 462 { 463 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 464 struct x86_perf_task_context *task_ctx; 465 466 if (!x86_pmu.lbr_nr) 467 return; 468 469 if (branch_user_callstack(cpuc->br_sel) && 470 event->ctx->task_ctx_data) { 471 task_ctx = event->ctx->task_ctx_data; 472 task_ctx->lbr_callstack_users--; 473 } 474 475 cpuc->lbr_users--; 476 WARN_ON_ONCE(cpuc->lbr_users < 0); 477 perf_sched_cb_dec(event->ctx->pmu); 478 } 479 480 void intel_pmu_lbr_enable_all(bool pmi) 481 { 482 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 483 484 if (cpuc->lbr_users) 485 __intel_pmu_lbr_enable(pmi); 486 } 487 488 void intel_pmu_lbr_disable_all(void) 489 { 490 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 491 492 if (cpuc->lbr_users) 493 __intel_pmu_lbr_disable(); 494 } 495 496 static void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc) 497 { 498 unsigned long mask = x86_pmu.lbr_nr - 1; 499 u64 tos = intel_pmu_lbr_tos(); 500 int i; 501 502 for (i = 0; i < x86_pmu.lbr_nr; i++) { 503 unsigned long lbr_idx = (tos - i) & mask; 504 union { 505 struct { 506 u32 from; 507 u32 to; 508 }; 509 u64 lbr; 510 } msr_lastbranch; 511 512 rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr); 513 514 cpuc->lbr_entries[i].from = msr_lastbranch.from; 515 cpuc->lbr_entries[i].to = msr_lastbranch.to; 516 cpuc->lbr_entries[i].mispred = 0; 517 cpuc->lbr_entries[i].predicted = 0; 518 cpuc->lbr_entries[i].in_tx = 0; 519 cpuc->lbr_entries[i].abort = 0; 520 cpuc->lbr_entries[i].cycles = 0; 521 cpuc->lbr_entries[i].type = 0; 522 cpuc->lbr_entries[i].reserved = 0; 523 } 524 cpuc->lbr_stack.nr = i; 525 } 526 527 /* 528 * Due to lack of segmentation in Linux the effective address (offset) 529 * is the same as the linear address, allowing us to merge the LIP and EIP 530 * LBR formats. 531 */ 532 static void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc) 533 { 534 bool need_info = false; 535 unsigned long mask = x86_pmu.lbr_nr - 1; 536 int lbr_format = x86_pmu.intel_cap.lbr_format; 537 u64 tos = intel_pmu_lbr_tos(); 538 int i; 539 int out = 0; 540 int num = x86_pmu.lbr_nr; 541 542 if (cpuc->lbr_sel) { 543 need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO); 544 if (cpuc->lbr_sel->config & LBR_CALL_STACK) 545 num = tos; 546 } 547 548 for (i = 0; i < num; i++) { 549 unsigned long lbr_idx = (tos - i) & mask; 550 u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0; 551 int skip = 0; 552 u16 cycles = 0; 553 int lbr_flags = lbr_desc[lbr_format]; 554 555 from = rdlbr_from(lbr_idx); 556 to = rdlbr_to(lbr_idx); 557 558 if (lbr_format == LBR_FORMAT_INFO && need_info) { 559 u64 info; 560 561 rdmsrl(MSR_LBR_INFO_0 + lbr_idx, info); 562 mis = !!(info & LBR_INFO_MISPRED); 563 pred = !mis; 564 in_tx = !!(info & LBR_INFO_IN_TX); 565 abort = !!(info & LBR_INFO_ABORT); 566 cycles = (info & LBR_INFO_CYCLES); 567 } 568 569 if (lbr_format == LBR_FORMAT_TIME) { 570 mis = !!(from & LBR_FROM_FLAG_MISPRED); 571 pred = !mis; 572 skip = 1; 573 cycles = ((to >> 48) & LBR_INFO_CYCLES); 574 575 to = (u64)((((s64)to) << 16) >> 16); 576 } 577 578 if (lbr_flags & LBR_EIP_FLAGS) { 579 mis = !!(from & LBR_FROM_FLAG_MISPRED); 580 pred = !mis; 581 skip = 1; 582 } 583 if (lbr_flags & LBR_TSX) { 584 in_tx = !!(from & LBR_FROM_FLAG_IN_TX); 585 abort = !!(from & LBR_FROM_FLAG_ABORT); 586 skip = 3; 587 } 588 from = (u64)((((s64)from) << skip) >> skip); 589 590 /* 591 * Some CPUs report duplicated abort records, 592 * with the second entry not having an abort bit set. 593 * Skip them here. This loop runs backwards, 594 * so we need to undo the previous record. 595 * If the abort just happened outside the window 596 * the extra entry cannot be removed. 597 */ 598 if (abort && x86_pmu.lbr_double_abort && out > 0) 599 out--; 600 601 cpuc->lbr_entries[out].from = from; 602 cpuc->lbr_entries[out].to = to; 603 cpuc->lbr_entries[out].mispred = mis; 604 cpuc->lbr_entries[out].predicted = pred; 605 cpuc->lbr_entries[out].in_tx = in_tx; 606 cpuc->lbr_entries[out].abort = abort; 607 cpuc->lbr_entries[out].cycles = cycles; 608 cpuc->lbr_entries[out].type = 0; 609 cpuc->lbr_entries[out].reserved = 0; 610 out++; 611 } 612 cpuc->lbr_stack.nr = out; 613 } 614 615 void intel_pmu_lbr_read(void) 616 { 617 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 618 619 if (!cpuc->lbr_users) 620 return; 621 622 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) 623 intel_pmu_lbr_read_32(cpuc); 624 else 625 intel_pmu_lbr_read_64(cpuc); 626 627 intel_pmu_lbr_filter(cpuc); 628 } 629 630 /* 631 * SW filter is used: 632 * - in case there is no HW filter 633 * - in case the HW filter has errata or limitations 634 */ 635 static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event) 636 { 637 u64 br_type = event->attr.branch_sample_type; 638 int mask = 0; 639 640 if (br_type & PERF_SAMPLE_BRANCH_USER) 641 mask |= X86_BR_USER; 642 643 if (br_type & PERF_SAMPLE_BRANCH_KERNEL) 644 mask |= X86_BR_KERNEL; 645 646 /* we ignore BRANCH_HV here */ 647 648 if (br_type & PERF_SAMPLE_BRANCH_ANY) 649 mask |= X86_BR_ANY; 650 651 if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL) 652 mask |= X86_BR_ANY_CALL; 653 654 if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN) 655 mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET; 656 657 if (br_type & PERF_SAMPLE_BRANCH_IND_CALL) 658 mask |= X86_BR_IND_CALL; 659 660 if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX) 661 mask |= X86_BR_ABORT; 662 663 if (br_type & PERF_SAMPLE_BRANCH_IN_TX) 664 mask |= X86_BR_IN_TX; 665 666 if (br_type & PERF_SAMPLE_BRANCH_NO_TX) 667 mask |= X86_BR_NO_TX; 668 669 if (br_type & PERF_SAMPLE_BRANCH_COND) 670 mask |= X86_BR_JCC; 671 672 if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) { 673 if (!x86_pmu_has_lbr_callstack()) 674 return -EOPNOTSUPP; 675 if (mask & ~(X86_BR_USER | X86_BR_KERNEL)) 676 return -EINVAL; 677 mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET | 678 X86_BR_CALL_STACK; 679 } 680 681 if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP) 682 mask |= X86_BR_IND_JMP; 683 684 if (br_type & PERF_SAMPLE_BRANCH_CALL) 685 mask |= X86_BR_CALL | X86_BR_ZERO_CALL; 686 687 if (br_type & PERF_SAMPLE_BRANCH_TYPE_SAVE) 688 mask |= X86_BR_TYPE_SAVE; 689 690 /* 691 * stash actual user request into reg, it may 692 * be used by fixup code for some CPU 693 */ 694 event->hw.branch_reg.reg = mask; 695 return 0; 696 } 697 698 /* 699 * setup the HW LBR filter 700 * Used only when available, may not be enough to disambiguate 701 * all branches, may need the help of the SW filter 702 */ 703 static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event) 704 { 705 struct hw_perf_event_extra *reg; 706 u64 br_type = event->attr.branch_sample_type; 707 u64 mask = 0, v; 708 int i; 709 710 for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) { 711 if (!(br_type & (1ULL << i))) 712 continue; 713 714 v = x86_pmu.lbr_sel_map[i]; 715 if (v == LBR_NOT_SUPP) 716 return -EOPNOTSUPP; 717 718 if (v != LBR_IGN) 719 mask |= v; 720 } 721 722 reg = &event->hw.branch_reg; 723 reg->idx = EXTRA_REG_LBR; 724 725 /* 726 * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate 727 * in suppress mode. So LBR_SELECT should be set to 728 * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK) 729 * But the 10th bit LBR_CALL_STACK does not operate 730 * in suppress mode. 731 */ 732 reg->config = mask ^ (x86_pmu.lbr_sel_mask & ~LBR_CALL_STACK); 733 734 if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) && 735 (br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) && 736 (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)) 737 reg->config |= LBR_NO_INFO; 738 739 return 0; 740 } 741 742 int intel_pmu_setup_lbr_filter(struct perf_event *event) 743 { 744 int ret = 0; 745 746 /* 747 * no LBR on this PMU 748 */ 749 if (!x86_pmu.lbr_nr) 750 return -EOPNOTSUPP; 751 752 /* 753 * setup SW LBR filter 754 */ 755 ret = intel_pmu_setup_sw_lbr_filter(event); 756 if (ret) 757 return ret; 758 759 /* 760 * setup HW LBR filter, if any 761 */ 762 if (x86_pmu.lbr_sel_map) 763 ret = intel_pmu_setup_hw_lbr_filter(event); 764 765 return ret; 766 } 767 768 /* 769 * return the type of control flow change at address "from" 770 * instruction is not necessarily a branch (in case of interrupt). 771 * 772 * The branch type returned also includes the priv level of the 773 * target of the control flow change (X86_BR_USER, X86_BR_KERNEL). 774 * 775 * If a branch type is unknown OR the instruction cannot be 776 * decoded (e.g., text page not present), then X86_BR_NONE is 777 * returned. 778 */ 779 static int branch_type(unsigned long from, unsigned long to, int abort) 780 { 781 struct insn insn; 782 void *addr; 783 int bytes_read, bytes_left; 784 int ret = X86_BR_NONE; 785 int ext, to_plm, from_plm; 786 u8 buf[MAX_INSN_SIZE]; 787 int is64 = 0; 788 789 to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER; 790 from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER; 791 792 /* 793 * maybe zero if lbr did not fill up after a reset by the time 794 * we get a PMU interrupt 795 */ 796 if (from == 0 || to == 0) 797 return X86_BR_NONE; 798 799 if (abort) 800 return X86_BR_ABORT | to_plm; 801 802 if (from_plm == X86_BR_USER) { 803 /* 804 * can happen if measuring at the user level only 805 * and we interrupt in a kernel thread, e.g., idle. 806 */ 807 if (!current->mm) 808 return X86_BR_NONE; 809 810 /* may fail if text not present */ 811 bytes_left = copy_from_user_nmi(buf, (void __user *)from, 812 MAX_INSN_SIZE); 813 bytes_read = MAX_INSN_SIZE - bytes_left; 814 if (!bytes_read) 815 return X86_BR_NONE; 816 817 addr = buf; 818 } else { 819 /* 820 * The LBR logs any address in the IP, even if the IP just 821 * faulted. This means userspace can control the from address. 822 * Ensure we don't blindy read any address by validating it is 823 * a known text address. 824 */ 825 if (kernel_text_address(from)) { 826 addr = (void *)from; 827 /* 828 * Assume we can get the maximum possible size 829 * when grabbing kernel data. This is not 830 * _strictly_ true since we could possibly be 831 * executing up next to a memory hole, but 832 * it is very unlikely to be a problem. 833 */ 834 bytes_read = MAX_INSN_SIZE; 835 } else { 836 return X86_BR_NONE; 837 } 838 } 839 840 /* 841 * decoder needs to know the ABI especially 842 * on 64-bit systems running 32-bit apps 843 */ 844 #ifdef CONFIG_X86_64 845 is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32); 846 #endif 847 insn_init(&insn, addr, bytes_read, is64); 848 insn_get_opcode(&insn); 849 if (!insn.opcode.got) 850 return X86_BR_ABORT; 851 852 switch (insn.opcode.bytes[0]) { 853 case 0xf: 854 switch (insn.opcode.bytes[1]) { 855 case 0x05: /* syscall */ 856 case 0x34: /* sysenter */ 857 ret = X86_BR_SYSCALL; 858 break; 859 case 0x07: /* sysret */ 860 case 0x35: /* sysexit */ 861 ret = X86_BR_SYSRET; 862 break; 863 case 0x80 ... 0x8f: /* conditional */ 864 ret = X86_BR_JCC; 865 break; 866 default: 867 ret = X86_BR_NONE; 868 } 869 break; 870 case 0x70 ... 0x7f: /* conditional */ 871 ret = X86_BR_JCC; 872 break; 873 case 0xc2: /* near ret */ 874 case 0xc3: /* near ret */ 875 case 0xca: /* far ret */ 876 case 0xcb: /* far ret */ 877 ret = X86_BR_RET; 878 break; 879 case 0xcf: /* iret */ 880 ret = X86_BR_IRET; 881 break; 882 case 0xcc ... 0xce: /* int */ 883 ret = X86_BR_INT; 884 break; 885 case 0xe8: /* call near rel */ 886 insn_get_immediate(&insn); 887 if (insn.immediate1.value == 0) { 888 /* zero length call */ 889 ret = X86_BR_ZERO_CALL; 890 break; 891 } 892 case 0x9a: /* call far absolute */ 893 ret = X86_BR_CALL; 894 break; 895 case 0xe0 ... 0xe3: /* loop jmp */ 896 ret = X86_BR_JCC; 897 break; 898 case 0xe9 ... 0xeb: /* jmp */ 899 ret = X86_BR_JMP; 900 break; 901 case 0xff: /* call near absolute, call far absolute ind */ 902 insn_get_modrm(&insn); 903 ext = (insn.modrm.bytes[0] >> 3) & 0x7; 904 switch (ext) { 905 case 2: /* near ind call */ 906 case 3: /* far ind call */ 907 ret = X86_BR_IND_CALL; 908 break; 909 case 4: 910 case 5: 911 ret = X86_BR_IND_JMP; 912 break; 913 } 914 break; 915 default: 916 ret = X86_BR_NONE; 917 } 918 /* 919 * interrupts, traps, faults (and thus ring transition) may 920 * occur on any instructions. Thus, to classify them correctly, 921 * we need to first look at the from and to priv levels. If they 922 * are different and to is in the kernel, then it indicates 923 * a ring transition. If the from instruction is not a ring 924 * transition instr (syscall, systenter, int), then it means 925 * it was a irq, trap or fault. 926 * 927 * we have no way of detecting kernel to kernel faults. 928 */ 929 if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL 930 && ret != X86_BR_SYSCALL && ret != X86_BR_INT) 931 ret = X86_BR_IRQ; 932 933 /* 934 * branch priv level determined by target as 935 * is done by HW when LBR_SELECT is implemented 936 */ 937 if (ret != X86_BR_NONE) 938 ret |= to_plm; 939 940 return ret; 941 } 942 943 #define X86_BR_TYPE_MAP_MAX 16 944 945 static int branch_map[X86_BR_TYPE_MAP_MAX] = { 946 PERF_BR_CALL, /* X86_BR_CALL */ 947 PERF_BR_RET, /* X86_BR_RET */ 948 PERF_BR_SYSCALL, /* X86_BR_SYSCALL */ 949 PERF_BR_SYSRET, /* X86_BR_SYSRET */ 950 PERF_BR_UNKNOWN, /* X86_BR_INT */ 951 PERF_BR_UNKNOWN, /* X86_BR_IRET */ 952 PERF_BR_COND, /* X86_BR_JCC */ 953 PERF_BR_UNCOND, /* X86_BR_JMP */ 954 PERF_BR_UNKNOWN, /* X86_BR_IRQ */ 955 PERF_BR_IND_CALL, /* X86_BR_IND_CALL */ 956 PERF_BR_UNKNOWN, /* X86_BR_ABORT */ 957 PERF_BR_UNKNOWN, /* X86_BR_IN_TX */ 958 PERF_BR_UNKNOWN, /* X86_BR_NO_TX */ 959 PERF_BR_CALL, /* X86_BR_ZERO_CALL */ 960 PERF_BR_UNKNOWN, /* X86_BR_CALL_STACK */ 961 PERF_BR_IND, /* X86_BR_IND_JMP */ 962 }; 963 964 static int 965 common_branch_type(int type) 966 { 967 int i; 968 969 type >>= 2; /* skip X86_BR_USER and X86_BR_KERNEL */ 970 971 if (type) { 972 i = __ffs(type); 973 if (i < X86_BR_TYPE_MAP_MAX) 974 return branch_map[i]; 975 } 976 977 return PERF_BR_UNKNOWN; 978 } 979 980 /* 981 * implement actual branch filter based on user demand. 982 * Hardware may not exactly satisfy that request, thus 983 * we need to inspect opcodes. Mismatched branches are 984 * discarded. Therefore, the number of branches returned 985 * in PERF_SAMPLE_BRANCH_STACK sample may vary. 986 */ 987 static void 988 intel_pmu_lbr_filter(struct cpu_hw_events *cpuc) 989 { 990 u64 from, to; 991 int br_sel = cpuc->br_sel; 992 int i, j, type; 993 bool compress = false; 994 995 /* if sampling all branches, then nothing to filter */ 996 if (((br_sel & X86_BR_ALL) == X86_BR_ALL) && 997 ((br_sel & X86_BR_TYPE_SAVE) != X86_BR_TYPE_SAVE)) 998 return; 999 1000 for (i = 0; i < cpuc->lbr_stack.nr; i++) { 1001 1002 from = cpuc->lbr_entries[i].from; 1003 to = cpuc->lbr_entries[i].to; 1004 1005 type = branch_type(from, to, cpuc->lbr_entries[i].abort); 1006 if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) { 1007 if (cpuc->lbr_entries[i].in_tx) 1008 type |= X86_BR_IN_TX; 1009 else 1010 type |= X86_BR_NO_TX; 1011 } 1012 1013 /* if type does not correspond, then discard */ 1014 if (type == X86_BR_NONE || (br_sel & type) != type) { 1015 cpuc->lbr_entries[i].from = 0; 1016 compress = true; 1017 } 1018 1019 if ((br_sel & X86_BR_TYPE_SAVE) == X86_BR_TYPE_SAVE) 1020 cpuc->lbr_entries[i].type = common_branch_type(type); 1021 } 1022 1023 if (!compress) 1024 return; 1025 1026 /* remove all entries with from=0 */ 1027 for (i = 0; i < cpuc->lbr_stack.nr; ) { 1028 if (!cpuc->lbr_entries[i].from) { 1029 j = i; 1030 while (++j < cpuc->lbr_stack.nr) 1031 cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j]; 1032 cpuc->lbr_stack.nr--; 1033 if (!cpuc->lbr_entries[i].from) 1034 continue; 1035 } 1036 i++; 1037 } 1038 } 1039 1040 /* 1041 * Map interface branch filters onto LBR filters 1042 */ 1043 static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = { 1044 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY, 1045 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER, 1046 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL, 1047 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN, 1048 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_REL_JMP 1049 | LBR_IND_JMP | LBR_FAR, 1050 /* 1051 * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches 1052 */ 1053 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = 1054 LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR, 1055 /* 1056 * NHM/WSM erratum: must include IND_JMP to capture IND_CALL 1057 */ 1058 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP, 1059 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC, 1060 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP, 1061 }; 1062 1063 static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = { 1064 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY, 1065 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER, 1066 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL, 1067 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN, 1068 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR, 1069 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL 1070 | LBR_FAR, 1071 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL, 1072 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC, 1073 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP, 1074 [PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL, 1075 }; 1076 1077 static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = { 1078 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY, 1079 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER, 1080 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL, 1081 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN, 1082 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR, 1083 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL 1084 | LBR_FAR, 1085 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL, 1086 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC, 1087 [PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_REL_CALL | LBR_IND_CALL 1088 | LBR_RETURN | LBR_CALL_STACK, 1089 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP, 1090 [PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL, 1091 }; 1092 1093 /* core */ 1094 void __init intel_pmu_lbr_init_core(void) 1095 { 1096 x86_pmu.lbr_nr = 4; 1097 x86_pmu.lbr_tos = MSR_LBR_TOS; 1098 x86_pmu.lbr_from = MSR_LBR_CORE_FROM; 1099 x86_pmu.lbr_to = MSR_LBR_CORE_TO; 1100 1101 /* 1102 * SW branch filter usage: 1103 * - compensate for lack of HW filter 1104 */ 1105 } 1106 1107 /* nehalem/westmere */ 1108 void __init intel_pmu_lbr_init_nhm(void) 1109 { 1110 x86_pmu.lbr_nr = 16; 1111 x86_pmu.lbr_tos = MSR_LBR_TOS; 1112 x86_pmu.lbr_from = MSR_LBR_NHM_FROM; 1113 x86_pmu.lbr_to = MSR_LBR_NHM_TO; 1114 1115 x86_pmu.lbr_sel_mask = LBR_SEL_MASK; 1116 x86_pmu.lbr_sel_map = nhm_lbr_sel_map; 1117 1118 /* 1119 * SW branch filter usage: 1120 * - workaround LBR_SEL errata (see above) 1121 * - support syscall, sysret capture. 1122 * That requires LBR_FAR but that means far 1123 * jmp need to be filtered out 1124 */ 1125 } 1126 1127 /* sandy bridge */ 1128 void __init intel_pmu_lbr_init_snb(void) 1129 { 1130 x86_pmu.lbr_nr = 16; 1131 x86_pmu.lbr_tos = MSR_LBR_TOS; 1132 x86_pmu.lbr_from = MSR_LBR_NHM_FROM; 1133 x86_pmu.lbr_to = MSR_LBR_NHM_TO; 1134 1135 x86_pmu.lbr_sel_mask = LBR_SEL_MASK; 1136 x86_pmu.lbr_sel_map = snb_lbr_sel_map; 1137 1138 /* 1139 * SW branch filter usage: 1140 * - support syscall, sysret capture. 1141 * That requires LBR_FAR but that means far 1142 * jmp need to be filtered out 1143 */ 1144 } 1145 1146 /* haswell */ 1147 void intel_pmu_lbr_init_hsw(void) 1148 { 1149 x86_pmu.lbr_nr = 16; 1150 x86_pmu.lbr_tos = MSR_LBR_TOS; 1151 x86_pmu.lbr_from = MSR_LBR_NHM_FROM; 1152 x86_pmu.lbr_to = MSR_LBR_NHM_TO; 1153 1154 x86_pmu.lbr_sel_mask = LBR_SEL_MASK; 1155 x86_pmu.lbr_sel_map = hsw_lbr_sel_map; 1156 1157 if (lbr_from_signext_quirk_needed()) 1158 static_branch_enable(&lbr_from_quirk_key); 1159 } 1160 1161 /* skylake */ 1162 __init void intel_pmu_lbr_init_skl(void) 1163 { 1164 x86_pmu.lbr_nr = 32; 1165 x86_pmu.lbr_tos = MSR_LBR_TOS; 1166 x86_pmu.lbr_from = MSR_LBR_NHM_FROM; 1167 x86_pmu.lbr_to = MSR_LBR_NHM_TO; 1168 1169 x86_pmu.lbr_sel_mask = LBR_SEL_MASK; 1170 x86_pmu.lbr_sel_map = hsw_lbr_sel_map; 1171 1172 /* 1173 * SW branch filter usage: 1174 * - support syscall, sysret capture. 1175 * That requires LBR_FAR but that means far 1176 * jmp need to be filtered out 1177 */ 1178 } 1179 1180 /* atom */ 1181 void __init intel_pmu_lbr_init_atom(void) 1182 { 1183 /* 1184 * only models starting at stepping 10 seems 1185 * to have an operational LBR which can freeze 1186 * on PMU interrupt 1187 */ 1188 if (boot_cpu_data.x86_model == 28 1189 && boot_cpu_data.x86_mask < 10) { 1190 pr_cont("LBR disabled due to erratum"); 1191 return; 1192 } 1193 1194 x86_pmu.lbr_nr = 8; 1195 x86_pmu.lbr_tos = MSR_LBR_TOS; 1196 x86_pmu.lbr_from = MSR_LBR_CORE_FROM; 1197 x86_pmu.lbr_to = MSR_LBR_CORE_TO; 1198 1199 /* 1200 * SW branch filter usage: 1201 * - compensate for lack of HW filter 1202 */ 1203 } 1204 1205 /* slm */ 1206 void __init intel_pmu_lbr_init_slm(void) 1207 { 1208 x86_pmu.lbr_nr = 8; 1209 x86_pmu.lbr_tos = MSR_LBR_TOS; 1210 x86_pmu.lbr_from = MSR_LBR_CORE_FROM; 1211 x86_pmu.lbr_to = MSR_LBR_CORE_TO; 1212 1213 x86_pmu.lbr_sel_mask = LBR_SEL_MASK; 1214 x86_pmu.lbr_sel_map = nhm_lbr_sel_map; 1215 1216 /* 1217 * SW branch filter usage: 1218 * - compensate for lack of HW filter 1219 */ 1220 pr_cont("8-deep LBR, "); 1221 } 1222 1223 /* Knights Landing */ 1224 void intel_pmu_lbr_init_knl(void) 1225 { 1226 x86_pmu.lbr_nr = 8; 1227 x86_pmu.lbr_tos = MSR_LBR_TOS; 1228 x86_pmu.lbr_from = MSR_LBR_NHM_FROM; 1229 x86_pmu.lbr_to = MSR_LBR_NHM_TO; 1230 1231 x86_pmu.lbr_sel_mask = LBR_SEL_MASK; 1232 x86_pmu.lbr_sel_map = snb_lbr_sel_map; 1233 } 1234