1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/bitops.h> 3 #include <linux/types.h> 4 #include <linux/slab.h> 5 6 #include <asm/cpu_entry_area.h> 7 #include <asm/perf_event.h> 8 #include <asm/tlbflush.h> 9 #include <asm/insn.h> 10 #include <asm/io.h> 11 12 #include "../perf_event.h" 13 14 /* Waste a full page so it can be mapped into the cpu_entry_area */ 15 DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store); 16 17 /* The size of a BTS record in bytes: */ 18 #define BTS_RECORD_SIZE 24 19 20 #define PEBS_FIXUP_SIZE PAGE_SIZE 21 22 /* 23 * pebs_record_32 for p4 and core not supported 24 25 struct pebs_record_32 { 26 u32 flags, ip; 27 u32 ax, bc, cx, dx; 28 u32 si, di, bp, sp; 29 }; 30 31 */ 32 33 union intel_x86_pebs_dse { 34 u64 val; 35 struct { 36 unsigned int ld_dse:4; 37 unsigned int ld_stlb_miss:1; 38 unsigned int ld_locked:1; 39 unsigned int ld_data_blk:1; 40 unsigned int ld_addr_blk:1; 41 unsigned int ld_reserved:24; 42 }; 43 struct { 44 unsigned int st_l1d_hit:1; 45 unsigned int st_reserved1:3; 46 unsigned int st_stlb_miss:1; 47 unsigned int st_locked:1; 48 unsigned int st_reserved2:26; 49 }; 50 struct { 51 unsigned int st_lat_dse:4; 52 unsigned int st_lat_stlb_miss:1; 53 unsigned int st_lat_locked:1; 54 unsigned int ld_reserved3:26; 55 }; 56 }; 57 58 59 /* 60 * Map PEBS Load Latency Data Source encodings to generic 61 * memory data source information 62 */ 63 #define P(a, b) PERF_MEM_S(a, b) 64 #define OP_LH (P(OP, LOAD) | P(LVL, HIT)) 65 #define LEVEL(x) P(LVLNUM, x) 66 #define REM P(REMOTE, REMOTE) 67 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS)) 68 69 /* Version for Sandy Bridge and later */ 70 static u64 pebs_data_source[] = { 71 P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */ 72 OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x01: L1 local */ 73 OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */ 74 OP_LH | P(LVL, L2) | LEVEL(L2) | P(SNOOP, NONE), /* 0x03: L2 hit */ 75 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, NONE), /* 0x04: L3 hit */ 76 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, MISS), /* 0x05: L3 hit, snoop miss */ 77 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT), /* 0x06: L3 hit, snoop hit */ 78 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x07: L3 hit, snoop hitm */ 79 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x08: L3 miss snoop hit */ 80 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/ 81 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, HIT), /* 0x0a: L3 miss, shared */ 82 OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x0b: L3 miss, shared */ 83 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | SNOOP_NONE_MISS, /* 0x0c: L3 miss, excl */ 84 OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */ 85 OP_LH | P(LVL, IO) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */ 86 OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */ 87 }; 88 89 /* Patch up minor differences in the bits */ 90 void __init intel_pmu_pebs_data_source_nhm(void) 91 { 92 pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT); 93 pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); 94 pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); 95 } 96 97 static void __init __intel_pmu_pebs_data_source_skl(bool pmem, u64 *data_source) 98 { 99 u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4); 100 101 data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT); 102 data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT); 103 data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE); 104 data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD); 105 data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM); 106 } 107 108 void __init intel_pmu_pebs_data_source_skl(bool pmem) 109 { 110 __intel_pmu_pebs_data_source_skl(pmem, pebs_data_source); 111 } 112 113 static void __init __intel_pmu_pebs_data_source_grt(u64 *data_source) 114 { 115 data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT); 116 data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); 117 data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD); 118 } 119 120 void __init intel_pmu_pebs_data_source_grt(void) 121 { 122 __intel_pmu_pebs_data_source_grt(pebs_data_source); 123 } 124 125 void __init intel_pmu_pebs_data_source_adl(void) 126 { 127 u64 *data_source; 128 129 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source; 130 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source)); 131 __intel_pmu_pebs_data_source_skl(false, data_source); 132 133 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source; 134 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source)); 135 __intel_pmu_pebs_data_source_grt(data_source); 136 } 137 138 static u64 precise_store_data(u64 status) 139 { 140 union intel_x86_pebs_dse dse; 141 u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2); 142 143 dse.val = status; 144 145 /* 146 * bit 4: TLB access 147 * 1 = stored missed 2nd level TLB 148 * 149 * so it either hit the walker or the OS 150 * otherwise hit 2nd level TLB 151 */ 152 if (dse.st_stlb_miss) 153 val |= P(TLB, MISS); 154 else 155 val |= P(TLB, HIT); 156 157 /* 158 * bit 0: hit L1 data cache 159 * if not set, then all we know is that 160 * it missed L1D 161 */ 162 if (dse.st_l1d_hit) 163 val |= P(LVL, HIT); 164 else 165 val |= P(LVL, MISS); 166 167 /* 168 * bit 5: Locked prefix 169 */ 170 if (dse.st_locked) 171 val |= P(LOCK, LOCKED); 172 173 return val; 174 } 175 176 static u64 precise_datala_hsw(struct perf_event *event, u64 status) 177 { 178 union perf_mem_data_src dse; 179 180 dse.val = PERF_MEM_NA; 181 182 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) 183 dse.mem_op = PERF_MEM_OP_STORE; 184 else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW) 185 dse.mem_op = PERF_MEM_OP_LOAD; 186 187 /* 188 * L1 info only valid for following events: 189 * 190 * MEM_UOPS_RETIRED.STLB_MISS_STORES 191 * MEM_UOPS_RETIRED.LOCK_STORES 192 * MEM_UOPS_RETIRED.SPLIT_STORES 193 * MEM_UOPS_RETIRED.ALL_STORES 194 */ 195 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) { 196 if (status & 1) 197 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT; 198 else 199 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS; 200 } 201 return dse.val; 202 } 203 204 static inline void pebs_set_tlb_lock(u64 *val, bool tlb, bool lock) 205 { 206 /* 207 * TLB access 208 * 0 = did not miss 2nd level TLB 209 * 1 = missed 2nd level TLB 210 */ 211 if (tlb) 212 *val |= P(TLB, MISS) | P(TLB, L2); 213 else 214 *val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2); 215 216 /* locked prefix */ 217 if (lock) 218 *val |= P(LOCK, LOCKED); 219 } 220 221 /* Retrieve the latency data for e-core of ADL */ 222 u64 adl_latency_data_small(struct perf_event *event, u64 status) 223 { 224 union intel_x86_pebs_dse dse; 225 u64 val; 226 227 WARN_ON_ONCE(hybrid_pmu(event->pmu)->cpu_type == hybrid_big); 228 229 dse.val = status; 230 231 val = hybrid_var(event->pmu, pebs_data_source)[dse.ld_dse]; 232 233 /* 234 * For the atom core on ADL, 235 * bit 4: lock, bit 5: TLB access. 236 */ 237 pebs_set_tlb_lock(&val, dse.ld_locked, dse.ld_stlb_miss); 238 239 if (dse.ld_data_blk) 240 val |= P(BLK, DATA); 241 else 242 val |= P(BLK, NA); 243 244 return val; 245 } 246 247 static u64 load_latency_data(struct perf_event *event, u64 status) 248 { 249 union intel_x86_pebs_dse dse; 250 u64 val; 251 252 dse.val = status; 253 254 /* 255 * use the mapping table for bit 0-3 256 */ 257 val = hybrid_var(event->pmu, pebs_data_source)[dse.ld_dse]; 258 259 /* 260 * Nehalem models do not support TLB, Lock infos 261 */ 262 if (x86_pmu.pebs_no_tlb) { 263 val |= P(TLB, NA) | P(LOCK, NA); 264 return val; 265 } 266 267 pebs_set_tlb_lock(&val, dse.ld_stlb_miss, dse.ld_locked); 268 269 /* 270 * Ice Lake and earlier models do not support block infos. 271 */ 272 if (!x86_pmu.pebs_block) { 273 val |= P(BLK, NA); 274 return val; 275 } 276 /* 277 * bit 6: load was blocked since its data could not be forwarded 278 * from a preceding store 279 */ 280 if (dse.ld_data_blk) 281 val |= P(BLK, DATA); 282 283 /* 284 * bit 7: load was blocked due to potential address conflict with 285 * a preceding store 286 */ 287 if (dse.ld_addr_blk) 288 val |= P(BLK, ADDR); 289 290 if (!dse.ld_data_blk && !dse.ld_addr_blk) 291 val |= P(BLK, NA); 292 293 return val; 294 } 295 296 static u64 store_latency_data(struct perf_event *event, u64 status) 297 { 298 union intel_x86_pebs_dse dse; 299 union perf_mem_data_src src; 300 u64 val; 301 302 dse.val = status; 303 304 /* 305 * use the mapping table for bit 0-3 306 */ 307 val = hybrid_var(event->pmu, pebs_data_source)[dse.st_lat_dse]; 308 309 pebs_set_tlb_lock(&val, dse.st_lat_stlb_miss, dse.st_lat_locked); 310 311 val |= P(BLK, NA); 312 313 /* 314 * the pebs_data_source table is only for loads 315 * so override the mem_op to say STORE instead 316 */ 317 src.val = val; 318 src.mem_op = P(OP,STORE); 319 320 return src.val; 321 } 322 323 struct pebs_record_core { 324 u64 flags, ip; 325 u64 ax, bx, cx, dx; 326 u64 si, di, bp, sp; 327 u64 r8, r9, r10, r11; 328 u64 r12, r13, r14, r15; 329 }; 330 331 struct pebs_record_nhm { 332 u64 flags, ip; 333 u64 ax, bx, cx, dx; 334 u64 si, di, bp, sp; 335 u64 r8, r9, r10, r11; 336 u64 r12, r13, r14, r15; 337 u64 status, dla, dse, lat; 338 }; 339 340 /* 341 * Same as pebs_record_nhm, with two additional fields. 342 */ 343 struct pebs_record_hsw { 344 u64 flags, ip; 345 u64 ax, bx, cx, dx; 346 u64 si, di, bp, sp; 347 u64 r8, r9, r10, r11; 348 u64 r12, r13, r14, r15; 349 u64 status, dla, dse, lat; 350 u64 real_ip, tsx_tuning; 351 }; 352 353 union hsw_tsx_tuning { 354 struct { 355 u32 cycles_last_block : 32, 356 hle_abort : 1, 357 rtm_abort : 1, 358 instruction_abort : 1, 359 non_instruction_abort : 1, 360 retry : 1, 361 data_conflict : 1, 362 capacity_writes : 1, 363 capacity_reads : 1; 364 }; 365 u64 value; 366 }; 367 368 #define PEBS_HSW_TSX_FLAGS 0xff00000000ULL 369 370 /* Same as HSW, plus TSC */ 371 372 struct pebs_record_skl { 373 u64 flags, ip; 374 u64 ax, bx, cx, dx; 375 u64 si, di, bp, sp; 376 u64 r8, r9, r10, r11; 377 u64 r12, r13, r14, r15; 378 u64 status, dla, dse, lat; 379 u64 real_ip, tsx_tuning; 380 u64 tsc; 381 }; 382 383 void init_debug_store_on_cpu(int cpu) 384 { 385 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds; 386 387 if (!ds) 388 return; 389 390 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 391 (u32)((u64)(unsigned long)ds), 392 (u32)((u64)(unsigned long)ds >> 32)); 393 } 394 395 void fini_debug_store_on_cpu(int cpu) 396 { 397 if (!per_cpu(cpu_hw_events, cpu).ds) 398 return; 399 400 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0); 401 } 402 403 static DEFINE_PER_CPU(void *, insn_buffer); 404 405 static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot) 406 { 407 unsigned long start = (unsigned long)cea; 408 phys_addr_t pa; 409 size_t msz = 0; 410 411 pa = virt_to_phys(addr); 412 413 preempt_disable(); 414 for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE) 415 cea_set_pte(cea, pa, prot); 416 417 /* 418 * This is a cross-CPU update of the cpu_entry_area, we must shoot down 419 * all TLB entries for it. 420 */ 421 flush_tlb_kernel_range(start, start + size); 422 preempt_enable(); 423 } 424 425 static void ds_clear_cea(void *cea, size_t size) 426 { 427 unsigned long start = (unsigned long)cea; 428 size_t msz = 0; 429 430 preempt_disable(); 431 for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE) 432 cea_set_pte(cea, 0, PAGE_NONE); 433 434 flush_tlb_kernel_range(start, start + size); 435 preempt_enable(); 436 } 437 438 static void *dsalloc_pages(size_t size, gfp_t flags, int cpu) 439 { 440 unsigned int order = get_order(size); 441 int node = cpu_to_node(cpu); 442 struct page *page; 443 444 page = __alloc_pages_node(node, flags | __GFP_ZERO, order); 445 return page ? page_address(page) : NULL; 446 } 447 448 static void dsfree_pages(const void *buffer, size_t size) 449 { 450 if (buffer) 451 free_pages((unsigned long)buffer, get_order(size)); 452 } 453 454 static int alloc_pebs_buffer(int cpu) 455 { 456 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); 457 struct debug_store *ds = hwev->ds; 458 size_t bsiz = x86_pmu.pebs_buffer_size; 459 int max, node = cpu_to_node(cpu); 460 void *buffer, *insn_buff, *cea; 461 462 if (!x86_pmu.pebs) 463 return 0; 464 465 buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu); 466 if (unlikely(!buffer)) 467 return -ENOMEM; 468 469 /* 470 * HSW+ already provides us the eventing ip; no need to allocate this 471 * buffer then. 472 */ 473 if (x86_pmu.intel_cap.pebs_format < 2) { 474 insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node); 475 if (!insn_buff) { 476 dsfree_pages(buffer, bsiz); 477 return -ENOMEM; 478 } 479 per_cpu(insn_buffer, cpu) = insn_buff; 480 } 481 hwev->ds_pebs_vaddr = buffer; 482 /* Update the cpu entry area mapping */ 483 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer; 484 ds->pebs_buffer_base = (unsigned long) cea; 485 ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL); 486 ds->pebs_index = ds->pebs_buffer_base; 487 max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size); 488 ds->pebs_absolute_maximum = ds->pebs_buffer_base + max; 489 return 0; 490 } 491 492 static void release_pebs_buffer(int cpu) 493 { 494 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); 495 void *cea; 496 497 if (!x86_pmu.pebs) 498 return; 499 500 kfree(per_cpu(insn_buffer, cpu)); 501 per_cpu(insn_buffer, cpu) = NULL; 502 503 /* Clear the fixmap */ 504 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer; 505 ds_clear_cea(cea, x86_pmu.pebs_buffer_size); 506 dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size); 507 hwev->ds_pebs_vaddr = NULL; 508 } 509 510 static int alloc_bts_buffer(int cpu) 511 { 512 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); 513 struct debug_store *ds = hwev->ds; 514 void *buffer, *cea; 515 int max; 516 517 if (!x86_pmu.bts) 518 return 0; 519 520 buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu); 521 if (unlikely(!buffer)) { 522 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__); 523 return -ENOMEM; 524 } 525 hwev->ds_bts_vaddr = buffer; 526 /* Update the fixmap */ 527 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer; 528 ds->bts_buffer_base = (unsigned long) cea; 529 ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL); 530 ds->bts_index = ds->bts_buffer_base; 531 max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE; 532 ds->bts_absolute_maximum = ds->bts_buffer_base + 533 max * BTS_RECORD_SIZE; 534 ds->bts_interrupt_threshold = ds->bts_absolute_maximum - 535 (max / 16) * BTS_RECORD_SIZE; 536 return 0; 537 } 538 539 static void release_bts_buffer(int cpu) 540 { 541 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); 542 void *cea; 543 544 if (!x86_pmu.bts) 545 return; 546 547 /* Clear the fixmap */ 548 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer; 549 ds_clear_cea(cea, BTS_BUFFER_SIZE); 550 dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE); 551 hwev->ds_bts_vaddr = NULL; 552 } 553 554 static int alloc_ds_buffer(int cpu) 555 { 556 struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store; 557 558 memset(ds, 0, sizeof(*ds)); 559 per_cpu(cpu_hw_events, cpu).ds = ds; 560 return 0; 561 } 562 563 static void release_ds_buffer(int cpu) 564 { 565 per_cpu(cpu_hw_events, cpu).ds = NULL; 566 } 567 568 void release_ds_buffers(void) 569 { 570 int cpu; 571 572 if (!x86_pmu.bts && !x86_pmu.pebs) 573 return; 574 575 for_each_possible_cpu(cpu) 576 release_ds_buffer(cpu); 577 578 for_each_possible_cpu(cpu) { 579 /* 580 * Again, ignore errors from offline CPUs, they will no longer 581 * observe cpu_hw_events.ds and not program the DS_AREA when 582 * they come up. 583 */ 584 fini_debug_store_on_cpu(cpu); 585 } 586 587 for_each_possible_cpu(cpu) { 588 release_pebs_buffer(cpu); 589 release_bts_buffer(cpu); 590 } 591 } 592 593 void reserve_ds_buffers(void) 594 { 595 int bts_err = 0, pebs_err = 0; 596 int cpu; 597 598 x86_pmu.bts_active = 0; 599 x86_pmu.pebs_active = 0; 600 601 if (!x86_pmu.bts && !x86_pmu.pebs) 602 return; 603 604 if (!x86_pmu.bts) 605 bts_err = 1; 606 607 if (!x86_pmu.pebs) 608 pebs_err = 1; 609 610 for_each_possible_cpu(cpu) { 611 if (alloc_ds_buffer(cpu)) { 612 bts_err = 1; 613 pebs_err = 1; 614 } 615 616 if (!bts_err && alloc_bts_buffer(cpu)) 617 bts_err = 1; 618 619 if (!pebs_err && alloc_pebs_buffer(cpu)) 620 pebs_err = 1; 621 622 if (bts_err && pebs_err) 623 break; 624 } 625 626 if (bts_err) { 627 for_each_possible_cpu(cpu) 628 release_bts_buffer(cpu); 629 } 630 631 if (pebs_err) { 632 for_each_possible_cpu(cpu) 633 release_pebs_buffer(cpu); 634 } 635 636 if (bts_err && pebs_err) { 637 for_each_possible_cpu(cpu) 638 release_ds_buffer(cpu); 639 } else { 640 if (x86_pmu.bts && !bts_err) 641 x86_pmu.bts_active = 1; 642 643 if (x86_pmu.pebs && !pebs_err) 644 x86_pmu.pebs_active = 1; 645 646 for_each_possible_cpu(cpu) { 647 /* 648 * Ignores wrmsr_on_cpu() errors for offline CPUs they 649 * will get this call through intel_pmu_cpu_starting(). 650 */ 651 init_debug_store_on_cpu(cpu); 652 } 653 } 654 } 655 656 /* 657 * BTS 658 */ 659 660 struct event_constraint bts_constraint = 661 EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0); 662 663 void intel_pmu_enable_bts(u64 config) 664 { 665 unsigned long debugctlmsr; 666 667 debugctlmsr = get_debugctlmsr(); 668 669 debugctlmsr |= DEBUGCTLMSR_TR; 670 debugctlmsr |= DEBUGCTLMSR_BTS; 671 if (config & ARCH_PERFMON_EVENTSEL_INT) 672 debugctlmsr |= DEBUGCTLMSR_BTINT; 673 674 if (!(config & ARCH_PERFMON_EVENTSEL_OS)) 675 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS; 676 677 if (!(config & ARCH_PERFMON_EVENTSEL_USR)) 678 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR; 679 680 update_debugctlmsr(debugctlmsr); 681 } 682 683 void intel_pmu_disable_bts(void) 684 { 685 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 686 unsigned long debugctlmsr; 687 688 if (!cpuc->ds) 689 return; 690 691 debugctlmsr = get_debugctlmsr(); 692 693 debugctlmsr &= 694 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT | 695 DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR); 696 697 update_debugctlmsr(debugctlmsr); 698 } 699 700 int intel_pmu_drain_bts_buffer(void) 701 { 702 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 703 struct debug_store *ds = cpuc->ds; 704 struct bts_record { 705 u64 from; 706 u64 to; 707 u64 flags; 708 }; 709 struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS]; 710 struct bts_record *at, *base, *top; 711 struct perf_output_handle handle; 712 struct perf_event_header header; 713 struct perf_sample_data data; 714 unsigned long skip = 0; 715 struct pt_regs regs; 716 717 if (!event) 718 return 0; 719 720 if (!x86_pmu.bts_active) 721 return 0; 722 723 base = (struct bts_record *)(unsigned long)ds->bts_buffer_base; 724 top = (struct bts_record *)(unsigned long)ds->bts_index; 725 726 if (top <= base) 727 return 0; 728 729 memset(®s, 0, sizeof(regs)); 730 731 ds->bts_index = ds->bts_buffer_base; 732 733 perf_sample_data_init(&data, 0, event->hw.last_period); 734 735 /* 736 * BTS leaks kernel addresses in branches across the cpl boundary, 737 * such as traps or system calls, so unless the user is asking for 738 * kernel tracing (and right now it's not possible), we'd need to 739 * filter them out. But first we need to count how many of those we 740 * have in the current batch. This is an extra O(n) pass, however, 741 * it's much faster than the other one especially considering that 742 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the 743 * alloc_bts_buffer()). 744 */ 745 for (at = base; at < top; at++) { 746 /* 747 * Note that right now *this* BTS code only works if 748 * attr::exclude_kernel is set, but let's keep this extra 749 * check here in case that changes. 750 */ 751 if (event->attr.exclude_kernel && 752 (kernel_ip(at->from) || kernel_ip(at->to))) 753 skip++; 754 } 755 756 /* 757 * Prepare a generic sample, i.e. fill in the invariant fields. 758 * We will overwrite the from and to address before we output 759 * the sample. 760 */ 761 rcu_read_lock(); 762 perf_prepare_sample(&header, &data, event, ®s); 763 764 if (perf_output_begin(&handle, &data, event, 765 header.size * (top - base - skip))) 766 goto unlock; 767 768 for (at = base; at < top; at++) { 769 /* Filter out any records that contain kernel addresses. */ 770 if (event->attr.exclude_kernel && 771 (kernel_ip(at->from) || kernel_ip(at->to))) 772 continue; 773 774 data.ip = at->from; 775 data.addr = at->to; 776 777 perf_output_sample(&handle, &header, &data, event); 778 } 779 780 perf_output_end(&handle); 781 782 /* There's new data available. */ 783 event->hw.interrupts++; 784 event->pending_kill = POLL_IN; 785 unlock: 786 rcu_read_unlock(); 787 return 1; 788 } 789 790 static inline void intel_pmu_drain_pebs_buffer(void) 791 { 792 struct perf_sample_data data; 793 794 x86_pmu.drain_pebs(NULL, &data); 795 } 796 797 /* 798 * PEBS 799 */ 800 struct event_constraint intel_core2_pebs_event_constraints[] = { 801 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */ 802 INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */ 803 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */ 804 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */ 805 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */ 806 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 807 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01), 808 EVENT_CONSTRAINT_END 809 }; 810 811 struct event_constraint intel_atom_pebs_event_constraints[] = { 812 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */ 813 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */ 814 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */ 815 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 816 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01), 817 /* Allow all events as PEBS with no flags */ 818 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), 819 EVENT_CONSTRAINT_END 820 }; 821 822 struct event_constraint intel_slm_pebs_event_constraints[] = { 823 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 824 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1), 825 /* Allow all events as PEBS with no flags */ 826 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), 827 EVENT_CONSTRAINT_END 828 }; 829 830 struct event_constraint intel_glm_pebs_event_constraints[] = { 831 /* Allow all events as PEBS with no flags */ 832 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), 833 EVENT_CONSTRAINT_END 834 }; 835 836 struct event_constraint intel_grt_pebs_event_constraints[] = { 837 /* Allow all events as PEBS with no flags */ 838 INTEL_HYBRID_LAT_CONSTRAINT(0x5d0, 0x3), 839 INTEL_HYBRID_LAT_CONSTRAINT(0x6d0, 0xf), 840 EVENT_CONSTRAINT_END 841 }; 842 843 struct event_constraint intel_nehalem_pebs_event_constraints[] = { 844 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */ 845 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */ 846 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */ 847 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */ 848 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */ 849 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */ 850 INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */ 851 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */ 852 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */ 853 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */ 854 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */ 855 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 856 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f), 857 EVENT_CONSTRAINT_END 858 }; 859 860 struct event_constraint intel_westmere_pebs_event_constraints[] = { 861 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */ 862 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */ 863 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */ 864 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */ 865 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */ 866 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */ 867 INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */ 868 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */ 869 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */ 870 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */ 871 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */ 872 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 873 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f), 874 EVENT_CONSTRAINT_END 875 }; 876 877 struct event_constraint intel_snb_pebs_event_constraints[] = { 878 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ 879 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */ 880 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */ 881 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ 882 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), 883 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */ 884 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 885 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 886 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 887 /* Allow all events as PEBS with no flags */ 888 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 889 EVENT_CONSTRAINT_END 890 }; 891 892 struct event_constraint intel_ivb_pebs_event_constraints[] = { 893 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ 894 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */ 895 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */ 896 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ 897 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), 898 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ 899 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), 900 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */ 901 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 902 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 903 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 904 /* Allow all events as PEBS with no flags */ 905 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 906 EVENT_CONSTRAINT_END 907 }; 908 909 struct event_constraint intel_hsw_pebs_event_constraints[] = { 910 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ 911 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */ 912 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ 913 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), 914 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ 915 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), 916 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */ 917 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */ 918 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */ 919 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */ 920 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */ 921 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */ 922 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */ 923 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */ 924 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 925 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */ 926 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */ 927 /* Allow all events as PEBS with no flags */ 928 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 929 EVENT_CONSTRAINT_END 930 }; 931 932 struct event_constraint intel_bdw_pebs_event_constraints[] = { 933 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ 934 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */ 935 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ 936 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), 937 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ 938 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), 939 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */ 940 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */ 941 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */ 942 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */ 943 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */ 944 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */ 945 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */ 946 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */ 947 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 948 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */ 949 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */ 950 /* Allow all events as PEBS with no flags */ 951 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 952 EVENT_CONSTRAINT_END 953 }; 954 955 956 struct event_constraint intel_skl_pebs_event_constraints[] = { 957 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */ 958 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ 959 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), 960 /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */ 961 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f), 962 INTEL_PLD_CONSTRAINT(0x1cd, 0xf), /* MEM_TRANS_RETIRED.* */ 963 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */ 964 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */ 965 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */ 966 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */ 967 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */ 968 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */ 969 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */ 970 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */ 971 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */ 972 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */ 973 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_L3_MISS_RETIRED.* */ 974 /* Allow all events as PEBS with no flags */ 975 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 976 EVENT_CONSTRAINT_END 977 }; 978 979 struct event_constraint intel_icl_pebs_event_constraints[] = { 980 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x100000000ULL), /* old INST_RETIRED.PREC_DIST */ 981 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0100, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */ 982 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL), /* SLOTS */ 983 984 INTEL_PLD_CONSTRAINT(0x1cd, 0xff), /* MEM_TRANS_RETIRED.LOAD_LATENCY */ 985 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */ 986 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */ 987 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */ 988 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */ 989 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */ 990 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */ 991 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */ 992 993 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */ 994 995 INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */ 996 997 /* 998 * Everything else is handled by PMU_FL_PEBS_ALL, because we 999 * need the full constraints from the main table. 1000 */ 1001 1002 EVENT_CONSTRAINT_END 1003 }; 1004 1005 struct event_constraint intel_spr_pebs_event_constraints[] = { 1006 INTEL_FLAGS_UEVENT_CONSTRAINT(0x100, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */ 1007 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL), 1008 1009 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xfe), 1010 INTEL_PLD_CONSTRAINT(0x1cd, 0xfe), 1011 INTEL_PSD_CONSTRAINT(0x2cd, 0x1), 1012 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */ 1013 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */ 1014 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */ 1015 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */ 1016 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */ 1017 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */ 1018 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */ 1019 1020 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), 1021 1022 INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf), 1023 1024 /* 1025 * Everything else is handled by PMU_FL_PEBS_ALL, because we 1026 * need the full constraints from the main table. 1027 */ 1028 1029 EVENT_CONSTRAINT_END 1030 }; 1031 1032 struct event_constraint *intel_pebs_constraints(struct perf_event *event) 1033 { 1034 struct event_constraint *pebs_constraints = hybrid(event->pmu, pebs_constraints); 1035 struct event_constraint *c; 1036 1037 if (!event->attr.precise_ip) 1038 return NULL; 1039 1040 if (pebs_constraints) { 1041 for_each_event_constraint(c, pebs_constraints) { 1042 if (constraint_match(c, event->hw.config)) { 1043 event->hw.flags |= c->flags; 1044 return c; 1045 } 1046 } 1047 } 1048 1049 /* 1050 * Extended PEBS support 1051 * Makes the PEBS code search the normal constraints. 1052 */ 1053 if (x86_pmu.flags & PMU_FL_PEBS_ALL) 1054 return NULL; 1055 1056 return &emptyconstraint; 1057 } 1058 1059 /* 1060 * We need the sched_task callback even for per-cpu events when we use 1061 * the large interrupt threshold, such that we can provide PID and TID 1062 * to PEBS samples. 1063 */ 1064 static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc) 1065 { 1066 if (cpuc->n_pebs == cpuc->n_pebs_via_pt) 1067 return false; 1068 1069 return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs); 1070 } 1071 1072 void intel_pmu_pebs_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in) 1073 { 1074 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1075 1076 if (!sched_in && pebs_needs_sched_cb(cpuc)) 1077 intel_pmu_drain_pebs_buffer(); 1078 } 1079 1080 static inline void pebs_update_threshold(struct cpu_hw_events *cpuc) 1081 { 1082 struct debug_store *ds = cpuc->ds; 1083 int max_pebs_events = hybrid(cpuc->pmu, max_pebs_events); 1084 int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed); 1085 u64 threshold; 1086 int reserved; 1087 1088 if (cpuc->n_pebs_via_pt) 1089 return; 1090 1091 if (x86_pmu.flags & PMU_FL_PEBS_ALL) 1092 reserved = max_pebs_events + num_counters_fixed; 1093 else 1094 reserved = max_pebs_events; 1095 1096 if (cpuc->n_pebs == cpuc->n_large_pebs) { 1097 threshold = ds->pebs_absolute_maximum - 1098 reserved * cpuc->pebs_record_size; 1099 } else { 1100 threshold = ds->pebs_buffer_base + cpuc->pebs_record_size; 1101 } 1102 1103 ds->pebs_interrupt_threshold = threshold; 1104 } 1105 1106 static void adaptive_pebs_record_size_update(void) 1107 { 1108 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1109 u64 pebs_data_cfg = cpuc->pebs_data_cfg; 1110 int sz = sizeof(struct pebs_basic); 1111 1112 if (pebs_data_cfg & PEBS_DATACFG_MEMINFO) 1113 sz += sizeof(struct pebs_meminfo); 1114 if (pebs_data_cfg & PEBS_DATACFG_GP) 1115 sz += sizeof(struct pebs_gprs); 1116 if (pebs_data_cfg & PEBS_DATACFG_XMMS) 1117 sz += sizeof(struct pebs_xmm); 1118 if (pebs_data_cfg & PEBS_DATACFG_LBRS) 1119 sz += x86_pmu.lbr_nr * sizeof(struct lbr_entry); 1120 1121 cpuc->pebs_record_size = sz; 1122 } 1123 1124 #define PERF_PEBS_MEMINFO_TYPE (PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC | \ 1125 PERF_SAMPLE_PHYS_ADDR | \ 1126 PERF_SAMPLE_WEIGHT_TYPE | \ 1127 PERF_SAMPLE_TRANSACTION | \ 1128 PERF_SAMPLE_DATA_PAGE_SIZE) 1129 1130 static u64 pebs_update_adaptive_cfg(struct perf_event *event) 1131 { 1132 struct perf_event_attr *attr = &event->attr; 1133 u64 sample_type = attr->sample_type; 1134 u64 pebs_data_cfg = 0; 1135 bool gprs, tsx_weight; 1136 1137 if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) && 1138 attr->precise_ip > 1) 1139 return pebs_data_cfg; 1140 1141 if (sample_type & PERF_PEBS_MEMINFO_TYPE) 1142 pebs_data_cfg |= PEBS_DATACFG_MEMINFO; 1143 1144 /* 1145 * We need GPRs when: 1146 * + user requested them 1147 * + precise_ip < 2 for the non event IP 1148 * + For RTM TSX weight we need GPRs for the abort code. 1149 */ 1150 gprs = (sample_type & PERF_SAMPLE_REGS_INTR) && 1151 (attr->sample_regs_intr & PEBS_GP_REGS); 1152 1153 tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT_TYPE) && 1154 ((attr->config & INTEL_ARCH_EVENT_MASK) == 1155 x86_pmu.rtm_abort_event); 1156 1157 if (gprs || (attr->precise_ip < 2) || tsx_weight) 1158 pebs_data_cfg |= PEBS_DATACFG_GP; 1159 1160 if ((sample_type & PERF_SAMPLE_REGS_INTR) && 1161 (attr->sample_regs_intr & PERF_REG_EXTENDED_MASK)) 1162 pebs_data_cfg |= PEBS_DATACFG_XMMS; 1163 1164 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 1165 /* 1166 * For now always log all LBRs. Could configure this 1167 * later. 1168 */ 1169 pebs_data_cfg |= PEBS_DATACFG_LBRS | 1170 ((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT); 1171 } 1172 1173 return pebs_data_cfg; 1174 } 1175 1176 static void 1177 pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc, 1178 struct perf_event *event, bool add) 1179 { 1180 struct pmu *pmu = event->pmu; 1181 /* 1182 * Make sure we get updated with the first PEBS 1183 * event. It will trigger also during removal, but 1184 * that does not hurt: 1185 */ 1186 bool update = cpuc->n_pebs == 1; 1187 1188 if (needed_cb != pebs_needs_sched_cb(cpuc)) { 1189 if (!needed_cb) 1190 perf_sched_cb_inc(pmu); 1191 else 1192 perf_sched_cb_dec(pmu); 1193 1194 update = true; 1195 } 1196 1197 /* 1198 * The PEBS record doesn't shrink on pmu::del(). Doing so would require 1199 * iterating all remaining PEBS events to reconstruct the config. 1200 */ 1201 if (x86_pmu.intel_cap.pebs_baseline && add) { 1202 u64 pebs_data_cfg; 1203 1204 /* Clear pebs_data_cfg and pebs_record_size for first PEBS. */ 1205 if (cpuc->n_pebs == 1) { 1206 cpuc->pebs_data_cfg = 0; 1207 cpuc->pebs_record_size = sizeof(struct pebs_basic); 1208 } 1209 1210 pebs_data_cfg = pebs_update_adaptive_cfg(event); 1211 1212 /* Update pebs_record_size if new event requires more data. */ 1213 if (pebs_data_cfg & ~cpuc->pebs_data_cfg) { 1214 cpuc->pebs_data_cfg |= pebs_data_cfg; 1215 adaptive_pebs_record_size_update(); 1216 update = true; 1217 } 1218 } 1219 1220 if (update) 1221 pebs_update_threshold(cpuc); 1222 } 1223 1224 void intel_pmu_pebs_add(struct perf_event *event) 1225 { 1226 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1227 struct hw_perf_event *hwc = &event->hw; 1228 bool needed_cb = pebs_needs_sched_cb(cpuc); 1229 1230 cpuc->n_pebs++; 1231 if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS) 1232 cpuc->n_large_pebs++; 1233 if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT) 1234 cpuc->n_pebs_via_pt++; 1235 1236 pebs_update_state(needed_cb, cpuc, event, true); 1237 } 1238 1239 static void intel_pmu_pebs_via_pt_disable(struct perf_event *event) 1240 { 1241 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1242 1243 if (!is_pebs_pt(event)) 1244 return; 1245 1246 if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK)) 1247 cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK; 1248 } 1249 1250 static void intel_pmu_pebs_via_pt_enable(struct perf_event *event) 1251 { 1252 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1253 struct hw_perf_event *hwc = &event->hw; 1254 struct debug_store *ds = cpuc->ds; 1255 u64 value = ds->pebs_event_reset[hwc->idx]; 1256 u32 base = MSR_RELOAD_PMC0; 1257 unsigned int idx = hwc->idx; 1258 1259 if (!is_pebs_pt(event)) 1260 return; 1261 1262 if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS)) 1263 cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD; 1264 1265 cpuc->pebs_enabled |= PEBS_OUTPUT_PT; 1266 1267 if (hwc->idx >= INTEL_PMC_IDX_FIXED) { 1268 base = MSR_RELOAD_FIXED_CTR0; 1269 idx = hwc->idx - INTEL_PMC_IDX_FIXED; 1270 if (x86_pmu.intel_cap.pebs_format < 5) 1271 value = ds->pebs_event_reset[MAX_PEBS_EVENTS_FMT4 + idx]; 1272 else 1273 value = ds->pebs_event_reset[MAX_PEBS_EVENTS + idx]; 1274 } 1275 wrmsrl(base + idx, value); 1276 } 1277 1278 void intel_pmu_pebs_enable(struct perf_event *event) 1279 { 1280 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1281 struct hw_perf_event *hwc = &event->hw; 1282 struct debug_store *ds = cpuc->ds; 1283 unsigned int idx = hwc->idx; 1284 1285 hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT; 1286 1287 cpuc->pebs_enabled |= 1ULL << hwc->idx; 1288 1289 if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5)) 1290 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32); 1291 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST) 1292 cpuc->pebs_enabled |= 1ULL << 63; 1293 1294 if (x86_pmu.intel_cap.pebs_baseline) { 1295 hwc->config |= ICL_EVENTSEL_ADAPTIVE; 1296 if (cpuc->pebs_data_cfg != cpuc->active_pebs_data_cfg) { 1297 wrmsrl(MSR_PEBS_DATA_CFG, cpuc->pebs_data_cfg); 1298 cpuc->active_pebs_data_cfg = cpuc->pebs_data_cfg; 1299 } 1300 } 1301 1302 if (idx >= INTEL_PMC_IDX_FIXED) { 1303 if (x86_pmu.intel_cap.pebs_format < 5) 1304 idx = MAX_PEBS_EVENTS_FMT4 + (idx - INTEL_PMC_IDX_FIXED); 1305 else 1306 idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED); 1307 } 1308 1309 /* 1310 * Use auto-reload if possible to save a MSR write in the PMI. 1311 * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD. 1312 */ 1313 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) { 1314 ds->pebs_event_reset[idx] = 1315 (u64)(-hwc->sample_period) & x86_pmu.cntval_mask; 1316 } else { 1317 ds->pebs_event_reset[idx] = 0; 1318 } 1319 1320 intel_pmu_pebs_via_pt_enable(event); 1321 } 1322 1323 void intel_pmu_pebs_del(struct perf_event *event) 1324 { 1325 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1326 struct hw_perf_event *hwc = &event->hw; 1327 bool needed_cb = pebs_needs_sched_cb(cpuc); 1328 1329 cpuc->n_pebs--; 1330 if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS) 1331 cpuc->n_large_pebs--; 1332 if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT) 1333 cpuc->n_pebs_via_pt--; 1334 1335 pebs_update_state(needed_cb, cpuc, event, false); 1336 } 1337 1338 void intel_pmu_pebs_disable(struct perf_event *event) 1339 { 1340 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1341 struct hw_perf_event *hwc = &event->hw; 1342 1343 if (cpuc->n_pebs == cpuc->n_large_pebs && 1344 cpuc->n_pebs != cpuc->n_pebs_via_pt) 1345 intel_pmu_drain_pebs_buffer(); 1346 1347 cpuc->pebs_enabled &= ~(1ULL << hwc->idx); 1348 1349 if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && 1350 (x86_pmu.version < 5)) 1351 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32)); 1352 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST) 1353 cpuc->pebs_enabled &= ~(1ULL << 63); 1354 1355 intel_pmu_pebs_via_pt_disable(event); 1356 1357 if (cpuc->enabled) 1358 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled); 1359 1360 hwc->config |= ARCH_PERFMON_EVENTSEL_INT; 1361 } 1362 1363 void intel_pmu_pebs_enable_all(void) 1364 { 1365 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1366 1367 if (cpuc->pebs_enabled) 1368 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled); 1369 } 1370 1371 void intel_pmu_pebs_disable_all(void) 1372 { 1373 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1374 1375 if (cpuc->pebs_enabled) 1376 __intel_pmu_pebs_disable_all(); 1377 } 1378 1379 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs) 1380 { 1381 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1382 unsigned long from = cpuc->lbr_entries[0].from; 1383 unsigned long old_to, to = cpuc->lbr_entries[0].to; 1384 unsigned long ip = regs->ip; 1385 int is_64bit = 0; 1386 void *kaddr; 1387 int size; 1388 1389 /* 1390 * We don't need to fixup if the PEBS assist is fault like 1391 */ 1392 if (!x86_pmu.intel_cap.pebs_trap) 1393 return 1; 1394 1395 /* 1396 * No LBR entry, no basic block, no rewinding 1397 */ 1398 if (!cpuc->lbr_stack.nr || !from || !to) 1399 return 0; 1400 1401 /* 1402 * Basic blocks should never cross user/kernel boundaries 1403 */ 1404 if (kernel_ip(ip) != kernel_ip(to)) 1405 return 0; 1406 1407 /* 1408 * unsigned math, either ip is before the start (impossible) or 1409 * the basic block is larger than 1 page (sanity) 1410 */ 1411 if ((ip - to) > PEBS_FIXUP_SIZE) 1412 return 0; 1413 1414 /* 1415 * We sampled a branch insn, rewind using the LBR stack 1416 */ 1417 if (ip == to) { 1418 set_linear_ip(regs, from); 1419 return 1; 1420 } 1421 1422 size = ip - to; 1423 if (!kernel_ip(ip)) { 1424 int bytes; 1425 u8 *buf = this_cpu_read(insn_buffer); 1426 1427 /* 'size' must fit our buffer, see above */ 1428 bytes = copy_from_user_nmi(buf, (void __user *)to, size); 1429 if (bytes != 0) 1430 return 0; 1431 1432 kaddr = buf; 1433 } else { 1434 kaddr = (void *)to; 1435 } 1436 1437 do { 1438 struct insn insn; 1439 1440 old_to = to; 1441 1442 #ifdef CONFIG_X86_64 1443 is_64bit = kernel_ip(to) || any_64bit_mode(regs); 1444 #endif 1445 insn_init(&insn, kaddr, size, is_64bit); 1446 1447 /* 1448 * Make sure there was not a problem decoding the instruction. 1449 * This is doubly important because we have an infinite loop if 1450 * insn.length=0. 1451 */ 1452 if (insn_get_length(&insn)) 1453 break; 1454 1455 to += insn.length; 1456 kaddr += insn.length; 1457 size -= insn.length; 1458 } while (to < ip); 1459 1460 if (to == ip) { 1461 set_linear_ip(regs, old_to); 1462 return 1; 1463 } 1464 1465 /* 1466 * Even though we decoded the basic block, the instruction stream 1467 * never matched the given IP, either the TO or the IP got corrupted. 1468 */ 1469 return 0; 1470 } 1471 1472 static inline u64 intel_get_tsx_weight(u64 tsx_tuning) 1473 { 1474 if (tsx_tuning) { 1475 union hsw_tsx_tuning tsx = { .value = tsx_tuning }; 1476 return tsx.cycles_last_block; 1477 } 1478 return 0; 1479 } 1480 1481 static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax) 1482 { 1483 u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32; 1484 1485 /* For RTM XABORTs also log the abort code from AX */ 1486 if ((txn & PERF_TXN_TRANSACTION) && (ax & 1)) 1487 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT; 1488 return txn; 1489 } 1490 1491 static inline u64 get_pebs_status(void *n) 1492 { 1493 if (x86_pmu.intel_cap.pebs_format < 4) 1494 return ((struct pebs_record_nhm *)n)->status; 1495 return ((struct pebs_basic *)n)->applicable_counters; 1496 } 1497 1498 #define PERF_X86_EVENT_PEBS_HSW_PREC \ 1499 (PERF_X86_EVENT_PEBS_ST_HSW | \ 1500 PERF_X86_EVENT_PEBS_LD_HSW | \ 1501 PERF_X86_EVENT_PEBS_NA_HSW) 1502 1503 static u64 get_data_src(struct perf_event *event, u64 aux) 1504 { 1505 u64 val = PERF_MEM_NA; 1506 int fl = event->hw.flags; 1507 bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC); 1508 1509 if (fl & PERF_X86_EVENT_PEBS_LDLAT) 1510 val = load_latency_data(event, aux); 1511 else if (fl & PERF_X86_EVENT_PEBS_STLAT) 1512 val = store_latency_data(event, aux); 1513 else if (fl & PERF_X86_EVENT_PEBS_LAT_HYBRID) 1514 val = x86_pmu.pebs_latency_data(event, aux); 1515 else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC)) 1516 val = precise_datala_hsw(event, aux); 1517 else if (fst) 1518 val = precise_store_data(aux); 1519 return val; 1520 } 1521 1522 #define PERF_SAMPLE_ADDR_TYPE (PERF_SAMPLE_ADDR | \ 1523 PERF_SAMPLE_PHYS_ADDR | \ 1524 PERF_SAMPLE_DATA_PAGE_SIZE) 1525 1526 static void setup_pebs_fixed_sample_data(struct perf_event *event, 1527 struct pt_regs *iregs, void *__pebs, 1528 struct perf_sample_data *data, 1529 struct pt_regs *regs) 1530 { 1531 /* 1532 * We cast to the biggest pebs_record but are careful not to 1533 * unconditionally access the 'extra' entries. 1534 */ 1535 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1536 struct pebs_record_skl *pebs = __pebs; 1537 u64 sample_type; 1538 int fll; 1539 1540 if (pebs == NULL) 1541 return; 1542 1543 sample_type = event->attr.sample_type; 1544 fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT; 1545 1546 perf_sample_data_init(data, 0, event->hw.last_period); 1547 1548 data->period = event->hw.last_period; 1549 1550 /* 1551 * Use latency for weight (only avail with PEBS-LL) 1552 */ 1553 if (fll && (sample_type & PERF_SAMPLE_WEIGHT_TYPE)) { 1554 data->weight.full = pebs->lat; 1555 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 1556 } 1557 1558 /* 1559 * data.data_src encodes the data source 1560 */ 1561 if (sample_type & PERF_SAMPLE_DATA_SRC) { 1562 data->data_src.val = get_data_src(event, pebs->dse); 1563 data->sample_flags |= PERF_SAMPLE_DATA_SRC; 1564 } 1565 1566 /* 1567 * We must however always use iregs for the unwinder to stay sane; the 1568 * record BP,SP,IP can point into thin air when the record is from a 1569 * previous PMI context or an (I)RET happened between the record and 1570 * PMI. 1571 */ 1572 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 1573 data->callchain = perf_callchain(event, iregs); 1574 data->sample_flags |= PERF_SAMPLE_CALLCHAIN; 1575 } 1576 1577 /* 1578 * We use the interrupt regs as a base because the PEBS record does not 1579 * contain a full regs set, specifically it seems to lack segment 1580 * descriptors, which get used by things like user_mode(). 1581 * 1582 * In the simple case fix up only the IP for PERF_SAMPLE_IP. 1583 */ 1584 *regs = *iregs; 1585 1586 /* 1587 * Initialize regs_>flags from PEBS, 1588 * Clear exact bit (which uses x86 EFLAGS Reserved bit 3), 1589 * i.e., do not rely on it being zero: 1590 */ 1591 regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT; 1592 1593 if (sample_type & PERF_SAMPLE_REGS_INTR) { 1594 regs->ax = pebs->ax; 1595 regs->bx = pebs->bx; 1596 regs->cx = pebs->cx; 1597 regs->dx = pebs->dx; 1598 regs->si = pebs->si; 1599 regs->di = pebs->di; 1600 1601 regs->bp = pebs->bp; 1602 regs->sp = pebs->sp; 1603 1604 #ifndef CONFIG_X86_32 1605 regs->r8 = pebs->r8; 1606 regs->r9 = pebs->r9; 1607 regs->r10 = pebs->r10; 1608 regs->r11 = pebs->r11; 1609 regs->r12 = pebs->r12; 1610 regs->r13 = pebs->r13; 1611 regs->r14 = pebs->r14; 1612 regs->r15 = pebs->r15; 1613 #endif 1614 } 1615 1616 if (event->attr.precise_ip > 1) { 1617 /* 1618 * Haswell and later processors have an 'eventing IP' 1619 * (real IP) which fixes the off-by-1 skid in hardware. 1620 * Use it when precise_ip >= 2 : 1621 */ 1622 if (x86_pmu.intel_cap.pebs_format >= 2) { 1623 set_linear_ip(regs, pebs->real_ip); 1624 regs->flags |= PERF_EFLAGS_EXACT; 1625 } else { 1626 /* Otherwise, use PEBS off-by-1 IP: */ 1627 set_linear_ip(regs, pebs->ip); 1628 1629 /* 1630 * With precise_ip >= 2, try to fix up the off-by-1 IP 1631 * using the LBR. If successful, the fixup function 1632 * corrects regs->ip and calls set_linear_ip() on regs: 1633 */ 1634 if (intel_pmu_pebs_fixup_ip(regs)) 1635 regs->flags |= PERF_EFLAGS_EXACT; 1636 } 1637 } else { 1638 /* 1639 * When precise_ip == 1, return the PEBS off-by-1 IP, 1640 * no fixup attempted: 1641 */ 1642 set_linear_ip(regs, pebs->ip); 1643 } 1644 1645 1646 if ((sample_type & PERF_SAMPLE_ADDR_TYPE) && 1647 x86_pmu.intel_cap.pebs_format >= 1) { 1648 data->addr = pebs->dla; 1649 data->sample_flags |= PERF_SAMPLE_ADDR; 1650 } 1651 1652 if (x86_pmu.intel_cap.pebs_format >= 2) { 1653 /* Only set the TSX weight when no memory weight. */ 1654 if ((sample_type & PERF_SAMPLE_WEIGHT_TYPE) && !fll) { 1655 data->weight.full = intel_get_tsx_weight(pebs->tsx_tuning); 1656 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 1657 } 1658 if (sample_type & PERF_SAMPLE_TRANSACTION) { 1659 data->txn = intel_get_tsx_transaction(pebs->tsx_tuning, 1660 pebs->ax); 1661 data->sample_flags |= PERF_SAMPLE_TRANSACTION; 1662 } 1663 } 1664 1665 /* 1666 * v3 supplies an accurate time stamp, so we use that 1667 * for the time stamp. 1668 * 1669 * We can only do this for the default trace clock. 1670 */ 1671 if (x86_pmu.intel_cap.pebs_format >= 3 && 1672 event->attr.use_clockid == 0) { 1673 data->time = native_sched_clock_from_tsc(pebs->tsc); 1674 data->sample_flags |= PERF_SAMPLE_TIME; 1675 } 1676 1677 if (has_branch_stack(event)) { 1678 data->br_stack = &cpuc->lbr_stack; 1679 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; 1680 } 1681 } 1682 1683 static void adaptive_pebs_save_regs(struct pt_regs *regs, 1684 struct pebs_gprs *gprs) 1685 { 1686 regs->ax = gprs->ax; 1687 regs->bx = gprs->bx; 1688 regs->cx = gprs->cx; 1689 regs->dx = gprs->dx; 1690 regs->si = gprs->si; 1691 regs->di = gprs->di; 1692 regs->bp = gprs->bp; 1693 regs->sp = gprs->sp; 1694 #ifndef CONFIG_X86_32 1695 regs->r8 = gprs->r8; 1696 regs->r9 = gprs->r9; 1697 regs->r10 = gprs->r10; 1698 regs->r11 = gprs->r11; 1699 regs->r12 = gprs->r12; 1700 regs->r13 = gprs->r13; 1701 regs->r14 = gprs->r14; 1702 regs->r15 = gprs->r15; 1703 #endif 1704 } 1705 1706 #define PEBS_LATENCY_MASK 0xffff 1707 #define PEBS_CACHE_LATENCY_OFFSET 32 1708 1709 /* 1710 * With adaptive PEBS the layout depends on what fields are configured. 1711 */ 1712 1713 static void setup_pebs_adaptive_sample_data(struct perf_event *event, 1714 struct pt_regs *iregs, void *__pebs, 1715 struct perf_sample_data *data, 1716 struct pt_regs *regs) 1717 { 1718 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1719 struct pebs_basic *basic = __pebs; 1720 void *next_record = basic + 1; 1721 u64 sample_type; 1722 u64 format_size; 1723 struct pebs_meminfo *meminfo = NULL; 1724 struct pebs_gprs *gprs = NULL; 1725 struct x86_perf_regs *perf_regs; 1726 1727 if (basic == NULL) 1728 return; 1729 1730 perf_regs = container_of(regs, struct x86_perf_regs, regs); 1731 perf_regs->xmm_regs = NULL; 1732 1733 sample_type = event->attr.sample_type; 1734 format_size = basic->format_size; 1735 perf_sample_data_init(data, 0, event->hw.last_period); 1736 data->period = event->hw.last_period; 1737 1738 if (event->attr.use_clockid == 0) { 1739 data->time = native_sched_clock_from_tsc(basic->tsc); 1740 data->sample_flags |= PERF_SAMPLE_TIME; 1741 } 1742 1743 /* 1744 * We must however always use iregs for the unwinder to stay sane; the 1745 * record BP,SP,IP can point into thin air when the record is from a 1746 * previous PMI context or an (I)RET happened between the record and 1747 * PMI. 1748 */ 1749 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 1750 data->callchain = perf_callchain(event, iregs); 1751 data->sample_flags |= PERF_SAMPLE_CALLCHAIN; 1752 } 1753 1754 *regs = *iregs; 1755 /* The ip in basic is EventingIP */ 1756 set_linear_ip(regs, basic->ip); 1757 regs->flags = PERF_EFLAGS_EXACT; 1758 1759 /* 1760 * The record for MEMINFO is in front of GP 1761 * But PERF_SAMPLE_TRANSACTION needs gprs->ax. 1762 * Save the pointer here but process later. 1763 */ 1764 if (format_size & PEBS_DATACFG_MEMINFO) { 1765 meminfo = next_record; 1766 next_record = meminfo + 1; 1767 } 1768 1769 if (format_size & PEBS_DATACFG_GP) { 1770 gprs = next_record; 1771 next_record = gprs + 1; 1772 1773 if (event->attr.precise_ip < 2) { 1774 set_linear_ip(regs, gprs->ip); 1775 regs->flags &= ~PERF_EFLAGS_EXACT; 1776 } 1777 1778 if (sample_type & PERF_SAMPLE_REGS_INTR) 1779 adaptive_pebs_save_regs(regs, gprs); 1780 } 1781 1782 if (format_size & PEBS_DATACFG_MEMINFO) { 1783 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) { 1784 u64 weight = meminfo->latency; 1785 1786 if (x86_pmu.flags & PMU_FL_INSTR_LATENCY) { 1787 data->weight.var2_w = weight & PEBS_LATENCY_MASK; 1788 weight >>= PEBS_CACHE_LATENCY_OFFSET; 1789 } 1790 1791 /* 1792 * Although meminfo::latency is defined as a u64, 1793 * only the lower 32 bits include the valid data 1794 * in practice on Ice Lake and earlier platforms. 1795 */ 1796 if (sample_type & PERF_SAMPLE_WEIGHT) { 1797 data->weight.full = weight ?: 1798 intel_get_tsx_weight(meminfo->tsx_tuning); 1799 } else { 1800 data->weight.var1_dw = (u32)(weight & PEBS_LATENCY_MASK) ?: 1801 intel_get_tsx_weight(meminfo->tsx_tuning); 1802 } 1803 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 1804 } 1805 1806 if (sample_type & PERF_SAMPLE_DATA_SRC) { 1807 data->data_src.val = get_data_src(event, meminfo->aux); 1808 data->sample_flags |= PERF_SAMPLE_DATA_SRC; 1809 } 1810 1811 if (sample_type & PERF_SAMPLE_ADDR_TYPE) { 1812 data->addr = meminfo->address; 1813 data->sample_flags |= PERF_SAMPLE_ADDR; 1814 } 1815 1816 if (sample_type & PERF_SAMPLE_TRANSACTION) { 1817 data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning, 1818 gprs ? gprs->ax : 0); 1819 data->sample_flags |= PERF_SAMPLE_TRANSACTION; 1820 } 1821 } 1822 1823 if (format_size & PEBS_DATACFG_XMMS) { 1824 struct pebs_xmm *xmm = next_record; 1825 1826 next_record = xmm + 1; 1827 perf_regs->xmm_regs = xmm->xmm; 1828 } 1829 1830 if (format_size & PEBS_DATACFG_LBRS) { 1831 struct lbr_entry *lbr = next_record; 1832 int num_lbr = ((format_size >> PEBS_DATACFG_LBR_SHIFT) 1833 & 0xff) + 1; 1834 next_record = next_record + num_lbr * sizeof(struct lbr_entry); 1835 1836 if (has_branch_stack(event)) { 1837 intel_pmu_store_pebs_lbrs(lbr); 1838 data->br_stack = &cpuc->lbr_stack; 1839 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; 1840 } 1841 } 1842 1843 WARN_ONCE(next_record != __pebs + (format_size >> 48), 1844 "PEBS record size %llu, expected %llu, config %llx\n", 1845 format_size >> 48, 1846 (u64)(next_record - __pebs), 1847 basic->format_size); 1848 } 1849 1850 static inline void * 1851 get_next_pebs_record_by_bit(void *base, void *top, int bit) 1852 { 1853 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1854 void *at; 1855 u64 pebs_status; 1856 1857 /* 1858 * fmt0 does not have a status bitfield (does not use 1859 * perf_record_nhm format) 1860 */ 1861 if (x86_pmu.intel_cap.pebs_format < 1) 1862 return base; 1863 1864 if (base == NULL) 1865 return NULL; 1866 1867 for (at = base; at < top; at += cpuc->pebs_record_size) { 1868 unsigned long status = get_pebs_status(at); 1869 1870 if (test_bit(bit, (unsigned long *)&status)) { 1871 /* PEBS v3 has accurate status bits */ 1872 if (x86_pmu.intel_cap.pebs_format >= 3) 1873 return at; 1874 1875 if (status == (1 << bit)) 1876 return at; 1877 1878 /* clear non-PEBS bit and re-check */ 1879 pebs_status = status & cpuc->pebs_enabled; 1880 pebs_status &= PEBS_COUNTER_MASK; 1881 if (pebs_status == (1 << bit)) 1882 return at; 1883 } 1884 } 1885 return NULL; 1886 } 1887 1888 void intel_pmu_auto_reload_read(struct perf_event *event) 1889 { 1890 WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)); 1891 1892 perf_pmu_disable(event->pmu); 1893 intel_pmu_drain_pebs_buffer(); 1894 perf_pmu_enable(event->pmu); 1895 } 1896 1897 /* 1898 * Special variant of intel_pmu_save_and_restart() for auto-reload. 1899 */ 1900 static int 1901 intel_pmu_save_and_restart_reload(struct perf_event *event, int count) 1902 { 1903 struct hw_perf_event *hwc = &event->hw; 1904 int shift = 64 - x86_pmu.cntval_bits; 1905 u64 period = hwc->sample_period; 1906 u64 prev_raw_count, new_raw_count; 1907 s64 new, old; 1908 1909 WARN_ON(!period); 1910 1911 /* 1912 * drain_pebs() only happens when the PMU is disabled. 1913 */ 1914 WARN_ON(this_cpu_read(cpu_hw_events.enabled)); 1915 1916 prev_raw_count = local64_read(&hwc->prev_count); 1917 rdpmcl(hwc->event_base_rdpmc, new_raw_count); 1918 local64_set(&hwc->prev_count, new_raw_count); 1919 1920 /* 1921 * Since the counter increments a negative counter value and 1922 * overflows on the sign switch, giving the interval: 1923 * 1924 * [-period, 0] 1925 * 1926 * the difference between two consecutive reads is: 1927 * 1928 * A) value2 - value1; 1929 * when no overflows have happened in between, 1930 * 1931 * B) (0 - value1) + (value2 - (-period)); 1932 * when one overflow happened in between, 1933 * 1934 * C) (0 - value1) + (n - 1) * (period) + (value2 - (-period)); 1935 * when @n overflows happened in between. 1936 * 1937 * Here A) is the obvious difference, B) is the extension to the 1938 * discrete interval, where the first term is to the top of the 1939 * interval and the second term is from the bottom of the next 1940 * interval and C) the extension to multiple intervals, where the 1941 * middle term is the whole intervals covered. 1942 * 1943 * An equivalent of C, by reduction, is: 1944 * 1945 * value2 - value1 + n * period 1946 */ 1947 new = ((s64)(new_raw_count << shift) >> shift); 1948 old = ((s64)(prev_raw_count << shift) >> shift); 1949 local64_add(new - old + count * period, &event->count); 1950 1951 local64_set(&hwc->period_left, -new); 1952 1953 perf_event_update_userpage(event); 1954 1955 return 0; 1956 } 1957 1958 static __always_inline void 1959 __intel_pmu_pebs_event(struct perf_event *event, 1960 struct pt_regs *iregs, 1961 struct perf_sample_data *data, 1962 void *base, void *top, 1963 int bit, int count, 1964 void (*setup_sample)(struct perf_event *, 1965 struct pt_regs *, 1966 void *, 1967 struct perf_sample_data *, 1968 struct pt_regs *)) 1969 { 1970 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1971 struct hw_perf_event *hwc = &event->hw; 1972 struct x86_perf_regs perf_regs; 1973 struct pt_regs *regs = &perf_regs.regs; 1974 void *at = get_next_pebs_record_by_bit(base, top, bit); 1975 static struct pt_regs dummy_iregs; 1976 1977 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) { 1978 /* 1979 * Now, auto-reload is only enabled in fixed period mode. 1980 * The reload value is always hwc->sample_period. 1981 * May need to change it, if auto-reload is enabled in 1982 * freq mode later. 1983 */ 1984 intel_pmu_save_and_restart_reload(event, count); 1985 } else if (!intel_pmu_save_and_restart(event)) 1986 return; 1987 1988 if (!iregs) 1989 iregs = &dummy_iregs; 1990 1991 while (count > 1) { 1992 setup_sample(event, iregs, at, data, regs); 1993 perf_event_output(event, data, regs); 1994 at += cpuc->pebs_record_size; 1995 at = get_next_pebs_record_by_bit(at, top, bit); 1996 count--; 1997 } 1998 1999 setup_sample(event, iregs, at, data, regs); 2000 if (iregs == &dummy_iregs) { 2001 /* 2002 * The PEBS records may be drained in the non-overflow context, 2003 * e.g., large PEBS + context switch. Perf should treat the 2004 * last record the same as other PEBS records, and doesn't 2005 * invoke the generic overflow handler. 2006 */ 2007 perf_event_output(event, data, regs); 2008 } else { 2009 /* 2010 * All but the last records are processed. 2011 * The last one is left to be able to call the overflow handler. 2012 */ 2013 if (perf_event_overflow(event, data, regs)) 2014 x86_pmu_stop(event, 0); 2015 } 2016 } 2017 2018 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs, struct perf_sample_data *data) 2019 { 2020 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2021 struct debug_store *ds = cpuc->ds; 2022 struct perf_event *event = cpuc->events[0]; /* PMC0 only */ 2023 struct pebs_record_core *at, *top; 2024 int n; 2025 2026 if (!x86_pmu.pebs_active) 2027 return; 2028 2029 at = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base; 2030 top = (struct pebs_record_core *)(unsigned long)ds->pebs_index; 2031 2032 /* 2033 * Whatever else happens, drain the thing 2034 */ 2035 ds->pebs_index = ds->pebs_buffer_base; 2036 2037 if (!test_bit(0, cpuc->active_mask)) 2038 return; 2039 2040 WARN_ON_ONCE(!event); 2041 2042 if (!event->attr.precise_ip) 2043 return; 2044 2045 n = top - at; 2046 if (n <= 0) { 2047 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD) 2048 intel_pmu_save_and_restart_reload(event, 0); 2049 return; 2050 } 2051 2052 __intel_pmu_pebs_event(event, iregs, data, at, top, 0, n, 2053 setup_pebs_fixed_sample_data); 2054 } 2055 2056 static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, int size) 2057 { 2058 struct perf_event *event; 2059 int bit; 2060 2061 /* 2062 * The drain_pebs() could be called twice in a short period 2063 * for auto-reload event in pmu::read(). There are no 2064 * overflows have happened in between. 2065 * It needs to call intel_pmu_save_and_restart_reload() to 2066 * update the event->count for this case. 2067 */ 2068 for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled, size) { 2069 event = cpuc->events[bit]; 2070 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD) 2071 intel_pmu_save_and_restart_reload(event, 0); 2072 } 2073 } 2074 2075 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs, struct perf_sample_data *data) 2076 { 2077 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2078 struct debug_store *ds = cpuc->ds; 2079 struct perf_event *event; 2080 void *base, *at, *top; 2081 short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {}; 2082 short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {}; 2083 int bit, i, size; 2084 u64 mask; 2085 2086 if (!x86_pmu.pebs_active) 2087 return; 2088 2089 base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base; 2090 top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index; 2091 2092 ds->pebs_index = ds->pebs_buffer_base; 2093 2094 mask = (1ULL << x86_pmu.max_pebs_events) - 1; 2095 size = x86_pmu.max_pebs_events; 2096 if (x86_pmu.flags & PMU_FL_PEBS_ALL) { 2097 mask |= ((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED; 2098 size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed; 2099 } 2100 2101 if (unlikely(base >= top)) { 2102 intel_pmu_pebs_event_update_no_drain(cpuc, size); 2103 return; 2104 } 2105 2106 for (at = base; at < top; at += x86_pmu.pebs_record_size) { 2107 struct pebs_record_nhm *p = at; 2108 u64 pebs_status; 2109 2110 pebs_status = p->status & cpuc->pebs_enabled; 2111 pebs_status &= mask; 2112 2113 /* PEBS v3 has more accurate status bits */ 2114 if (x86_pmu.intel_cap.pebs_format >= 3) { 2115 for_each_set_bit(bit, (unsigned long *)&pebs_status, size) 2116 counts[bit]++; 2117 2118 continue; 2119 } 2120 2121 /* 2122 * On some CPUs the PEBS status can be zero when PEBS is 2123 * racing with clearing of GLOBAL_STATUS. 2124 * 2125 * Normally we would drop that record, but in the 2126 * case when there is only a single active PEBS event 2127 * we can assume it's for that event. 2128 */ 2129 if (!pebs_status && cpuc->pebs_enabled && 2130 !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1))) 2131 pebs_status = p->status = cpuc->pebs_enabled; 2132 2133 bit = find_first_bit((unsigned long *)&pebs_status, 2134 x86_pmu.max_pebs_events); 2135 if (bit >= x86_pmu.max_pebs_events) 2136 continue; 2137 2138 /* 2139 * The PEBS hardware does not deal well with the situation 2140 * when events happen near to each other and multiple bits 2141 * are set. But it should happen rarely. 2142 * 2143 * If these events include one PEBS and multiple non-PEBS 2144 * events, it doesn't impact PEBS record. The record will 2145 * be handled normally. (slow path) 2146 * 2147 * If these events include two or more PEBS events, the 2148 * records for the events can be collapsed into a single 2149 * one, and it's not possible to reconstruct all events 2150 * that caused the PEBS record. It's called collision. 2151 * If collision happened, the record will be dropped. 2152 */ 2153 if (pebs_status != (1ULL << bit)) { 2154 for_each_set_bit(i, (unsigned long *)&pebs_status, size) 2155 error[i]++; 2156 continue; 2157 } 2158 2159 counts[bit]++; 2160 } 2161 2162 for_each_set_bit(bit, (unsigned long *)&mask, size) { 2163 if ((counts[bit] == 0) && (error[bit] == 0)) 2164 continue; 2165 2166 event = cpuc->events[bit]; 2167 if (WARN_ON_ONCE(!event)) 2168 continue; 2169 2170 if (WARN_ON_ONCE(!event->attr.precise_ip)) 2171 continue; 2172 2173 /* log dropped samples number */ 2174 if (error[bit]) { 2175 perf_log_lost_samples(event, error[bit]); 2176 2177 if (iregs && perf_event_account_interrupt(event)) 2178 x86_pmu_stop(event, 0); 2179 } 2180 2181 if (counts[bit]) { 2182 __intel_pmu_pebs_event(event, iregs, data, base, 2183 top, bit, counts[bit], 2184 setup_pebs_fixed_sample_data); 2185 } 2186 } 2187 } 2188 2189 static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs, struct perf_sample_data *data) 2190 { 2191 short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {}; 2192 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2193 int max_pebs_events = hybrid(cpuc->pmu, max_pebs_events); 2194 int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed); 2195 struct debug_store *ds = cpuc->ds; 2196 struct perf_event *event; 2197 void *base, *at, *top; 2198 int bit, size; 2199 u64 mask; 2200 2201 if (!x86_pmu.pebs_active) 2202 return; 2203 2204 base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base; 2205 top = (struct pebs_basic *)(unsigned long)ds->pebs_index; 2206 2207 ds->pebs_index = ds->pebs_buffer_base; 2208 2209 mask = ((1ULL << max_pebs_events) - 1) | 2210 (((1ULL << num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED); 2211 size = INTEL_PMC_IDX_FIXED + num_counters_fixed; 2212 2213 if (unlikely(base >= top)) { 2214 intel_pmu_pebs_event_update_no_drain(cpuc, size); 2215 return; 2216 } 2217 2218 for (at = base; at < top; at += cpuc->pebs_record_size) { 2219 u64 pebs_status; 2220 2221 pebs_status = get_pebs_status(at) & cpuc->pebs_enabled; 2222 pebs_status &= mask; 2223 2224 for_each_set_bit(bit, (unsigned long *)&pebs_status, size) 2225 counts[bit]++; 2226 } 2227 2228 for_each_set_bit(bit, (unsigned long *)&mask, size) { 2229 if (counts[bit] == 0) 2230 continue; 2231 2232 event = cpuc->events[bit]; 2233 if (WARN_ON_ONCE(!event)) 2234 continue; 2235 2236 if (WARN_ON_ONCE(!event->attr.precise_ip)) 2237 continue; 2238 2239 __intel_pmu_pebs_event(event, iregs, data, base, 2240 top, bit, counts[bit], 2241 setup_pebs_adaptive_sample_data); 2242 } 2243 } 2244 2245 /* 2246 * BTS, PEBS probe and setup 2247 */ 2248 2249 void __init intel_ds_init(void) 2250 { 2251 /* 2252 * No support for 32bit formats 2253 */ 2254 if (!boot_cpu_has(X86_FEATURE_DTES64)) 2255 return; 2256 2257 x86_pmu.bts = boot_cpu_has(X86_FEATURE_BTS); 2258 x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS); 2259 x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE; 2260 if (x86_pmu.version <= 4) 2261 x86_pmu.pebs_no_isolation = 1; 2262 2263 if (x86_pmu.pebs) { 2264 char pebs_type = x86_pmu.intel_cap.pebs_trap ? '+' : '-'; 2265 char *pebs_qual = ""; 2266 int format = x86_pmu.intel_cap.pebs_format; 2267 2268 if (format < 4) 2269 x86_pmu.intel_cap.pebs_baseline = 0; 2270 2271 switch (format) { 2272 case 0: 2273 pr_cont("PEBS fmt0%c, ", pebs_type); 2274 x86_pmu.pebs_record_size = sizeof(struct pebs_record_core); 2275 /* 2276 * Using >PAGE_SIZE buffers makes the WRMSR to 2277 * PERF_GLOBAL_CTRL in intel_pmu_enable_all() 2278 * mysteriously hang on Core2. 2279 * 2280 * As a workaround, we don't do this. 2281 */ 2282 x86_pmu.pebs_buffer_size = PAGE_SIZE; 2283 x86_pmu.drain_pebs = intel_pmu_drain_pebs_core; 2284 break; 2285 2286 case 1: 2287 pr_cont("PEBS fmt1%c, ", pebs_type); 2288 x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm); 2289 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; 2290 break; 2291 2292 case 2: 2293 pr_cont("PEBS fmt2%c, ", pebs_type); 2294 x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw); 2295 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; 2296 break; 2297 2298 case 3: 2299 pr_cont("PEBS fmt3%c, ", pebs_type); 2300 x86_pmu.pebs_record_size = 2301 sizeof(struct pebs_record_skl); 2302 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; 2303 x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME; 2304 break; 2305 2306 case 4: 2307 case 5: 2308 x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl; 2309 x86_pmu.pebs_record_size = sizeof(struct pebs_basic); 2310 if (x86_pmu.intel_cap.pebs_baseline) { 2311 x86_pmu.large_pebs_flags |= 2312 PERF_SAMPLE_BRANCH_STACK | 2313 PERF_SAMPLE_TIME; 2314 x86_pmu.flags |= PMU_FL_PEBS_ALL; 2315 x86_pmu.pebs_capable = ~0ULL; 2316 pebs_qual = "-baseline"; 2317 x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_EXTENDED_REGS; 2318 } else { 2319 /* Only basic record supported */ 2320 x86_pmu.large_pebs_flags &= 2321 ~(PERF_SAMPLE_ADDR | 2322 PERF_SAMPLE_TIME | 2323 PERF_SAMPLE_DATA_SRC | 2324 PERF_SAMPLE_TRANSACTION | 2325 PERF_SAMPLE_REGS_USER | 2326 PERF_SAMPLE_REGS_INTR); 2327 } 2328 pr_cont("PEBS fmt4%c%s, ", pebs_type, pebs_qual); 2329 2330 if (!is_hybrid() && x86_pmu.intel_cap.pebs_output_pt_available) { 2331 pr_cont("PEBS-via-PT, "); 2332 x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_AUX_OUTPUT; 2333 } 2334 2335 break; 2336 2337 default: 2338 pr_cont("no PEBS fmt%d%c, ", format, pebs_type); 2339 x86_pmu.pebs = 0; 2340 } 2341 } 2342 } 2343 2344 void perf_restore_debug_store(void) 2345 { 2346 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds); 2347 2348 if (!x86_pmu.bts && !x86_pmu.pebs) 2349 return; 2350 2351 wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds); 2352 } 2353