1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/bitops.h> 3 #include <linux/types.h> 4 #include <linux/slab.h> 5 6 #include <asm/cpu_entry_area.h> 7 #include <asm/perf_event.h> 8 #include <asm/tlbflush.h> 9 #include <asm/insn.h> 10 #include <asm/io.h> 11 12 #include "../perf_event.h" 13 14 /* Waste a full page so it can be mapped into the cpu_entry_area */ 15 DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store); 16 17 /* The size of a BTS record in bytes: */ 18 #define BTS_RECORD_SIZE 24 19 20 #define PEBS_FIXUP_SIZE PAGE_SIZE 21 22 /* 23 * pebs_record_32 for p4 and core not supported 24 25 struct pebs_record_32 { 26 u32 flags, ip; 27 u32 ax, bc, cx, dx; 28 u32 si, di, bp, sp; 29 }; 30 31 */ 32 33 union intel_x86_pebs_dse { 34 u64 val; 35 struct { 36 unsigned int ld_dse:4; 37 unsigned int ld_stlb_miss:1; 38 unsigned int ld_locked:1; 39 unsigned int ld_reserved:26; 40 }; 41 struct { 42 unsigned int st_l1d_hit:1; 43 unsigned int st_reserved1:3; 44 unsigned int st_stlb_miss:1; 45 unsigned int st_locked:1; 46 unsigned int st_reserved2:26; 47 }; 48 }; 49 50 51 /* 52 * Map PEBS Load Latency Data Source encodings to generic 53 * memory data source information 54 */ 55 #define P(a, b) PERF_MEM_S(a, b) 56 #define OP_LH (P(OP, LOAD) | P(LVL, HIT)) 57 #define LEVEL(x) P(LVLNUM, x) 58 #define REM P(REMOTE, REMOTE) 59 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS)) 60 61 /* Version for Sandy Bridge and later */ 62 static u64 pebs_data_source[] = { 63 P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */ 64 OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x01: L1 local */ 65 OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */ 66 OP_LH | P(LVL, L2) | LEVEL(L2) | P(SNOOP, NONE), /* 0x03: L2 hit */ 67 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, NONE), /* 0x04: L3 hit */ 68 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, MISS), /* 0x05: L3 hit, snoop miss */ 69 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT), /* 0x06: L3 hit, snoop hit */ 70 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x07: L3 hit, snoop hitm */ 71 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x08: L3 miss snoop hit */ 72 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/ 73 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, HIT), /* 0x0a: L3 miss, shared */ 74 OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x0b: L3 miss, shared */ 75 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | SNOOP_NONE_MISS, /* 0x0c: L3 miss, excl */ 76 OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */ 77 OP_LH | P(LVL, IO) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */ 78 OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */ 79 }; 80 81 /* Patch up minor differences in the bits */ 82 void __init intel_pmu_pebs_data_source_nhm(void) 83 { 84 pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT); 85 pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); 86 pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); 87 } 88 89 void __init intel_pmu_pebs_data_source_skl(bool pmem) 90 { 91 u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4); 92 93 pebs_data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT); 94 pebs_data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT); 95 pebs_data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE); 96 pebs_data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD); 97 pebs_data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM); 98 } 99 100 static u64 precise_store_data(u64 status) 101 { 102 union intel_x86_pebs_dse dse; 103 u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2); 104 105 dse.val = status; 106 107 /* 108 * bit 4: TLB access 109 * 1 = stored missed 2nd level TLB 110 * 111 * so it either hit the walker or the OS 112 * otherwise hit 2nd level TLB 113 */ 114 if (dse.st_stlb_miss) 115 val |= P(TLB, MISS); 116 else 117 val |= P(TLB, HIT); 118 119 /* 120 * bit 0: hit L1 data cache 121 * if not set, then all we know is that 122 * it missed L1D 123 */ 124 if (dse.st_l1d_hit) 125 val |= P(LVL, HIT); 126 else 127 val |= P(LVL, MISS); 128 129 /* 130 * bit 5: Locked prefix 131 */ 132 if (dse.st_locked) 133 val |= P(LOCK, LOCKED); 134 135 return val; 136 } 137 138 static u64 precise_datala_hsw(struct perf_event *event, u64 status) 139 { 140 union perf_mem_data_src dse; 141 142 dse.val = PERF_MEM_NA; 143 144 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) 145 dse.mem_op = PERF_MEM_OP_STORE; 146 else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW) 147 dse.mem_op = PERF_MEM_OP_LOAD; 148 149 /* 150 * L1 info only valid for following events: 151 * 152 * MEM_UOPS_RETIRED.STLB_MISS_STORES 153 * MEM_UOPS_RETIRED.LOCK_STORES 154 * MEM_UOPS_RETIRED.SPLIT_STORES 155 * MEM_UOPS_RETIRED.ALL_STORES 156 */ 157 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) { 158 if (status & 1) 159 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT; 160 else 161 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS; 162 } 163 return dse.val; 164 } 165 166 static u64 load_latency_data(u64 status) 167 { 168 union intel_x86_pebs_dse dse; 169 u64 val; 170 171 dse.val = status; 172 173 /* 174 * use the mapping table for bit 0-3 175 */ 176 val = pebs_data_source[dse.ld_dse]; 177 178 /* 179 * Nehalem models do not support TLB, Lock infos 180 */ 181 if (x86_pmu.pebs_no_tlb) { 182 val |= P(TLB, NA) | P(LOCK, NA); 183 return val; 184 } 185 /* 186 * bit 4: TLB access 187 * 0 = did not miss 2nd level TLB 188 * 1 = missed 2nd level TLB 189 */ 190 if (dse.ld_stlb_miss) 191 val |= P(TLB, MISS) | P(TLB, L2); 192 else 193 val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2); 194 195 /* 196 * bit 5: locked prefix 197 */ 198 if (dse.ld_locked) 199 val |= P(LOCK, LOCKED); 200 201 return val; 202 } 203 204 struct pebs_record_core { 205 u64 flags, ip; 206 u64 ax, bx, cx, dx; 207 u64 si, di, bp, sp; 208 u64 r8, r9, r10, r11; 209 u64 r12, r13, r14, r15; 210 }; 211 212 struct pebs_record_nhm { 213 u64 flags, ip; 214 u64 ax, bx, cx, dx; 215 u64 si, di, bp, sp; 216 u64 r8, r9, r10, r11; 217 u64 r12, r13, r14, r15; 218 u64 status, dla, dse, lat; 219 }; 220 221 /* 222 * Same as pebs_record_nhm, with two additional fields. 223 */ 224 struct pebs_record_hsw { 225 u64 flags, ip; 226 u64 ax, bx, cx, dx; 227 u64 si, di, bp, sp; 228 u64 r8, r9, r10, r11; 229 u64 r12, r13, r14, r15; 230 u64 status, dla, dse, lat; 231 u64 real_ip, tsx_tuning; 232 }; 233 234 union hsw_tsx_tuning { 235 struct { 236 u32 cycles_last_block : 32, 237 hle_abort : 1, 238 rtm_abort : 1, 239 instruction_abort : 1, 240 non_instruction_abort : 1, 241 retry : 1, 242 data_conflict : 1, 243 capacity_writes : 1, 244 capacity_reads : 1; 245 }; 246 u64 value; 247 }; 248 249 #define PEBS_HSW_TSX_FLAGS 0xff00000000ULL 250 251 /* Same as HSW, plus TSC */ 252 253 struct pebs_record_skl { 254 u64 flags, ip; 255 u64 ax, bx, cx, dx; 256 u64 si, di, bp, sp; 257 u64 r8, r9, r10, r11; 258 u64 r12, r13, r14, r15; 259 u64 status, dla, dse, lat; 260 u64 real_ip, tsx_tuning; 261 u64 tsc; 262 }; 263 264 void init_debug_store_on_cpu(int cpu) 265 { 266 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds; 267 268 if (!ds) 269 return; 270 271 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 272 (u32)((u64)(unsigned long)ds), 273 (u32)((u64)(unsigned long)ds >> 32)); 274 } 275 276 void fini_debug_store_on_cpu(int cpu) 277 { 278 if (!per_cpu(cpu_hw_events, cpu).ds) 279 return; 280 281 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0); 282 } 283 284 static DEFINE_PER_CPU(void *, insn_buffer); 285 286 static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot) 287 { 288 unsigned long start = (unsigned long)cea; 289 phys_addr_t pa; 290 size_t msz = 0; 291 292 pa = virt_to_phys(addr); 293 294 preempt_disable(); 295 for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE) 296 cea_set_pte(cea, pa, prot); 297 298 /* 299 * This is a cross-CPU update of the cpu_entry_area, we must shoot down 300 * all TLB entries for it. 301 */ 302 flush_tlb_kernel_range(start, start + size); 303 preempt_enable(); 304 } 305 306 static void ds_clear_cea(void *cea, size_t size) 307 { 308 unsigned long start = (unsigned long)cea; 309 size_t msz = 0; 310 311 preempt_disable(); 312 for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE) 313 cea_set_pte(cea, 0, PAGE_NONE); 314 315 flush_tlb_kernel_range(start, start + size); 316 preempt_enable(); 317 } 318 319 static void *dsalloc_pages(size_t size, gfp_t flags, int cpu) 320 { 321 unsigned int order = get_order(size); 322 int node = cpu_to_node(cpu); 323 struct page *page; 324 325 page = __alloc_pages_node(node, flags | __GFP_ZERO, order); 326 return page ? page_address(page) : NULL; 327 } 328 329 static void dsfree_pages(const void *buffer, size_t size) 330 { 331 if (buffer) 332 free_pages((unsigned long)buffer, get_order(size)); 333 } 334 335 static int alloc_pebs_buffer(int cpu) 336 { 337 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); 338 struct debug_store *ds = hwev->ds; 339 size_t bsiz = x86_pmu.pebs_buffer_size; 340 int max, node = cpu_to_node(cpu); 341 void *buffer, *insn_buff, *cea; 342 343 if (!x86_pmu.pebs) 344 return 0; 345 346 buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu); 347 if (unlikely(!buffer)) 348 return -ENOMEM; 349 350 /* 351 * HSW+ already provides us the eventing ip; no need to allocate this 352 * buffer then. 353 */ 354 if (x86_pmu.intel_cap.pebs_format < 2) { 355 insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node); 356 if (!insn_buff) { 357 dsfree_pages(buffer, bsiz); 358 return -ENOMEM; 359 } 360 per_cpu(insn_buffer, cpu) = insn_buff; 361 } 362 hwev->ds_pebs_vaddr = buffer; 363 /* Update the cpu entry area mapping */ 364 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer; 365 ds->pebs_buffer_base = (unsigned long) cea; 366 ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL); 367 ds->pebs_index = ds->pebs_buffer_base; 368 max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size); 369 ds->pebs_absolute_maximum = ds->pebs_buffer_base + max; 370 return 0; 371 } 372 373 static void release_pebs_buffer(int cpu) 374 { 375 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); 376 void *cea; 377 378 if (!x86_pmu.pebs) 379 return; 380 381 kfree(per_cpu(insn_buffer, cpu)); 382 per_cpu(insn_buffer, cpu) = NULL; 383 384 /* Clear the fixmap */ 385 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer; 386 ds_clear_cea(cea, x86_pmu.pebs_buffer_size); 387 dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size); 388 hwev->ds_pebs_vaddr = NULL; 389 } 390 391 static int alloc_bts_buffer(int cpu) 392 { 393 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); 394 struct debug_store *ds = hwev->ds; 395 void *buffer, *cea; 396 int max; 397 398 if (!x86_pmu.bts) 399 return 0; 400 401 buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu); 402 if (unlikely(!buffer)) { 403 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__); 404 return -ENOMEM; 405 } 406 hwev->ds_bts_vaddr = buffer; 407 /* Update the fixmap */ 408 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer; 409 ds->bts_buffer_base = (unsigned long) cea; 410 ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL); 411 ds->bts_index = ds->bts_buffer_base; 412 max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE; 413 ds->bts_absolute_maximum = ds->bts_buffer_base + 414 max * BTS_RECORD_SIZE; 415 ds->bts_interrupt_threshold = ds->bts_absolute_maximum - 416 (max / 16) * BTS_RECORD_SIZE; 417 return 0; 418 } 419 420 static void release_bts_buffer(int cpu) 421 { 422 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); 423 void *cea; 424 425 if (!x86_pmu.bts) 426 return; 427 428 /* Clear the fixmap */ 429 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer; 430 ds_clear_cea(cea, BTS_BUFFER_SIZE); 431 dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE); 432 hwev->ds_bts_vaddr = NULL; 433 } 434 435 static int alloc_ds_buffer(int cpu) 436 { 437 struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store; 438 439 memset(ds, 0, sizeof(*ds)); 440 per_cpu(cpu_hw_events, cpu).ds = ds; 441 return 0; 442 } 443 444 static void release_ds_buffer(int cpu) 445 { 446 per_cpu(cpu_hw_events, cpu).ds = NULL; 447 } 448 449 void release_ds_buffers(void) 450 { 451 int cpu; 452 453 if (!x86_pmu.bts && !x86_pmu.pebs) 454 return; 455 456 for_each_possible_cpu(cpu) 457 release_ds_buffer(cpu); 458 459 for_each_possible_cpu(cpu) { 460 /* 461 * Again, ignore errors from offline CPUs, they will no longer 462 * observe cpu_hw_events.ds and not program the DS_AREA when 463 * they come up. 464 */ 465 fini_debug_store_on_cpu(cpu); 466 } 467 468 for_each_possible_cpu(cpu) { 469 release_pebs_buffer(cpu); 470 release_bts_buffer(cpu); 471 } 472 } 473 474 void reserve_ds_buffers(void) 475 { 476 int bts_err = 0, pebs_err = 0; 477 int cpu; 478 479 x86_pmu.bts_active = 0; 480 x86_pmu.pebs_active = 0; 481 482 if (!x86_pmu.bts && !x86_pmu.pebs) 483 return; 484 485 if (!x86_pmu.bts) 486 bts_err = 1; 487 488 if (!x86_pmu.pebs) 489 pebs_err = 1; 490 491 for_each_possible_cpu(cpu) { 492 if (alloc_ds_buffer(cpu)) { 493 bts_err = 1; 494 pebs_err = 1; 495 } 496 497 if (!bts_err && alloc_bts_buffer(cpu)) 498 bts_err = 1; 499 500 if (!pebs_err && alloc_pebs_buffer(cpu)) 501 pebs_err = 1; 502 503 if (bts_err && pebs_err) 504 break; 505 } 506 507 if (bts_err) { 508 for_each_possible_cpu(cpu) 509 release_bts_buffer(cpu); 510 } 511 512 if (pebs_err) { 513 for_each_possible_cpu(cpu) 514 release_pebs_buffer(cpu); 515 } 516 517 if (bts_err && pebs_err) { 518 for_each_possible_cpu(cpu) 519 release_ds_buffer(cpu); 520 } else { 521 if (x86_pmu.bts && !bts_err) 522 x86_pmu.bts_active = 1; 523 524 if (x86_pmu.pebs && !pebs_err) 525 x86_pmu.pebs_active = 1; 526 527 for_each_possible_cpu(cpu) { 528 /* 529 * Ignores wrmsr_on_cpu() errors for offline CPUs they 530 * will get this call through intel_pmu_cpu_starting(). 531 */ 532 init_debug_store_on_cpu(cpu); 533 } 534 } 535 } 536 537 /* 538 * BTS 539 */ 540 541 struct event_constraint bts_constraint = 542 EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0); 543 544 void intel_pmu_enable_bts(u64 config) 545 { 546 unsigned long debugctlmsr; 547 548 debugctlmsr = get_debugctlmsr(); 549 550 debugctlmsr |= DEBUGCTLMSR_TR; 551 debugctlmsr |= DEBUGCTLMSR_BTS; 552 if (config & ARCH_PERFMON_EVENTSEL_INT) 553 debugctlmsr |= DEBUGCTLMSR_BTINT; 554 555 if (!(config & ARCH_PERFMON_EVENTSEL_OS)) 556 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS; 557 558 if (!(config & ARCH_PERFMON_EVENTSEL_USR)) 559 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR; 560 561 update_debugctlmsr(debugctlmsr); 562 } 563 564 void intel_pmu_disable_bts(void) 565 { 566 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 567 unsigned long debugctlmsr; 568 569 if (!cpuc->ds) 570 return; 571 572 debugctlmsr = get_debugctlmsr(); 573 574 debugctlmsr &= 575 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT | 576 DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR); 577 578 update_debugctlmsr(debugctlmsr); 579 } 580 581 int intel_pmu_drain_bts_buffer(void) 582 { 583 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 584 struct debug_store *ds = cpuc->ds; 585 struct bts_record { 586 u64 from; 587 u64 to; 588 u64 flags; 589 }; 590 struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS]; 591 struct bts_record *at, *base, *top; 592 struct perf_output_handle handle; 593 struct perf_event_header header; 594 struct perf_sample_data data; 595 unsigned long skip = 0; 596 struct pt_regs regs; 597 598 if (!event) 599 return 0; 600 601 if (!x86_pmu.bts_active) 602 return 0; 603 604 base = (struct bts_record *)(unsigned long)ds->bts_buffer_base; 605 top = (struct bts_record *)(unsigned long)ds->bts_index; 606 607 if (top <= base) 608 return 0; 609 610 memset(®s, 0, sizeof(regs)); 611 612 ds->bts_index = ds->bts_buffer_base; 613 614 perf_sample_data_init(&data, 0, event->hw.last_period); 615 616 /* 617 * BTS leaks kernel addresses in branches across the cpl boundary, 618 * such as traps or system calls, so unless the user is asking for 619 * kernel tracing (and right now it's not possible), we'd need to 620 * filter them out. But first we need to count how many of those we 621 * have in the current batch. This is an extra O(n) pass, however, 622 * it's much faster than the other one especially considering that 623 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the 624 * alloc_bts_buffer()). 625 */ 626 for (at = base; at < top; at++) { 627 /* 628 * Note that right now *this* BTS code only works if 629 * attr::exclude_kernel is set, but let's keep this extra 630 * check here in case that changes. 631 */ 632 if (event->attr.exclude_kernel && 633 (kernel_ip(at->from) || kernel_ip(at->to))) 634 skip++; 635 } 636 637 /* 638 * Prepare a generic sample, i.e. fill in the invariant fields. 639 * We will overwrite the from and to address before we output 640 * the sample. 641 */ 642 rcu_read_lock(); 643 perf_prepare_sample(&header, &data, event, ®s); 644 645 if (perf_output_begin(&handle, &data, event, 646 header.size * (top - base - skip))) 647 goto unlock; 648 649 for (at = base; at < top; at++) { 650 /* Filter out any records that contain kernel addresses. */ 651 if (event->attr.exclude_kernel && 652 (kernel_ip(at->from) || kernel_ip(at->to))) 653 continue; 654 655 data.ip = at->from; 656 data.addr = at->to; 657 658 perf_output_sample(&handle, &header, &data, event); 659 } 660 661 perf_output_end(&handle); 662 663 /* There's new data available. */ 664 event->hw.interrupts++; 665 event->pending_kill = POLL_IN; 666 unlock: 667 rcu_read_unlock(); 668 return 1; 669 } 670 671 static inline void intel_pmu_drain_pebs_buffer(void) 672 { 673 struct perf_sample_data data; 674 675 x86_pmu.drain_pebs(NULL, &data); 676 } 677 678 /* 679 * PEBS 680 */ 681 struct event_constraint intel_core2_pebs_event_constraints[] = { 682 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */ 683 INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */ 684 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */ 685 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */ 686 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */ 687 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 688 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01), 689 EVENT_CONSTRAINT_END 690 }; 691 692 struct event_constraint intel_atom_pebs_event_constraints[] = { 693 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */ 694 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */ 695 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */ 696 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 697 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01), 698 /* Allow all events as PEBS with no flags */ 699 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), 700 EVENT_CONSTRAINT_END 701 }; 702 703 struct event_constraint intel_slm_pebs_event_constraints[] = { 704 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 705 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1), 706 /* Allow all events as PEBS with no flags */ 707 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), 708 EVENT_CONSTRAINT_END 709 }; 710 711 struct event_constraint intel_glm_pebs_event_constraints[] = { 712 /* Allow all events as PEBS with no flags */ 713 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), 714 EVENT_CONSTRAINT_END 715 }; 716 717 struct event_constraint intel_nehalem_pebs_event_constraints[] = { 718 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */ 719 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */ 720 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */ 721 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */ 722 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */ 723 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */ 724 INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */ 725 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */ 726 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */ 727 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */ 728 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */ 729 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 730 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f), 731 EVENT_CONSTRAINT_END 732 }; 733 734 struct event_constraint intel_westmere_pebs_event_constraints[] = { 735 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */ 736 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */ 737 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */ 738 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */ 739 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */ 740 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */ 741 INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */ 742 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */ 743 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */ 744 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */ 745 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */ 746 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 747 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f), 748 EVENT_CONSTRAINT_END 749 }; 750 751 struct event_constraint intel_snb_pebs_event_constraints[] = { 752 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ 753 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */ 754 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */ 755 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ 756 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), 757 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */ 758 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 759 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 760 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 761 /* Allow all events as PEBS with no flags */ 762 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 763 EVENT_CONSTRAINT_END 764 }; 765 766 struct event_constraint intel_ivb_pebs_event_constraints[] = { 767 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ 768 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */ 769 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */ 770 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ 771 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), 772 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ 773 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), 774 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */ 775 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 776 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 777 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 778 /* Allow all events as PEBS with no flags */ 779 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 780 EVENT_CONSTRAINT_END 781 }; 782 783 struct event_constraint intel_hsw_pebs_event_constraints[] = { 784 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ 785 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */ 786 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ 787 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), 788 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ 789 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), 790 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */ 791 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */ 792 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */ 793 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */ 794 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */ 795 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */ 796 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */ 797 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */ 798 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 799 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */ 800 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */ 801 /* Allow all events as PEBS with no flags */ 802 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 803 EVENT_CONSTRAINT_END 804 }; 805 806 struct event_constraint intel_bdw_pebs_event_constraints[] = { 807 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ 808 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */ 809 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ 810 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), 811 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ 812 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), 813 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */ 814 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */ 815 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */ 816 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */ 817 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */ 818 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */ 819 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */ 820 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */ 821 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 822 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */ 823 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */ 824 /* Allow all events as PEBS with no flags */ 825 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 826 EVENT_CONSTRAINT_END 827 }; 828 829 830 struct event_constraint intel_skl_pebs_event_constraints[] = { 831 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */ 832 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ 833 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), 834 /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */ 835 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f), 836 INTEL_PLD_CONSTRAINT(0x1cd, 0xf), /* MEM_TRANS_RETIRED.* */ 837 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */ 838 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */ 839 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */ 840 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */ 841 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */ 842 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */ 843 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */ 844 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */ 845 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */ 846 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */ 847 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_L3_MISS_RETIRED.* */ 848 /* Allow all events as PEBS with no flags */ 849 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 850 EVENT_CONSTRAINT_END 851 }; 852 853 struct event_constraint intel_icl_pebs_event_constraints[] = { 854 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */ 855 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL), /* SLOTS */ 856 857 INTEL_PLD_CONSTRAINT(0x1cd, 0xff), /* MEM_TRANS_RETIRED.LOAD_LATENCY */ 858 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x1d0, 0xf), /* MEM_INST_RETIRED.LOAD */ 859 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x2d0, 0xf), /* MEM_INST_RETIRED.STORE */ 860 861 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */ 862 863 INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */ 864 865 /* 866 * Everything else is handled by PMU_FL_PEBS_ALL, because we 867 * need the full constraints from the main table. 868 */ 869 870 EVENT_CONSTRAINT_END 871 }; 872 873 struct event_constraint *intel_pebs_constraints(struct perf_event *event) 874 { 875 struct event_constraint *c; 876 877 if (!event->attr.precise_ip) 878 return NULL; 879 880 if (x86_pmu.pebs_constraints) { 881 for_each_event_constraint(c, x86_pmu.pebs_constraints) { 882 if (constraint_match(c, event->hw.config)) { 883 event->hw.flags |= c->flags; 884 return c; 885 } 886 } 887 } 888 889 /* 890 * Extended PEBS support 891 * Makes the PEBS code search the normal constraints. 892 */ 893 if (x86_pmu.flags & PMU_FL_PEBS_ALL) 894 return NULL; 895 896 return &emptyconstraint; 897 } 898 899 /* 900 * We need the sched_task callback even for per-cpu events when we use 901 * the large interrupt threshold, such that we can provide PID and TID 902 * to PEBS samples. 903 */ 904 static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc) 905 { 906 if (cpuc->n_pebs == cpuc->n_pebs_via_pt) 907 return false; 908 909 return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs); 910 } 911 912 void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in) 913 { 914 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 915 916 if (!sched_in && pebs_needs_sched_cb(cpuc)) 917 intel_pmu_drain_pebs_buffer(); 918 } 919 920 static inline void pebs_update_threshold(struct cpu_hw_events *cpuc) 921 { 922 struct debug_store *ds = cpuc->ds; 923 u64 threshold; 924 int reserved; 925 926 if (cpuc->n_pebs_via_pt) 927 return; 928 929 if (x86_pmu.flags & PMU_FL_PEBS_ALL) 930 reserved = x86_pmu.max_pebs_events + x86_pmu.num_counters_fixed; 931 else 932 reserved = x86_pmu.max_pebs_events; 933 934 if (cpuc->n_pebs == cpuc->n_large_pebs) { 935 threshold = ds->pebs_absolute_maximum - 936 reserved * cpuc->pebs_record_size; 937 } else { 938 threshold = ds->pebs_buffer_base + cpuc->pebs_record_size; 939 } 940 941 ds->pebs_interrupt_threshold = threshold; 942 } 943 944 static void adaptive_pebs_record_size_update(void) 945 { 946 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 947 u64 pebs_data_cfg = cpuc->pebs_data_cfg; 948 int sz = sizeof(struct pebs_basic); 949 950 if (pebs_data_cfg & PEBS_DATACFG_MEMINFO) 951 sz += sizeof(struct pebs_meminfo); 952 if (pebs_data_cfg & PEBS_DATACFG_GP) 953 sz += sizeof(struct pebs_gprs); 954 if (pebs_data_cfg & PEBS_DATACFG_XMMS) 955 sz += sizeof(struct pebs_xmm); 956 if (pebs_data_cfg & PEBS_DATACFG_LBRS) 957 sz += x86_pmu.lbr_nr * sizeof(struct lbr_entry); 958 959 cpuc->pebs_record_size = sz; 960 } 961 962 #define PERF_PEBS_MEMINFO_TYPE (PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC | \ 963 PERF_SAMPLE_PHYS_ADDR | PERF_SAMPLE_WEIGHT | \ 964 PERF_SAMPLE_TRANSACTION | \ 965 PERF_SAMPLE_DATA_PAGE_SIZE) 966 967 static u64 pebs_update_adaptive_cfg(struct perf_event *event) 968 { 969 struct perf_event_attr *attr = &event->attr; 970 u64 sample_type = attr->sample_type; 971 u64 pebs_data_cfg = 0; 972 bool gprs, tsx_weight; 973 974 if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) && 975 attr->precise_ip > 1) 976 return pebs_data_cfg; 977 978 if (sample_type & PERF_PEBS_MEMINFO_TYPE) 979 pebs_data_cfg |= PEBS_DATACFG_MEMINFO; 980 981 /* 982 * We need GPRs when: 983 * + user requested them 984 * + precise_ip < 2 for the non event IP 985 * + For RTM TSX weight we need GPRs for the abort code. 986 */ 987 gprs = (sample_type & PERF_SAMPLE_REGS_INTR) && 988 (attr->sample_regs_intr & PEBS_GP_REGS); 989 990 tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT) && 991 ((attr->config & INTEL_ARCH_EVENT_MASK) == 992 x86_pmu.rtm_abort_event); 993 994 if (gprs || (attr->precise_ip < 2) || tsx_weight) 995 pebs_data_cfg |= PEBS_DATACFG_GP; 996 997 if ((sample_type & PERF_SAMPLE_REGS_INTR) && 998 (attr->sample_regs_intr & PERF_REG_EXTENDED_MASK)) 999 pebs_data_cfg |= PEBS_DATACFG_XMMS; 1000 1001 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 1002 /* 1003 * For now always log all LBRs. Could configure this 1004 * later. 1005 */ 1006 pebs_data_cfg |= PEBS_DATACFG_LBRS | 1007 ((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT); 1008 } 1009 1010 return pebs_data_cfg; 1011 } 1012 1013 static void 1014 pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc, 1015 struct perf_event *event, bool add) 1016 { 1017 struct pmu *pmu = event->ctx->pmu; 1018 /* 1019 * Make sure we get updated with the first PEBS 1020 * event. It will trigger also during removal, but 1021 * that does not hurt: 1022 */ 1023 bool update = cpuc->n_pebs == 1; 1024 1025 if (needed_cb != pebs_needs_sched_cb(cpuc)) { 1026 if (!needed_cb) 1027 perf_sched_cb_inc(pmu); 1028 else 1029 perf_sched_cb_dec(pmu); 1030 1031 update = true; 1032 } 1033 1034 /* 1035 * The PEBS record doesn't shrink on pmu::del(). Doing so would require 1036 * iterating all remaining PEBS events to reconstruct the config. 1037 */ 1038 if (x86_pmu.intel_cap.pebs_baseline && add) { 1039 u64 pebs_data_cfg; 1040 1041 /* Clear pebs_data_cfg and pebs_record_size for first PEBS. */ 1042 if (cpuc->n_pebs == 1) { 1043 cpuc->pebs_data_cfg = 0; 1044 cpuc->pebs_record_size = sizeof(struct pebs_basic); 1045 } 1046 1047 pebs_data_cfg = pebs_update_adaptive_cfg(event); 1048 1049 /* Update pebs_record_size if new event requires more data. */ 1050 if (pebs_data_cfg & ~cpuc->pebs_data_cfg) { 1051 cpuc->pebs_data_cfg |= pebs_data_cfg; 1052 adaptive_pebs_record_size_update(); 1053 update = true; 1054 } 1055 } 1056 1057 if (update) 1058 pebs_update_threshold(cpuc); 1059 } 1060 1061 void intel_pmu_pebs_add(struct perf_event *event) 1062 { 1063 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1064 struct hw_perf_event *hwc = &event->hw; 1065 bool needed_cb = pebs_needs_sched_cb(cpuc); 1066 1067 cpuc->n_pebs++; 1068 if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS) 1069 cpuc->n_large_pebs++; 1070 if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT) 1071 cpuc->n_pebs_via_pt++; 1072 1073 pebs_update_state(needed_cb, cpuc, event, true); 1074 } 1075 1076 static void intel_pmu_pebs_via_pt_disable(struct perf_event *event) 1077 { 1078 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1079 1080 if (!is_pebs_pt(event)) 1081 return; 1082 1083 if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK)) 1084 cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK; 1085 } 1086 1087 static void intel_pmu_pebs_via_pt_enable(struct perf_event *event) 1088 { 1089 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1090 struct hw_perf_event *hwc = &event->hw; 1091 struct debug_store *ds = cpuc->ds; 1092 1093 if (!is_pebs_pt(event)) 1094 return; 1095 1096 if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS)) 1097 cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD; 1098 1099 cpuc->pebs_enabled |= PEBS_OUTPUT_PT; 1100 1101 wrmsrl(MSR_RELOAD_PMC0 + hwc->idx, ds->pebs_event_reset[hwc->idx]); 1102 } 1103 1104 void intel_pmu_pebs_enable(struct perf_event *event) 1105 { 1106 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1107 struct hw_perf_event *hwc = &event->hw; 1108 struct debug_store *ds = cpuc->ds; 1109 1110 hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT; 1111 1112 cpuc->pebs_enabled |= 1ULL << hwc->idx; 1113 1114 if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5)) 1115 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32); 1116 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST) 1117 cpuc->pebs_enabled |= 1ULL << 63; 1118 1119 if (x86_pmu.intel_cap.pebs_baseline) { 1120 hwc->config |= ICL_EVENTSEL_ADAPTIVE; 1121 if (cpuc->pebs_data_cfg != cpuc->active_pebs_data_cfg) { 1122 wrmsrl(MSR_PEBS_DATA_CFG, cpuc->pebs_data_cfg); 1123 cpuc->active_pebs_data_cfg = cpuc->pebs_data_cfg; 1124 } 1125 } 1126 1127 /* 1128 * Use auto-reload if possible to save a MSR write in the PMI. 1129 * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD. 1130 */ 1131 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) { 1132 unsigned int idx = hwc->idx; 1133 1134 if (idx >= INTEL_PMC_IDX_FIXED) 1135 idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED); 1136 ds->pebs_event_reset[idx] = 1137 (u64)(-hwc->sample_period) & x86_pmu.cntval_mask; 1138 } else { 1139 ds->pebs_event_reset[hwc->idx] = 0; 1140 } 1141 1142 intel_pmu_pebs_via_pt_enable(event); 1143 } 1144 1145 void intel_pmu_pebs_del(struct perf_event *event) 1146 { 1147 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1148 struct hw_perf_event *hwc = &event->hw; 1149 bool needed_cb = pebs_needs_sched_cb(cpuc); 1150 1151 cpuc->n_pebs--; 1152 if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS) 1153 cpuc->n_large_pebs--; 1154 if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT) 1155 cpuc->n_pebs_via_pt--; 1156 1157 pebs_update_state(needed_cb, cpuc, event, false); 1158 } 1159 1160 void intel_pmu_pebs_disable(struct perf_event *event) 1161 { 1162 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1163 struct hw_perf_event *hwc = &event->hw; 1164 1165 if (cpuc->n_pebs == cpuc->n_large_pebs && 1166 cpuc->n_pebs != cpuc->n_pebs_via_pt) 1167 intel_pmu_drain_pebs_buffer(); 1168 1169 cpuc->pebs_enabled &= ~(1ULL << hwc->idx); 1170 1171 if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && 1172 (x86_pmu.version < 5)) 1173 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32)); 1174 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST) 1175 cpuc->pebs_enabled &= ~(1ULL << 63); 1176 1177 intel_pmu_pebs_via_pt_disable(event); 1178 1179 if (cpuc->enabled) 1180 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled); 1181 1182 hwc->config |= ARCH_PERFMON_EVENTSEL_INT; 1183 } 1184 1185 void intel_pmu_pebs_enable_all(void) 1186 { 1187 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1188 1189 if (cpuc->pebs_enabled) 1190 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled); 1191 } 1192 1193 void intel_pmu_pebs_disable_all(void) 1194 { 1195 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1196 1197 if (cpuc->pebs_enabled) 1198 wrmsrl(MSR_IA32_PEBS_ENABLE, 0); 1199 } 1200 1201 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs) 1202 { 1203 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1204 unsigned long from = cpuc->lbr_entries[0].from; 1205 unsigned long old_to, to = cpuc->lbr_entries[0].to; 1206 unsigned long ip = regs->ip; 1207 int is_64bit = 0; 1208 void *kaddr; 1209 int size; 1210 1211 /* 1212 * We don't need to fixup if the PEBS assist is fault like 1213 */ 1214 if (!x86_pmu.intel_cap.pebs_trap) 1215 return 1; 1216 1217 /* 1218 * No LBR entry, no basic block, no rewinding 1219 */ 1220 if (!cpuc->lbr_stack.nr || !from || !to) 1221 return 0; 1222 1223 /* 1224 * Basic blocks should never cross user/kernel boundaries 1225 */ 1226 if (kernel_ip(ip) != kernel_ip(to)) 1227 return 0; 1228 1229 /* 1230 * unsigned math, either ip is before the start (impossible) or 1231 * the basic block is larger than 1 page (sanity) 1232 */ 1233 if ((ip - to) > PEBS_FIXUP_SIZE) 1234 return 0; 1235 1236 /* 1237 * We sampled a branch insn, rewind using the LBR stack 1238 */ 1239 if (ip == to) { 1240 set_linear_ip(regs, from); 1241 return 1; 1242 } 1243 1244 size = ip - to; 1245 if (!kernel_ip(ip)) { 1246 int bytes; 1247 u8 *buf = this_cpu_read(insn_buffer); 1248 1249 /* 'size' must fit our buffer, see above */ 1250 bytes = copy_from_user_nmi(buf, (void __user *)to, size); 1251 if (bytes != 0) 1252 return 0; 1253 1254 kaddr = buf; 1255 } else { 1256 kaddr = (void *)to; 1257 } 1258 1259 do { 1260 struct insn insn; 1261 1262 old_to = to; 1263 1264 #ifdef CONFIG_X86_64 1265 is_64bit = kernel_ip(to) || any_64bit_mode(regs); 1266 #endif 1267 insn_init(&insn, kaddr, size, is_64bit); 1268 insn_get_length(&insn); 1269 /* 1270 * Make sure there was not a problem decoding the 1271 * instruction and getting the length. This is 1272 * doubly important because we have an infinite 1273 * loop if insn.length=0. 1274 */ 1275 if (!insn.length) 1276 break; 1277 1278 to += insn.length; 1279 kaddr += insn.length; 1280 size -= insn.length; 1281 } while (to < ip); 1282 1283 if (to == ip) { 1284 set_linear_ip(regs, old_to); 1285 return 1; 1286 } 1287 1288 /* 1289 * Even though we decoded the basic block, the instruction stream 1290 * never matched the given IP, either the TO or the IP got corrupted. 1291 */ 1292 return 0; 1293 } 1294 1295 static inline u64 intel_get_tsx_weight(u64 tsx_tuning) 1296 { 1297 if (tsx_tuning) { 1298 union hsw_tsx_tuning tsx = { .value = tsx_tuning }; 1299 return tsx.cycles_last_block; 1300 } 1301 return 0; 1302 } 1303 1304 static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax) 1305 { 1306 u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32; 1307 1308 /* For RTM XABORTs also log the abort code from AX */ 1309 if ((txn & PERF_TXN_TRANSACTION) && (ax & 1)) 1310 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT; 1311 return txn; 1312 } 1313 1314 static inline u64 get_pebs_status(void *n) 1315 { 1316 if (x86_pmu.intel_cap.pebs_format < 4) 1317 return ((struct pebs_record_nhm *)n)->status; 1318 return ((struct pebs_basic *)n)->applicable_counters; 1319 } 1320 1321 #define PERF_X86_EVENT_PEBS_HSW_PREC \ 1322 (PERF_X86_EVENT_PEBS_ST_HSW | \ 1323 PERF_X86_EVENT_PEBS_LD_HSW | \ 1324 PERF_X86_EVENT_PEBS_NA_HSW) 1325 1326 static u64 get_data_src(struct perf_event *event, u64 aux) 1327 { 1328 u64 val = PERF_MEM_NA; 1329 int fl = event->hw.flags; 1330 bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC); 1331 1332 if (fl & PERF_X86_EVENT_PEBS_LDLAT) 1333 val = load_latency_data(aux); 1334 else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC)) 1335 val = precise_datala_hsw(event, aux); 1336 else if (fst) 1337 val = precise_store_data(aux); 1338 return val; 1339 } 1340 1341 #define PERF_SAMPLE_ADDR_TYPE (PERF_SAMPLE_ADDR | \ 1342 PERF_SAMPLE_PHYS_ADDR | \ 1343 PERF_SAMPLE_DATA_PAGE_SIZE) 1344 1345 static void setup_pebs_fixed_sample_data(struct perf_event *event, 1346 struct pt_regs *iregs, void *__pebs, 1347 struct perf_sample_data *data, 1348 struct pt_regs *regs) 1349 { 1350 /* 1351 * We cast to the biggest pebs_record but are careful not to 1352 * unconditionally access the 'extra' entries. 1353 */ 1354 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1355 struct pebs_record_skl *pebs = __pebs; 1356 u64 sample_type; 1357 int fll; 1358 1359 if (pebs == NULL) 1360 return; 1361 1362 sample_type = event->attr.sample_type; 1363 fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT; 1364 1365 perf_sample_data_init(data, 0, event->hw.last_period); 1366 1367 data->period = event->hw.last_period; 1368 1369 /* 1370 * Use latency for weight (only avail with PEBS-LL) 1371 */ 1372 if (fll && (sample_type & PERF_SAMPLE_WEIGHT)) 1373 data->weight = pebs->lat; 1374 1375 /* 1376 * data.data_src encodes the data source 1377 */ 1378 if (sample_type & PERF_SAMPLE_DATA_SRC) 1379 data->data_src.val = get_data_src(event, pebs->dse); 1380 1381 /* 1382 * We must however always use iregs for the unwinder to stay sane; the 1383 * record BP,SP,IP can point into thin air when the record is from a 1384 * previous PMI context or an (I)RET happened between the record and 1385 * PMI. 1386 */ 1387 if (sample_type & PERF_SAMPLE_CALLCHAIN) 1388 data->callchain = perf_callchain(event, iregs); 1389 1390 /* 1391 * We use the interrupt regs as a base because the PEBS record does not 1392 * contain a full regs set, specifically it seems to lack segment 1393 * descriptors, which get used by things like user_mode(). 1394 * 1395 * In the simple case fix up only the IP for PERF_SAMPLE_IP. 1396 */ 1397 *regs = *iregs; 1398 1399 /* 1400 * Initialize regs_>flags from PEBS, 1401 * Clear exact bit (which uses x86 EFLAGS Reserved bit 3), 1402 * i.e., do not rely on it being zero: 1403 */ 1404 regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT; 1405 1406 if (sample_type & PERF_SAMPLE_REGS_INTR) { 1407 regs->ax = pebs->ax; 1408 regs->bx = pebs->bx; 1409 regs->cx = pebs->cx; 1410 regs->dx = pebs->dx; 1411 regs->si = pebs->si; 1412 regs->di = pebs->di; 1413 1414 regs->bp = pebs->bp; 1415 regs->sp = pebs->sp; 1416 1417 #ifndef CONFIG_X86_32 1418 regs->r8 = pebs->r8; 1419 regs->r9 = pebs->r9; 1420 regs->r10 = pebs->r10; 1421 regs->r11 = pebs->r11; 1422 regs->r12 = pebs->r12; 1423 regs->r13 = pebs->r13; 1424 regs->r14 = pebs->r14; 1425 regs->r15 = pebs->r15; 1426 #endif 1427 } 1428 1429 if (event->attr.precise_ip > 1) { 1430 /* 1431 * Haswell and later processors have an 'eventing IP' 1432 * (real IP) which fixes the off-by-1 skid in hardware. 1433 * Use it when precise_ip >= 2 : 1434 */ 1435 if (x86_pmu.intel_cap.pebs_format >= 2) { 1436 set_linear_ip(regs, pebs->real_ip); 1437 regs->flags |= PERF_EFLAGS_EXACT; 1438 } else { 1439 /* Otherwise, use PEBS off-by-1 IP: */ 1440 set_linear_ip(regs, pebs->ip); 1441 1442 /* 1443 * With precise_ip >= 2, try to fix up the off-by-1 IP 1444 * using the LBR. If successful, the fixup function 1445 * corrects regs->ip and calls set_linear_ip() on regs: 1446 */ 1447 if (intel_pmu_pebs_fixup_ip(regs)) 1448 regs->flags |= PERF_EFLAGS_EXACT; 1449 } 1450 } else { 1451 /* 1452 * When precise_ip == 1, return the PEBS off-by-1 IP, 1453 * no fixup attempted: 1454 */ 1455 set_linear_ip(regs, pebs->ip); 1456 } 1457 1458 1459 if ((sample_type & PERF_SAMPLE_ADDR_TYPE) && 1460 x86_pmu.intel_cap.pebs_format >= 1) 1461 data->addr = pebs->dla; 1462 1463 if (x86_pmu.intel_cap.pebs_format >= 2) { 1464 /* Only set the TSX weight when no memory weight. */ 1465 if ((sample_type & PERF_SAMPLE_WEIGHT) && !fll) 1466 data->weight = intel_get_tsx_weight(pebs->tsx_tuning); 1467 1468 if (sample_type & PERF_SAMPLE_TRANSACTION) 1469 data->txn = intel_get_tsx_transaction(pebs->tsx_tuning, 1470 pebs->ax); 1471 } 1472 1473 /* 1474 * v3 supplies an accurate time stamp, so we use that 1475 * for the time stamp. 1476 * 1477 * We can only do this for the default trace clock. 1478 */ 1479 if (x86_pmu.intel_cap.pebs_format >= 3 && 1480 event->attr.use_clockid == 0) 1481 data->time = native_sched_clock_from_tsc(pebs->tsc); 1482 1483 if (has_branch_stack(event)) 1484 data->br_stack = &cpuc->lbr_stack; 1485 } 1486 1487 static void adaptive_pebs_save_regs(struct pt_regs *regs, 1488 struct pebs_gprs *gprs) 1489 { 1490 regs->ax = gprs->ax; 1491 regs->bx = gprs->bx; 1492 regs->cx = gprs->cx; 1493 regs->dx = gprs->dx; 1494 regs->si = gprs->si; 1495 regs->di = gprs->di; 1496 regs->bp = gprs->bp; 1497 regs->sp = gprs->sp; 1498 #ifndef CONFIG_X86_32 1499 regs->r8 = gprs->r8; 1500 regs->r9 = gprs->r9; 1501 regs->r10 = gprs->r10; 1502 regs->r11 = gprs->r11; 1503 regs->r12 = gprs->r12; 1504 regs->r13 = gprs->r13; 1505 regs->r14 = gprs->r14; 1506 regs->r15 = gprs->r15; 1507 #endif 1508 } 1509 1510 /* 1511 * With adaptive PEBS the layout depends on what fields are configured. 1512 */ 1513 1514 static void setup_pebs_adaptive_sample_data(struct perf_event *event, 1515 struct pt_regs *iregs, void *__pebs, 1516 struct perf_sample_data *data, 1517 struct pt_regs *regs) 1518 { 1519 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1520 struct pebs_basic *basic = __pebs; 1521 void *next_record = basic + 1; 1522 u64 sample_type; 1523 u64 format_size; 1524 struct pebs_meminfo *meminfo = NULL; 1525 struct pebs_gprs *gprs = NULL; 1526 struct x86_perf_regs *perf_regs; 1527 1528 if (basic == NULL) 1529 return; 1530 1531 perf_regs = container_of(regs, struct x86_perf_regs, regs); 1532 perf_regs->xmm_regs = NULL; 1533 1534 sample_type = event->attr.sample_type; 1535 format_size = basic->format_size; 1536 perf_sample_data_init(data, 0, event->hw.last_period); 1537 data->period = event->hw.last_period; 1538 1539 if (event->attr.use_clockid == 0) 1540 data->time = native_sched_clock_from_tsc(basic->tsc); 1541 1542 /* 1543 * We must however always use iregs for the unwinder to stay sane; the 1544 * record BP,SP,IP can point into thin air when the record is from a 1545 * previous PMI context or an (I)RET happened between the record and 1546 * PMI. 1547 */ 1548 if (sample_type & PERF_SAMPLE_CALLCHAIN) 1549 data->callchain = perf_callchain(event, iregs); 1550 1551 *regs = *iregs; 1552 /* The ip in basic is EventingIP */ 1553 set_linear_ip(regs, basic->ip); 1554 regs->flags = PERF_EFLAGS_EXACT; 1555 1556 /* 1557 * The record for MEMINFO is in front of GP 1558 * But PERF_SAMPLE_TRANSACTION needs gprs->ax. 1559 * Save the pointer here but process later. 1560 */ 1561 if (format_size & PEBS_DATACFG_MEMINFO) { 1562 meminfo = next_record; 1563 next_record = meminfo + 1; 1564 } 1565 1566 if (format_size & PEBS_DATACFG_GP) { 1567 gprs = next_record; 1568 next_record = gprs + 1; 1569 1570 if (event->attr.precise_ip < 2) { 1571 set_linear_ip(regs, gprs->ip); 1572 regs->flags &= ~PERF_EFLAGS_EXACT; 1573 } 1574 1575 if (sample_type & PERF_SAMPLE_REGS_INTR) 1576 adaptive_pebs_save_regs(regs, gprs); 1577 } 1578 1579 if (format_size & PEBS_DATACFG_MEMINFO) { 1580 if (sample_type & PERF_SAMPLE_WEIGHT) 1581 data->weight = meminfo->latency ?: 1582 intel_get_tsx_weight(meminfo->tsx_tuning); 1583 1584 if (sample_type & PERF_SAMPLE_DATA_SRC) 1585 data->data_src.val = get_data_src(event, meminfo->aux); 1586 1587 if (sample_type & PERF_SAMPLE_ADDR_TYPE) 1588 data->addr = meminfo->address; 1589 1590 if (sample_type & PERF_SAMPLE_TRANSACTION) 1591 data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning, 1592 gprs ? gprs->ax : 0); 1593 } 1594 1595 if (format_size & PEBS_DATACFG_XMMS) { 1596 struct pebs_xmm *xmm = next_record; 1597 1598 next_record = xmm + 1; 1599 perf_regs->xmm_regs = xmm->xmm; 1600 } 1601 1602 if (format_size & PEBS_DATACFG_LBRS) { 1603 struct lbr_entry *lbr = next_record; 1604 int num_lbr = ((format_size >> PEBS_DATACFG_LBR_SHIFT) 1605 & 0xff) + 1; 1606 next_record = next_record + num_lbr * sizeof(struct lbr_entry); 1607 1608 if (has_branch_stack(event)) { 1609 intel_pmu_store_pebs_lbrs(lbr); 1610 data->br_stack = &cpuc->lbr_stack; 1611 } 1612 } 1613 1614 WARN_ONCE(next_record != __pebs + (format_size >> 48), 1615 "PEBS record size %llu, expected %llu, config %llx\n", 1616 format_size >> 48, 1617 (u64)(next_record - __pebs), 1618 basic->format_size); 1619 } 1620 1621 static inline void * 1622 get_next_pebs_record_by_bit(void *base, void *top, int bit) 1623 { 1624 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1625 void *at; 1626 u64 pebs_status; 1627 1628 /* 1629 * fmt0 does not have a status bitfield (does not use 1630 * perf_record_nhm format) 1631 */ 1632 if (x86_pmu.intel_cap.pebs_format < 1) 1633 return base; 1634 1635 if (base == NULL) 1636 return NULL; 1637 1638 for (at = base; at < top; at += cpuc->pebs_record_size) { 1639 unsigned long status = get_pebs_status(at); 1640 1641 if (test_bit(bit, (unsigned long *)&status)) { 1642 /* PEBS v3 has accurate status bits */ 1643 if (x86_pmu.intel_cap.pebs_format >= 3) 1644 return at; 1645 1646 if (status == (1 << bit)) 1647 return at; 1648 1649 /* clear non-PEBS bit and re-check */ 1650 pebs_status = status & cpuc->pebs_enabled; 1651 pebs_status &= PEBS_COUNTER_MASK; 1652 if (pebs_status == (1 << bit)) 1653 return at; 1654 } 1655 } 1656 return NULL; 1657 } 1658 1659 void intel_pmu_auto_reload_read(struct perf_event *event) 1660 { 1661 WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)); 1662 1663 perf_pmu_disable(event->pmu); 1664 intel_pmu_drain_pebs_buffer(); 1665 perf_pmu_enable(event->pmu); 1666 } 1667 1668 /* 1669 * Special variant of intel_pmu_save_and_restart() for auto-reload. 1670 */ 1671 static int 1672 intel_pmu_save_and_restart_reload(struct perf_event *event, int count) 1673 { 1674 struct hw_perf_event *hwc = &event->hw; 1675 int shift = 64 - x86_pmu.cntval_bits; 1676 u64 period = hwc->sample_period; 1677 u64 prev_raw_count, new_raw_count; 1678 s64 new, old; 1679 1680 WARN_ON(!period); 1681 1682 /* 1683 * drain_pebs() only happens when the PMU is disabled. 1684 */ 1685 WARN_ON(this_cpu_read(cpu_hw_events.enabled)); 1686 1687 prev_raw_count = local64_read(&hwc->prev_count); 1688 rdpmcl(hwc->event_base_rdpmc, new_raw_count); 1689 local64_set(&hwc->prev_count, new_raw_count); 1690 1691 /* 1692 * Since the counter increments a negative counter value and 1693 * overflows on the sign switch, giving the interval: 1694 * 1695 * [-period, 0] 1696 * 1697 * the difference between two consequtive reads is: 1698 * 1699 * A) value2 - value1; 1700 * when no overflows have happened in between, 1701 * 1702 * B) (0 - value1) + (value2 - (-period)); 1703 * when one overflow happened in between, 1704 * 1705 * C) (0 - value1) + (n - 1) * (period) + (value2 - (-period)); 1706 * when @n overflows happened in between. 1707 * 1708 * Here A) is the obvious difference, B) is the extension to the 1709 * discrete interval, where the first term is to the top of the 1710 * interval and the second term is from the bottom of the next 1711 * interval and C) the extension to multiple intervals, where the 1712 * middle term is the whole intervals covered. 1713 * 1714 * An equivalent of C, by reduction, is: 1715 * 1716 * value2 - value1 + n * period 1717 */ 1718 new = ((s64)(new_raw_count << shift) >> shift); 1719 old = ((s64)(prev_raw_count << shift) >> shift); 1720 local64_add(new - old + count * period, &event->count); 1721 1722 local64_set(&hwc->period_left, -new); 1723 1724 perf_event_update_userpage(event); 1725 1726 return 0; 1727 } 1728 1729 static __always_inline void 1730 __intel_pmu_pebs_event(struct perf_event *event, 1731 struct pt_regs *iregs, 1732 struct perf_sample_data *data, 1733 void *base, void *top, 1734 int bit, int count, 1735 void (*setup_sample)(struct perf_event *, 1736 struct pt_regs *, 1737 void *, 1738 struct perf_sample_data *, 1739 struct pt_regs *)) 1740 { 1741 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1742 struct hw_perf_event *hwc = &event->hw; 1743 struct x86_perf_regs perf_regs; 1744 struct pt_regs *regs = &perf_regs.regs; 1745 void *at = get_next_pebs_record_by_bit(base, top, bit); 1746 static struct pt_regs dummy_iregs; 1747 1748 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) { 1749 /* 1750 * Now, auto-reload is only enabled in fixed period mode. 1751 * The reload value is always hwc->sample_period. 1752 * May need to change it, if auto-reload is enabled in 1753 * freq mode later. 1754 */ 1755 intel_pmu_save_and_restart_reload(event, count); 1756 } else if (!intel_pmu_save_and_restart(event)) 1757 return; 1758 1759 if (!iregs) 1760 iregs = &dummy_iregs; 1761 1762 while (count > 1) { 1763 setup_sample(event, iregs, at, data, regs); 1764 perf_event_output(event, data, regs); 1765 at += cpuc->pebs_record_size; 1766 at = get_next_pebs_record_by_bit(at, top, bit); 1767 count--; 1768 } 1769 1770 setup_sample(event, iregs, at, data, regs); 1771 if (iregs == &dummy_iregs) { 1772 /* 1773 * The PEBS records may be drained in the non-overflow context, 1774 * e.g., large PEBS + context switch. Perf should treat the 1775 * last record the same as other PEBS records, and doesn't 1776 * invoke the generic overflow handler. 1777 */ 1778 perf_event_output(event, data, regs); 1779 } else { 1780 /* 1781 * All but the last records are processed. 1782 * The last one is left to be able to call the overflow handler. 1783 */ 1784 if (perf_event_overflow(event, data, regs)) 1785 x86_pmu_stop(event, 0); 1786 } 1787 } 1788 1789 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs, struct perf_sample_data *data) 1790 { 1791 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1792 struct debug_store *ds = cpuc->ds; 1793 struct perf_event *event = cpuc->events[0]; /* PMC0 only */ 1794 struct pebs_record_core *at, *top; 1795 int n; 1796 1797 if (!x86_pmu.pebs_active) 1798 return; 1799 1800 at = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base; 1801 top = (struct pebs_record_core *)(unsigned long)ds->pebs_index; 1802 1803 /* 1804 * Whatever else happens, drain the thing 1805 */ 1806 ds->pebs_index = ds->pebs_buffer_base; 1807 1808 if (!test_bit(0, cpuc->active_mask)) 1809 return; 1810 1811 WARN_ON_ONCE(!event); 1812 1813 if (!event->attr.precise_ip) 1814 return; 1815 1816 n = top - at; 1817 if (n <= 0) { 1818 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD) 1819 intel_pmu_save_and_restart_reload(event, 0); 1820 return; 1821 } 1822 1823 __intel_pmu_pebs_event(event, iregs, data, at, top, 0, n, 1824 setup_pebs_fixed_sample_data); 1825 } 1826 1827 static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, int size) 1828 { 1829 struct perf_event *event; 1830 int bit; 1831 1832 /* 1833 * The drain_pebs() could be called twice in a short period 1834 * for auto-reload event in pmu::read(). There are no 1835 * overflows have happened in between. 1836 * It needs to call intel_pmu_save_and_restart_reload() to 1837 * update the event->count for this case. 1838 */ 1839 for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled, size) { 1840 event = cpuc->events[bit]; 1841 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD) 1842 intel_pmu_save_and_restart_reload(event, 0); 1843 } 1844 } 1845 1846 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs, struct perf_sample_data *data) 1847 { 1848 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1849 struct debug_store *ds = cpuc->ds; 1850 struct perf_event *event; 1851 void *base, *at, *top; 1852 short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {}; 1853 short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {}; 1854 int bit, i, size; 1855 u64 mask; 1856 1857 if (!x86_pmu.pebs_active) 1858 return; 1859 1860 base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base; 1861 top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index; 1862 1863 ds->pebs_index = ds->pebs_buffer_base; 1864 1865 mask = (1ULL << x86_pmu.max_pebs_events) - 1; 1866 size = x86_pmu.max_pebs_events; 1867 if (x86_pmu.flags & PMU_FL_PEBS_ALL) { 1868 mask |= ((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED; 1869 size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed; 1870 } 1871 1872 if (unlikely(base >= top)) { 1873 intel_pmu_pebs_event_update_no_drain(cpuc, size); 1874 return; 1875 } 1876 1877 for (at = base; at < top; at += x86_pmu.pebs_record_size) { 1878 struct pebs_record_nhm *p = at; 1879 u64 pebs_status; 1880 1881 pebs_status = p->status & cpuc->pebs_enabled; 1882 pebs_status &= mask; 1883 1884 /* PEBS v3 has more accurate status bits */ 1885 if (x86_pmu.intel_cap.pebs_format >= 3) { 1886 for_each_set_bit(bit, (unsigned long *)&pebs_status, size) 1887 counts[bit]++; 1888 1889 continue; 1890 } 1891 1892 /* 1893 * On some CPUs the PEBS status can be zero when PEBS is 1894 * racing with clearing of GLOBAL_STATUS. 1895 * 1896 * Normally we would drop that record, but in the 1897 * case when there is only a single active PEBS event 1898 * we can assume it's for that event. 1899 */ 1900 if (!pebs_status && cpuc->pebs_enabled && 1901 !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1))) 1902 pebs_status = cpuc->pebs_enabled; 1903 1904 bit = find_first_bit((unsigned long *)&pebs_status, 1905 x86_pmu.max_pebs_events); 1906 if (bit >= x86_pmu.max_pebs_events) 1907 continue; 1908 1909 /* 1910 * The PEBS hardware does not deal well with the situation 1911 * when events happen near to each other and multiple bits 1912 * are set. But it should happen rarely. 1913 * 1914 * If these events include one PEBS and multiple non-PEBS 1915 * events, it doesn't impact PEBS record. The record will 1916 * be handled normally. (slow path) 1917 * 1918 * If these events include two or more PEBS events, the 1919 * records for the events can be collapsed into a single 1920 * one, and it's not possible to reconstruct all events 1921 * that caused the PEBS record. It's called collision. 1922 * If collision happened, the record will be dropped. 1923 */ 1924 if (pebs_status != (1ULL << bit)) { 1925 for_each_set_bit(i, (unsigned long *)&pebs_status, size) 1926 error[i]++; 1927 continue; 1928 } 1929 1930 counts[bit]++; 1931 } 1932 1933 for_each_set_bit(bit, (unsigned long *)&mask, size) { 1934 if ((counts[bit] == 0) && (error[bit] == 0)) 1935 continue; 1936 1937 event = cpuc->events[bit]; 1938 if (WARN_ON_ONCE(!event)) 1939 continue; 1940 1941 if (WARN_ON_ONCE(!event->attr.precise_ip)) 1942 continue; 1943 1944 /* log dropped samples number */ 1945 if (error[bit]) { 1946 perf_log_lost_samples(event, error[bit]); 1947 1948 if (iregs && perf_event_account_interrupt(event)) 1949 x86_pmu_stop(event, 0); 1950 } 1951 1952 if (counts[bit]) { 1953 __intel_pmu_pebs_event(event, iregs, data, base, 1954 top, bit, counts[bit], 1955 setup_pebs_fixed_sample_data); 1956 } 1957 } 1958 } 1959 1960 static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs, struct perf_sample_data *data) 1961 { 1962 short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {}; 1963 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1964 struct debug_store *ds = cpuc->ds; 1965 struct perf_event *event; 1966 void *base, *at, *top; 1967 int bit, size; 1968 u64 mask; 1969 1970 if (!x86_pmu.pebs_active) 1971 return; 1972 1973 base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base; 1974 top = (struct pebs_basic *)(unsigned long)ds->pebs_index; 1975 1976 ds->pebs_index = ds->pebs_buffer_base; 1977 1978 mask = ((1ULL << x86_pmu.max_pebs_events) - 1) | 1979 (((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED); 1980 size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed; 1981 1982 if (unlikely(base >= top)) { 1983 intel_pmu_pebs_event_update_no_drain(cpuc, size); 1984 return; 1985 } 1986 1987 for (at = base; at < top; at += cpuc->pebs_record_size) { 1988 u64 pebs_status; 1989 1990 pebs_status = get_pebs_status(at) & cpuc->pebs_enabled; 1991 pebs_status &= mask; 1992 1993 for_each_set_bit(bit, (unsigned long *)&pebs_status, size) 1994 counts[bit]++; 1995 } 1996 1997 for_each_set_bit(bit, (unsigned long *)&mask, size) { 1998 if (counts[bit] == 0) 1999 continue; 2000 2001 event = cpuc->events[bit]; 2002 if (WARN_ON_ONCE(!event)) 2003 continue; 2004 2005 if (WARN_ON_ONCE(!event->attr.precise_ip)) 2006 continue; 2007 2008 __intel_pmu_pebs_event(event, iregs, data, base, 2009 top, bit, counts[bit], 2010 setup_pebs_adaptive_sample_data); 2011 } 2012 } 2013 2014 /* 2015 * BTS, PEBS probe and setup 2016 */ 2017 2018 void __init intel_ds_init(void) 2019 { 2020 /* 2021 * No support for 32bit formats 2022 */ 2023 if (!boot_cpu_has(X86_FEATURE_DTES64)) 2024 return; 2025 2026 x86_pmu.bts = boot_cpu_has(X86_FEATURE_BTS); 2027 x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS); 2028 x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE; 2029 if (x86_pmu.version <= 4) 2030 x86_pmu.pebs_no_isolation = 1; 2031 2032 if (x86_pmu.pebs) { 2033 char pebs_type = x86_pmu.intel_cap.pebs_trap ? '+' : '-'; 2034 char *pebs_qual = ""; 2035 int format = x86_pmu.intel_cap.pebs_format; 2036 2037 if (format < 4) 2038 x86_pmu.intel_cap.pebs_baseline = 0; 2039 2040 switch (format) { 2041 case 0: 2042 pr_cont("PEBS fmt0%c, ", pebs_type); 2043 x86_pmu.pebs_record_size = sizeof(struct pebs_record_core); 2044 /* 2045 * Using >PAGE_SIZE buffers makes the WRMSR to 2046 * PERF_GLOBAL_CTRL in intel_pmu_enable_all() 2047 * mysteriously hang on Core2. 2048 * 2049 * As a workaround, we don't do this. 2050 */ 2051 x86_pmu.pebs_buffer_size = PAGE_SIZE; 2052 x86_pmu.drain_pebs = intel_pmu_drain_pebs_core; 2053 break; 2054 2055 case 1: 2056 pr_cont("PEBS fmt1%c, ", pebs_type); 2057 x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm); 2058 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; 2059 break; 2060 2061 case 2: 2062 pr_cont("PEBS fmt2%c, ", pebs_type); 2063 x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw); 2064 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; 2065 break; 2066 2067 case 3: 2068 pr_cont("PEBS fmt3%c, ", pebs_type); 2069 x86_pmu.pebs_record_size = 2070 sizeof(struct pebs_record_skl); 2071 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; 2072 x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME; 2073 break; 2074 2075 case 4: 2076 x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl; 2077 x86_pmu.pebs_record_size = sizeof(struct pebs_basic); 2078 if (x86_pmu.intel_cap.pebs_baseline) { 2079 x86_pmu.large_pebs_flags |= 2080 PERF_SAMPLE_BRANCH_STACK | 2081 PERF_SAMPLE_TIME; 2082 x86_pmu.flags |= PMU_FL_PEBS_ALL; 2083 pebs_qual = "-baseline"; 2084 x86_get_pmu()->capabilities |= PERF_PMU_CAP_EXTENDED_REGS; 2085 } else { 2086 /* Only basic record supported */ 2087 x86_pmu.large_pebs_flags &= 2088 ~(PERF_SAMPLE_ADDR | 2089 PERF_SAMPLE_TIME | 2090 PERF_SAMPLE_DATA_SRC | 2091 PERF_SAMPLE_TRANSACTION | 2092 PERF_SAMPLE_REGS_USER | 2093 PERF_SAMPLE_REGS_INTR); 2094 } 2095 pr_cont("PEBS fmt4%c%s, ", pebs_type, pebs_qual); 2096 2097 if (x86_pmu.intel_cap.pebs_output_pt_available) { 2098 pr_cont("PEBS-via-PT, "); 2099 x86_get_pmu()->capabilities |= PERF_PMU_CAP_AUX_OUTPUT; 2100 } 2101 2102 break; 2103 2104 default: 2105 pr_cont("no PEBS fmt%d%c, ", format, pebs_type); 2106 x86_pmu.pebs = 0; 2107 } 2108 } 2109 } 2110 2111 void perf_restore_debug_store(void) 2112 { 2113 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds); 2114 2115 if (!x86_pmu.bts && !x86_pmu.pebs) 2116 return; 2117 2118 wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds); 2119 } 2120