xref: /openbmc/linux/arch/x86/events/intel/lbr.c (revision 2f0f2441b4a10948e2ec042b48fef13680387f7c)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/perf_event.h>
3 #include <linux/types.h>
4 
5 #include <asm/perf_event.h>
6 #include <asm/msr.h>
7 #include <asm/insn.h>
8 
9 #include "../perf_event.h"
10 
11 enum {
12 	LBR_FORMAT_32		= 0x00,
13 	LBR_FORMAT_LIP		= 0x01,
14 	LBR_FORMAT_EIP		= 0x02,
15 	LBR_FORMAT_EIP_FLAGS	= 0x03,
16 	LBR_FORMAT_EIP_FLAGS2	= 0x04,
17 	LBR_FORMAT_INFO		= 0x05,
18 	LBR_FORMAT_TIME		= 0x06,
19 	LBR_FORMAT_MAX_KNOWN    = LBR_FORMAT_TIME,
20 };
21 
22 static const enum {
23 	LBR_EIP_FLAGS		= 1,
24 	LBR_TSX			= 2,
25 } lbr_desc[LBR_FORMAT_MAX_KNOWN + 1] = {
26 	[LBR_FORMAT_EIP_FLAGS]  = LBR_EIP_FLAGS,
27 	[LBR_FORMAT_EIP_FLAGS2] = LBR_EIP_FLAGS | LBR_TSX,
28 };
29 
30 /*
31  * Intel LBR_SELECT bits
32  * Intel Vol3a, April 2011, Section 16.7 Table 16-10
33  *
34  * Hardware branch filter (not available on all CPUs)
35  */
36 #define LBR_KERNEL_BIT		0 /* do not capture at ring0 */
37 #define LBR_USER_BIT		1 /* do not capture at ring > 0 */
38 #define LBR_JCC_BIT		2 /* do not capture conditional branches */
39 #define LBR_REL_CALL_BIT	3 /* do not capture relative calls */
40 #define LBR_IND_CALL_BIT	4 /* do not capture indirect calls */
41 #define LBR_RETURN_BIT		5 /* do not capture near returns */
42 #define LBR_IND_JMP_BIT		6 /* do not capture indirect jumps */
43 #define LBR_REL_JMP_BIT		7 /* do not capture relative jumps */
44 #define LBR_FAR_BIT		8 /* do not capture far branches */
45 #define LBR_CALL_STACK_BIT	9 /* enable call stack */
46 
47 /*
48  * Following bit only exists in Linux; we mask it out before writing it to
49  * the actual MSR. But it helps the constraint perf code to understand
50  * that this is a separate configuration.
51  */
52 #define LBR_NO_INFO_BIT	       63 /* don't read LBR_INFO. */
53 
54 #define LBR_KERNEL	(1 << LBR_KERNEL_BIT)
55 #define LBR_USER	(1 << LBR_USER_BIT)
56 #define LBR_JCC		(1 << LBR_JCC_BIT)
57 #define LBR_REL_CALL	(1 << LBR_REL_CALL_BIT)
58 #define LBR_IND_CALL	(1 << LBR_IND_CALL_BIT)
59 #define LBR_RETURN	(1 << LBR_RETURN_BIT)
60 #define LBR_REL_JMP	(1 << LBR_REL_JMP_BIT)
61 #define LBR_IND_JMP	(1 << LBR_IND_JMP_BIT)
62 #define LBR_FAR		(1 << LBR_FAR_BIT)
63 #define LBR_CALL_STACK	(1 << LBR_CALL_STACK_BIT)
64 #define LBR_NO_INFO	(1ULL << LBR_NO_INFO_BIT)
65 
66 #define LBR_PLM (LBR_KERNEL | LBR_USER)
67 
68 #define LBR_SEL_MASK	0x3ff	/* valid bits in LBR_SELECT */
69 #define LBR_NOT_SUPP	-1	/* LBR filter not supported */
70 #define LBR_IGN		0	/* ignored */
71 
72 #define LBR_ANY		 \
73 	(LBR_JCC	|\
74 	 LBR_REL_CALL	|\
75 	 LBR_IND_CALL	|\
76 	 LBR_RETURN	|\
77 	 LBR_REL_JMP	|\
78 	 LBR_IND_JMP	|\
79 	 LBR_FAR)
80 
81 #define LBR_FROM_FLAG_MISPRED	BIT_ULL(63)
82 #define LBR_FROM_FLAG_IN_TX	BIT_ULL(62)
83 #define LBR_FROM_FLAG_ABORT	BIT_ULL(61)
84 
85 #define LBR_FROM_SIGNEXT_2MSB	(BIT_ULL(60) | BIT_ULL(59))
86 
87 /*
88  * x86control flow change classification
89  * x86control flow changes include branches, interrupts, traps, faults
90  */
91 enum {
92 	X86_BR_NONE		= 0,      /* unknown */
93 
94 	X86_BR_USER		= 1 << 0, /* branch target is user */
95 	X86_BR_KERNEL		= 1 << 1, /* branch target is kernel */
96 
97 	X86_BR_CALL		= 1 << 2, /* call */
98 	X86_BR_RET		= 1 << 3, /* return */
99 	X86_BR_SYSCALL		= 1 << 4, /* syscall */
100 	X86_BR_SYSRET		= 1 << 5, /* syscall return */
101 	X86_BR_INT		= 1 << 6, /* sw interrupt */
102 	X86_BR_IRET		= 1 << 7, /* return from interrupt */
103 	X86_BR_JCC		= 1 << 8, /* conditional */
104 	X86_BR_JMP		= 1 << 9, /* jump */
105 	X86_BR_IRQ		= 1 << 10,/* hw interrupt or trap or fault */
106 	X86_BR_IND_CALL		= 1 << 11,/* indirect calls */
107 	X86_BR_ABORT		= 1 << 12,/* transaction abort */
108 	X86_BR_IN_TX		= 1 << 13,/* in transaction */
109 	X86_BR_NO_TX		= 1 << 14,/* not in transaction */
110 	X86_BR_ZERO_CALL	= 1 << 15,/* zero length call */
111 	X86_BR_CALL_STACK	= 1 << 16,/* call stack */
112 	X86_BR_IND_JMP		= 1 << 17,/* indirect jump */
113 
114 	X86_BR_TYPE_SAVE	= 1 << 18,/* indicate to save branch type */
115 
116 };
117 
118 #define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL)
119 #define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX)
120 
121 #define X86_BR_ANY       \
122 	(X86_BR_CALL    |\
123 	 X86_BR_RET     |\
124 	 X86_BR_SYSCALL |\
125 	 X86_BR_SYSRET  |\
126 	 X86_BR_INT     |\
127 	 X86_BR_IRET    |\
128 	 X86_BR_JCC     |\
129 	 X86_BR_JMP	 |\
130 	 X86_BR_IRQ	 |\
131 	 X86_BR_ABORT	 |\
132 	 X86_BR_IND_CALL |\
133 	 X86_BR_IND_JMP  |\
134 	 X86_BR_ZERO_CALL)
135 
136 #define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY)
137 
138 #define X86_BR_ANY_CALL		 \
139 	(X86_BR_CALL		|\
140 	 X86_BR_IND_CALL	|\
141 	 X86_BR_ZERO_CALL	|\
142 	 X86_BR_SYSCALL		|\
143 	 X86_BR_IRQ		|\
144 	 X86_BR_INT)
145 
146 static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);
147 
148 /*
149  * We only support LBR implementations that have FREEZE_LBRS_ON_PMI
150  * otherwise it becomes near impossible to get a reliable stack.
151  */
152 
153 static void __intel_pmu_lbr_enable(bool pmi)
154 {
155 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
156 	u64 debugctl, lbr_select = 0, orig_debugctl;
157 
158 	/*
159 	 * No need to unfreeze manually, as v4 can do that as part
160 	 * of the GLOBAL_STATUS ack.
161 	 */
162 	if (pmi && x86_pmu.version >= 4)
163 		return;
164 
165 	/*
166 	 * No need to reprogram LBR_SELECT in a PMI, as it
167 	 * did not change.
168 	 */
169 	if (cpuc->lbr_sel)
170 		lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask;
171 	if (!pmi && cpuc->lbr_sel)
172 		wrmsrl(MSR_LBR_SELECT, lbr_select);
173 
174 	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
175 	orig_debugctl = debugctl;
176 	debugctl |= DEBUGCTLMSR_LBR;
177 	/*
178 	 * LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
179 	 * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
180 	 * may cause superfluous increase/decrease of LBR_TOS.
181 	 */
182 	if (!(lbr_select & LBR_CALL_STACK))
183 		debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
184 	if (orig_debugctl != debugctl)
185 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
186 }
187 
188 static void __intel_pmu_lbr_disable(void)
189 {
190 	u64 debugctl;
191 
192 	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
193 	debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI);
194 	wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
195 }
196 
197 static void intel_pmu_lbr_reset_32(void)
198 {
199 	int i;
200 
201 	for (i = 0; i < x86_pmu.lbr_nr; i++)
202 		wrmsrl(x86_pmu.lbr_from + i, 0);
203 }
204 
205 static void intel_pmu_lbr_reset_64(void)
206 {
207 	int i;
208 
209 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
210 		wrmsrl(x86_pmu.lbr_from + i, 0);
211 		wrmsrl(x86_pmu.lbr_to   + i, 0);
212 		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
213 			wrmsrl(MSR_LBR_INFO_0 + i, 0);
214 	}
215 }
216 
217 void intel_pmu_lbr_reset(void)
218 {
219 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
220 
221 	if (!x86_pmu.lbr_nr)
222 		return;
223 
224 	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
225 		intel_pmu_lbr_reset_32();
226 	else
227 		intel_pmu_lbr_reset_64();
228 
229 	cpuc->last_task_ctx = NULL;
230 	cpuc->last_log_id = 0;
231 }
232 
233 /*
234  * TOS = most recently recorded branch
235  */
236 static inline u64 intel_pmu_lbr_tos(void)
237 {
238 	u64 tos;
239 
240 	rdmsrl(x86_pmu.lbr_tos, tos);
241 	return tos;
242 }
243 
244 enum {
245 	LBR_NONE,
246 	LBR_VALID,
247 };
248 
249 /*
250  * For formats with LBR_TSX flags (e.g. LBR_FORMAT_EIP_FLAGS2), bits 61:62 in
251  * MSR_LAST_BRANCH_FROM_x are the TSX flags when TSX is supported, but when
252  * TSX is not supported they have no consistent behavior:
253  *
254  *   - For wrmsr(), bits 61:62 are considered part of the sign extension.
255  *   - For HW updates (branch captures) bits 61:62 are always OFF and are not
256  *     part of the sign extension.
257  *
258  * Therefore, if:
259  *
260  *   1) LBR has TSX format
261  *   2) CPU has no TSX support enabled
262  *
263  * ... then any value passed to wrmsr() must be sign extended to 63 bits and any
264  * value from rdmsr() must be converted to have a 61 bits sign extension,
265  * ignoring the TSX flags.
266  */
267 static inline bool lbr_from_signext_quirk_needed(void)
268 {
269 	int lbr_format = x86_pmu.intel_cap.lbr_format;
270 	bool tsx_support = boot_cpu_has(X86_FEATURE_HLE) ||
271 			   boot_cpu_has(X86_FEATURE_RTM);
272 
273 	return !tsx_support && (lbr_desc[lbr_format] & LBR_TSX);
274 }
275 
276 DEFINE_STATIC_KEY_FALSE(lbr_from_quirk_key);
277 
278 /* If quirk is enabled, ensure sign extension is 63 bits: */
279 inline u64 lbr_from_signext_quirk_wr(u64 val)
280 {
281 	if (static_branch_unlikely(&lbr_from_quirk_key)) {
282 		/*
283 		 * Sign extend into bits 61:62 while preserving bit 63.
284 		 *
285 		 * Quirk is enabled when TSX is disabled. Therefore TSX bits
286 		 * in val are always OFF and must be changed to be sign
287 		 * extension bits. Since bits 59:60 are guaranteed to be
288 		 * part of the sign extension bits, we can just copy them
289 		 * to 61:62.
290 		 */
291 		val |= (LBR_FROM_SIGNEXT_2MSB & val) << 2;
292 	}
293 	return val;
294 }
295 
296 /*
297  * If quirk is needed, ensure sign extension is 61 bits:
298  */
299 static u64 lbr_from_signext_quirk_rd(u64 val)
300 {
301 	if (static_branch_unlikely(&lbr_from_quirk_key)) {
302 		/*
303 		 * Quirk is on when TSX is not enabled. Therefore TSX
304 		 * flags must be read as OFF.
305 		 */
306 		val &= ~(LBR_FROM_FLAG_IN_TX | LBR_FROM_FLAG_ABORT);
307 	}
308 	return val;
309 }
310 
311 static inline void wrlbr_from(unsigned int idx, u64 val)
312 {
313 	val = lbr_from_signext_quirk_wr(val);
314 	wrmsrl(x86_pmu.lbr_from + idx, val);
315 }
316 
317 static inline void wrlbr_to(unsigned int idx, u64 val)
318 {
319 	wrmsrl(x86_pmu.lbr_to + idx, val);
320 }
321 
322 static inline u64 rdlbr_from(unsigned int idx)
323 {
324 	u64 val;
325 
326 	rdmsrl(x86_pmu.lbr_from + idx, val);
327 
328 	return lbr_from_signext_quirk_rd(val);
329 }
330 
331 static inline u64 rdlbr_to(unsigned int idx)
332 {
333 	u64 val;
334 
335 	rdmsrl(x86_pmu.lbr_to + idx, val);
336 
337 	return val;
338 }
339 
340 static void __intel_pmu_lbr_restore(struct x86_perf_task_context *task_ctx)
341 {
342 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
343 	int i;
344 	unsigned lbr_idx, mask;
345 	u64 tos;
346 
347 	if (task_ctx->lbr_callstack_users == 0 ||
348 	    task_ctx->lbr_stack_state == LBR_NONE) {
349 		intel_pmu_lbr_reset();
350 		return;
351 	}
352 
353 	tos = task_ctx->tos;
354 	/*
355 	 * Does not restore the LBR registers, if
356 	 * - No one else touched them, and
357 	 * - Did not enter C6
358 	 */
359 	if ((task_ctx == cpuc->last_task_ctx) &&
360 	    (task_ctx->log_id == cpuc->last_log_id) &&
361 	    rdlbr_from(tos)) {
362 		task_ctx->lbr_stack_state = LBR_NONE;
363 		return;
364 	}
365 
366 	mask = x86_pmu.lbr_nr - 1;
367 	for (i = 0; i < task_ctx->valid_lbrs; i++) {
368 		lbr_idx = (tos - i) & mask;
369 		wrlbr_from(lbr_idx, task_ctx->lbr_from[i]);
370 		wrlbr_to  (lbr_idx, task_ctx->lbr_to[i]);
371 
372 		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
373 			wrmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
374 	}
375 
376 	for (; i < x86_pmu.lbr_nr; i++) {
377 		lbr_idx = (tos - i) & mask;
378 		wrlbr_from(lbr_idx, 0);
379 		wrlbr_to(lbr_idx, 0);
380 		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
381 			wrmsrl(MSR_LBR_INFO_0 + lbr_idx, 0);
382 	}
383 
384 	wrmsrl(x86_pmu.lbr_tos, tos);
385 	task_ctx->lbr_stack_state = LBR_NONE;
386 }
387 
388 static void __intel_pmu_lbr_save(struct x86_perf_task_context *task_ctx)
389 {
390 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
391 	unsigned lbr_idx, mask;
392 	u64 tos, from;
393 	int i;
394 
395 	if (task_ctx->lbr_callstack_users == 0) {
396 		task_ctx->lbr_stack_state = LBR_NONE;
397 		return;
398 	}
399 
400 	mask = x86_pmu.lbr_nr - 1;
401 	tos = intel_pmu_lbr_tos();
402 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
403 		lbr_idx = (tos - i) & mask;
404 		from = rdlbr_from(lbr_idx);
405 		if (!from)
406 			break;
407 		task_ctx->lbr_from[i] = from;
408 		task_ctx->lbr_to[i]   = rdlbr_to(lbr_idx);
409 		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
410 			rdmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
411 	}
412 	task_ctx->valid_lbrs = i;
413 	task_ctx->tos = tos;
414 	task_ctx->lbr_stack_state = LBR_VALID;
415 
416 	cpuc->last_task_ctx = task_ctx;
417 	cpuc->last_log_id = ++task_ctx->log_id;
418 }
419 
420 void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in)
421 {
422 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
423 	struct x86_perf_task_context *task_ctx;
424 
425 	if (!cpuc->lbr_users)
426 		return;
427 
428 	/*
429 	 * If LBR callstack feature is enabled and the stack was saved when
430 	 * the task was scheduled out, restore the stack. Otherwise flush
431 	 * the LBR stack.
432 	 */
433 	task_ctx = ctx ? ctx->task_ctx_data : NULL;
434 	if (task_ctx) {
435 		if (sched_in)
436 			__intel_pmu_lbr_restore(task_ctx);
437 		else
438 			__intel_pmu_lbr_save(task_ctx);
439 		return;
440 	}
441 
442 	/*
443 	 * Since a context switch can flip the address space and LBR entries
444 	 * are not tagged with an identifier, we need to wipe the LBR, even for
445 	 * per-cpu events. You simply cannot resolve the branches from the old
446 	 * address space.
447 	 */
448 	if (sched_in)
449 		intel_pmu_lbr_reset();
450 }
451 
452 static inline bool branch_user_callstack(unsigned br_sel)
453 {
454 	return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
455 }
456 
457 void intel_pmu_lbr_add(struct perf_event *event)
458 {
459 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
460 	struct x86_perf_task_context *task_ctx;
461 
462 	if (!x86_pmu.lbr_nr)
463 		return;
464 
465 	cpuc->br_sel = event->hw.branch_reg.reg;
466 
467 	if (branch_user_callstack(cpuc->br_sel) && event->ctx->task_ctx_data) {
468 		task_ctx = event->ctx->task_ctx_data;
469 		task_ctx->lbr_callstack_users++;
470 	}
471 
472 	/*
473 	 * Request pmu::sched_task() callback, which will fire inside the
474 	 * regular perf event scheduling, so that call will:
475 	 *
476 	 *  - restore or wipe; when LBR-callstack,
477 	 *  - wipe; otherwise,
478 	 *
479 	 * when this is from __perf_event_task_sched_in().
480 	 *
481 	 * However, if this is from perf_install_in_context(), no such callback
482 	 * will follow and we'll need to reset the LBR here if this is the
483 	 * first LBR event.
484 	 *
485 	 * The problem is, we cannot tell these cases apart... but we can
486 	 * exclude the biggest chunk of cases by looking at
487 	 * event->total_time_running. An event that has accrued runtime cannot
488 	 * be 'new'. Conversely, a new event can get installed through the
489 	 * context switch path for the first time.
490 	 */
491 	if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip > 0)
492 		cpuc->lbr_pebs_users++;
493 	perf_sched_cb_inc(event->ctx->pmu);
494 	if (!cpuc->lbr_users++ && !event->total_time_running)
495 		intel_pmu_lbr_reset();
496 }
497 
498 void intel_pmu_lbr_del(struct perf_event *event)
499 {
500 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
501 	struct x86_perf_task_context *task_ctx;
502 
503 	if (!x86_pmu.lbr_nr)
504 		return;
505 
506 	if (branch_user_callstack(cpuc->br_sel) &&
507 	    event->ctx->task_ctx_data) {
508 		task_ctx = event->ctx->task_ctx_data;
509 		task_ctx->lbr_callstack_users--;
510 	}
511 
512 	if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip > 0)
513 		cpuc->lbr_pebs_users--;
514 	cpuc->lbr_users--;
515 	WARN_ON_ONCE(cpuc->lbr_users < 0);
516 	WARN_ON_ONCE(cpuc->lbr_pebs_users < 0);
517 	perf_sched_cb_dec(event->ctx->pmu);
518 }
519 
520 void intel_pmu_lbr_enable_all(bool pmi)
521 {
522 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
523 
524 	if (cpuc->lbr_users)
525 		__intel_pmu_lbr_enable(pmi);
526 }
527 
528 void intel_pmu_lbr_disable_all(void)
529 {
530 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
531 
532 	if (cpuc->lbr_users)
533 		__intel_pmu_lbr_disable();
534 }
535 
536 static void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
537 {
538 	unsigned long mask = x86_pmu.lbr_nr - 1;
539 	u64 tos = intel_pmu_lbr_tos();
540 	int i;
541 
542 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
543 		unsigned long lbr_idx = (tos - i) & mask;
544 		union {
545 			struct {
546 				u32 from;
547 				u32 to;
548 			};
549 			u64     lbr;
550 		} msr_lastbranch;
551 
552 		rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);
553 
554 		cpuc->lbr_entries[i].from	= msr_lastbranch.from;
555 		cpuc->lbr_entries[i].to		= msr_lastbranch.to;
556 		cpuc->lbr_entries[i].mispred	= 0;
557 		cpuc->lbr_entries[i].predicted	= 0;
558 		cpuc->lbr_entries[i].in_tx	= 0;
559 		cpuc->lbr_entries[i].abort	= 0;
560 		cpuc->lbr_entries[i].cycles	= 0;
561 		cpuc->lbr_entries[i].type	= 0;
562 		cpuc->lbr_entries[i].reserved	= 0;
563 	}
564 	cpuc->lbr_stack.nr = i;
565 }
566 
567 /*
568  * Due to lack of segmentation in Linux the effective address (offset)
569  * is the same as the linear address, allowing us to merge the LIP and EIP
570  * LBR formats.
571  */
572 static void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
573 {
574 	bool need_info = false, call_stack = false;
575 	unsigned long mask = x86_pmu.lbr_nr - 1;
576 	int lbr_format = x86_pmu.intel_cap.lbr_format;
577 	u64 tos = intel_pmu_lbr_tos();
578 	int i;
579 	int out = 0;
580 	int num = x86_pmu.lbr_nr;
581 
582 	if (cpuc->lbr_sel) {
583 		need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO);
584 		if (cpuc->lbr_sel->config & LBR_CALL_STACK)
585 			call_stack = true;
586 	}
587 
588 	for (i = 0; i < num; i++) {
589 		unsigned long lbr_idx = (tos - i) & mask;
590 		u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
591 		int skip = 0;
592 		u16 cycles = 0;
593 		int lbr_flags = lbr_desc[lbr_format];
594 
595 		from = rdlbr_from(lbr_idx);
596 		to   = rdlbr_to(lbr_idx);
597 
598 		/*
599 		 * Read LBR call stack entries
600 		 * until invalid entry (0s) is detected.
601 		 */
602 		if (call_stack && !from)
603 			break;
604 
605 		if (lbr_format == LBR_FORMAT_INFO && need_info) {
606 			u64 info;
607 
608 			rdmsrl(MSR_LBR_INFO_0 + lbr_idx, info);
609 			mis = !!(info & LBR_INFO_MISPRED);
610 			pred = !mis;
611 			in_tx = !!(info & LBR_INFO_IN_TX);
612 			abort = !!(info & LBR_INFO_ABORT);
613 			cycles = (info & LBR_INFO_CYCLES);
614 		}
615 
616 		if (lbr_format == LBR_FORMAT_TIME) {
617 			mis = !!(from & LBR_FROM_FLAG_MISPRED);
618 			pred = !mis;
619 			skip = 1;
620 			cycles = ((to >> 48) & LBR_INFO_CYCLES);
621 
622 			to = (u64)((((s64)to) << 16) >> 16);
623 		}
624 
625 		if (lbr_flags & LBR_EIP_FLAGS) {
626 			mis = !!(from & LBR_FROM_FLAG_MISPRED);
627 			pred = !mis;
628 			skip = 1;
629 		}
630 		if (lbr_flags & LBR_TSX) {
631 			in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
632 			abort = !!(from & LBR_FROM_FLAG_ABORT);
633 			skip = 3;
634 		}
635 		from = (u64)((((s64)from) << skip) >> skip);
636 
637 		/*
638 		 * Some CPUs report duplicated abort records,
639 		 * with the second entry not having an abort bit set.
640 		 * Skip them here. This loop runs backwards,
641 		 * so we need to undo the previous record.
642 		 * If the abort just happened outside the window
643 		 * the extra entry cannot be removed.
644 		 */
645 		if (abort && x86_pmu.lbr_double_abort && out > 0)
646 			out--;
647 
648 		cpuc->lbr_entries[out].from	 = from;
649 		cpuc->lbr_entries[out].to	 = to;
650 		cpuc->lbr_entries[out].mispred	 = mis;
651 		cpuc->lbr_entries[out].predicted = pred;
652 		cpuc->lbr_entries[out].in_tx	 = in_tx;
653 		cpuc->lbr_entries[out].abort	 = abort;
654 		cpuc->lbr_entries[out].cycles	 = cycles;
655 		cpuc->lbr_entries[out].type	 = 0;
656 		cpuc->lbr_entries[out].reserved	 = 0;
657 		out++;
658 	}
659 	cpuc->lbr_stack.nr = out;
660 }
661 
662 void intel_pmu_lbr_read(void)
663 {
664 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
665 
666 	/*
667 	 * Don't read when all LBRs users are using adaptive PEBS.
668 	 *
669 	 * This could be smarter and actually check the event,
670 	 * but this simple approach seems to work for now.
671 	 */
672 	if (!cpuc->lbr_users || cpuc->lbr_users == cpuc->lbr_pebs_users)
673 		return;
674 
675 	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
676 		intel_pmu_lbr_read_32(cpuc);
677 	else
678 		intel_pmu_lbr_read_64(cpuc);
679 
680 	intel_pmu_lbr_filter(cpuc);
681 }
682 
683 /*
684  * SW filter is used:
685  * - in case there is no HW filter
686  * - in case the HW filter has errata or limitations
687  */
688 static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
689 {
690 	u64 br_type = event->attr.branch_sample_type;
691 	int mask = 0;
692 
693 	if (br_type & PERF_SAMPLE_BRANCH_USER)
694 		mask |= X86_BR_USER;
695 
696 	if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
697 		mask |= X86_BR_KERNEL;
698 
699 	/* we ignore BRANCH_HV here */
700 
701 	if (br_type & PERF_SAMPLE_BRANCH_ANY)
702 		mask |= X86_BR_ANY;
703 
704 	if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
705 		mask |= X86_BR_ANY_CALL;
706 
707 	if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
708 		mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;
709 
710 	if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
711 		mask |= X86_BR_IND_CALL;
712 
713 	if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
714 		mask |= X86_BR_ABORT;
715 
716 	if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
717 		mask |= X86_BR_IN_TX;
718 
719 	if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
720 		mask |= X86_BR_NO_TX;
721 
722 	if (br_type & PERF_SAMPLE_BRANCH_COND)
723 		mask |= X86_BR_JCC;
724 
725 	if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
726 		if (!x86_pmu_has_lbr_callstack())
727 			return -EOPNOTSUPP;
728 		if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
729 			return -EINVAL;
730 		mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
731 			X86_BR_CALL_STACK;
732 	}
733 
734 	if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP)
735 		mask |= X86_BR_IND_JMP;
736 
737 	if (br_type & PERF_SAMPLE_BRANCH_CALL)
738 		mask |= X86_BR_CALL | X86_BR_ZERO_CALL;
739 
740 	if (br_type & PERF_SAMPLE_BRANCH_TYPE_SAVE)
741 		mask |= X86_BR_TYPE_SAVE;
742 
743 	/*
744 	 * stash actual user request into reg, it may
745 	 * be used by fixup code for some CPU
746 	 */
747 	event->hw.branch_reg.reg = mask;
748 	return 0;
749 }
750 
751 /*
752  * setup the HW LBR filter
753  * Used only when available, may not be enough to disambiguate
754  * all branches, may need the help of the SW filter
755  */
756 static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
757 {
758 	struct hw_perf_event_extra *reg;
759 	u64 br_type = event->attr.branch_sample_type;
760 	u64 mask = 0, v;
761 	int i;
762 
763 	for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) {
764 		if (!(br_type & (1ULL << i)))
765 			continue;
766 
767 		v = x86_pmu.lbr_sel_map[i];
768 		if (v == LBR_NOT_SUPP)
769 			return -EOPNOTSUPP;
770 
771 		if (v != LBR_IGN)
772 			mask |= v;
773 	}
774 
775 	reg = &event->hw.branch_reg;
776 	reg->idx = EXTRA_REG_LBR;
777 
778 	/*
779 	 * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
780 	 * in suppress mode. So LBR_SELECT should be set to
781 	 * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
782 	 * But the 10th bit LBR_CALL_STACK does not operate
783 	 * in suppress mode.
784 	 */
785 	reg->config = mask ^ (x86_pmu.lbr_sel_mask & ~LBR_CALL_STACK);
786 
787 	if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) &&
788 	    (br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) &&
789 	    (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO))
790 		reg->config |= LBR_NO_INFO;
791 
792 	return 0;
793 }
794 
795 int intel_pmu_setup_lbr_filter(struct perf_event *event)
796 {
797 	int ret = 0;
798 
799 	/*
800 	 * no LBR on this PMU
801 	 */
802 	if (!x86_pmu.lbr_nr)
803 		return -EOPNOTSUPP;
804 
805 	/*
806 	 * setup SW LBR filter
807 	 */
808 	ret = intel_pmu_setup_sw_lbr_filter(event);
809 	if (ret)
810 		return ret;
811 
812 	/*
813 	 * setup HW LBR filter, if any
814 	 */
815 	if (x86_pmu.lbr_sel_map)
816 		ret = intel_pmu_setup_hw_lbr_filter(event);
817 
818 	return ret;
819 }
820 
821 /*
822  * return the type of control flow change at address "from"
823  * instruction is not necessarily a branch (in case of interrupt).
824  *
825  * The branch type returned also includes the priv level of the
826  * target of the control flow change (X86_BR_USER, X86_BR_KERNEL).
827  *
828  * If a branch type is unknown OR the instruction cannot be
829  * decoded (e.g., text page not present), then X86_BR_NONE is
830  * returned.
831  */
832 static int branch_type(unsigned long from, unsigned long to, int abort)
833 {
834 	struct insn insn;
835 	void *addr;
836 	int bytes_read, bytes_left;
837 	int ret = X86_BR_NONE;
838 	int ext, to_plm, from_plm;
839 	u8 buf[MAX_INSN_SIZE];
840 	int is64 = 0;
841 
842 	to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
843 	from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER;
844 
845 	/*
846 	 * maybe zero if lbr did not fill up after a reset by the time
847 	 * we get a PMU interrupt
848 	 */
849 	if (from == 0 || to == 0)
850 		return X86_BR_NONE;
851 
852 	if (abort)
853 		return X86_BR_ABORT | to_plm;
854 
855 	if (from_plm == X86_BR_USER) {
856 		/*
857 		 * can happen if measuring at the user level only
858 		 * and we interrupt in a kernel thread, e.g., idle.
859 		 */
860 		if (!current->mm)
861 			return X86_BR_NONE;
862 
863 		/* may fail if text not present */
864 		bytes_left = copy_from_user_nmi(buf, (void __user *)from,
865 						MAX_INSN_SIZE);
866 		bytes_read = MAX_INSN_SIZE - bytes_left;
867 		if (!bytes_read)
868 			return X86_BR_NONE;
869 
870 		addr = buf;
871 	} else {
872 		/*
873 		 * The LBR logs any address in the IP, even if the IP just
874 		 * faulted. This means userspace can control the from address.
875 		 * Ensure we don't blindy read any address by validating it is
876 		 * a known text address.
877 		 */
878 		if (kernel_text_address(from)) {
879 			addr = (void *)from;
880 			/*
881 			 * Assume we can get the maximum possible size
882 			 * when grabbing kernel data.  This is not
883 			 * _strictly_ true since we could possibly be
884 			 * executing up next to a memory hole, but
885 			 * it is very unlikely to be a problem.
886 			 */
887 			bytes_read = MAX_INSN_SIZE;
888 		} else {
889 			return X86_BR_NONE;
890 		}
891 	}
892 
893 	/*
894 	 * decoder needs to know the ABI especially
895 	 * on 64-bit systems running 32-bit apps
896 	 */
897 #ifdef CONFIG_X86_64
898 	is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32);
899 #endif
900 	insn_init(&insn, addr, bytes_read, is64);
901 	insn_get_opcode(&insn);
902 	if (!insn.opcode.got)
903 		return X86_BR_ABORT;
904 
905 	switch (insn.opcode.bytes[0]) {
906 	case 0xf:
907 		switch (insn.opcode.bytes[1]) {
908 		case 0x05: /* syscall */
909 		case 0x34: /* sysenter */
910 			ret = X86_BR_SYSCALL;
911 			break;
912 		case 0x07: /* sysret */
913 		case 0x35: /* sysexit */
914 			ret = X86_BR_SYSRET;
915 			break;
916 		case 0x80 ... 0x8f: /* conditional */
917 			ret = X86_BR_JCC;
918 			break;
919 		default:
920 			ret = X86_BR_NONE;
921 		}
922 		break;
923 	case 0x70 ... 0x7f: /* conditional */
924 		ret = X86_BR_JCC;
925 		break;
926 	case 0xc2: /* near ret */
927 	case 0xc3: /* near ret */
928 	case 0xca: /* far ret */
929 	case 0xcb: /* far ret */
930 		ret = X86_BR_RET;
931 		break;
932 	case 0xcf: /* iret */
933 		ret = X86_BR_IRET;
934 		break;
935 	case 0xcc ... 0xce: /* int */
936 		ret = X86_BR_INT;
937 		break;
938 	case 0xe8: /* call near rel */
939 		insn_get_immediate(&insn);
940 		if (insn.immediate1.value == 0) {
941 			/* zero length call */
942 			ret = X86_BR_ZERO_CALL;
943 			break;
944 		}
945 		/* fall through */
946 	case 0x9a: /* call far absolute */
947 		ret = X86_BR_CALL;
948 		break;
949 	case 0xe0 ... 0xe3: /* loop jmp */
950 		ret = X86_BR_JCC;
951 		break;
952 	case 0xe9 ... 0xeb: /* jmp */
953 		ret = X86_BR_JMP;
954 		break;
955 	case 0xff: /* call near absolute, call far absolute ind */
956 		insn_get_modrm(&insn);
957 		ext = (insn.modrm.bytes[0] >> 3) & 0x7;
958 		switch (ext) {
959 		case 2: /* near ind call */
960 		case 3: /* far ind call */
961 			ret = X86_BR_IND_CALL;
962 			break;
963 		case 4:
964 		case 5:
965 			ret = X86_BR_IND_JMP;
966 			break;
967 		}
968 		break;
969 	default:
970 		ret = X86_BR_NONE;
971 	}
972 	/*
973 	 * interrupts, traps, faults (and thus ring transition) may
974 	 * occur on any instructions. Thus, to classify them correctly,
975 	 * we need to first look at the from and to priv levels. If they
976 	 * are different and to is in the kernel, then it indicates
977 	 * a ring transition. If the from instruction is not a ring
978 	 * transition instr (syscall, systenter, int), then it means
979 	 * it was a irq, trap or fault.
980 	 *
981 	 * we have no way of detecting kernel to kernel faults.
982 	 */
983 	if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL
984 	    && ret != X86_BR_SYSCALL && ret != X86_BR_INT)
985 		ret = X86_BR_IRQ;
986 
987 	/*
988 	 * branch priv level determined by target as
989 	 * is done by HW when LBR_SELECT is implemented
990 	 */
991 	if (ret != X86_BR_NONE)
992 		ret |= to_plm;
993 
994 	return ret;
995 }
996 
997 #define X86_BR_TYPE_MAP_MAX	16
998 
999 static int branch_map[X86_BR_TYPE_MAP_MAX] = {
1000 	PERF_BR_CALL,		/* X86_BR_CALL */
1001 	PERF_BR_RET,		/* X86_BR_RET */
1002 	PERF_BR_SYSCALL,	/* X86_BR_SYSCALL */
1003 	PERF_BR_SYSRET,		/* X86_BR_SYSRET */
1004 	PERF_BR_UNKNOWN,	/* X86_BR_INT */
1005 	PERF_BR_UNKNOWN,	/* X86_BR_IRET */
1006 	PERF_BR_COND,		/* X86_BR_JCC */
1007 	PERF_BR_UNCOND,		/* X86_BR_JMP */
1008 	PERF_BR_UNKNOWN,	/* X86_BR_IRQ */
1009 	PERF_BR_IND_CALL,	/* X86_BR_IND_CALL */
1010 	PERF_BR_UNKNOWN,	/* X86_BR_ABORT */
1011 	PERF_BR_UNKNOWN,	/* X86_BR_IN_TX */
1012 	PERF_BR_UNKNOWN,	/* X86_BR_NO_TX */
1013 	PERF_BR_CALL,		/* X86_BR_ZERO_CALL */
1014 	PERF_BR_UNKNOWN,	/* X86_BR_CALL_STACK */
1015 	PERF_BR_IND,		/* X86_BR_IND_JMP */
1016 };
1017 
1018 static int
1019 common_branch_type(int type)
1020 {
1021 	int i;
1022 
1023 	type >>= 2; /* skip X86_BR_USER and X86_BR_KERNEL */
1024 
1025 	if (type) {
1026 		i = __ffs(type);
1027 		if (i < X86_BR_TYPE_MAP_MAX)
1028 			return branch_map[i];
1029 	}
1030 
1031 	return PERF_BR_UNKNOWN;
1032 }
1033 
1034 /*
1035  * implement actual branch filter based on user demand.
1036  * Hardware may not exactly satisfy that request, thus
1037  * we need to inspect opcodes. Mismatched branches are
1038  * discarded. Therefore, the number of branches returned
1039  * in PERF_SAMPLE_BRANCH_STACK sample may vary.
1040  */
1041 static void
1042 intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
1043 {
1044 	u64 from, to;
1045 	int br_sel = cpuc->br_sel;
1046 	int i, j, type;
1047 	bool compress = false;
1048 
1049 	/* if sampling all branches, then nothing to filter */
1050 	if (((br_sel & X86_BR_ALL) == X86_BR_ALL) &&
1051 	    ((br_sel & X86_BR_TYPE_SAVE) != X86_BR_TYPE_SAVE))
1052 		return;
1053 
1054 	for (i = 0; i < cpuc->lbr_stack.nr; i++) {
1055 
1056 		from = cpuc->lbr_entries[i].from;
1057 		to = cpuc->lbr_entries[i].to;
1058 
1059 		type = branch_type(from, to, cpuc->lbr_entries[i].abort);
1060 		if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
1061 			if (cpuc->lbr_entries[i].in_tx)
1062 				type |= X86_BR_IN_TX;
1063 			else
1064 				type |= X86_BR_NO_TX;
1065 		}
1066 
1067 		/* if type does not correspond, then discard */
1068 		if (type == X86_BR_NONE || (br_sel & type) != type) {
1069 			cpuc->lbr_entries[i].from = 0;
1070 			compress = true;
1071 		}
1072 
1073 		if ((br_sel & X86_BR_TYPE_SAVE) == X86_BR_TYPE_SAVE)
1074 			cpuc->lbr_entries[i].type = common_branch_type(type);
1075 	}
1076 
1077 	if (!compress)
1078 		return;
1079 
1080 	/* remove all entries with from=0 */
1081 	for (i = 0; i < cpuc->lbr_stack.nr; ) {
1082 		if (!cpuc->lbr_entries[i].from) {
1083 			j = i;
1084 			while (++j < cpuc->lbr_stack.nr)
1085 				cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
1086 			cpuc->lbr_stack.nr--;
1087 			if (!cpuc->lbr_entries[i].from)
1088 				continue;
1089 		}
1090 		i++;
1091 	}
1092 }
1093 
1094 void intel_pmu_store_pebs_lbrs(struct pebs_lbr *lbr)
1095 {
1096 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1097 	int i;
1098 
1099 	cpuc->lbr_stack.nr = x86_pmu.lbr_nr;
1100 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
1101 		u64 info = lbr->lbr[i].info;
1102 		struct perf_branch_entry *e = &cpuc->lbr_entries[i];
1103 
1104 		e->from		= lbr->lbr[i].from;
1105 		e->to		= lbr->lbr[i].to;
1106 		e->mispred	= !!(info & LBR_INFO_MISPRED);
1107 		e->predicted	= !(info & LBR_INFO_MISPRED);
1108 		e->in_tx	= !!(info & LBR_INFO_IN_TX);
1109 		e->abort	= !!(info & LBR_INFO_ABORT);
1110 		e->cycles	= info & LBR_INFO_CYCLES;
1111 		e->reserved	= 0;
1112 	}
1113 	intel_pmu_lbr_filter(cpuc);
1114 }
1115 
1116 /*
1117  * Map interface branch filters onto LBR filters
1118  */
1119 static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1120 	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
1121 	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
1122 	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
1123 	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
1124 	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_REL_JMP
1125 						| LBR_IND_JMP | LBR_FAR,
1126 	/*
1127 	 * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
1128 	 */
1129 	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
1130 	 LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
1131 	/*
1132 	 * NHM/WSM erratum: must include IND_JMP to capture IND_CALL
1133 	 */
1134 	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
1135 	[PERF_SAMPLE_BRANCH_COND_SHIFT]     = LBR_JCC,
1136 	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
1137 };
1138 
1139 static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1140 	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
1141 	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
1142 	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
1143 	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
1144 	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_FAR,
1145 	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
1146 						| LBR_FAR,
1147 	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]	= LBR_IND_CALL,
1148 	[PERF_SAMPLE_BRANCH_COND_SHIFT]		= LBR_JCC,
1149 	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]	= LBR_IND_JMP,
1150 	[PERF_SAMPLE_BRANCH_CALL_SHIFT]		= LBR_REL_CALL,
1151 };
1152 
1153 static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1154 	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
1155 	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
1156 	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
1157 	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
1158 	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_FAR,
1159 	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
1160 						| LBR_FAR,
1161 	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]	= LBR_IND_CALL,
1162 	[PERF_SAMPLE_BRANCH_COND_SHIFT]		= LBR_JCC,
1163 	[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
1164 						| LBR_RETURN | LBR_CALL_STACK,
1165 	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]	= LBR_IND_JMP,
1166 	[PERF_SAMPLE_BRANCH_CALL_SHIFT]		= LBR_REL_CALL,
1167 };
1168 
1169 /* core */
1170 void __init intel_pmu_lbr_init_core(void)
1171 {
1172 	x86_pmu.lbr_nr     = 4;
1173 	x86_pmu.lbr_tos    = MSR_LBR_TOS;
1174 	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
1175 	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1176 
1177 	/*
1178 	 * SW branch filter usage:
1179 	 * - compensate for lack of HW filter
1180 	 */
1181 }
1182 
1183 /* nehalem/westmere */
1184 void __init intel_pmu_lbr_init_nhm(void)
1185 {
1186 	x86_pmu.lbr_nr     = 16;
1187 	x86_pmu.lbr_tos    = MSR_LBR_TOS;
1188 	x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
1189 	x86_pmu.lbr_to     = MSR_LBR_NHM_TO;
1190 
1191 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1192 	x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;
1193 
1194 	/*
1195 	 * SW branch filter usage:
1196 	 * - workaround LBR_SEL errata (see above)
1197 	 * - support syscall, sysret capture.
1198 	 *   That requires LBR_FAR but that means far
1199 	 *   jmp need to be filtered out
1200 	 */
1201 }
1202 
1203 /* sandy bridge */
1204 void __init intel_pmu_lbr_init_snb(void)
1205 {
1206 	x86_pmu.lbr_nr	 = 16;
1207 	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
1208 	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1209 	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
1210 
1211 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1212 	x86_pmu.lbr_sel_map  = snb_lbr_sel_map;
1213 
1214 	/*
1215 	 * SW branch filter usage:
1216 	 * - support syscall, sysret capture.
1217 	 *   That requires LBR_FAR but that means far
1218 	 *   jmp need to be filtered out
1219 	 */
1220 }
1221 
1222 /* haswell */
1223 void intel_pmu_lbr_init_hsw(void)
1224 {
1225 	x86_pmu.lbr_nr	 = 16;
1226 	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
1227 	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1228 	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
1229 
1230 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1231 	x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;
1232 
1233 	if (lbr_from_signext_quirk_needed())
1234 		static_branch_enable(&lbr_from_quirk_key);
1235 }
1236 
1237 /* skylake */
1238 __init void intel_pmu_lbr_init_skl(void)
1239 {
1240 	x86_pmu.lbr_nr	 = 32;
1241 	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
1242 	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1243 	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
1244 
1245 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1246 	x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;
1247 
1248 	/*
1249 	 * SW branch filter usage:
1250 	 * - support syscall, sysret capture.
1251 	 *   That requires LBR_FAR but that means far
1252 	 *   jmp need to be filtered out
1253 	 */
1254 }
1255 
1256 /* atom */
1257 void __init intel_pmu_lbr_init_atom(void)
1258 {
1259 	/*
1260 	 * only models starting at stepping 10 seems
1261 	 * to have an operational LBR which can freeze
1262 	 * on PMU interrupt
1263 	 */
1264 	if (boot_cpu_data.x86_model == 28
1265 	    && boot_cpu_data.x86_stepping < 10) {
1266 		pr_cont("LBR disabled due to erratum");
1267 		return;
1268 	}
1269 
1270 	x86_pmu.lbr_nr	   = 8;
1271 	x86_pmu.lbr_tos    = MSR_LBR_TOS;
1272 	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
1273 	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1274 
1275 	/*
1276 	 * SW branch filter usage:
1277 	 * - compensate for lack of HW filter
1278 	 */
1279 }
1280 
1281 /* slm */
1282 void __init intel_pmu_lbr_init_slm(void)
1283 {
1284 	x86_pmu.lbr_nr	   = 8;
1285 	x86_pmu.lbr_tos    = MSR_LBR_TOS;
1286 	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
1287 	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1288 
1289 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1290 	x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;
1291 
1292 	/*
1293 	 * SW branch filter usage:
1294 	 * - compensate for lack of HW filter
1295 	 */
1296 	pr_cont("8-deep LBR, ");
1297 }
1298 
1299 /* Knights Landing */
1300 void intel_pmu_lbr_init_knl(void)
1301 {
1302 	x86_pmu.lbr_nr	   = 8;
1303 	x86_pmu.lbr_tos    = MSR_LBR_TOS;
1304 	x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
1305 	x86_pmu.lbr_to     = MSR_LBR_NHM_TO;
1306 
1307 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1308 	x86_pmu.lbr_sel_map  = snb_lbr_sel_map;
1309 
1310 	/* Knights Landing does have MISPREDICT bit */
1311 	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_LIP)
1312 		x86_pmu.intel_cap.lbr_format = LBR_FORMAT_EIP_FLAGS;
1313 }
1314