1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/bitops.h> 3 #include <linux/types.h> 4 #include <linux/slab.h> 5 #include <linux/sched/clock.h> 6 7 #include <asm/cpu_entry_area.h> 8 #include <asm/perf_event.h> 9 #include <asm/tlbflush.h> 10 #include <asm/insn.h> 11 #include <asm/io.h> 12 #include <asm/timer.h> 13 14 #include "../perf_event.h" 15 16 /* Waste a full page so it can be mapped into the cpu_entry_area */ 17 DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store); 18 19 /* The size of a BTS record in bytes: */ 20 #define BTS_RECORD_SIZE 24 21 22 #define PEBS_FIXUP_SIZE PAGE_SIZE 23 24 /* 25 * pebs_record_32 for p4 and core not supported 26 27 struct pebs_record_32 { 28 u32 flags, ip; 29 u32 ax, bc, cx, dx; 30 u32 si, di, bp, sp; 31 }; 32 33 */ 34 35 union intel_x86_pebs_dse { 36 u64 val; 37 struct { 38 unsigned int ld_dse:4; 39 unsigned int ld_stlb_miss:1; 40 unsigned int ld_locked:1; 41 unsigned int ld_data_blk:1; 42 unsigned int ld_addr_blk:1; 43 unsigned int ld_reserved:24; 44 }; 45 struct { 46 unsigned int st_l1d_hit:1; 47 unsigned int st_reserved1:3; 48 unsigned int st_stlb_miss:1; 49 unsigned int st_locked:1; 50 unsigned int st_reserved2:26; 51 }; 52 struct { 53 unsigned int st_lat_dse:4; 54 unsigned int st_lat_stlb_miss:1; 55 unsigned int st_lat_locked:1; 56 unsigned int ld_reserved3:26; 57 }; 58 struct { 59 unsigned int mtl_dse:5; 60 unsigned int mtl_locked:1; 61 unsigned int mtl_stlb_miss:1; 62 unsigned int mtl_fwd_blk:1; 63 unsigned int ld_reserved4:24; 64 }; 65 }; 66 67 68 /* 69 * Map PEBS Load Latency Data Source encodings to generic 70 * memory data source information 71 */ 72 #define P(a, b) PERF_MEM_S(a, b) 73 #define OP_LH (P(OP, LOAD) | P(LVL, HIT)) 74 #define LEVEL(x) P(LVLNUM, x) 75 #define REM P(REMOTE, REMOTE) 76 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS)) 77 78 /* Version for Sandy Bridge and later */ 79 static u64 pebs_data_source[] = { 80 P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */ 81 OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x01: L1 local */ 82 OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */ 83 OP_LH | P(LVL, L2) | LEVEL(L2) | P(SNOOP, NONE), /* 0x03: L2 hit */ 84 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, NONE), /* 0x04: L3 hit */ 85 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, MISS), /* 0x05: L3 hit, snoop miss */ 86 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT), /* 0x06: L3 hit, snoop hit */ 87 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x07: L3 hit, snoop hitm */ 88 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x08: L3 miss snoop hit */ 89 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/ 90 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, HIT), /* 0x0a: L3 miss, shared */ 91 OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x0b: L3 miss, shared */ 92 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | SNOOP_NONE_MISS, /* 0x0c: L3 miss, excl */ 93 OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */ 94 OP_LH | P(LVL, IO) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */ 95 OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */ 96 }; 97 98 /* Patch up minor differences in the bits */ 99 void __init intel_pmu_pebs_data_source_nhm(void) 100 { 101 pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT); 102 pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); 103 pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); 104 } 105 106 static void __init __intel_pmu_pebs_data_source_skl(bool pmem, u64 *data_source) 107 { 108 u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4); 109 110 data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT); 111 data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT); 112 data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE); 113 data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD); 114 data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM); 115 } 116 117 void __init intel_pmu_pebs_data_source_skl(bool pmem) 118 { 119 __intel_pmu_pebs_data_source_skl(pmem, pebs_data_source); 120 } 121 122 static void __init __intel_pmu_pebs_data_source_grt(u64 *data_source) 123 { 124 data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT); 125 data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); 126 data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD); 127 } 128 129 void __init intel_pmu_pebs_data_source_grt(void) 130 { 131 __intel_pmu_pebs_data_source_grt(pebs_data_source); 132 } 133 134 void __init intel_pmu_pebs_data_source_adl(void) 135 { 136 u64 *data_source; 137 138 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source; 139 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source)); 140 __intel_pmu_pebs_data_source_skl(false, data_source); 141 142 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source; 143 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source)); 144 __intel_pmu_pebs_data_source_grt(data_source); 145 } 146 147 static void __init __intel_pmu_pebs_data_source_cmt(u64 *data_source) 148 { 149 data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD); 150 data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); 151 data_source[0x0a] = OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, NONE); 152 data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE); 153 data_source[0x0c] = OP_LH | LEVEL(RAM) | REM | P(SNOOPX, FWD); 154 data_source[0x0d] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, HITM); 155 } 156 157 void __init intel_pmu_pebs_data_source_mtl(void) 158 { 159 u64 *data_source; 160 161 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source; 162 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source)); 163 __intel_pmu_pebs_data_source_skl(false, data_source); 164 165 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source; 166 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source)); 167 __intel_pmu_pebs_data_source_cmt(data_source); 168 } 169 170 void __init intel_pmu_pebs_data_source_cmt(void) 171 { 172 __intel_pmu_pebs_data_source_cmt(pebs_data_source); 173 } 174 175 static u64 precise_store_data(u64 status) 176 { 177 union intel_x86_pebs_dse dse; 178 u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2); 179 180 dse.val = status; 181 182 /* 183 * bit 4: TLB access 184 * 1 = stored missed 2nd level TLB 185 * 186 * so it either hit the walker or the OS 187 * otherwise hit 2nd level TLB 188 */ 189 if (dse.st_stlb_miss) 190 val |= P(TLB, MISS); 191 else 192 val |= P(TLB, HIT); 193 194 /* 195 * bit 0: hit L1 data cache 196 * if not set, then all we know is that 197 * it missed L1D 198 */ 199 if (dse.st_l1d_hit) 200 val |= P(LVL, HIT); 201 else 202 val |= P(LVL, MISS); 203 204 /* 205 * bit 5: Locked prefix 206 */ 207 if (dse.st_locked) 208 val |= P(LOCK, LOCKED); 209 210 return val; 211 } 212 213 static u64 precise_datala_hsw(struct perf_event *event, u64 status) 214 { 215 union perf_mem_data_src dse; 216 217 dse.val = PERF_MEM_NA; 218 219 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) 220 dse.mem_op = PERF_MEM_OP_STORE; 221 else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW) 222 dse.mem_op = PERF_MEM_OP_LOAD; 223 224 /* 225 * L1 info only valid for following events: 226 * 227 * MEM_UOPS_RETIRED.STLB_MISS_STORES 228 * MEM_UOPS_RETIRED.LOCK_STORES 229 * MEM_UOPS_RETIRED.SPLIT_STORES 230 * MEM_UOPS_RETIRED.ALL_STORES 231 */ 232 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) { 233 if (status & 1) 234 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT; 235 else 236 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS; 237 } 238 return dse.val; 239 } 240 241 static inline void pebs_set_tlb_lock(u64 *val, bool tlb, bool lock) 242 { 243 /* 244 * TLB access 245 * 0 = did not miss 2nd level TLB 246 * 1 = missed 2nd level TLB 247 */ 248 if (tlb) 249 *val |= P(TLB, MISS) | P(TLB, L2); 250 else 251 *val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2); 252 253 /* locked prefix */ 254 if (lock) 255 *val |= P(LOCK, LOCKED); 256 } 257 258 /* Retrieve the latency data for e-core of ADL */ 259 static u64 __adl_latency_data_small(struct perf_event *event, u64 status, 260 u8 dse, bool tlb, bool lock, bool blk) 261 { 262 u64 val; 263 264 WARN_ON_ONCE(hybrid_pmu(event->pmu)->cpu_type == hybrid_big); 265 266 dse &= PERF_PEBS_DATA_SOURCE_MASK; 267 val = hybrid_var(event->pmu, pebs_data_source)[dse]; 268 269 pebs_set_tlb_lock(&val, tlb, lock); 270 271 if (blk) 272 val |= P(BLK, DATA); 273 else 274 val |= P(BLK, NA); 275 276 return val; 277 } 278 279 u64 adl_latency_data_small(struct perf_event *event, u64 status) 280 { 281 union intel_x86_pebs_dse dse; 282 283 dse.val = status; 284 285 return __adl_latency_data_small(event, status, dse.ld_dse, 286 dse.ld_locked, dse.ld_stlb_miss, 287 dse.ld_data_blk); 288 } 289 290 /* Retrieve the latency data for e-core of MTL */ 291 u64 mtl_latency_data_small(struct perf_event *event, u64 status) 292 { 293 union intel_x86_pebs_dse dse; 294 295 dse.val = status; 296 297 return __adl_latency_data_small(event, status, dse.mtl_dse, 298 dse.mtl_stlb_miss, dse.mtl_locked, 299 dse.mtl_fwd_blk); 300 } 301 302 static u64 load_latency_data(struct perf_event *event, u64 status) 303 { 304 union intel_x86_pebs_dse dse; 305 u64 val; 306 307 dse.val = status; 308 309 /* 310 * use the mapping table for bit 0-3 311 */ 312 val = hybrid_var(event->pmu, pebs_data_source)[dse.ld_dse]; 313 314 /* 315 * Nehalem models do not support TLB, Lock infos 316 */ 317 if (x86_pmu.pebs_no_tlb) { 318 val |= P(TLB, NA) | P(LOCK, NA); 319 return val; 320 } 321 322 pebs_set_tlb_lock(&val, dse.ld_stlb_miss, dse.ld_locked); 323 324 /* 325 * Ice Lake and earlier models do not support block infos. 326 */ 327 if (!x86_pmu.pebs_block) { 328 val |= P(BLK, NA); 329 return val; 330 } 331 /* 332 * bit 6: load was blocked since its data could not be forwarded 333 * from a preceding store 334 */ 335 if (dse.ld_data_blk) 336 val |= P(BLK, DATA); 337 338 /* 339 * bit 7: load was blocked due to potential address conflict with 340 * a preceding store 341 */ 342 if (dse.ld_addr_blk) 343 val |= P(BLK, ADDR); 344 345 if (!dse.ld_data_blk && !dse.ld_addr_blk) 346 val |= P(BLK, NA); 347 348 return val; 349 } 350 351 static u64 store_latency_data(struct perf_event *event, u64 status) 352 { 353 union intel_x86_pebs_dse dse; 354 union perf_mem_data_src src; 355 u64 val; 356 357 dse.val = status; 358 359 /* 360 * use the mapping table for bit 0-3 361 */ 362 val = hybrid_var(event->pmu, pebs_data_source)[dse.st_lat_dse]; 363 364 pebs_set_tlb_lock(&val, dse.st_lat_stlb_miss, dse.st_lat_locked); 365 366 val |= P(BLK, NA); 367 368 /* 369 * the pebs_data_source table is only for loads 370 * so override the mem_op to say STORE instead 371 */ 372 src.val = val; 373 src.mem_op = P(OP,STORE); 374 375 return src.val; 376 } 377 378 struct pebs_record_core { 379 u64 flags, ip; 380 u64 ax, bx, cx, dx; 381 u64 si, di, bp, sp; 382 u64 r8, r9, r10, r11; 383 u64 r12, r13, r14, r15; 384 }; 385 386 struct pebs_record_nhm { 387 u64 flags, ip; 388 u64 ax, bx, cx, dx; 389 u64 si, di, bp, sp; 390 u64 r8, r9, r10, r11; 391 u64 r12, r13, r14, r15; 392 u64 status, dla, dse, lat; 393 }; 394 395 /* 396 * Same as pebs_record_nhm, with two additional fields. 397 */ 398 struct pebs_record_hsw { 399 u64 flags, ip; 400 u64 ax, bx, cx, dx; 401 u64 si, di, bp, sp; 402 u64 r8, r9, r10, r11; 403 u64 r12, r13, r14, r15; 404 u64 status, dla, dse, lat; 405 u64 real_ip, tsx_tuning; 406 }; 407 408 union hsw_tsx_tuning { 409 struct { 410 u32 cycles_last_block : 32, 411 hle_abort : 1, 412 rtm_abort : 1, 413 instruction_abort : 1, 414 non_instruction_abort : 1, 415 retry : 1, 416 data_conflict : 1, 417 capacity_writes : 1, 418 capacity_reads : 1; 419 }; 420 u64 value; 421 }; 422 423 #define PEBS_HSW_TSX_FLAGS 0xff00000000ULL 424 425 /* Same as HSW, plus TSC */ 426 427 struct pebs_record_skl { 428 u64 flags, ip; 429 u64 ax, bx, cx, dx; 430 u64 si, di, bp, sp; 431 u64 r8, r9, r10, r11; 432 u64 r12, r13, r14, r15; 433 u64 status, dla, dse, lat; 434 u64 real_ip, tsx_tuning; 435 u64 tsc; 436 }; 437 438 void init_debug_store_on_cpu(int cpu) 439 { 440 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds; 441 442 if (!ds) 443 return; 444 445 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 446 (u32)((u64)(unsigned long)ds), 447 (u32)((u64)(unsigned long)ds >> 32)); 448 } 449 450 void fini_debug_store_on_cpu(int cpu) 451 { 452 if (!per_cpu(cpu_hw_events, cpu).ds) 453 return; 454 455 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0); 456 } 457 458 static DEFINE_PER_CPU(void *, insn_buffer); 459 460 static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot) 461 { 462 unsigned long start = (unsigned long)cea; 463 phys_addr_t pa; 464 size_t msz = 0; 465 466 pa = virt_to_phys(addr); 467 468 preempt_disable(); 469 for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE) 470 cea_set_pte(cea, pa, prot); 471 472 /* 473 * This is a cross-CPU update of the cpu_entry_area, we must shoot down 474 * all TLB entries for it. 475 */ 476 flush_tlb_kernel_range(start, start + size); 477 preempt_enable(); 478 } 479 480 static void ds_clear_cea(void *cea, size_t size) 481 { 482 unsigned long start = (unsigned long)cea; 483 size_t msz = 0; 484 485 preempt_disable(); 486 for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE) 487 cea_set_pte(cea, 0, PAGE_NONE); 488 489 flush_tlb_kernel_range(start, start + size); 490 preempt_enable(); 491 } 492 493 static void *dsalloc_pages(size_t size, gfp_t flags, int cpu) 494 { 495 unsigned int order = get_order(size); 496 int node = cpu_to_node(cpu); 497 struct page *page; 498 499 page = __alloc_pages_node(node, flags | __GFP_ZERO, order); 500 return page ? page_address(page) : NULL; 501 } 502 503 static void dsfree_pages(const void *buffer, size_t size) 504 { 505 if (buffer) 506 free_pages((unsigned long)buffer, get_order(size)); 507 } 508 509 static int alloc_pebs_buffer(int cpu) 510 { 511 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); 512 struct debug_store *ds = hwev->ds; 513 size_t bsiz = x86_pmu.pebs_buffer_size; 514 int max, node = cpu_to_node(cpu); 515 void *buffer, *insn_buff, *cea; 516 517 if (!x86_pmu.pebs) 518 return 0; 519 520 buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu); 521 if (unlikely(!buffer)) 522 return -ENOMEM; 523 524 /* 525 * HSW+ already provides us the eventing ip; no need to allocate this 526 * buffer then. 527 */ 528 if (x86_pmu.intel_cap.pebs_format < 2) { 529 insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node); 530 if (!insn_buff) { 531 dsfree_pages(buffer, bsiz); 532 return -ENOMEM; 533 } 534 per_cpu(insn_buffer, cpu) = insn_buff; 535 } 536 hwev->ds_pebs_vaddr = buffer; 537 /* Update the cpu entry area mapping */ 538 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer; 539 ds->pebs_buffer_base = (unsigned long) cea; 540 ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL); 541 ds->pebs_index = ds->pebs_buffer_base; 542 max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size); 543 ds->pebs_absolute_maximum = ds->pebs_buffer_base + max; 544 return 0; 545 } 546 547 static void release_pebs_buffer(int cpu) 548 { 549 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); 550 void *cea; 551 552 if (!x86_pmu.pebs) 553 return; 554 555 kfree(per_cpu(insn_buffer, cpu)); 556 per_cpu(insn_buffer, cpu) = NULL; 557 558 /* Clear the fixmap */ 559 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer; 560 ds_clear_cea(cea, x86_pmu.pebs_buffer_size); 561 dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size); 562 hwev->ds_pebs_vaddr = NULL; 563 } 564 565 static int alloc_bts_buffer(int cpu) 566 { 567 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); 568 struct debug_store *ds = hwev->ds; 569 void *buffer, *cea; 570 int max; 571 572 if (!x86_pmu.bts) 573 return 0; 574 575 buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu); 576 if (unlikely(!buffer)) { 577 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__); 578 return -ENOMEM; 579 } 580 hwev->ds_bts_vaddr = buffer; 581 /* Update the fixmap */ 582 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer; 583 ds->bts_buffer_base = (unsigned long) cea; 584 ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL); 585 ds->bts_index = ds->bts_buffer_base; 586 max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE; 587 ds->bts_absolute_maximum = ds->bts_buffer_base + 588 max * BTS_RECORD_SIZE; 589 ds->bts_interrupt_threshold = ds->bts_absolute_maximum - 590 (max / 16) * BTS_RECORD_SIZE; 591 return 0; 592 } 593 594 static void release_bts_buffer(int cpu) 595 { 596 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); 597 void *cea; 598 599 if (!x86_pmu.bts) 600 return; 601 602 /* Clear the fixmap */ 603 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer; 604 ds_clear_cea(cea, BTS_BUFFER_SIZE); 605 dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE); 606 hwev->ds_bts_vaddr = NULL; 607 } 608 609 static int alloc_ds_buffer(int cpu) 610 { 611 struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store; 612 613 memset(ds, 0, sizeof(*ds)); 614 per_cpu(cpu_hw_events, cpu).ds = ds; 615 return 0; 616 } 617 618 static void release_ds_buffer(int cpu) 619 { 620 per_cpu(cpu_hw_events, cpu).ds = NULL; 621 } 622 623 void release_ds_buffers(void) 624 { 625 int cpu; 626 627 if (!x86_pmu.bts && !x86_pmu.pebs) 628 return; 629 630 for_each_possible_cpu(cpu) 631 release_ds_buffer(cpu); 632 633 for_each_possible_cpu(cpu) { 634 /* 635 * Again, ignore errors from offline CPUs, they will no longer 636 * observe cpu_hw_events.ds and not program the DS_AREA when 637 * they come up. 638 */ 639 fini_debug_store_on_cpu(cpu); 640 } 641 642 for_each_possible_cpu(cpu) { 643 release_pebs_buffer(cpu); 644 release_bts_buffer(cpu); 645 } 646 } 647 648 void reserve_ds_buffers(void) 649 { 650 int bts_err = 0, pebs_err = 0; 651 int cpu; 652 653 x86_pmu.bts_active = 0; 654 x86_pmu.pebs_active = 0; 655 656 if (!x86_pmu.bts && !x86_pmu.pebs) 657 return; 658 659 if (!x86_pmu.bts) 660 bts_err = 1; 661 662 if (!x86_pmu.pebs) 663 pebs_err = 1; 664 665 for_each_possible_cpu(cpu) { 666 if (alloc_ds_buffer(cpu)) { 667 bts_err = 1; 668 pebs_err = 1; 669 } 670 671 if (!bts_err && alloc_bts_buffer(cpu)) 672 bts_err = 1; 673 674 if (!pebs_err && alloc_pebs_buffer(cpu)) 675 pebs_err = 1; 676 677 if (bts_err && pebs_err) 678 break; 679 } 680 681 if (bts_err) { 682 for_each_possible_cpu(cpu) 683 release_bts_buffer(cpu); 684 } 685 686 if (pebs_err) { 687 for_each_possible_cpu(cpu) 688 release_pebs_buffer(cpu); 689 } 690 691 if (bts_err && pebs_err) { 692 for_each_possible_cpu(cpu) 693 release_ds_buffer(cpu); 694 } else { 695 if (x86_pmu.bts && !bts_err) 696 x86_pmu.bts_active = 1; 697 698 if (x86_pmu.pebs && !pebs_err) 699 x86_pmu.pebs_active = 1; 700 701 for_each_possible_cpu(cpu) { 702 /* 703 * Ignores wrmsr_on_cpu() errors for offline CPUs they 704 * will get this call through intel_pmu_cpu_starting(). 705 */ 706 init_debug_store_on_cpu(cpu); 707 } 708 } 709 } 710 711 /* 712 * BTS 713 */ 714 715 struct event_constraint bts_constraint = 716 EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0); 717 718 void intel_pmu_enable_bts(u64 config) 719 { 720 unsigned long debugctlmsr; 721 722 debugctlmsr = get_debugctlmsr(); 723 724 debugctlmsr |= DEBUGCTLMSR_TR; 725 debugctlmsr |= DEBUGCTLMSR_BTS; 726 if (config & ARCH_PERFMON_EVENTSEL_INT) 727 debugctlmsr |= DEBUGCTLMSR_BTINT; 728 729 if (!(config & ARCH_PERFMON_EVENTSEL_OS)) 730 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS; 731 732 if (!(config & ARCH_PERFMON_EVENTSEL_USR)) 733 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR; 734 735 update_debugctlmsr(debugctlmsr); 736 } 737 738 void intel_pmu_disable_bts(void) 739 { 740 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 741 unsigned long debugctlmsr; 742 743 if (!cpuc->ds) 744 return; 745 746 debugctlmsr = get_debugctlmsr(); 747 748 debugctlmsr &= 749 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT | 750 DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR); 751 752 update_debugctlmsr(debugctlmsr); 753 } 754 755 int intel_pmu_drain_bts_buffer(void) 756 { 757 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 758 struct debug_store *ds = cpuc->ds; 759 struct bts_record { 760 u64 from; 761 u64 to; 762 u64 flags; 763 }; 764 struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS]; 765 struct bts_record *at, *base, *top; 766 struct perf_output_handle handle; 767 struct perf_event_header header; 768 struct perf_sample_data data; 769 unsigned long skip = 0; 770 struct pt_regs regs; 771 772 if (!event) 773 return 0; 774 775 if (!x86_pmu.bts_active) 776 return 0; 777 778 base = (struct bts_record *)(unsigned long)ds->bts_buffer_base; 779 top = (struct bts_record *)(unsigned long)ds->bts_index; 780 781 if (top <= base) 782 return 0; 783 784 memset(®s, 0, sizeof(regs)); 785 786 ds->bts_index = ds->bts_buffer_base; 787 788 perf_sample_data_init(&data, 0, event->hw.last_period); 789 790 /* 791 * BTS leaks kernel addresses in branches across the cpl boundary, 792 * such as traps or system calls, so unless the user is asking for 793 * kernel tracing (and right now it's not possible), we'd need to 794 * filter them out. But first we need to count how many of those we 795 * have in the current batch. This is an extra O(n) pass, however, 796 * it's much faster than the other one especially considering that 797 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the 798 * alloc_bts_buffer()). 799 */ 800 for (at = base; at < top; at++) { 801 /* 802 * Note that right now *this* BTS code only works if 803 * attr::exclude_kernel is set, but let's keep this extra 804 * check here in case that changes. 805 */ 806 if (event->attr.exclude_kernel && 807 (kernel_ip(at->from) || kernel_ip(at->to))) 808 skip++; 809 } 810 811 /* 812 * Prepare a generic sample, i.e. fill in the invariant fields. 813 * We will overwrite the from and to address before we output 814 * the sample. 815 */ 816 rcu_read_lock(); 817 perf_prepare_sample(&data, event, ®s); 818 perf_prepare_header(&header, &data, event, ®s); 819 820 if (perf_output_begin(&handle, &data, event, 821 header.size * (top - base - skip))) 822 goto unlock; 823 824 for (at = base; at < top; at++) { 825 /* Filter out any records that contain kernel addresses. */ 826 if (event->attr.exclude_kernel && 827 (kernel_ip(at->from) || kernel_ip(at->to))) 828 continue; 829 830 data.ip = at->from; 831 data.addr = at->to; 832 833 perf_output_sample(&handle, &header, &data, event); 834 } 835 836 perf_output_end(&handle); 837 838 /* There's new data available. */ 839 event->hw.interrupts++; 840 event->pending_kill = POLL_IN; 841 unlock: 842 rcu_read_unlock(); 843 return 1; 844 } 845 846 static inline void intel_pmu_drain_pebs_buffer(void) 847 { 848 struct perf_sample_data data; 849 850 x86_pmu.drain_pebs(NULL, &data); 851 } 852 853 /* 854 * PEBS 855 */ 856 struct event_constraint intel_core2_pebs_event_constraints[] = { 857 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */ 858 INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */ 859 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */ 860 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */ 861 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */ 862 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 863 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01), 864 EVENT_CONSTRAINT_END 865 }; 866 867 struct event_constraint intel_atom_pebs_event_constraints[] = { 868 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */ 869 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */ 870 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */ 871 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 872 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01), 873 /* Allow all events as PEBS with no flags */ 874 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), 875 EVENT_CONSTRAINT_END 876 }; 877 878 struct event_constraint intel_slm_pebs_event_constraints[] = { 879 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 880 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1), 881 /* Allow all events as PEBS with no flags */ 882 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), 883 EVENT_CONSTRAINT_END 884 }; 885 886 struct event_constraint intel_glm_pebs_event_constraints[] = { 887 /* Allow all events as PEBS with no flags */ 888 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), 889 EVENT_CONSTRAINT_END 890 }; 891 892 struct event_constraint intel_grt_pebs_event_constraints[] = { 893 /* Allow all events as PEBS with no flags */ 894 INTEL_HYBRID_LAT_CONSTRAINT(0x5d0, 0x3), 895 INTEL_HYBRID_LAT_CONSTRAINT(0x6d0, 0xf), 896 EVENT_CONSTRAINT_END 897 }; 898 899 struct event_constraint intel_nehalem_pebs_event_constraints[] = { 900 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */ 901 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */ 902 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */ 903 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */ 904 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */ 905 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */ 906 INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */ 907 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */ 908 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */ 909 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */ 910 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */ 911 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 912 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f), 913 EVENT_CONSTRAINT_END 914 }; 915 916 struct event_constraint intel_westmere_pebs_event_constraints[] = { 917 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */ 918 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */ 919 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */ 920 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */ 921 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */ 922 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */ 923 INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */ 924 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */ 925 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */ 926 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */ 927 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */ 928 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 929 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f), 930 EVENT_CONSTRAINT_END 931 }; 932 933 struct event_constraint intel_snb_pebs_event_constraints[] = { 934 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ 935 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */ 936 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */ 937 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ 938 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), 939 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */ 940 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 941 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 942 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 943 /* Allow all events as PEBS with no flags */ 944 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 945 EVENT_CONSTRAINT_END 946 }; 947 948 struct event_constraint intel_ivb_pebs_event_constraints[] = { 949 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ 950 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */ 951 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */ 952 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ 953 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), 954 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ 955 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), 956 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */ 957 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 958 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 959 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 960 /* Allow all events as PEBS with no flags */ 961 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 962 EVENT_CONSTRAINT_END 963 }; 964 965 struct event_constraint intel_hsw_pebs_event_constraints[] = { 966 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ 967 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */ 968 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ 969 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), 970 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ 971 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), 972 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */ 973 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */ 974 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */ 975 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */ 976 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */ 977 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */ 978 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */ 979 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */ 980 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 981 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */ 982 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */ 983 /* Allow all events as PEBS with no flags */ 984 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 985 EVENT_CONSTRAINT_END 986 }; 987 988 struct event_constraint intel_bdw_pebs_event_constraints[] = { 989 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ 990 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */ 991 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ 992 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), 993 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ 994 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), 995 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */ 996 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */ 997 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */ 998 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */ 999 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */ 1000 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */ 1001 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */ 1002 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */ 1003 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 1004 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */ 1005 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */ 1006 /* Allow all events as PEBS with no flags */ 1007 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 1008 EVENT_CONSTRAINT_END 1009 }; 1010 1011 1012 struct event_constraint intel_skl_pebs_event_constraints[] = { 1013 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */ 1014 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ 1015 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), 1016 /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */ 1017 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f), 1018 INTEL_PLD_CONSTRAINT(0x1cd, 0xf), /* MEM_TRANS_RETIRED.* */ 1019 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */ 1020 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */ 1021 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */ 1022 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */ 1023 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */ 1024 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */ 1025 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */ 1026 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */ 1027 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */ 1028 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */ 1029 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_L3_MISS_RETIRED.* */ 1030 /* Allow all events as PEBS with no flags */ 1031 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 1032 EVENT_CONSTRAINT_END 1033 }; 1034 1035 struct event_constraint intel_icl_pebs_event_constraints[] = { 1036 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x100000000ULL), /* old INST_RETIRED.PREC_DIST */ 1037 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0100, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */ 1038 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL), /* SLOTS */ 1039 1040 INTEL_PLD_CONSTRAINT(0x1cd, 0xff), /* MEM_TRANS_RETIRED.LOAD_LATENCY */ 1041 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */ 1042 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */ 1043 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */ 1044 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */ 1045 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */ 1046 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */ 1047 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */ 1048 1049 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */ 1050 1051 INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */ 1052 1053 /* 1054 * Everything else is handled by PMU_FL_PEBS_ALL, because we 1055 * need the full constraints from the main table. 1056 */ 1057 1058 EVENT_CONSTRAINT_END 1059 }; 1060 1061 struct event_constraint intel_spr_pebs_event_constraints[] = { 1062 INTEL_FLAGS_UEVENT_CONSTRAINT(0x100, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */ 1063 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL), 1064 1065 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xfe), 1066 INTEL_PLD_CONSTRAINT(0x1cd, 0xfe), 1067 INTEL_PSD_CONSTRAINT(0x2cd, 0x1), 1068 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */ 1069 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */ 1070 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */ 1071 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */ 1072 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */ 1073 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */ 1074 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */ 1075 1076 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), 1077 1078 INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf), 1079 1080 /* 1081 * Everything else is handled by PMU_FL_PEBS_ALL, because we 1082 * need the full constraints from the main table. 1083 */ 1084 1085 EVENT_CONSTRAINT_END 1086 }; 1087 1088 struct event_constraint *intel_pebs_constraints(struct perf_event *event) 1089 { 1090 struct event_constraint *pebs_constraints = hybrid(event->pmu, pebs_constraints); 1091 struct event_constraint *c; 1092 1093 if (!event->attr.precise_ip) 1094 return NULL; 1095 1096 if (pebs_constraints) { 1097 for_each_event_constraint(c, pebs_constraints) { 1098 if (constraint_match(c, event->hw.config)) { 1099 event->hw.flags |= c->flags; 1100 return c; 1101 } 1102 } 1103 } 1104 1105 /* 1106 * Extended PEBS support 1107 * Makes the PEBS code search the normal constraints. 1108 */ 1109 if (x86_pmu.flags & PMU_FL_PEBS_ALL) 1110 return NULL; 1111 1112 return &emptyconstraint; 1113 } 1114 1115 /* 1116 * We need the sched_task callback even for per-cpu events when we use 1117 * the large interrupt threshold, such that we can provide PID and TID 1118 * to PEBS samples. 1119 */ 1120 static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc) 1121 { 1122 if (cpuc->n_pebs == cpuc->n_pebs_via_pt) 1123 return false; 1124 1125 return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs); 1126 } 1127 1128 void intel_pmu_pebs_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in) 1129 { 1130 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1131 1132 if (!sched_in && pebs_needs_sched_cb(cpuc)) 1133 intel_pmu_drain_pebs_buffer(); 1134 } 1135 1136 static inline void pebs_update_threshold(struct cpu_hw_events *cpuc) 1137 { 1138 struct debug_store *ds = cpuc->ds; 1139 int max_pebs_events = hybrid(cpuc->pmu, max_pebs_events); 1140 int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed); 1141 u64 threshold; 1142 int reserved; 1143 1144 if (cpuc->n_pebs_via_pt) 1145 return; 1146 1147 if (x86_pmu.flags & PMU_FL_PEBS_ALL) 1148 reserved = max_pebs_events + num_counters_fixed; 1149 else 1150 reserved = max_pebs_events; 1151 1152 if (cpuc->n_pebs == cpuc->n_large_pebs) { 1153 threshold = ds->pebs_absolute_maximum - 1154 reserved * cpuc->pebs_record_size; 1155 } else { 1156 threshold = ds->pebs_buffer_base + cpuc->pebs_record_size; 1157 } 1158 1159 ds->pebs_interrupt_threshold = threshold; 1160 } 1161 1162 static void adaptive_pebs_record_size_update(void) 1163 { 1164 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1165 u64 pebs_data_cfg = cpuc->pebs_data_cfg; 1166 int sz = sizeof(struct pebs_basic); 1167 1168 if (pebs_data_cfg & PEBS_DATACFG_MEMINFO) 1169 sz += sizeof(struct pebs_meminfo); 1170 if (pebs_data_cfg & PEBS_DATACFG_GP) 1171 sz += sizeof(struct pebs_gprs); 1172 if (pebs_data_cfg & PEBS_DATACFG_XMMS) 1173 sz += sizeof(struct pebs_xmm); 1174 if (pebs_data_cfg & PEBS_DATACFG_LBRS) 1175 sz += x86_pmu.lbr_nr * sizeof(struct lbr_entry); 1176 1177 cpuc->pebs_record_size = sz; 1178 } 1179 1180 #define PERF_PEBS_MEMINFO_TYPE (PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC | \ 1181 PERF_SAMPLE_PHYS_ADDR | \ 1182 PERF_SAMPLE_WEIGHT_TYPE | \ 1183 PERF_SAMPLE_TRANSACTION | \ 1184 PERF_SAMPLE_DATA_PAGE_SIZE) 1185 1186 static u64 pebs_update_adaptive_cfg(struct perf_event *event) 1187 { 1188 struct perf_event_attr *attr = &event->attr; 1189 u64 sample_type = attr->sample_type; 1190 u64 pebs_data_cfg = 0; 1191 bool gprs, tsx_weight; 1192 1193 if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) && 1194 attr->precise_ip > 1) 1195 return pebs_data_cfg; 1196 1197 if (sample_type & PERF_PEBS_MEMINFO_TYPE) 1198 pebs_data_cfg |= PEBS_DATACFG_MEMINFO; 1199 1200 /* 1201 * We need GPRs when: 1202 * + user requested them 1203 * + precise_ip < 2 for the non event IP 1204 * + For RTM TSX weight we need GPRs for the abort code. 1205 */ 1206 gprs = (sample_type & PERF_SAMPLE_REGS_INTR) && 1207 (attr->sample_regs_intr & PEBS_GP_REGS); 1208 1209 tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT_TYPE) && 1210 ((attr->config & INTEL_ARCH_EVENT_MASK) == 1211 x86_pmu.rtm_abort_event); 1212 1213 if (gprs || (attr->precise_ip < 2) || tsx_weight) 1214 pebs_data_cfg |= PEBS_DATACFG_GP; 1215 1216 if ((sample_type & PERF_SAMPLE_REGS_INTR) && 1217 (attr->sample_regs_intr & PERF_REG_EXTENDED_MASK)) 1218 pebs_data_cfg |= PEBS_DATACFG_XMMS; 1219 1220 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 1221 /* 1222 * For now always log all LBRs. Could configure this 1223 * later. 1224 */ 1225 pebs_data_cfg |= PEBS_DATACFG_LBRS | 1226 ((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT); 1227 } 1228 1229 return pebs_data_cfg; 1230 } 1231 1232 static void 1233 pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc, 1234 struct perf_event *event, bool add) 1235 { 1236 struct pmu *pmu = event->pmu; 1237 1238 /* 1239 * Make sure we get updated with the first PEBS event. 1240 * During removal, ->pebs_data_cfg is still valid for 1241 * the last PEBS event. Don't clear it. 1242 */ 1243 if ((cpuc->n_pebs == 1) && add) 1244 cpuc->pebs_data_cfg = PEBS_UPDATE_DS_SW; 1245 1246 if (needed_cb != pebs_needs_sched_cb(cpuc)) { 1247 if (!needed_cb) 1248 perf_sched_cb_inc(pmu); 1249 else 1250 perf_sched_cb_dec(pmu); 1251 1252 cpuc->pebs_data_cfg |= PEBS_UPDATE_DS_SW; 1253 } 1254 1255 /* 1256 * The PEBS record doesn't shrink on pmu::del(). Doing so would require 1257 * iterating all remaining PEBS events to reconstruct the config. 1258 */ 1259 if (x86_pmu.intel_cap.pebs_baseline && add) { 1260 u64 pebs_data_cfg; 1261 1262 pebs_data_cfg = pebs_update_adaptive_cfg(event); 1263 /* 1264 * Be sure to update the thresholds when we change the record. 1265 */ 1266 if (pebs_data_cfg & ~cpuc->pebs_data_cfg) 1267 cpuc->pebs_data_cfg |= pebs_data_cfg | PEBS_UPDATE_DS_SW; 1268 } 1269 } 1270 1271 void intel_pmu_pebs_add(struct perf_event *event) 1272 { 1273 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1274 struct hw_perf_event *hwc = &event->hw; 1275 bool needed_cb = pebs_needs_sched_cb(cpuc); 1276 1277 cpuc->n_pebs++; 1278 if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS) 1279 cpuc->n_large_pebs++; 1280 if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT) 1281 cpuc->n_pebs_via_pt++; 1282 1283 pebs_update_state(needed_cb, cpuc, event, true); 1284 } 1285 1286 static void intel_pmu_pebs_via_pt_disable(struct perf_event *event) 1287 { 1288 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1289 1290 if (!is_pebs_pt(event)) 1291 return; 1292 1293 if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK)) 1294 cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK; 1295 } 1296 1297 static void intel_pmu_pebs_via_pt_enable(struct perf_event *event) 1298 { 1299 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1300 struct hw_perf_event *hwc = &event->hw; 1301 struct debug_store *ds = cpuc->ds; 1302 u64 value = ds->pebs_event_reset[hwc->idx]; 1303 u32 base = MSR_RELOAD_PMC0; 1304 unsigned int idx = hwc->idx; 1305 1306 if (!is_pebs_pt(event)) 1307 return; 1308 1309 if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS)) 1310 cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD; 1311 1312 cpuc->pebs_enabled |= PEBS_OUTPUT_PT; 1313 1314 if (hwc->idx >= INTEL_PMC_IDX_FIXED) { 1315 base = MSR_RELOAD_FIXED_CTR0; 1316 idx = hwc->idx - INTEL_PMC_IDX_FIXED; 1317 if (x86_pmu.intel_cap.pebs_format < 5) 1318 value = ds->pebs_event_reset[MAX_PEBS_EVENTS_FMT4 + idx]; 1319 else 1320 value = ds->pebs_event_reset[MAX_PEBS_EVENTS + idx]; 1321 } 1322 wrmsrl(base + idx, value); 1323 } 1324 1325 static inline void intel_pmu_drain_large_pebs(struct cpu_hw_events *cpuc) 1326 { 1327 if (cpuc->n_pebs == cpuc->n_large_pebs && 1328 cpuc->n_pebs != cpuc->n_pebs_via_pt) 1329 intel_pmu_drain_pebs_buffer(); 1330 } 1331 1332 void intel_pmu_pebs_enable(struct perf_event *event) 1333 { 1334 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1335 u64 pebs_data_cfg = cpuc->pebs_data_cfg & ~PEBS_UPDATE_DS_SW; 1336 struct hw_perf_event *hwc = &event->hw; 1337 struct debug_store *ds = cpuc->ds; 1338 unsigned int idx = hwc->idx; 1339 1340 hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT; 1341 1342 cpuc->pebs_enabled |= 1ULL << hwc->idx; 1343 1344 if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5)) 1345 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32); 1346 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST) 1347 cpuc->pebs_enabled |= 1ULL << 63; 1348 1349 if (x86_pmu.intel_cap.pebs_baseline) { 1350 hwc->config |= ICL_EVENTSEL_ADAPTIVE; 1351 if (pebs_data_cfg != cpuc->active_pebs_data_cfg) { 1352 /* 1353 * drain_pebs() assumes uniform record size; 1354 * hence we need to drain when changing said 1355 * size. 1356 */ 1357 intel_pmu_drain_large_pebs(cpuc); 1358 adaptive_pebs_record_size_update(); 1359 wrmsrl(MSR_PEBS_DATA_CFG, pebs_data_cfg); 1360 cpuc->active_pebs_data_cfg = pebs_data_cfg; 1361 } 1362 } 1363 if (cpuc->pebs_data_cfg & PEBS_UPDATE_DS_SW) { 1364 cpuc->pebs_data_cfg = pebs_data_cfg; 1365 pebs_update_threshold(cpuc); 1366 } 1367 1368 if (idx >= INTEL_PMC_IDX_FIXED) { 1369 if (x86_pmu.intel_cap.pebs_format < 5) 1370 idx = MAX_PEBS_EVENTS_FMT4 + (idx - INTEL_PMC_IDX_FIXED); 1371 else 1372 idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED); 1373 } 1374 1375 /* 1376 * Use auto-reload if possible to save a MSR write in the PMI. 1377 * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD. 1378 */ 1379 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) { 1380 ds->pebs_event_reset[idx] = 1381 (u64)(-hwc->sample_period) & x86_pmu.cntval_mask; 1382 } else { 1383 ds->pebs_event_reset[idx] = 0; 1384 } 1385 1386 intel_pmu_pebs_via_pt_enable(event); 1387 } 1388 1389 void intel_pmu_pebs_del(struct perf_event *event) 1390 { 1391 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1392 struct hw_perf_event *hwc = &event->hw; 1393 bool needed_cb = pebs_needs_sched_cb(cpuc); 1394 1395 cpuc->n_pebs--; 1396 if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS) 1397 cpuc->n_large_pebs--; 1398 if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT) 1399 cpuc->n_pebs_via_pt--; 1400 1401 pebs_update_state(needed_cb, cpuc, event, false); 1402 } 1403 1404 void intel_pmu_pebs_disable(struct perf_event *event) 1405 { 1406 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1407 struct hw_perf_event *hwc = &event->hw; 1408 1409 intel_pmu_drain_large_pebs(cpuc); 1410 1411 cpuc->pebs_enabled &= ~(1ULL << hwc->idx); 1412 1413 if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && 1414 (x86_pmu.version < 5)) 1415 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32)); 1416 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST) 1417 cpuc->pebs_enabled &= ~(1ULL << 63); 1418 1419 intel_pmu_pebs_via_pt_disable(event); 1420 1421 if (cpuc->enabled) 1422 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled); 1423 1424 hwc->config |= ARCH_PERFMON_EVENTSEL_INT; 1425 } 1426 1427 void intel_pmu_pebs_enable_all(void) 1428 { 1429 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1430 1431 if (cpuc->pebs_enabled) 1432 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled); 1433 } 1434 1435 void intel_pmu_pebs_disable_all(void) 1436 { 1437 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1438 1439 if (cpuc->pebs_enabled) 1440 __intel_pmu_pebs_disable_all(); 1441 } 1442 1443 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs) 1444 { 1445 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1446 unsigned long from = cpuc->lbr_entries[0].from; 1447 unsigned long old_to, to = cpuc->lbr_entries[0].to; 1448 unsigned long ip = regs->ip; 1449 int is_64bit = 0; 1450 void *kaddr; 1451 int size; 1452 1453 /* 1454 * We don't need to fixup if the PEBS assist is fault like 1455 */ 1456 if (!x86_pmu.intel_cap.pebs_trap) 1457 return 1; 1458 1459 /* 1460 * No LBR entry, no basic block, no rewinding 1461 */ 1462 if (!cpuc->lbr_stack.nr || !from || !to) 1463 return 0; 1464 1465 /* 1466 * Basic blocks should never cross user/kernel boundaries 1467 */ 1468 if (kernel_ip(ip) != kernel_ip(to)) 1469 return 0; 1470 1471 /* 1472 * unsigned math, either ip is before the start (impossible) or 1473 * the basic block is larger than 1 page (sanity) 1474 */ 1475 if ((ip - to) > PEBS_FIXUP_SIZE) 1476 return 0; 1477 1478 /* 1479 * We sampled a branch insn, rewind using the LBR stack 1480 */ 1481 if (ip == to) { 1482 set_linear_ip(regs, from); 1483 return 1; 1484 } 1485 1486 size = ip - to; 1487 if (!kernel_ip(ip)) { 1488 int bytes; 1489 u8 *buf = this_cpu_read(insn_buffer); 1490 1491 /* 'size' must fit our buffer, see above */ 1492 bytes = copy_from_user_nmi(buf, (void __user *)to, size); 1493 if (bytes != 0) 1494 return 0; 1495 1496 kaddr = buf; 1497 } else { 1498 kaddr = (void *)to; 1499 } 1500 1501 do { 1502 struct insn insn; 1503 1504 old_to = to; 1505 1506 #ifdef CONFIG_X86_64 1507 is_64bit = kernel_ip(to) || any_64bit_mode(regs); 1508 #endif 1509 insn_init(&insn, kaddr, size, is_64bit); 1510 1511 /* 1512 * Make sure there was not a problem decoding the instruction. 1513 * This is doubly important because we have an infinite loop if 1514 * insn.length=0. 1515 */ 1516 if (insn_get_length(&insn)) 1517 break; 1518 1519 to += insn.length; 1520 kaddr += insn.length; 1521 size -= insn.length; 1522 } while (to < ip); 1523 1524 if (to == ip) { 1525 set_linear_ip(regs, old_to); 1526 return 1; 1527 } 1528 1529 /* 1530 * Even though we decoded the basic block, the instruction stream 1531 * never matched the given IP, either the TO or the IP got corrupted. 1532 */ 1533 return 0; 1534 } 1535 1536 static inline u64 intel_get_tsx_weight(u64 tsx_tuning) 1537 { 1538 if (tsx_tuning) { 1539 union hsw_tsx_tuning tsx = { .value = tsx_tuning }; 1540 return tsx.cycles_last_block; 1541 } 1542 return 0; 1543 } 1544 1545 static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax) 1546 { 1547 u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32; 1548 1549 /* For RTM XABORTs also log the abort code from AX */ 1550 if ((txn & PERF_TXN_TRANSACTION) && (ax & 1)) 1551 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT; 1552 return txn; 1553 } 1554 1555 static inline u64 get_pebs_status(void *n) 1556 { 1557 if (x86_pmu.intel_cap.pebs_format < 4) 1558 return ((struct pebs_record_nhm *)n)->status; 1559 return ((struct pebs_basic *)n)->applicable_counters; 1560 } 1561 1562 #define PERF_X86_EVENT_PEBS_HSW_PREC \ 1563 (PERF_X86_EVENT_PEBS_ST_HSW | \ 1564 PERF_X86_EVENT_PEBS_LD_HSW | \ 1565 PERF_X86_EVENT_PEBS_NA_HSW) 1566 1567 static u64 get_data_src(struct perf_event *event, u64 aux) 1568 { 1569 u64 val = PERF_MEM_NA; 1570 int fl = event->hw.flags; 1571 bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC); 1572 1573 if (fl & PERF_X86_EVENT_PEBS_LDLAT) 1574 val = load_latency_data(event, aux); 1575 else if (fl & PERF_X86_EVENT_PEBS_STLAT) 1576 val = store_latency_data(event, aux); 1577 else if (fl & PERF_X86_EVENT_PEBS_LAT_HYBRID) 1578 val = x86_pmu.pebs_latency_data(event, aux); 1579 else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC)) 1580 val = precise_datala_hsw(event, aux); 1581 else if (fst) 1582 val = precise_store_data(aux); 1583 return val; 1584 } 1585 1586 static void setup_pebs_time(struct perf_event *event, 1587 struct perf_sample_data *data, 1588 u64 tsc) 1589 { 1590 /* Converting to a user-defined clock is not supported yet. */ 1591 if (event->attr.use_clockid != 0) 1592 return; 1593 1594 /* 1595 * Doesn't support the conversion when the TSC is unstable. 1596 * The TSC unstable case is a corner case and very unlikely to 1597 * happen. If it happens, the TSC in a PEBS record will be 1598 * dropped and fall back to perf_event_clock(). 1599 */ 1600 if (!using_native_sched_clock() || !sched_clock_stable()) 1601 return; 1602 1603 data->time = native_sched_clock_from_tsc(tsc) + __sched_clock_offset; 1604 data->sample_flags |= PERF_SAMPLE_TIME; 1605 } 1606 1607 #define PERF_SAMPLE_ADDR_TYPE (PERF_SAMPLE_ADDR | \ 1608 PERF_SAMPLE_PHYS_ADDR | \ 1609 PERF_SAMPLE_DATA_PAGE_SIZE) 1610 1611 static void setup_pebs_fixed_sample_data(struct perf_event *event, 1612 struct pt_regs *iregs, void *__pebs, 1613 struct perf_sample_data *data, 1614 struct pt_regs *regs) 1615 { 1616 /* 1617 * We cast to the biggest pebs_record but are careful not to 1618 * unconditionally access the 'extra' entries. 1619 */ 1620 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1621 struct pebs_record_skl *pebs = __pebs; 1622 u64 sample_type; 1623 int fll; 1624 1625 if (pebs == NULL) 1626 return; 1627 1628 sample_type = event->attr.sample_type; 1629 fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT; 1630 1631 perf_sample_data_init(data, 0, event->hw.last_period); 1632 1633 data->period = event->hw.last_period; 1634 1635 /* 1636 * Use latency for weight (only avail with PEBS-LL) 1637 */ 1638 if (fll && (sample_type & PERF_SAMPLE_WEIGHT_TYPE)) { 1639 data->weight.full = pebs->lat; 1640 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 1641 } 1642 1643 /* 1644 * data.data_src encodes the data source 1645 */ 1646 if (sample_type & PERF_SAMPLE_DATA_SRC) { 1647 data->data_src.val = get_data_src(event, pebs->dse); 1648 data->sample_flags |= PERF_SAMPLE_DATA_SRC; 1649 } 1650 1651 /* 1652 * We must however always use iregs for the unwinder to stay sane; the 1653 * record BP,SP,IP can point into thin air when the record is from a 1654 * previous PMI context or an (I)RET happened between the record and 1655 * PMI. 1656 */ 1657 if (sample_type & PERF_SAMPLE_CALLCHAIN) 1658 perf_sample_save_callchain(data, event, iregs); 1659 1660 /* 1661 * We use the interrupt regs as a base because the PEBS record does not 1662 * contain a full regs set, specifically it seems to lack segment 1663 * descriptors, which get used by things like user_mode(). 1664 * 1665 * In the simple case fix up only the IP for PERF_SAMPLE_IP. 1666 */ 1667 *regs = *iregs; 1668 1669 /* 1670 * Initialize regs_>flags from PEBS, 1671 * Clear exact bit (which uses x86 EFLAGS Reserved bit 3), 1672 * i.e., do not rely on it being zero: 1673 */ 1674 regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT; 1675 1676 if (sample_type & PERF_SAMPLE_REGS_INTR) { 1677 regs->ax = pebs->ax; 1678 regs->bx = pebs->bx; 1679 regs->cx = pebs->cx; 1680 regs->dx = pebs->dx; 1681 regs->si = pebs->si; 1682 regs->di = pebs->di; 1683 1684 regs->bp = pebs->bp; 1685 regs->sp = pebs->sp; 1686 1687 #ifndef CONFIG_X86_32 1688 regs->r8 = pebs->r8; 1689 regs->r9 = pebs->r9; 1690 regs->r10 = pebs->r10; 1691 regs->r11 = pebs->r11; 1692 regs->r12 = pebs->r12; 1693 regs->r13 = pebs->r13; 1694 regs->r14 = pebs->r14; 1695 regs->r15 = pebs->r15; 1696 #endif 1697 } 1698 1699 if (event->attr.precise_ip > 1) { 1700 /* 1701 * Haswell and later processors have an 'eventing IP' 1702 * (real IP) which fixes the off-by-1 skid in hardware. 1703 * Use it when precise_ip >= 2 : 1704 */ 1705 if (x86_pmu.intel_cap.pebs_format >= 2) { 1706 set_linear_ip(regs, pebs->real_ip); 1707 regs->flags |= PERF_EFLAGS_EXACT; 1708 } else { 1709 /* Otherwise, use PEBS off-by-1 IP: */ 1710 set_linear_ip(regs, pebs->ip); 1711 1712 /* 1713 * With precise_ip >= 2, try to fix up the off-by-1 IP 1714 * using the LBR. If successful, the fixup function 1715 * corrects regs->ip and calls set_linear_ip() on regs: 1716 */ 1717 if (intel_pmu_pebs_fixup_ip(regs)) 1718 regs->flags |= PERF_EFLAGS_EXACT; 1719 } 1720 } else { 1721 /* 1722 * When precise_ip == 1, return the PEBS off-by-1 IP, 1723 * no fixup attempted: 1724 */ 1725 set_linear_ip(regs, pebs->ip); 1726 } 1727 1728 1729 if ((sample_type & PERF_SAMPLE_ADDR_TYPE) && 1730 x86_pmu.intel_cap.pebs_format >= 1) { 1731 data->addr = pebs->dla; 1732 data->sample_flags |= PERF_SAMPLE_ADDR; 1733 } 1734 1735 if (x86_pmu.intel_cap.pebs_format >= 2) { 1736 /* Only set the TSX weight when no memory weight. */ 1737 if ((sample_type & PERF_SAMPLE_WEIGHT_TYPE) && !fll) { 1738 data->weight.full = intel_get_tsx_weight(pebs->tsx_tuning); 1739 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 1740 } 1741 if (sample_type & PERF_SAMPLE_TRANSACTION) { 1742 data->txn = intel_get_tsx_transaction(pebs->tsx_tuning, 1743 pebs->ax); 1744 data->sample_flags |= PERF_SAMPLE_TRANSACTION; 1745 } 1746 } 1747 1748 /* 1749 * v3 supplies an accurate time stamp, so we use that 1750 * for the time stamp. 1751 * 1752 * We can only do this for the default trace clock. 1753 */ 1754 if (x86_pmu.intel_cap.pebs_format >= 3) 1755 setup_pebs_time(event, data, pebs->tsc); 1756 1757 if (has_branch_stack(event)) 1758 perf_sample_save_brstack(data, event, &cpuc->lbr_stack); 1759 } 1760 1761 static void adaptive_pebs_save_regs(struct pt_regs *regs, 1762 struct pebs_gprs *gprs) 1763 { 1764 regs->ax = gprs->ax; 1765 regs->bx = gprs->bx; 1766 regs->cx = gprs->cx; 1767 regs->dx = gprs->dx; 1768 regs->si = gprs->si; 1769 regs->di = gprs->di; 1770 regs->bp = gprs->bp; 1771 regs->sp = gprs->sp; 1772 #ifndef CONFIG_X86_32 1773 regs->r8 = gprs->r8; 1774 regs->r9 = gprs->r9; 1775 regs->r10 = gprs->r10; 1776 regs->r11 = gprs->r11; 1777 regs->r12 = gprs->r12; 1778 regs->r13 = gprs->r13; 1779 regs->r14 = gprs->r14; 1780 regs->r15 = gprs->r15; 1781 #endif 1782 } 1783 1784 #define PEBS_LATENCY_MASK 0xffff 1785 #define PEBS_CACHE_LATENCY_OFFSET 32 1786 #define PEBS_RETIRE_LATENCY_OFFSET 32 1787 1788 /* 1789 * With adaptive PEBS the layout depends on what fields are configured. 1790 */ 1791 1792 static void setup_pebs_adaptive_sample_data(struct perf_event *event, 1793 struct pt_regs *iregs, void *__pebs, 1794 struct perf_sample_data *data, 1795 struct pt_regs *regs) 1796 { 1797 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1798 struct pebs_basic *basic = __pebs; 1799 void *next_record = basic + 1; 1800 u64 sample_type; 1801 u64 format_size; 1802 struct pebs_meminfo *meminfo = NULL; 1803 struct pebs_gprs *gprs = NULL; 1804 struct x86_perf_regs *perf_regs; 1805 1806 if (basic == NULL) 1807 return; 1808 1809 perf_regs = container_of(regs, struct x86_perf_regs, regs); 1810 perf_regs->xmm_regs = NULL; 1811 1812 sample_type = event->attr.sample_type; 1813 format_size = basic->format_size; 1814 perf_sample_data_init(data, 0, event->hw.last_period); 1815 data->period = event->hw.last_period; 1816 1817 setup_pebs_time(event, data, basic->tsc); 1818 1819 /* 1820 * We must however always use iregs for the unwinder to stay sane; the 1821 * record BP,SP,IP can point into thin air when the record is from a 1822 * previous PMI context or an (I)RET happened between the record and 1823 * PMI. 1824 */ 1825 if (sample_type & PERF_SAMPLE_CALLCHAIN) 1826 perf_sample_save_callchain(data, event, iregs); 1827 1828 *regs = *iregs; 1829 /* The ip in basic is EventingIP */ 1830 set_linear_ip(regs, basic->ip); 1831 regs->flags = PERF_EFLAGS_EXACT; 1832 1833 if ((sample_type & PERF_SAMPLE_WEIGHT_STRUCT) && (x86_pmu.flags & PMU_FL_RETIRE_LATENCY)) 1834 data->weight.var3_w = format_size >> PEBS_RETIRE_LATENCY_OFFSET & PEBS_LATENCY_MASK; 1835 1836 /* 1837 * The record for MEMINFO is in front of GP 1838 * But PERF_SAMPLE_TRANSACTION needs gprs->ax. 1839 * Save the pointer here but process later. 1840 */ 1841 if (format_size & PEBS_DATACFG_MEMINFO) { 1842 meminfo = next_record; 1843 next_record = meminfo + 1; 1844 } 1845 1846 if (format_size & PEBS_DATACFG_GP) { 1847 gprs = next_record; 1848 next_record = gprs + 1; 1849 1850 if (event->attr.precise_ip < 2) { 1851 set_linear_ip(regs, gprs->ip); 1852 regs->flags &= ~PERF_EFLAGS_EXACT; 1853 } 1854 1855 if (sample_type & PERF_SAMPLE_REGS_INTR) 1856 adaptive_pebs_save_regs(regs, gprs); 1857 } 1858 1859 if (format_size & PEBS_DATACFG_MEMINFO) { 1860 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) { 1861 u64 weight = meminfo->latency; 1862 1863 if (x86_pmu.flags & PMU_FL_INSTR_LATENCY) { 1864 data->weight.var2_w = weight & PEBS_LATENCY_MASK; 1865 weight >>= PEBS_CACHE_LATENCY_OFFSET; 1866 } 1867 1868 /* 1869 * Although meminfo::latency is defined as a u64, 1870 * only the lower 32 bits include the valid data 1871 * in practice on Ice Lake and earlier platforms. 1872 */ 1873 if (sample_type & PERF_SAMPLE_WEIGHT) { 1874 data->weight.full = weight ?: 1875 intel_get_tsx_weight(meminfo->tsx_tuning); 1876 } else { 1877 data->weight.var1_dw = (u32)(weight & PEBS_LATENCY_MASK) ?: 1878 intel_get_tsx_weight(meminfo->tsx_tuning); 1879 } 1880 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 1881 } 1882 1883 if (sample_type & PERF_SAMPLE_DATA_SRC) { 1884 data->data_src.val = get_data_src(event, meminfo->aux); 1885 data->sample_flags |= PERF_SAMPLE_DATA_SRC; 1886 } 1887 1888 if (sample_type & PERF_SAMPLE_ADDR_TYPE) { 1889 data->addr = meminfo->address; 1890 data->sample_flags |= PERF_SAMPLE_ADDR; 1891 } 1892 1893 if (sample_type & PERF_SAMPLE_TRANSACTION) { 1894 data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning, 1895 gprs ? gprs->ax : 0); 1896 data->sample_flags |= PERF_SAMPLE_TRANSACTION; 1897 } 1898 } 1899 1900 if (format_size & PEBS_DATACFG_XMMS) { 1901 struct pebs_xmm *xmm = next_record; 1902 1903 next_record = xmm + 1; 1904 perf_regs->xmm_regs = xmm->xmm; 1905 } 1906 1907 if (format_size & PEBS_DATACFG_LBRS) { 1908 struct lbr_entry *lbr = next_record; 1909 int num_lbr = ((format_size >> PEBS_DATACFG_LBR_SHIFT) 1910 & 0xff) + 1; 1911 next_record = next_record + num_lbr * sizeof(struct lbr_entry); 1912 1913 if (has_branch_stack(event)) { 1914 intel_pmu_store_pebs_lbrs(lbr); 1915 perf_sample_save_brstack(data, event, &cpuc->lbr_stack); 1916 } 1917 } 1918 1919 WARN_ONCE(next_record != __pebs + (format_size >> 48), 1920 "PEBS record size %llu, expected %llu, config %llx\n", 1921 format_size >> 48, 1922 (u64)(next_record - __pebs), 1923 basic->format_size); 1924 } 1925 1926 static inline void * 1927 get_next_pebs_record_by_bit(void *base, void *top, int bit) 1928 { 1929 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1930 void *at; 1931 u64 pebs_status; 1932 1933 /* 1934 * fmt0 does not have a status bitfield (does not use 1935 * perf_record_nhm format) 1936 */ 1937 if (x86_pmu.intel_cap.pebs_format < 1) 1938 return base; 1939 1940 if (base == NULL) 1941 return NULL; 1942 1943 for (at = base; at < top; at += cpuc->pebs_record_size) { 1944 unsigned long status = get_pebs_status(at); 1945 1946 if (test_bit(bit, (unsigned long *)&status)) { 1947 /* PEBS v3 has accurate status bits */ 1948 if (x86_pmu.intel_cap.pebs_format >= 3) 1949 return at; 1950 1951 if (status == (1 << bit)) 1952 return at; 1953 1954 /* clear non-PEBS bit and re-check */ 1955 pebs_status = status & cpuc->pebs_enabled; 1956 pebs_status &= PEBS_COUNTER_MASK; 1957 if (pebs_status == (1 << bit)) 1958 return at; 1959 } 1960 } 1961 return NULL; 1962 } 1963 1964 void intel_pmu_auto_reload_read(struct perf_event *event) 1965 { 1966 WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)); 1967 1968 perf_pmu_disable(event->pmu); 1969 intel_pmu_drain_pebs_buffer(); 1970 perf_pmu_enable(event->pmu); 1971 } 1972 1973 /* 1974 * Special variant of intel_pmu_save_and_restart() for auto-reload. 1975 */ 1976 static int 1977 intel_pmu_save_and_restart_reload(struct perf_event *event, int count) 1978 { 1979 struct hw_perf_event *hwc = &event->hw; 1980 int shift = 64 - x86_pmu.cntval_bits; 1981 u64 period = hwc->sample_period; 1982 u64 prev_raw_count, new_raw_count; 1983 s64 new, old; 1984 1985 WARN_ON(!period); 1986 1987 /* 1988 * drain_pebs() only happens when the PMU is disabled. 1989 */ 1990 WARN_ON(this_cpu_read(cpu_hw_events.enabled)); 1991 1992 prev_raw_count = local64_read(&hwc->prev_count); 1993 rdpmcl(hwc->event_base_rdpmc, new_raw_count); 1994 local64_set(&hwc->prev_count, new_raw_count); 1995 1996 /* 1997 * Since the counter increments a negative counter value and 1998 * overflows on the sign switch, giving the interval: 1999 * 2000 * [-period, 0] 2001 * 2002 * the difference between two consecutive reads is: 2003 * 2004 * A) value2 - value1; 2005 * when no overflows have happened in between, 2006 * 2007 * B) (0 - value1) + (value2 - (-period)); 2008 * when one overflow happened in between, 2009 * 2010 * C) (0 - value1) + (n - 1) * (period) + (value2 - (-period)); 2011 * when @n overflows happened in between. 2012 * 2013 * Here A) is the obvious difference, B) is the extension to the 2014 * discrete interval, where the first term is to the top of the 2015 * interval and the second term is from the bottom of the next 2016 * interval and C) the extension to multiple intervals, where the 2017 * middle term is the whole intervals covered. 2018 * 2019 * An equivalent of C, by reduction, is: 2020 * 2021 * value2 - value1 + n * period 2022 */ 2023 new = ((s64)(new_raw_count << shift) >> shift); 2024 old = ((s64)(prev_raw_count << shift) >> shift); 2025 local64_add(new - old + count * period, &event->count); 2026 2027 local64_set(&hwc->period_left, -new); 2028 2029 perf_event_update_userpage(event); 2030 2031 return 0; 2032 } 2033 2034 static __always_inline void 2035 __intel_pmu_pebs_event(struct perf_event *event, 2036 struct pt_regs *iregs, 2037 struct perf_sample_data *data, 2038 void *base, void *top, 2039 int bit, int count, 2040 void (*setup_sample)(struct perf_event *, 2041 struct pt_regs *, 2042 void *, 2043 struct perf_sample_data *, 2044 struct pt_regs *)) 2045 { 2046 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2047 struct hw_perf_event *hwc = &event->hw; 2048 struct x86_perf_regs perf_regs; 2049 struct pt_regs *regs = &perf_regs.regs; 2050 void *at = get_next_pebs_record_by_bit(base, top, bit); 2051 static struct pt_regs dummy_iregs; 2052 2053 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) { 2054 /* 2055 * Now, auto-reload is only enabled in fixed period mode. 2056 * The reload value is always hwc->sample_period. 2057 * May need to change it, if auto-reload is enabled in 2058 * freq mode later. 2059 */ 2060 intel_pmu_save_and_restart_reload(event, count); 2061 } else if (!intel_pmu_save_and_restart(event)) 2062 return; 2063 2064 if (!iregs) 2065 iregs = &dummy_iregs; 2066 2067 while (count > 1) { 2068 setup_sample(event, iregs, at, data, regs); 2069 perf_event_output(event, data, regs); 2070 at += cpuc->pebs_record_size; 2071 at = get_next_pebs_record_by_bit(at, top, bit); 2072 count--; 2073 } 2074 2075 setup_sample(event, iregs, at, data, regs); 2076 if (iregs == &dummy_iregs) { 2077 /* 2078 * The PEBS records may be drained in the non-overflow context, 2079 * e.g., large PEBS + context switch. Perf should treat the 2080 * last record the same as other PEBS records, and doesn't 2081 * invoke the generic overflow handler. 2082 */ 2083 perf_event_output(event, data, regs); 2084 } else { 2085 /* 2086 * All but the last records are processed. 2087 * The last one is left to be able to call the overflow handler. 2088 */ 2089 if (perf_event_overflow(event, data, regs)) 2090 x86_pmu_stop(event, 0); 2091 } 2092 } 2093 2094 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs, struct perf_sample_data *data) 2095 { 2096 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2097 struct debug_store *ds = cpuc->ds; 2098 struct perf_event *event = cpuc->events[0]; /* PMC0 only */ 2099 struct pebs_record_core *at, *top; 2100 int n; 2101 2102 if (!x86_pmu.pebs_active) 2103 return; 2104 2105 at = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base; 2106 top = (struct pebs_record_core *)(unsigned long)ds->pebs_index; 2107 2108 /* 2109 * Whatever else happens, drain the thing 2110 */ 2111 ds->pebs_index = ds->pebs_buffer_base; 2112 2113 if (!test_bit(0, cpuc->active_mask)) 2114 return; 2115 2116 WARN_ON_ONCE(!event); 2117 2118 if (!event->attr.precise_ip) 2119 return; 2120 2121 n = top - at; 2122 if (n <= 0) { 2123 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD) 2124 intel_pmu_save_and_restart_reload(event, 0); 2125 return; 2126 } 2127 2128 __intel_pmu_pebs_event(event, iregs, data, at, top, 0, n, 2129 setup_pebs_fixed_sample_data); 2130 } 2131 2132 static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, int size) 2133 { 2134 struct perf_event *event; 2135 int bit; 2136 2137 /* 2138 * The drain_pebs() could be called twice in a short period 2139 * for auto-reload event in pmu::read(). There are no 2140 * overflows have happened in between. 2141 * It needs to call intel_pmu_save_and_restart_reload() to 2142 * update the event->count for this case. 2143 */ 2144 for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled, size) { 2145 event = cpuc->events[bit]; 2146 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD) 2147 intel_pmu_save_and_restart_reload(event, 0); 2148 } 2149 } 2150 2151 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs, struct perf_sample_data *data) 2152 { 2153 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2154 struct debug_store *ds = cpuc->ds; 2155 struct perf_event *event; 2156 void *base, *at, *top; 2157 short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {}; 2158 short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {}; 2159 int bit, i, size; 2160 u64 mask; 2161 2162 if (!x86_pmu.pebs_active) 2163 return; 2164 2165 base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base; 2166 top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index; 2167 2168 ds->pebs_index = ds->pebs_buffer_base; 2169 2170 mask = (1ULL << x86_pmu.max_pebs_events) - 1; 2171 size = x86_pmu.max_pebs_events; 2172 if (x86_pmu.flags & PMU_FL_PEBS_ALL) { 2173 mask |= ((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED; 2174 size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed; 2175 } 2176 2177 if (unlikely(base >= top)) { 2178 intel_pmu_pebs_event_update_no_drain(cpuc, size); 2179 return; 2180 } 2181 2182 for (at = base; at < top; at += x86_pmu.pebs_record_size) { 2183 struct pebs_record_nhm *p = at; 2184 u64 pebs_status; 2185 2186 pebs_status = p->status & cpuc->pebs_enabled; 2187 pebs_status &= mask; 2188 2189 /* PEBS v3 has more accurate status bits */ 2190 if (x86_pmu.intel_cap.pebs_format >= 3) { 2191 for_each_set_bit(bit, (unsigned long *)&pebs_status, size) 2192 counts[bit]++; 2193 2194 continue; 2195 } 2196 2197 /* 2198 * On some CPUs the PEBS status can be zero when PEBS is 2199 * racing with clearing of GLOBAL_STATUS. 2200 * 2201 * Normally we would drop that record, but in the 2202 * case when there is only a single active PEBS event 2203 * we can assume it's for that event. 2204 */ 2205 if (!pebs_status && cpuc->pebs_enabled && 2206 !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1))) 2207 pebs_status = p->status = cpuc->pebs_enabled; 2208 2209 bit = find_first_bit((unsigned long *)&pebs_status, 2210 x86_pmu.max_pebs_events); 2211 if (bit >= x86_pmu.max_pebs_events) 2212 continue; 2213 2214 /* 2215 * The PEBS hardware does not deal well with the situation 2216 * when events happen near to each other and multiple bits 2217 * are set. But it should happen rarely. 2218 * 2219 * If these events include one PEBS and multiple non-PEBS 2220 * events, it doesn't impact PEBS record. The record will 2221 * be handled normally. (slow path) 2222 * 2223 * If these events include two or more PEBS events, the 2224 * records for the events can be collapsed into a single 2225 * one, and it's not possible to reconstruct all events 2226 * that caused the PEBS record. It's called collision. 2227 * If collision happened, the record will be dropped. 2228 */ 2229 if (pebs_status != (1ULL << bit)) { 2230 for_each_set_bit(i, (unsigned long *)&pebs_status, size) 2231 error[i]++; 2232 continue; 2233 } 2234 2235 counts[bit]++; 2236 } 2237 2238 for_each_set_bit(bit, (unsigned long *)&mask, size) { 2239 if ((counts[bit] == 0) && (error[bit] == 0)) 2240 continue; 2241 2242 event = cpuc->events[bit]; 2243 if (WARN_ON_ONCE(!event)) 2244 continue; 2245 2246 if (WARN_ON_ONCE(!event->attr.precise_ip)) 2247 continue; 2248 2249 /* log dropped samples number */ 2250 if (error[bit]) { 2251 perf_log_lost_samples(event, error[bit]); 2252 2253 if (iregs && perf_event_account_interrupt(event)) 2254 x86_pmu_stop(event, 0); 2255 } 2256 2257 if (counts[bit]) { 2258 __intel_pmu_pebs_event(event, iregs, data, base, 2259 top, bit, counts[bit], 2260 setup_pebs_fixed_sample_data); 2261 } 2262 } 2263 } 2264 2265 static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs, struct perf_sample_data *data) 2266 { 2267 short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {}; 2268 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2269 int max_pebs_events = hybrid(cpuc->pmu, max_pebs_events); 2270 int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed); 2271 struct debug_store *ds = cpuc->ds; 2272 struct perf_event *event; 2273 void *base, *at, *top; 2274 int bit, size; 2275 u64 mask; 2276 2277 if (!x86_pmu.pebs_active) 2278 return; 2279 2280 base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base; 2281 top = (struct pebs_basic *)(unsigned long)ds->pebs_index; 2282 2283 ds->pebs_index = ds->pebs_buffer_base; 2284 2285 mask = ((1ULL << max_pebs_events) - 1) | 2286 (((1ULL << num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED); 2287 size = INTEL_PMC_IDX_FIXED + num_counters_fixed; 2288 2289 if (unlikely(base >= top)) { 2290 intel_pmu_pebs_event_update_no_drain(cpuc, size); 2291 return; 2292 } 2293 2294 for (at = base; at < top; at += cpuc->pebs_record_size) { 2295 u64 pebs_status; 2296 2297 pebs_status = get_pebs_status(at) & cpuc->pebs_enabled; 2298 pebs_status &= mask; 2299 2300 for_each_set_bit(bit, (unsigned long *)&pebs_status, size) 2301 counts[bit]++; 2302 } 2303 2304 for_each_set_bit(bit, (unsigned long *)&mask, size) { 2305 if (counts[bit] == 0) 2306 continue; 2307 2308 event = cpuc->events[bit]; 2309 if (WARN_ON_ONCE(!event)) 2310 continue; 2311 2312 if (WARN_ON_ONCE(!event->attr.precise_ip)) 2313 continue; 2314 2315 __intel_pmu_pebs_event(event, iregs, data, base, 2316 top, bit, counts[bit], 2317 setup_pebs_adaptive_sample_data); 2318 } 2319 } 2320 2321 /* 2322 * BTS, PEBS probe and setup 2323 */ 2324 2325 void __init intel_ds_init(void) 2326 { 2327 /* 2328 * No support for 32bit formats 2329 */ 2330 if (!boot_cpu_has(X86_FEATURE_DTES64)) 2331 return; 2332 2333 x86_pmu.bts = boot_cpu_has(X86_FEATURE_BTS); 2334 x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS); 2335 x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE; 2336 if (x86_pmu.version <= 4) 2337 x86_pmu.pebs_no_isolation = 1; 2338 2339 if (x86_pmu.pebs) { 2340 char pebs_type = x86_pmu.intel_cap.pebs_trap ? '+' : '-'; 2341 char *pebs_qual = ""; 2342 int format = x86_pmu.intel_cap.pebs_format; 2343 2344 if (format < 4) 2345 x86_pmu.intel_cap.pebs_baseline = 0; 2346 2347 switch (format) { 2348 case 0: 2349 pr_cont("PEBS fmt0%c, ", pebs_type); 2350 x86_pmu.pebs_record_size = sizeof(struct pebs_record_core); 2351 /* 2352 * Using >PAGE_SIZE buffers makes the WRMSR to 2353 * PERF_GLOBAL_CTRL in intel_pmu_enable_all() 2354 * mysteriously hang on Core2. 2355 * 2356 * As a workaround, we don't do this. 2357 */ 2358 x86_pmu.pebs_buffer_size = PAGE_SIZE; 2359 x86_pmu.drain_pebs = intel_pmu_drain_pebs_core; 2360 break; 2361 2362 case 1: 2363 pr_cont("PEBS fmt1%c, ", pebs_type); 2364 x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm); 2365 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; 2366 break; 2367 2368 case 2: 2369 pr_cont("PEBS fmt2%c, ", pebs_type); 2370 x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw); 2371 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; 2372 break; 2373 2374 case 3: 2375 pr_cont("PEBS fmt3%c, ", pebs_type); 2376 x86_pmu.pebs_record_size = 2377 sizeof(struct pebs_record_skl); 2378 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; 2379 x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME; 2380 break; 2381 2382 case 5: 2383 x86_pmu.pebs_ept = 1; 2384 fallthrough; 2385 case 4: 2386 x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl; 2387 x86_pmu.pebs_record_size = sizeof(struct pebs_basic); 2388 if (x86_pmu.intel_cap.pebs_baseline) { 2389 x86_pmu.large_pebs_flags |= 2390 PERF_SAMPLE_BRANCH_STACK | 2391 PERF_SAMPLE_TIME; 2392 x86_pmu.flags |= PMU_FL_PEBS_ALL; 2393 x86_pmu.pebs_capable = ~0ULL; 2394 pebs_qual = "-baseline"; 2395 x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_EXTENDED_REGS; 2396 } else { 2397 /* Only basic record supported */ 2398 x86_pmu.large_pebs_flags &= 2399 ~(PERF_SAMPLE_ADDR | 2400 PERF_SAMPLE_TIME | 2401 PERF_SAMPLE_DATA_SRC | 2402 PERF_SAMPLE_TRANSACTION | 2403 PERF_SAMPLE_REGS_USER | 2404 PERF_SAMPLE_REGS_INTR); 2405 } 2406 pr_cont("PEBS fmt4%c%s, ", pebs_type, pebs_qual); 2407 2408 if (!is_hybrid() && x86_pmu.intel_cap.pebs_output_pt_available) { 2409 pr_cont("PEBS-via-PT, "); 2410 x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_AUX_OUTPUT; 2411 } 2412 2413 break; 2414 2415 default: 2416 pr_cont("no PEBS fmt%d%c, ", format, pebs_type); 2417 x86_pmu.pebs = 0; 2418 } 2419 } 2420 } 2421 2422 void perf_restore_debug_store(void) 2423 { 2424 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds); 2425 2426 if (!x86_pmu.bts && !x86_pmu.pebs) 2427 return; 2428 2429 wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds); 2430 } 2431