xref: /openbmc/linux/arch/x86/events/intel/lbr.c (revision 10b62a2f)
1 #include <linux/perf_event.h>
2 #include <linux/types.h>
3 
4 #include <asm/perf_event.h>
5 #include <asm/msr.h>
6 #include <asm/insn.h>
7 
8 #include "../perf_event.h"
9 
10 enum {
11 	LBR_FORMAT_32		= 0x00,
12 	LBR_FORMAT_LIP		= 0x01,
13 	LBR_FORMAT_EIP		= 0x02,
14 	LBR_FORMAT_EIP_FLAGS	= 0x03,
15 	LBR_FORMAT_EIP_FLAGS2	= 0x04,
16 	LBR_FORMAT_INFO		= 0x05,
17 	LBR_FORMAT_TIME		= 0x06,
18 	LBR_FORMAT_MAX_KNOWN    = LBR_FORMAT_TIME,
19 };
20 
21 static const enum {
22 	LBR_EIP_FLAGS		= 1,
23 	LBR_TSX			= 2,
24 } lbr_desc[LBR_FORMAT_MAX_KNOWN + 1] = {
25 	[LBR_FORMAT_EIP_FLAGS]  = LBR_EIP_FLAGS,
26 	[LBR_FORMAT_EIP_FLAGS2] = LBR_EIP_FLAGS | LBR_TSX,
27 };
28 
29 /*
30  * Intel LBR_SELECT bits
31  * Intel Vol3a, April 2011, Section 16.7 Table 16-10
32  *
33  * Hardware branch filter (not available on all CPUs)
34  */
35 #define LBR_KERNEL_BIT		0 /* do not capture at ring0 */
36 #define LBR_USER_BIT		1 /* do not capture at ring > 0 */
37 #define LBR_JCC_BIT		2 /* do not capture conditional branches */
38 #define LBR_REL_CALL_BIT	3 /* do not capture relative calls */
39 #define LBR_IND_CALL_BIT	4 /* do not capture indirect calls */
40 #define LBR_RETURN_BIT		5 /* do not capture near returns */
41 #define LBR_IND_JMP_BIT		6 /* do not capture indirect jumps */
42 #define LBR_REL_JMP_BIT		7 /* do not capture relative jumps */
43 #define LBR_FAR_BIT		8 /* do not capture far branches */
44 #define LBR_CALL_STACK_BIT	9 /* enable call stack */
45 
46 /*
47  * Following bit only exists in Linux; we mask it out before writing it to
48  * the actual MSR. But it helps the constraint perf code to understand
49  * that this is a separate configuration.
50  */
51 #define LBR_NO_INFO_BIT	       63 /* don't read LBR_INFO. */
52 
53 #define LBR_KERNEL	(1 << LBR_KERNEL_BIT)
54 #define LBR_USER	(1 << LBR_USER_BIT)
55 #define LBR_JCC		(1 << LBR_JCC_BIT)
56 #define LBR_REL_CALL	(1 << LBR_REL_CALL_BIT)
57 #define LBR_IND_CALL	(1 << LBR_IND_CALL_BIT)
58 #define LBR_RETURN	(1 << LBR_RETURN_BIT)
59 #define LBR_REL_JMP	(1 << LBR_REL_JMP_BIT)
60 #define LBR_IND_JMP	(1 << LBR_IND_JMP_BIT)
61 #define LBR_FAR		(1 << LBR_FAR_BIT)
62 #define LBR_CALL_STACK	(1 << LBR_CALL_STACK_BIT)
63 #define LBR_NO_INFO	(1ULL << LBR_NO_INFO_BIT)
64 
65 #define LBR_PLM (LBR_KERNEL | LBR_USER)
66 
67 #define LBR_SEL_MASK	0x3ff	/* valid bits in LBR_SELECT */
68 #define LBR_NOT_SUPP	-1	/* LBR filter not supported */
69 #define LBR_IGN		0	/* ignored */
70 
71 #define LBR_ANY		 \
72 	(LBR_JCC	|\
73 	 LBR_REL_CALL	|\
74 	 LBR_IND_CALL	|\
75 	 LBR_RETURN	|\
76 	 LBR_REL_JMP	|\
77 	 LBR_IND_JMP	|\
78 	 LBR_FAR)
79 
80 #define LBR_FROM_FLAG_MISPRED	BIT_ULL(63)
81 #define LBR_FROM_FLAG_IN_TX	BIT_ULL(62)
82 #define LBR_FROM_FLAG_ABORT	BIT_ULL(61)
83 
84 #define LBR_FROM_SIGNEXT_2MSB	(BIT_ULL(60) | BIT_ULL(59))
85 
86 /*
87  * x86control flow change classification
88  * x86control flow changes include branches, interrupts, traps, faults
89  */
90 enum {
91 	X86_BR_NONE		= 0,      /* unknown */
92 
93 	X86_BR_USER		= 1 << 0, /* branch target is user */
94 	X86_BR_KERNEL		= 1 << 1, /* branch target is kernel */
95 
96 	X86_BR_CALL		= 1 << 2, /* call */
97 	X86_BR_RET		= 1 << 3, /* return */
98 	X86_BR_SYSCALL		= 1 << 4, /* syscall */
99 	X86_BR_SYSRET		= 1 << 5, /* syscall return */
100 	X86_BR_INT		= 1 << 6, /* sw interrupt */
101 	X86_BR_IRET		= 1 << 7, /* return from interrupt */
102 	X86_BR_JCC		= 1 << 8, /* conditional */
103 	X86_BR_JMP		= 1 << 9, /* jump */
104 	X86_BR_IRQ		= 1 << 10,/* hw interrupt or trap or fault */
105 	X86_BR_IND_CALL		= 1 << 11,/* indirect calls */
106 	X86_BR_ABORT		= 1 << 12,/* transaction abort */
107 	X86_BR_IN_TX		= 1 << 13,/* in transaction */
108 	X86_BR_NO_TX		= 1 << 14,/* not in transaction */
109 	X86_BR_ZERO_CALL	= 1 << 15,/* zero length call */
110 	X86_BR_CALL_STACK	= 1 << 16,/* call stack */
111 	X86_BR_IND_JMP		= 1 << 17,/* indirect jump */
112 
113 	X86_BR_TYPE_SAVE	= 1 << 18,/* indicate to save branch type */
114 
115 };
116 
117 #define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL)
118 #define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX)
119 
120 #define X86_BR_ANY       \
121 	(X86_BR_CALL    |\
122 	 X86_BR_RET     |\
123 	 X86_BR_SYSCALL |\
124 	 X86_BR_SYSRET  |\
125 	 X86_BR_INT     |\
126 	 X86_BR_IRET    |\
127 	 X86_BR_JCC     |\
128 	 X86_BR_JMP	 |\
129 	 X86_BR_IRQ	 |\
130 	 X86_BR_ABORT	 |\
131 	 X86_BR_IND_CALL |\
132 	 X86_BR_IND_JMP  |\
133 	 X86_BR_ZERO_CALL)
134 
135 #define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY)
136 
137 #define X86_BR_ANY_CALL		 \
138 	(X86_BR_CALL		|\
139 	 X86_BR_IND_CALL	|\
140 	 X86_BR_ZERO_CALL	|\
141 	 X86_BR_SYSCALL		|\
142 	 X86_BR_IRQ		|\
143 	 X86_BR_INT)
144 
145 static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);
146 
147 /*
148  * We only support LBR implementations that have FREEZE_LBRS_ON_PMI
149  * otherwise it becomes near impossible to get a reliable stack.
150  */
151 
152 static void __intel_pmu_lbr_enable(bool pmi)
153 {
154 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
155 	u64 debugctl, lbr_select = 0, orig_debugctl;
156 
157 	/*
158 	 * No need to unfreeze manually, as v4 can do that as part
159 	 * of the GLOBAL_STATUS ack.
160 	 */
161 	if (pmi && x86_pmu.version >= 4)
162 		return;
163 
164 	/*
165 	 * No need to reprogram LBR_SELECT in a PMI, as it
166 	 * did not change.
167 	 */
168 	if (cpuc->lbr_sel)
169 		lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask;
170 	if (!pmi && cpuc->lbr_sel)
171 		wrmsrl(MSR_LBR_SELECT, lbr_select);
172 
173 	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
174 	orig_debugctl = debugctl;
175 	debugctl |= DEBUGCTLMSR_LBR;
176 	/*
177 	 * LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
178 	 * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
179 	 * may cause superfluous increase/decrease of LBR_TOS.
180 	 */
181 	if (!(lbr_select & LBR_CALL_STACK))
182 		debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
183 	if (orig_debugctl != debugctl)
184 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
185 }
186 
187 static void __intel_pmu_lbr_disable(void)
188 {
189 	u64 debugctl;
190 
191 	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
192 	debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI);
193 	wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
194 }
195 
196 static void intel_pmu_lbr_reset_32(void)
197 {
198 	int i;
199 
200 	for (i = 0; i < x86_pmu.lbr_nr; i++)
201 		wrmsrl(x86_pmu.lbr_from + i, 0);
202 }
203 
204 static void intel_pmu_lbr_reset_64(void)
205 {
206 	int i;
207 
208 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
209 		wrmsrl(x86_pmu.lbr_from + i, 0);
210 		wrmsrl(x86_pmu.lbr_to   + i, 0);
211 		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
212 			wrmsrl(MSR_LBR_INFO_0 + i, 0);
213 	}
214 }
215 
216 void intel_pmu_lbr_reset(void)
217 {
218 	if (!x86_pmu.lbr_nr)
219 		return;
220 
221 	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
222 		intel_pmu_lbr_reset_32();
223 	else
224 		intel_pmu_lbr_reset_64();
225 }
226 
227 /*
228  * TOS = most recently recorded branch
229  */
230 static inline u64 intel_pmu_lbr_tos(void)
231 {
232 	u64 tos;
233 
234 	rdmsrl(x86_pmu.lbr_tos, tos);
235 	return tos;
236 }
237 
238 enum {
239 	LBR_NONE,
240 	LBR_VALID,
241 };
242 
243 /*
244  * For formats with LBR_TSX flags (e.g. LBR_FORMAT_EIP_FLAGS2), bits 61:62 in
245  * MSR_LAST_BRANCH_FROM_x are the TSX flags when TSX is supported, but when
246  * TSX is not supported they have no consistent behavior:
247  *
248  *   - For wrmsr(), bits 61:62 are considered part of the sign extension.
249  *   - For HW updates (branch captures) bits 61:62 are always OFF and are not
250  *     part of the sign extension.
251  *
252  * Therefore, if:
253  *
254  *   1) LBR has TSX format
255  *   2) CPU has no TSX support enabled
256  *
257  * ... then any value passed to wrmsr() must be sign extended to 63 bits and any
258  * value from rdmsr() must be converted to have a 61 bits sign extension,
259  * ignoring the TSX flags.
260  */
261 static inline bool lbr_from_signext_quirk_needed(void)
262 {
263 	int lbr_format = x86_pmu.intel_cap.lbr_format;
264 	bool tsx_support = boot_cpu_has(X86_FEATURE_HLE) ||
265 			   boot_cpu_has(X86_FEATURE_RTM);
266 
267 	return !tsx_support && (lbr_desc[lbr_format] & LBR_TSX);
268 }
269 
270 DEFINE_STATIC_KEY_FALSE(lbr_from_quirk_key);
271 
272 /* If quirk is enabled, ensure sign extension is 63 bits: */
273 inline u64 lbr_from_signext_quirk_wr(u64 val)
274 {
275 	if (static_branch_unlikely(&lbr_from_quirk_key)) {
276 		/*
277 		 * Sign extend into bits 61:62 while preserving bit 63.
278 		 *
279 		 * Quirk is enabled when TSX is disabled. Therefore TSX bits
280 		 * in val are always OFF and must be changed to be sign
281 		 * extension bits. Since bits 59:60 are guaranteed to be
282 		 * part of the sign extension bits, we can just copy them
283 		 * to 61:62.
284 		 */
285 		val |= (LBR_FROM_SIGNEXT_2MSB & val) << 2;
286 	}
287 	return val;
288 }
289 
290 /*
291  * If quirk is needed, ensure sign extension is 61 bits:
292  */
293 static u64 lbr_from_signext_quirk_rd(u64 val)
294 {
295 	if (static_branch_unlikely(&lbr_from_quirk_key)) {
296 		/*
297 		 * Quirk is on when TSX is not enabled. Therefore TSX
298 		 * flags must be read as OFF.
299 		 */
300 		val &= ~(LBR_FROM_FLAG_IN_TX | LBR_FROM_FLAG_ABORT);
301 	}
302 	return val;
303 }
304 
305 static inline void wrlbr_from(unsigned int idx, u64 val)
306 {
307 	val = lbr_from_signext_quirk_wr(val);
308 	wrmsrl(x86_pmu.lbr_from + idx, val);
309 }
310 
311 static inline void wrlbr_to(unsigned int idx, u64 val)
312 {
313 	wrmsrl(x86_pmu.lbr_to + idx, val);
314 }
315 
316 static inline u64 rdlbr_from(unsigned int idx)
317 {
318 	u64 val;
319 
320 	rdmsrl(x86_pmu.lbr_from + idx, val);
321 
322 	return lbr_from_signext_quirk_rd(val);
323 }
324 
325 static inline u64 rdlbr_to(unsigned int idx)
326 {
327 	u64 val;
328 
329 	rdmsrl(x86_pmu.lbr_to + idx, val);
330 
331 	return val;
332 }
333 
334 static void __intel_pmu_lbr_restore(struct x86_perf_task_context *task_ctx)
335 {
336 	int i;
337 	unsigned lbr_idx, mask;
338 	u64 tos;
339 
340 	if (task_ctx->lbr_callstack_users == 0 ||
341 	    task_ctx->lbr_stack_state == LBR_NONE) {
342 		intel_pmu_lbr_reset();
343 		return;
344 	}
345 
346 	mask = x86_pmu.lbr_nr - 1;
347 	tos = task_ctx->tos;
348 	for (i = 0; i < tos; i++) {
349 		lbr_idx = (tos - i) & mask;
350 		wrlbr_from(lbr_idx, task_ctx->lbr_from[i]);
351 		wrlbr_to  (lbr_idx, task_ctx->lbr_to[i]);
352 
353 		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
354 			wrmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
355 	}
356 	wrmsrl(x86_pmu.lbr_tos, tos);
357 	task_ctx->lbr_stack_state = LBR_NONE;
358 }
359 
360 static void __intel_pmu_lbr_save(struct x86_perf_task_context *task_ctx)
361 {
362 	unsigned lbr_idx, mask;
363 	u64 tos;
364 	int i;
365 
366 	if (task_ctx->lbr_callstack_users == 0) {
367 		task_ctx->lbr_stack_state = LBR_NONE;
368 		return;
369 	}
370 
371 	mask = x86_pmu.lbr_nr - 1;
372 	tos = intel_pmu_lbr_tos();
373 	for (i = 0; i < tos; i++) {
374 		lbr_idx = (tos - i) & mask;
375 		task_ctx->lbr_from[i] = rdlbr_from(lbr_idx);
376 		task_ctx->lbr_to[i]   = rdlbr_to(lbr_idx);
377 		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
378 			rdmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
379 	}
380 	task_ctx->tos = tos;
381 	task_ctx->lbr_stack_state = LBR_VALID;
382 }
383 
384 void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in)
385 {
386 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
387 	struct x86_perf_task_context *task_ctx;
388 
389 	if (!cpuc->lbr_users)
390 		return;
391 
392 	/*
393 	 * If LBR callstack feature is enabled and the stack was saved when
394 	 * the task was scheduled out, restore the stack. Otherwise flush
395 	 * the LBR stack.
396 	 */
397 	task_ctx = ctx ? ctx->task_ctx_data : NULL;
398 	if (task_ctx) {
399 		if (sched_in)
400 			__intel_pmu_lbr_restore(task_ctx);
401 		else
402 			__intel_pmu_lbr_save(task_ctx);
403 		return;
404 	}
405 
406 	/*
407 	 * Since a context switch can flip the address space and LBR entries
408 	 * are not tagged with an identifier, we need to wipe the LBR, even for
409 	 * per-cpu events. You simply cannot resolve the branches from the old
410 	 * address space.
411 	 */
412 	if (sched_in)
413 		intel_pmu_lbr_reset();
414 }
415 
416 static inline bool branch_user_callstack(unsigned br_sel)
417 {
418 	return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
419 }
420 
421 void intel_pmu_lbr_add(struct perf_event *event)
422 {
423 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
424 	struct x86_perf_task_context *task_ctx;
425 
426 	if (!x86_pmu.lbr_nr)
427 		return;
428 
429 	cpuc->br_sel = event->hw.branch_reg.reg;
430 
431 	if (branch_user_callstack(cpuc->br_sel) && event->ctx->task_ctx_data) {
432 		task_ctx = event->ctx->task_ctx_data;
433 		task_ctx->lbr_callstack_users++;
434 	}
435 
436 	/*
437 	 * Request pmu::sched_task() callback, which will fire inside the
438 	 * regular perf event scheduling, so that call will:
439 	 *
440 	 *  - restore or wipe; when LBR-callstack,
441 	 *  - wipe; otherwise,
442 	 *
443 	 * when this is from __perf_event_task_sched_in().
444 	 *
445 	 * However, if this is from perf_install_in_context(), no such callback
446 	 * will follow and we'll need to reset the LBR here if this is the
447 	 * first LBR event.
448 	 *
449 	 * The problem is, we cannot tell these cases apart... but we can
450 	 * exclude the biggest chunk of cases by looking at
451 	 * event->total_time_running. An event that has accrued runtime cannot
452 	 * be 'new'. Conversely, a new event can get installed through the
453 	 * context switch path for the first time.
454 	 */
455 	perf_sched_cb_inc(event->ctx->pmu);
456 	if (!cpuc->lbr_users++ && !event->total_time_running)
457 		intel_pmu_lbr_reset();
458 }
459 
460 void intel_pmu_lbr_del(struct perf_event *event)
461 {
462 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
463 	struct x86_perf_task_context *task_ctx;
464 
465 	if (!x86_pmu.lbr_nr)
466 		return;
467 
468 	if (branch_user_callstack(cpuc->br_sel) &&
469 	    event->ctx->task_ctx_data) {
470 		task_ctx = event->ctx->task_ctx_data;
471 		task_ctx->lbr_callstack_users--;
472 	}
473 
474 	cpuc->lbr_users--;
475 	WARN_ON_ONCE(cpuc->lbr_users < 0);
476 	perf_sched_cb_dec(event->ctx->pmu);
477 }
478 
479 void intel_pmu_lbr_enable_all(bool pmi)
480 {
481 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
482 
483 	if (cpuc->lbr_users)
484 		__intel_pmu_lbr_enable(pmi);
485 }
486 
487 void intel_pmu_lbr_disable_all(void)
488 {
489 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
490 
491 	if (cpuc->lbr_users)
492 		__intel_pmu_lbr_disable();
493 }
494 
495 static void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
496 {
497 	unsigned long mask = x86_pmu.lbr_nr - 1;
498 	u64 tos = intel_pmu_lbr_tos();
499 	int i;
500 
501 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
502 		unsigned long lbr_idx = (tos - i) & mask;
503 		union {
504 			struct {
505 				u32 from;
506 				u32 to;
507 			};
508 			u64     lbr;
509 		} msr_lastbranch;
510 
511 		rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);
512 
513 		cpuc->lbr_entries[i].from	= msr_lastbranch.from;
514 		cpuc->lbr_entries[i].to		= msr_lastbranch.to;
515 		cpuc->lbr_entries[i].mispred	= 0;
516 		cpuc->lbr_entries[i].predicted	= 0;
517 		cpuc->lbr_entries[i].in_tx	= 0;
518 		cpuc->lbr_entries[i].abort	= 0;
519 		cpuc->lbr_entries[i].cycles	= 0;
520 		cpuc->lbr_entries[i].type	= 0;
521 		cpuc->lbr_entries[i].reserved	= 0;
522 	}
523 	cpuc->lbr_stack.nr = i;
524 }
525 
526 /*
527  * Due to lack of segmentation in Linux the effective address (offset)
528  * is the same as the linear address, allowing us to merge the LIP and EIP
529  * LBR formats.
530  */
531 static void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
532 {
533 	bool need_info = false;
534 	unsigned long mask = x86_pmu.lbr_nr - 1;
535 	int lbr_format = x86_pmu.intel_cap.lbr_format;
536 	u64 tos = intel_pmu_lbr_tos();
537 	int i;
538 	int out = 0;
539 	int num = x86_pmu.lbr_nr;
540 
541 	if (cpuc->lbr_sel) {
542 		need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO);
543 		if (cpuc->lbr_sel->config & LBR_CALL_STACK)
544 			num = tos;
545 	}
546 
547 	for (i = 0; i < num; i++) {
548 		unsigned long lbr_idx = (tos - i) & mask;
549 		u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
550 		int skip = 0;
551 		u16 cycles = 0;
552 		int lbr_flags = lbr_desc[lbr_format];
553 
554 		from = rdlbr_from(lbr_idx);
555 		to   = rdlbr_to(lbr_idx);
556 
557 		if (lbr_format == LBR_FORMAT_INFO && need_info) {
558 			u64 info;
559 
560 			rdmsrl(MSR_LBR_INFO_0 + lbr_idx, info);
561 			mis = !!(info & LBR_INFO_MISPRED);
562 			pred = !mis;
563 			in_tx = !!(info & LBR_INFO_IN_TX);
564 			abort = !!(info & LBR_INFO_ABORT);
565 			cycles = (info & LBR_INFO_CYCLES);
566 		}
567 
568 		if (lbr_format == LBR_FORMAT_TIME) {
569 			mis = !!(from & LBR_FROM_FLAG_MISPRED);
570 			pred = !mis;
571 			skip = 1;
572 			cycles = ((to >> 48) & LBR_INFO_CYCLES);
573 
574 			to = (u64)((((s64)to) << 16) >> 16);
575 		}
576 
577 		if (lbr_flags & LBR_EIP_FLAGS) {
578 			mis = !!(from & LBR_FROM_FLAG_MISPRED);
579 			pred = !mis;
580 			skip = 1;
581 		}
582 		if (lbr_flags & LBR_TSX) {
583 			in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
584 			abort = !!(from & LBR_FROM_FLAG_ABORT);
585 			skip = 3;
586 		}
587 		from = (u64)((((s64)from) << skip) >> skip);
588 
589 		/*
590 		 * Some CPUs report duplicated abort records,
591 		 * with the second entry not having an abort bit set.
592 		 * Skip them here. This loop runs backwards,
593 		 * so we need to undo the previous record.
594 		 * If the abort just happened outside the window
595 		 * the extra entry cannot be removed.
596 		 */
597 		if (abort && x86_pmu.lbr_double_abort && out > 0)
598 			out--;
599 
600 		cpuc->lbr_entries[out].from	 = from;
601 		cpuc->lbr_entries[out].to	 = to;
602 		cpuc->lbr_entries[out].mispred	 = mis;
603 		cpuc->lbr_entries[out].predicted = pred;
604 		cpuc->lbr_entries[out].in_tx	 = in_tx;
605 		cpuc->lbr_entries[out].abort	 = abort;
606 		cpuc->lbr_entries[out].cycles	 = cycles;
607 		cpuc->lbr_entries[out].type	 = 0;
608 		cpuc->lbr_entries[out].reserved	 = 0;
609 		out++;
610 	}
611 	cpuc->lbr_stack.nr = out;
612 }
613 
614 void intel_pmu_lbr_read(void)
615 {
616 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
617 
618 	if (!cpuc->lbr_users)
619 		return;
620 
621 	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
622 		intel_pmu_lbr_read_32(cpuc);
623 	else
624 		intel_pmu_lbr_read_64(cpuc);
625 
626 	intel_pmu_lbr_filter(cpuc);
627 }
628 
629 /*
630  * SW filter is used:
631  * - in case there is no HW filter
632  * - in case the HW filter has errata or limitations
633  */
634 static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
635 {
636 	u64 br_type = event->attr.branch_sample_type;
637 	int mask = 0;
638 
639 	if (br_type & PERF_SAMPLE_BRANCH_USER)
640 		mask |= X86_BR_USER;
641 
642 	if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
643 		mask |= X86_BR_KERNEL;
644 
645 	/* we ignore BRANCH_HV here */
646 
647 	if (br_type & PERF_SAMPLE_BRANCH_ANY)
648 		mask |= X86_BR_ANY;
649 
650 	if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
651 		mask |= X86_BR_ANY_CALL;
652 
653 	if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
654 		mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;
655 
656 	if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
657 		mask |= X86_BR_IND_CALL;
658 
659 	if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
660 		mask |= X86_BR_ABORT;
661 
662 	if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
663 		mask |= X86_BR_IN_TX;
664 
665 	if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
666 		mask |= X86_BR_NO_TX;
667 
668 	if (br_type & PERF_SAMPLE_BRANCH_COND)
669 		mask |= X86_BR_JCC;
670 
671 	if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
672 		if (!x86_pmu_has_lbr_callstack())
673 			return -EOPNOTSUPP;
674 		if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
675 			return -EINVAL;
676 		mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
677 			X86_BR_CALL_STACK;
678 	}
679 
680 	if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP)
681 		mask |= X86_BR_IND_JMP;
682 
683 	if (br_type & PERF_SAMPLE_BRANCH_CALL)
684 		mask |= X86_BR_CALL | X86_BR_ZERO_CALL;
685 
686 	if (br_type & PERF_SAMPLE_BRANCH_TYPE_SAVE)
687 		mask |= X86_BR_TYPE_SAVE;
688 
689 	/*
690 	 * stash actual user request into reg, it may
691 	 * be used by fixup code for some CPU
692 	 */
693 	event->hw.branch_reg.reg = mask;
694 	return 0;
695 }
696 
697 /*
698  * setup the HW LBR filter
699  * Used only when available, may not be enough to disambiguate
700  * all branches, may need the help of the SW filter
701  */
702 static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
703 {
704 	struct hw_perf_event_extra *reg;
705 	u64 br_type = event->attr.branch_sample_type;
706 	u64 mask = 0, v;
707 	int i;
708 
709 	for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) {
710 		if (!(br_type & (1ULL << i)))
711 			continue;
712 
713 		v = x86_pmu.lbr_sel_map[i];
714 		if (v == LBR_NOT_SUPP)
715 			return -EOPNOTSUPP;
716 
717 		if (v != LBR_IGN)
718 			mask |= v;
719 	}
720 
721 	reg = &event->hw.branch_reg;
722 	reg->idx = EXTRA_REG_LBR;
723 
724 	/*
725 	 * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
726 	 * in suppress mode. So LBR_SELECT should be set to
727 	 * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
728 	 * But the 10th bit LBR_CALL_STACK does not operate
729 	 * in suppress mode.
730 	 */
731 	reg->config = mask ^ (x86_pmu.lbr_sel_mask & ~LBR_CALL_STACK);
732 
733 	if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) &&
734 	    (br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) &&
735 	    (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO))
736 		reg->config |= LBR_NO_INFO;
737 
738 	return 0;
739 }
740 
741 int intel_pmu_setup_lbr_filter(struct perf_event *event)
742 {
743 	int ret = 0;
744 
745 	/*
746 	 * no LBR on this PMU
747 	 */
748 	if (!x86_pmu.lbr_nr)
749 		return -EOPNOTSUPP;
750 
751 	/*
752 	 * setup SW LBR filter
753 	 */
754 	ret = intel_pmu_setup_sw_lbr_filter(event);
755 	if (ret)
756 		return ret;
757 
758 	/*
759 	 * setup HW LBR filter, if any
760 	 */
761 	if (x86_pmu.lbr_sel_map)
762 		ret = intel_pmu_setup_hw_lbr_filter(event);
763 
764 	return ret;
765 }
766 
767 /*
768  * return the type of control flow change at address "from"
769  * instruction is not necessarily a branch (in case of interrupt).
770  *
771  * The branch type returned also includes the priv level of the
772  * target of the control flow change (X86_BR_USER, X86_BR_KERNEL).
773  *
774  * If a branch type is unknown OR the instruction cannot be
775  * decoded (e.g., text page not present), then X86_BR_NONE is
776  * returned.
777  */
778 static int branch_type(unsigned long from, unsigned long to, int abort)
779 {
780 	struct insn insn;
781 	void *addr;
782 	int bytes_read, bytes_left;
783 	int ret = X86_BR_NONE;
784 	int ext, to_plm, from_plm;
785 	u8 buf[MAX_INSN_SIZE];
786 	int is64 = 0;
787 
788 	to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
789 	from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER;
790 
791 	/*
792 	 * maybe zero if lbr did not fill up after a reset by the time
793 	 * we get a PMU interrupt
794 	 */
795 	if (from == 0 || to == 0)
796 		return X86_BR_NONE;
797 
798 	if (abort)
799 		return X86_BR_ABORT | to_plm;
800 
801 	if (from_plm == X86_BR_USER) {
802 		/*
803 		 * can happen if measuring at the user level only
804 		 * and we interrupt in a kernel thread, e.g., idle.
805 		 */
806 		if (!current->mm)
807 			return X86_BR_NONE;
808 
809 		/* may fail if text not present */
810 		bytes_left = copy_from_user_nmi(buf, (void __user *)from,
811 						MAX_INSN_SIZE);
812 		bytes_read = MAX_INSN_SIZE - bytes_left;
813 		if (!bytes_read)
814 			return X86_BR_NONE;
815 
816 		addr = buf;
817 	} else {
818 		/*
819 		 * The LBR logs any address in the IP, even if the IP just
820 		 * faulted. This means userspace can control the from address.
821 		 * Ensure we don't blindy read any address by validating it is
822 		 * a known text address.
823 		 */
824 		if (kernel_text_address(from)) {
825 			addr = (void *)from;
826 			/*
827 			 * Assume we can get the maximum possible size
828 			 * when grabbing kernel data.  This is not
829 			 * _strictly_ true since we could possibly be
830 			 * executing up next to a memory hole, but
831 			 * it is very unlikely to be a problem.
832 			 */
833 			bytes_read = MAX_INSN_SIZE;
834 		} else {
835 			return X86_BR_NONE;
836 		}
837 	}
838 
839 	/*
840 	 * decoder needs to know the ABI especially
841 	 * on 64-bit systems running 32-bit apps
842 	 */
843 #ifdef CONFIG_X86_64
844 	is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32);
845 #endif
846 	insn_init(&insn, addr, bytes_read, is64);
847 	insn_get_opcode(&insn);
848 	if (!insn.opcode.got)
849 		return X86_BR_ABORT;
850 
851 	switch (insn.opcode.bytes[0]) {
852 	case 0xf:
853 		switch (insn.opcode.bytes[1]) {
854 		case 0x05: /* syscall */
855 		case 0x34: /* sysenter */
856 			ret = X86_BR_SYSCALL;
857 			break;
858 		case 0x07: /* sysret */
859 		case 0x35: /* sysexit */
860 			ret = X86_BR_SYSRET;
861 			break;
862 		case 0x80 ... 0x8f: /* conditional */
863 			ret = X86_BR_JCC;
864 			break;
865 		default:
866 			ret = X86_BR_NONE;
867 		}
868 		break;
869 	case 0x70 ... 0x7f: /* conditional */
870 		ret = X86_BR_JCC;
871 		break;
872 	case 0xc2: /* near ret */
873 	case 0xc3: /* near ret */
874 	case 0xca: /* far ret */
875 	case 0xcb: /* far ret */
876 		ret = X86_BR_RET;
877 		break;
878 	case 0xcf: /* iret */
879 		ret = X86_BR_IRET;
880 		break;
881 	case 0xcc ... 0xce: /* int */
882 		ret = X86_BR_INT;
883 		break;
884 	case 0xe8: /* call near rel */
885 		insn_get_immediate(&insn);
886 		if (insn.immediate1.value == 0) {
887 			/* zero length call */
888 			ret = X86_BR_ZERO_CALL;
889 			break;
890 		}
891 	case 0x9a: /* call far absolute */
892 		ret = X86_BR_CALL;
893 		break;
894 	case 0xe0 ... 0xe3: /* loop jmp */
895 		ret = X86_BR_JCC;
896 		break;
897 	case 0xe9 ... 0xeb: /* jmp */
898 		ret = X86_BR_JMP;
899 		break;
900 	case 0xff: /* call near absolute, call far absolute ind */
901 		insn_get_modrm(&insn);
902 		ext = (insn.modrm.bytes[0] >> 3) & 0x7;
903 		switch (ext) {
904 		case 2: /* near ind call */
905 		case 3: /* far ind call */
906 			ret = X86_BR_IND_CALL;
907 			break;
908 		case 4:
909 		case 5:
910 			ret = X86_BR_IND_JMP;
911 			break;
912 		}
913 		break;
914 	default:
915 		ret = X86_BR_NONE;
916 	}
917 	/*
918 	 * interrupts, traps, faults (and thus ring transition) may
919 	 * occur on any instructions. Thus, to classify them correctly,
920 	 * we need to first look at the from and to priv levels. If they
921 	 * are different and to is in the kernel, then it indicates
922 	 * a ring transition. If the from instruction is not a ring
923 	 * transition instr (syscall, systenter, int), then it means
924 	 * it was a irq, trap or fault.
925 	 *
926 	 * we have no way of detecting kernel to kernel faults.
927 	 */
928 	if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL
929 	    && ret != X86_BR_SYSCALL && ret != X86_BR_INT)
930 		ret = X86_BR_IRQ;
931 
932 	/*
933 	 * branch priv level determined by target as
934 	 * is done by HW when LBR_SELECT is implemented
935 	 */
936 	if (ret != X86_BR_NONE)
937 		ret |= to_plm;
938 
939 	return ret;
940 }
941 
942 #define X86_BR_TYPE_MAP_MAX	16
943 
944 static int branch_map[X86_BR_TYPE_MAP_MAX] = {
945 	PERF_BR_CALL,		/* X86_BR_CALL */
946 	PERF_BR_RET,		/* X86_BR_RET */
947 	PERF_BR_SYSCALL,	/* X86_BR_SYSCALL */
948 	PERF_BR_SYSRET,		/* X86_BR_SYSRET */
949 	PERF_BR_UNKNOWN,	/* X86_BR_INT */
950 	PERF_BR_UNKNOWN,	/* X86_BR_IRET */
951 	PERF_BR_COND,		/* X86_BR_JCC */
952 	PERF_BR_UNCOND,		/* X86_BR_JMP */
953 	PERF_BR_UNKNOWN,	/* X86_BR_IRQ */
954 	PERF_BR_IND_CALL,	/* X86_BR_IND_CALL */
955 	PERF_BR_UNKNOWN,	/* X86_BR_ABORT */
956 	PERF_BR_UNKNOWN,	/* X86_BR_IN_TX */
957 	PERF_BR_UNKNOWN,	/* X86_BR_NO_TX */
958 	PERF_BR_CALL,		/* X86_BR_ZERO_CALL */
959 	PERF_BR_UNKNOWN,	/* X86_BR_CALL_STACK */
960 	PERF_BR_IND,		/* X86_BR_IND_JMP */
961 };
962 
963 static int
964 common_branch_type(int type)
965 {
966 	int i;
967 
968 	type >>= 2; /* skip X86_BR_USER and X86_BR_KERNEL */
969 
970 	if (type) {
971 		i = __ffs(type);
972 		if (i < X86_BR_TYPE_MAP_MAX)
973 			return branch_map[i];
974 	}
975 
976 	return PERF_BR_UNKNOWN;
977 }
978 
979 /*
980  * implement actual branch filter based on user demand.
981  * Hardware may not exactly satisfy that request, thus
982  * we need to inspect opcodes. Mismatched branches are
983  * discarded. Therefore, the number of branches returned
984  * in PERF_SAMPLE_BRANCH_STACK sample may vary.
985  */
986 static void
987 intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
988 {
989 	u64 from, to;
990 	int br_sel = cpuc->br_sel;
991 	int i, j, type;
992 	bool compress = false;
993 
994 	/* if sampling all branches, then nothing to filter */
995 	if (((br_sel & X86_BR_ALL) == X86_BR_ALL) &&
996 	    ((br_sel & X86_BR_TYPE_SAVE) != X86_BR_TYPE_SAVE))
997 		return;
998 
999 	for (i = 0; i < cpuc->lbr_stack.nr; i++) {
1000 
1001 		from = cpuc->lbr_entries[i].from;
1002 		to = cpuc->lbr_entries[i].to;
1003 
1004 		type = branch_type(from, to, cpuc->lbr_entries[i].abort);
1005 		if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
1006 			if (cpuc->lbr_entries[i].in_tx)
1007 				type |= X86_BR_IN_TX;
1008 			else
1009 				type |= X86_BR_NO_TX;
1010 		}
1011 
1012 		/* if type does not correspond, then discard */
1013 		if (type == X86_BR_NONE || (br_sel & type) != type) {
1014 			cpuc->lbr_entries[i].from = 0;
1015 			compress = true;
1016 		}
1017 
1018 		if ((br_sel & X86_BR_TYPE_SAVE) == X86_BR_TYPE_SAVE)
1019 			cpuc->lbr_entries[i].type = common_branch_type(type);
1020 	}
1021 
1022 	if (!compress)
1023 		return;
1024 
1025 	/* remove all entries with from=0 */
1026 	for (i = 0; i < cpuc->lbr_stack.nr; ) {
1027 		if (!cpuc->lbr_entries[i].from) {
1028 			j = i;
1029 			while (++j < cpuc->lbr_stack.nr)
1030 				cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
1031 			cpuc->lbr_stack.nr--;
1032 			if (!cpuc->lbr_entries[i].from)
1033 				continue;
1034 		}
1035 		i++;
1036 	}
1037 }
1038 
1039 /*
1040  * Map interface branch filters onto LBR filters
1041  */
1042 static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1043 	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
1044 	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
1045 	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
1046 	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
1047 	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_REL_JMP
1048 						| LBR_IND_JMP | LBR_FAR,
1049 	/*
1050 	 * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
1051 	 */
1052 	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
1053 	 LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
1054 	/*
1055 	 * NHM/WSM erratum: must include IND_JMP to capture IND_CALL
1056 	 */
1057 	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
1058 	[PERF_SAMPLE_BRANCH_COND_SHIFT]     = LBR_JCC,
1059 	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
1060 };
1061 
1062 static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1063 	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
1064 	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
1065 	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
1066 	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
1067 	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_FAR,
1068 	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
1069 						| LBR_FAR,
1070 	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]	= LBR_IND_CALL,
1071 	[PERF_SAMPLE_BRANCH_COND_SHIFT]		= LBR_JCC,
1072 	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]	= LBR_IND_JMP,
1073 	[PERF_SAMPLE_BRANCH_CALL_SHIFT]		= LBR_REL_CALL,
1074 };
1075 
1076 static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1077 	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
1078 	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
1079 	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
1080 	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
1081 	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_FAR,
1082 	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
1083 						| LBR_FAR,
1084 	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]	= LBR_IND_CALL,
1085 	[PERF_SAMPLE_BRANCH_COND_SHIFT]		= LBR_JCC,
1086 	[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
1087 						| LBR_RETURN | LBR_CALL_STACK,
1088 	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]	= LBR_IND_JMP,
1089 	[PERF_SAMPLE_BRANCH_CALL_SHIFT]		= LBR_REL_CALL,
1090 };
1091 
1092 /* core */
1093 void __init intel_pmu_lbr_init_core(void)
1094 {
1095 	x86_pmu.lbr_nr     = 4;
1096 	x86_pmu.lbr_tos    = MSR_LBR_TOS;
1097 	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
1098 	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1099 
1100 	/*
1101 	 * SW branch filter usage:
1102 	 * - compensate for lack of HW filter
1103 	 */
1104 }
1105 
1106 /* nehalem/westmere */
1107 void __init intel_pmu_lbr_init_nhm(void)
1108 {
1109 	x86_pmu.lbr_nr     = 16;
1110 	x86_pmu.lbr_tos    = MSR_LBR_TOS;
1111 	x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
1112 	x86_pmu.lbr_to     = MSR_LBR_NHM_TO;
1113 
1114 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1115 	x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;
1116 
1117 	/*
1118 	 * SW branch filter usage:
1119 	 * - workaround LBR_SEL errata (see above)
1120 	 * - support syscall, sysret capture.
1121 	 *   That requires LBR_FAR but that means far
1122 	 *   jmp need to be filtered out
1123 	 */
1124 }
1125 
1126 /* sandy bridge */
1127 void __init intel_pmu_lbr_init_snb(void)
1128 {
1129 	x86_pmu.lbr_nr	 = 16;
1130 	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
1131 	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1132 	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
1133 
1134 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1135 	x86_pmu.lbr_sel_map  = snb_lbr_sel_map;
1136 
1137 	/*
1138 	 * SW branch filter usage:
1139 	 * - support syscall, sysret capture.
1140 	 *   That requires LBR_FAR but that means far
1141 	 *   jmp need to be filtered out
1142 	 */
1143 }
1144 
1145 /* haswell */
1146 void intel_pmu_lbr_init_hsw(void)
1147 {
1148 	x86_pmu.lbr_nr	 = 16;
1149 	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
1150 	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1151 	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
1152 
1153 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1154 	x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;
1155 
1156 	if (lbr_from_signext_quirk_needed())
1157 		static_branch_enable(&lbr_from_quirk_key);
1158 }
1159 
1160 /* skylake */
1161 __init void intel_pmu_lbr_init_skl(void)
1162 {
1163 	x86_pmu.lbr_nr	 = 32;
1164 	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
1165 	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1166 	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
1167 
1168 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1169 	x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;
1170 
1171 	/*
1172 	 * SW branch filter usage:
1173 	 * - support syscall, sysret capture.
1174 	 *   That requires LBR_FAR but that means far
1175 	 *   jmp need to be filtered out
1176 	 */
1177 }
1178 
1179 /* atom */
1180 void __init intel_pmu_lbr_init_atom(void)
1181 {
1182 	/*
1183 	 * only models starting at stepping 10 seems
1184 	 * to have an operational LBR which can freeze
1185 	 * on PMU interrupt
1186 	 */
1187 	if (boot_cpu_data.x86_model == 28
1188 	    && boot_cpu_data.x86_mask < 10) {
1189 		pr_cont("LBR disabled due to erratum");
1190 		return;
1191 	}
1192 
1193 	x86_pmu.lbr_nr	   = 8;
1194 	x86_pmu.lbr_tos    = MSR_LBR_TOS;
1195 	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
1196 	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1197 
1198 	/*
1199 	 * SW branch filter usage:
1200 	 * - compensate for lack of HW filter
1201 	 */
1202 }
1203 
1204 /* slm */
1205 void __init intel_pmu_lbr_init_slm(void)
1206 {
1207 	x86_pmu.lbr_nr	   = 8;
1208 	x86_pmu.lbr_tos    = MSR_LBR_TOS;
1209 	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
1210 	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1211 
1212 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1213 	x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;
1214 
1215 	/*
1216 	 * SW branch filter usage:
1217 	 * - compensate for lack of HW filter
1218 	 */
1219 	pr_cont("8-deep LBR, ");
1220 }
1221 
1222 /* Knights Landing */
1223 void intel_pmu_lbr_init_knl(void)
1224 {
1225 	x86_pmu.lbr_nr	   = 8;
1226 	x86_pmu.lbr_tos    = MSR_LBR_TOS;
1227 	x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
1228 	x86_pmu.lbr_to     = MSR_LBR_NHM_TO;
1229 
1230 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1231 	x86_pmu.lbr_sel_map  = snb_lbr_sel_map;
1232 }
1233