1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/bitops.h> 3 #include <linux/types.h> 4 #include <linux/slab.h> 5 #include <linux/sched/clock.h> 6 7 #include <asm/cpu_entry_area.h> 8 #include <asm/perf_event.h> 9 #include <asm/tlbflush.h> 10 #include <asm/insn.h> 11 #include <asm/io.h> 12 #include <asm/timer.h> 13 14 #include "../perf_event.h" 15 16 /* Waste a full page so it can be mapped into the cpu_entry_area */ 17 DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store); 18 19 /* The size of a BTS record in bytes: */ 20 #define BTS_RECORD_SIZE 24 21 22 #define PEBS_FIXUP_SIZE PAGE_SIZE 23 24 /* 25 * pebs_record_32 for p4 and core not supported 26 27 struct pebs_record_32 { 28 u32 flags, ip; 29 u32 ax, bc, cx, dx; 30 u32 si, di, bp, sp; 31 }; 32 33 */ 34 35 union intel_x86_pebs_dse { 36 u64 val; 37 struct { 38 unsigned int ld_dse:4; 39 unsigned int ld_stlb_miss:1; 40 unsigned int ld_locked:1; 41 unsigned int ld_data_blk:1; 42 unsigned int ld_addr_blk:1; 43 unsigned int ld_reserved:24; 44 }; 45 struct { 46 unsigned int st_l1d_hit:1; 47 unsigned int st_reserved1:3; 48 unsigned int st_stlb_miss:1; 49 unsigned int st_locked:1; 50 unsigned int st_reserved2:26; 51 }; 52 struct { 53 unsigned int st_lat_dse:4; 54 unsigned int st_lat_stlb_miss:1; 55 unsigned int st_lat_locked:1; 56 unsigned int ld_reserved3:26; 57 }; 58 struct { 59 unsigned int mtl_dse:5; 60 unsigned int mtl_locked:1; 61 unsigned int mtl_stlb_miss:1; 62 unsigned int mtl_fwd_blk:1; 63 unsigned int ld_reserved4:24; 64 }; 65 }; 66 67 68 /* 69 * Map PEBS Load Latency Data Source encodings to generic 70 * memory data source information 71 */ 72 #define P(a, b) PERF_MEM_S(a, b) 73 #define OP_LH (P(OP, LOAD) | P(LVL, HIT)) 74 #define LEVEL(x) P(LVLNUM, x) 75 #define REM P(REMOTE, REMOTE) 76 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS)) 77 78 /* Version for Sandy Bridge and later */ 79 static u64 pebs_data_source[] = { 80 P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */ 81 OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x01: L1 local */ 82 OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */ 83 OP_LH | P(LVL, L2) | LEVEL(L2) | P(SNOOP, NONE), /* 0x03: L2 hit */ 84 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, NONE), /* 0x04: L3 hit */ 85 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, MISS), /* 0x05: L3 hit, snoop miss */ 86 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT), /* 0x06: L3 hit, snoop hit */ 87 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x07: L3 hit, snoop hitm */ 88 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x08: L3 miss snoop hit */ 89 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/ 90 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, HIT), /* 0x0a: L3 miss, shared */ 91 OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x0b: L3 miss, shared */ 92 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | SNOOP_NONE_MISS, /* 0x0c: L3 miss, excl */ 93 OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */ 94 OP_LH | P(LVL, IO) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */ 95 OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */ 96 }; 97 98 /* Patch up minor differences in the bits */ 99 void __init intel_pmu_pebs_data_source_nhm(void) 100 { 101 pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT); 102 pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); 103 pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); 104 } 105 106 static void __init __intel_pmu_pebs_data_source_skl(bool pmem, u64 *data_source) 107 { 108 u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4); 109 110 data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT); 111 data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT); 112 data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE); 113 data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD); 114 data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM); 115 } 116 117 void __init intel_pmu_pebs_data_source_skl(bool pmem) 118 { 119 __intel_pmu_pebs_data_source_skl(pmem, pebs_data_source); 120 } 121 122 static void __init __intel_pmu_pebs_data_source_grt(u64 *data_source) 123 { 124 data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT); 125 data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); 126 data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD); 127 } 128 129 void __init intel_pmu_pebs_data_source_grt(void) 130 { 131 __intel_pmu_pebs_data_source_grt(pebs_data_source); 132 } 133 134 void __init intel_pmu_pebs_data_source_adl(void) 135 { 136 u64 *data_source; 137 138 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source; 139 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source)); 140 __intel_pmu_pebs_data_source_skl(false, data_source); 141 142 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source; 143 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source)); 144 __intel_pmu_pebs_data_source_grt(data_source); 145 } 146 147 static void __init intel_pmu_pebs_data_source_cmt(u64 *data_source) 148 { 149 data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD); 150 data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); 151 data_source[0x0a] = OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, NONE); 152 data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE); 153 data_source[0x0c] = OP_LH | LEVEL(RAM) | REM | P(SNOOPX, FWD); 154 data_source[0x0d] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, HITM); 155 } 156 157 void __init intel_pmu_pebs_data_source_mtl(void) 158 { 159 u64 *data_source; 160 161 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source; 162 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source)); 163 __intel_pmu_pebs_data_source_skl(false, data_source); 164 165 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source; 166 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source)); 167 intel_pmu_pebs_data_source_cmt(data_source); 168 } 169 170 static u64 precise_store_data(u64 status) 171 { 172 union intel_x86_pebs_dse dse; 173 u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2); 174 175 dse.val = status; 176 177 /* 178 * bit 4: TLB access 179 * 1 = stored missed 2nd level TLB 180 * 181 * so it either hit the walker or the OS 182 * otherwise hit 2nd level TLB 183 */ 184 if (dse.st_stlb_miss) 185 val |= P(TLB, MISS); 186 else 187 val |= P(TLB, HIT); 188 189 /* 190 * bit 0: hit L1 data cache 191 * if not set, then all we know is that 192 * it missed L1D 193 */ 194 if (dse.st_l1d_hit) 195 val |= P(LVL, HIT); 196 else 197 val |= P(LVL, MISS); 198 199 /* 200 * bit 5: Locked prefix 201 */ 202 if (dse.st_locked) 203 val |= P(LOCK, LOCKED); 204 205 return val; 206 } 207 208 static u64 precise_datala_hsw(struct perf_event *event, u64 status) 209 { 210 union perf_mem_data_src dse; 211 212 dse.val = PERF_MEM_NA; 213 214 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) 215 dse.mem_op = PERF_MEM_OP_STORE; 216 else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW) 217 dse.mem_op = PERF_MEM_OP_LOAD; 218 219 /* 220 * L1 info only valid for following events: 221 * 222 * MEM_UOPS_RETIRED.STLB_MISS_STORES 223 * MEM_UOPS_RETIRED.LOCK_STORES 224 * MEM_UOPS_RETIRED.SPLIT_STORES 225 * MEM_UOPS_RETIRED.ALL_STORES 226 */ 227 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) { 228 if (status & 1) 229 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT; 230 else 231 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS; 232 } 233 return dse.val; 234 } 235 236 static inline void pebs_set_tlb_lock(u64 *val, bool tlb, bool lock) 237 { 238 /* 239 * TLB access 240 * 0 = did not miss 2nd level TLB 241 * 1 = missed 2nd level TLB 242 */ 243 if (tlb) 244 *val |= P(TLB, MISS) | P(TLB, L2); 245 else 246 *val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2); 247 248 /* locked prefix */ 249 if (lock) 250 *val |= P(LOCK, LOCKED); 251 } 252 253 /* Retrieve the latency data for e-core of ADL */ 254 static u64 __adl_latency_data_small(struct perf_event *event, u64 status, 255 u8 dse, bool tlb, bool lock, bool blk) 256 { 257 u64 val; 258 259 WARN_ON_ONCE(hybrid_pmu(event->pmu)->cpu_type == hybrid_big); 260 261 dse &= PERF_PEBS_DATA_SOURCE_MASK; 262 val = hybrid_var(event->pmu, pebs_data_source)[dse]; 263 264 pebs_set_tlb_lock(&val, tlb, lock); 265 266 if (blk) 267 val |= P(BLK, DATA); 268 else 269 val |= P(BLK, NA); 270 271 return val; 272 } 273 274 u64 adl_latency_data_small(struct perf_event *event, u64 status) 275 { 276 union intel_x86_pebs_dse dse; 277 278 dse.val = status; 279 280 return __adl_latency_data_small(event, status, dse.ld_dse, 281 dse.ld_locked, dse.ld_stlb_miss, 282 dse.ld_data_blk); 283 } 284 285 /* Retrieve the latency data for e-core of MTL */ 286 u64 mtl_latency_data_small(struct perf_event *event, u64 status) 287 { 288 union intel_x86_pebs_dse dse; 289 290 dse.val = status; 291 292 return __adl_latency_data_small(event, status, dse.mtl_dse, 293 dse.mtl_stlb_miss, dse.mtl_locked, 294 dse.mtl_fwd_blk); 295 } 296 297 static u64 load_latency_data(struct perf_event *event, u64 status) 298 { 299 union intel_x86_pebs_dse dse; 300 u64 val; 301 302 dse.val = status; 303 304 /* 305 * use the mapping table for bit 0-3 306 */ 307 val = hybrid_var(event->pmu, pebs_data_source)[dse.ld_dse]; 308 309 /* 310 * Nehalem models do not support TLB, Lock infos 311 */ 312 if (x86_pmu.pebs_no_tlb) { 313 val |= P(TLB, NA) | P(LOCK, NA); 314 return val; 315 } 316 317 pebs_set_tlb_lock(&val, dse.ld_stlb_miss, dse.ld_locked); 318 319 /* 320 * Ice Lake and earlier models do not support block infos. 321 */ 322 if (!x86_pmu.pebs_block) { 323 val |= P(BLK, NA); 324 return val; 325 } 326 /* 327 * bit 6: load was blocked since its data could not be forwarded 328 * from a preceding store 329 */ 330 if (dse.ld_data_blk) 331 val |= P(BLK, DATA); 332 333 /* 334 * bit 7: load was blocked due to potential address conflict with 335 * a preceding store 336 */ 337 if (dse.ld_addr_blk) 338 val |= P(BLK, ADDR); 339 340 if (!dse.ld_data_blk && !dse.ld_addr_blk) 341 val |= P(BLK, NA); 342 343 return val; 344 } 345 346 static u64 store_latency_data(struct perf_event *event, u64 status) 347 { 348 union intel_x86_pebs_dse dse; 349 union perf_mem_data_src src; 350 u64 val; 351 352 dse.val = status; 353 354 /* 355 * use the mapping table for bit 0-3 356 */ 357 val = hybrid_var(event->pmu, pebs_data_source)[dse.st_lat_dse]; 358 359 pebs_set_tlb_lock(&val, dse.st_lat_stlb_miss, dse.st_lat_locked); 360 361 val |= P(BLK, NA); 362 363 /* 364 * the pebs_data_source table is only for loads 365 * so override the mem_op to say STORE instead 366 */ 367 src.val = val; 368 src.mem_op = P(OP,STORE); 369 370 return src.val; 371 } 372 373 struct pebs_record_core { 374 u64 flags, ip; 375 u64 ax, bx, cx, dx; 376 u64 si, di, bp, sp; 377 u64 r8, r9, r10, r11; 378 u64 r12, r13, r14, r15; 379 }; 380 381 struct pebs_record_nhm { 382 u64 flags, ip; 383 u64 ax, bx, cx, dx; 384 u64 si, di, bp, sp; 385 u64 r8, r9, r10, r11; 386 u64 r12, r13, r14, r15; 387 u64 status, dla, dse, lat; 388 }; 389 390 /* 391 * Same as pebs_record_nhm, with two additional fields. 392 */ 393 struct pebs_record_hsw { 394 u64 flags, ip; 395 u64 ax, bx, cx, dx; 396 u64 si, di, bp, sp; 397 u64 r8, r9, r10, r11; 398 u64 r12, r13, r14, r15; 399 u64 status, dla, dse, lat; 400 u64 real_ip, tsx_tuning; 401 }; 402 403 union hsw_tsx_tuning { 404 struct { 405 u32 cycles_last_block : 32, 406 hle_abort : 1, 407 rtm_abort : 1, 408 instruction_abort : 1, 409 non_instruction_abort : 1, 410 retry : 1, 411 data_conflict : 1, 412 capacity_writes : 1, 413 capacity_reads : 1; 414 }; 415 u64 value; 416 }; 417 418 #define PEBS_HSW_TSX_FLAGS 0xff00000000ULL 419 420 /* Same as HSW, plus TSC */ 421 422 struct pebs_record_skl { 423 u64 flags, ip; 424 u64 ax, bx, cx, dx; 425 u64 si, di, bp, sp; 426 u64 r8, r9, r10, r11; 427 u64 r12, r13, r14, r15; 428 u64 status, dla, dse, lat; 429 u64 real_ip, tsx_tuning; 430 u64 tsc; 431 }; 432 433 void init_debug_store_on_cpu(int cpu) 434 { 435 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds; 436 437 if (!ds) 438 return; 439 440 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 441 (u32)((u64)(unsigned long)ds), 442 (u32)((u64)(unsigned long)ds >> 32)); 443 } 444 445 void fini_debug_store_on_cpu(int cpu) 446 { 447 if (!per_cpu(cpu_hw_events, cpu).ds) 448 return; 449 450 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0); 451 } 452 453 static DEFINE_PER_CPU(void *, insn_buffer); 454 455 static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot) 456 { 457 unsigned long start = (unsigned long)cea; 458 phys_addr_t pa; 459 size_t msz = 0; 460 461 pa = virt_to_phys(addr); 462 463 preempt_disable(); 464 for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE) 465 cea_set_pte(cea, pa, prot); 466 467 /* 468 * This is a cross-CPU update of the cpu_entry_area, we must shoot down 469 * all TLB entries for it. 470 */ 471 flush_tlb_kernel_range(start, start + size); 472 preempt_enable(); 473 } 474 475 static void ds_clear_cea(void *cea, size_t size) 476 { 477 unsigned long start = (unsigned long)cea; 478 size_t msz = 0; 479 480 preempt_disable(); 481 for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE) 482 cea_set_pte(cea, 0, PAGE_NONE); 483 484 flush_tlb_kernel_range(start, start + size); 485 preempt_enable(); 486 } 487 488 static void *dsalloc_pages(size_t size, gfp_t flags, int cpu) 489 { 490 unsigned int order = get_order(size); 491 int node = cpu_to_node(cpu); 492 struct page *page; 493 494 page = __alloc_pages_node(node, flags | __GFP_ZERO, order); 495 return page ? page_address(page) : NULL; 496 } 497 498 static void dsfree_pages(const void *buffer, size_t size) 499 { 500 if (buffer) 501 free_pages((unsigned long)buffer, get_order(size)); 502 } 503 504 static int alloc_pebs_buffer(int cpu) 505 { 506 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); 507 struct debug_store *ds = hwev->ds; 508 size_t bsiz = x86_pmu.pebs_buffer_size; 509 int max, node = cpu_to_node(cpu); 510 void *buffer, *insn_buff, *cea; 511 512 if (!x86_pmu.pebs) 513 return 0; 514 515 buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu); 516 if (unlikely(!buffer)) 517 return -ENOMEM; 518 519 /* 520 * HSW+ already provides us the eventing ip; no need to allocate this 521 * buffer then. 522 */ 523 if (x86_pmu.intel_cap.pebs_format < 2) { 524 insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node); 525 if (!insn_buff) { 526 dsfree_pages(buffer, bsiz); 527 return -ENOMEM; 528 } 529 per_cpu(insn_buffer, cpu) = insn_buff; 530 } 531 hwev->ds_pebs_vaddr = buffer; 532 /* Update the cpu entry area mapping */ 533 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer; 534 ds->pebs_buffer_base = (unsigned long) cea; 535 ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL); 536 ds->pebs_index = ds->pebs_buffer_base; 537 max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size); 538 ds->pebs_absolute_maximum = ds->pebs_buffer_base + max; 539 return 0; 540 } 541 542 static void release_pebs_buffer(int cpu) 543 { 544 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); 545 void *cea; 546 547 if (!x86_pmu.pebs) 548 return; 549 550 kfree(per_cpu(insn_buffer, cpu)); 551 per_cpu(insn_buffer, cpu) = NULL; 552 553 /* Clear the fixmap */ 554 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer; 555 ds_clear_cea(cea, x86_pmu.pebs_buffer_size); 556 dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size); 557 hwev->ds_pebs_vaddr = NULL; 558 } 559 560 static int alloc_bts_buffer(int cpu) 561 { 562 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); 563 struct debug_store *ds = hwev->ds; 564 void *buffer, *cea; 565 int max; 566 567 if (!x86_pmu.bts) 568 return 0; 569 570 buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu); 571 if (unlikely(!buffer)) { 572 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__); 573 return -ENOMEM; 574 } 575 hwev->ds_bts_vaddr = buffer; 576 /* Update the fixmap */ 577 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer; 578 ds->bts_buffer_base = (unsigned long) cea; 579 ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL); 580 ds->bts_index = ds->bts_buffer_base; 581 max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE; 582 ds->bts_absolute_maximum = ds->bts_buffer_base + 583 max * BTS_RECORD_SIZE; 584 ds->bts_interrupt_threshold = ds->bts_absolute_maximum - 585 (max / 16) * BTS_RECORD_SIZE; 586 return 0; 587 } 588 589 static void release_bts_buffer(int cpu) 590 { 591 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); 592 void *cea; 593 594 if (!x86_pmu.bts) 595 return; 596 597 /* Clear the fixmap */ 598 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer; 599 ds_clear_cea(cea, BTS_BUFFER_SIZE); 600 dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE); 601 hwev->ds_bts_vaddr = NULL; 602 } 603 604 static int alloc_ds_buffer(int cpu) 605 { 606 struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store; 607 608 memset(ds, 0, sizeof(*ds)); 609 per_cpu(cpu_hw_events, cpu).ds = ds; 610 return 0; 611 } 612 613 static void release_ds_buffer(int cpu) 614 { 615 per_cpu(cpu_hw_events, cpu).ds = NULL; 616 } 617 618 void release_ds_buffers(void) 619 { 620 int cpu; 621 622 if (!x86_pmu.bts && !x86_pmu.pebs) 623 return; 624 625 for_each_possible_cpu(cpu) 626 release_ds_buffer(cpu); 627 628 for_each_possible_cpu(cpu) { 629 /* 630 * Again, ignore errors from offline CPUs, they will no longer 631 * observe cpu_hw_events.ds and not program the DS_AREA when 632 * they come up. 633 */ 634 fini_debug_store_on_cpu(cpu); 635 } 636 637 for_each_possible_cpu(cpu) { 638 release_pebs_buffer(cpu); 639 release_bts_buffer(cpu); 640 } 641 } 642 643 void reserve_ds_buffers(void) 644 { 645 int bts_err = 0, pebs_err = 0; 646 int cpu; 647 648 x86_pmu.bts_active = 0; 649 x86_pmu.pebs_active = 0; 650 651 if (!x86_pmu.bts && !x86_pmu.pebs) 652 return; 653 654 if (!x86_pmu.bts) 655 bts_err = 1; 656 657 if (!x86_pmu.pebs) 658 pebs_err = 1; 659 660 for_each_possible_cpu(cpu) { 661 if (alloc_ds_buffer(cpu)) { 662 bts_err = 1; 663 pebs_err = 1; 664 } 665 666 if (!bts_err && alloc_bts_buffer(cpu)) 667 bts_err = 1; 668 669 if (!pebs_err && alloc_pebs_buffer(cpu)) 670 pebs_err = 1; 671 672 if (bts_err && pebs_err) 673 break; 674 } 675 676 if (bts_err) { 677 for_each_possible_cpu(cpu) 678 release_bts_buffer(cpu); 679 } 680 681 if (pebs_err) { 682 for_each_possible_cpu(cpu) 683 release_pebs_buffer(cpu); 684 } 685 686 if (bts_err && pebs_err) { 687 for_each_possible_cpu(cpu) 688 release_ds_buffer(cpu); 689 } else { 690 if (x86_pmu.bts && !bts_err) 691 x86_pmu.bts_active = 1; 692 693 if (x86_pmu.pebs && !pebs_err) 694 x86_pmu.pebs_active = 1; 695 696 for_each_possible_cpu(cpu) { 697 /* 698 * Ignores wrmsr_on_cpu() errors for offline CPUs they 699 * will get this call through intel_pmu_cpu_starting(). 700 */ 701 init_debug_store_on_cpu(cpu); 702 } 703 } 704 } 705 706 /* 707 * BTS 708 */ 709 710 struct event_constraint bts_constraint = 711 EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0); 712 713 void intel_pmu_enable_bts(u64 config) 714 { 715 unsigned long debugctlmsr; 716 717 debugctlmsr = get_debugctlmsr(); 718 719 debugctlmsr |= DEBUGCTLMSR_TR; 720 debugctlmsr |= DEBUGCTLMSR_BTS; 721 if (config & ARCH_PERFMON_EVENTSEL_INT) 722 debugctlmsr |= DEBUGCTLMSR_BTINT; 723 724 if (!(config & ARCH_PERFMON_EVENTSEL_OS)) 725 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS; 726 727 if (!(config & ARCH_PERFMON_EVENTSEL_USR)) 728 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR; 729 730 update_debugctlmsr(debugctlmsr); 731 } 732 733 void intel_pmu_disable_bts(void) 734 { 735 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 736 unsigned long debugctlmsr; 737 738 if (!cpuc->ds) 739 return; 740 741 debugctlmsr = get_debugctlmsr(); 742 743 debugctlmsr &= 744 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT | 745 DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR); 746 747 update_debugctlmsr(debugctlmsr); 748 } 749 750 int intel_pmu_drain_bts_buffer(void) 751 { 752 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 753 struct debug_store *ds = cpuc->ds; 754 struct bts_record { 755 u64 from; 756 u64 to; 757 u64 flags; 758 }; 759 struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS]; 760 struct bts_record *at, *base, *top; 761 struct perf_output_handle handle; 762 struct perf_event_header header; 763 struct perf_sample_data data; 764 unsigned long skip = 0; 765 struct pt_regs regs; 766 767 if (!event) 768 return 0; 769 770 if (!x86_pmu.bts_active) 771 return 0; 772 773 base = (struct bts_record *)(unsigned long)ds->bts_buffer_base; 774 top = (struct bts_record *)(unsigned long)ds->bts_index; 775 776 if (top <= base) 777 return 0; 778 779 memset(®s, 0, sizeof(regs)); 780 781 ds->bts_index = ds->bts_buffer_base; 782 783 perf_sample_data_init(&data, 0, event->hw.last_period); 784 785 /* 786 * BTS leaks kernel addresses in branches across the cpl boundary, 787 * such as traps or system calls, so unless the user is asking for 788 * kernel tracing (and right now it's not possible), we'd need to 789 * filter them out. But first we need to count how many of those we 790 * have in the current batch. This is an extra O(n) pass, however, 791 * it's much faster than the other one especially considering that 792 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the 793 * alloc_bts_buffer()). 794 */ 795 for (at = base; at < top; at++) { 796 /* 797 * Note that right now *this* BTS code only works if 798 * attr::exclude_kernel is set, but let's keep this extra 799 * check here in case that changes. 800 */ 801 if (event->attr.exclude_kernel && 802 (kernel_ip(at->from) || kernel_ip(at->to))) 803 skip++; 804 } 805 806 /* 807 * Prepare a generic sample, i.e. fill in the invariant fields. 808 * We will overwrite the from and to address before we output 809 * the sample. 810 */ 811 rcu_read_lock(); 812 perf_prepare_sample(&data, event, ®s); 813 perf_prepare_header(&header, &data, event, ®s); 814 815 if (perf_output_begin(&handle, &data, event, 816 header.size * (top - base - skip))) 817 goto unlock; 818 819 for (at = base; at < top; at++) { 820 /* Filter out any records that contain kernel addresses. */ 821 if (event->attr.exclude_kernel && 822 (kernel_ip(at->from) || kernel_ip(at->to))) 823 continue; 824 825 data.ip = at->from; 826 data.addr = at->to; 827 828 perf_output_sample(&handle, &header, &data, event); 829 } 830 831 perf_output_end(&handle); 832 833 /* There's new data available. */ 834 event->hw.interrupts++; 835 event->pending_kill = POLL_IN; 836 unlock: 837 rcu_read_unlock(); 838 return 1; 839 } 840 841 static inline void intel_pmu_drain_pebs_buffer(void) 842 { 843 struct perf_sample_data data; 844 845 x86_pmu.drain_pebs(NULL, &data); 846 } 847 848 /* 849 * PEBS 850 */ 851 struct event_constraint intel_core2_pebs_event_constraints[] = { 852 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */ 853 INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */ 854 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */ 855 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */ 856 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */ 857 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 858 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01), 859 EVENT_CONSTRAINT_END 860 }; 861 862 struct event_constraint intel_atom_pebs_event_constraints[] = { 863 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */ 864 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */ 865 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */ 866 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 867 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01), 868 /* Allow all events as PEBS with no flags */ 869 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), 870 EVENT_CONSTRAINT_END 871 }; 872 873 struct event_constraint intel_slm_pebs_event_constraints[] = { 874 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 875 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1), 876 /* Allow all events as PEBS with no flags */ 877 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), 878 EVENT_CONSTRAINT_END 879 }; 880 881 struct event_constraint intel_glm_pebs_event_constraints[] = { 882 /* Allow all events as PEBS with no flags */ 883 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), 884 EVENT_CONSTRAINT_END 885 }; 886 887 struct event_constraint intel_grt_pebs_event_constraints[] = { 888 /* Allow all events as PEBS with no flags */ 889 INTEL_HYBRID_LAT_CONSTRAINT(0x5d0, 0x3), 890 INTEL_HYBRID_LAT_CONSTRAINT(0x6d0, 0xf), 891 EVENT_CONSTRAINT_END 892 }; 893 894 struct event_constraint intel_nehalem_pebs_event_constraints[] = { 895 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */ 896 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */ 897 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */ 898 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */ 899 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */ 900 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */ 901 INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */ 902 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */ 903 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */ 904 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */ 905 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */ 906 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 907 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f), 908 EVENT_CONSTRAINT_END 909 }; 910 911 struct event_constraint intel_westmere_pebs_event_constraints[] = { 912 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */ 913 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */ 914 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */ 915 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */ 916 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */ 917 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */ 918 INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */ 919 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */ 920 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */ 921 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */ 922 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */ 923 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 924 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f), 925 EVENT_CONSTRAINT_END 926 }; 927 928 struct event_constraint intel_snb_pebs_event_constraints[] = { 929 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ 930 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */ 931 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */ 932 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ 933 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), 934 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */ 935 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 936 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 937 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 938 /* Allow all events as PEBS with no flags */ 939 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 940 EVENT_CONSTRAINT_END 941 }; 942 943 struct event_constraint intel_ivb_pebs_event_constraints[] = { 944 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ 945 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */ 946 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */ 947 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ 948 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), 949 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ 950 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), 951 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */ 952 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 953 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 954 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 955 /* Allow all events as PEBS with no flags */ 956 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 957 EVENT_CONSTRAINT_END 958 }; 959 960 struct event_constraint intel_hsw_pebs_event_constraints[] = { 961 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ 962 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */ 963 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ 964 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), 965 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ 966 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), 967 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */ 968 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */ 969 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */ 970 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */ 971 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */ 972 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */ 973 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */ 974 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */ 975 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 976 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */ 977 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */ 978 /* Allow all events as PEBS with no flags */ 979 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 980 EVENT_CONSTRAINT_END 981 }; 982 983 struct event_constraint intel_bdw_pebs_event_constraints[] = { 984 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ 985 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */ 986 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ 987 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), 988 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ 989 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), 990 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */ 991 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */ 992 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */ 993 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */ 994 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */ 995 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */ 996 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */ 997 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */ 998 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 999 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */ 1000 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */ 1001 /* Allow all events as PEBS with no flags */ 1002 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 1003 EVENT_CONSTRAINT_END 1004 }; 1005 1006 1007 struct event_constraint intel_skl_pebs_event_constraints[] = { 1008 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */ 1009 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ 1010 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), 1011 /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */ 1012 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f), 1013 INTEL_PLD_CONSTRAINT(0x1cd, 0xf), /* MEM_TRANS_RETIRED.* */ 1014 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */ 1015 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */ 1016 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */ 1017 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */ 1018 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */ 1019 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */ 1020 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */ 1021 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */ 1022 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */ 1023 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */ 1024 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_L3_MISS_RETIRED.* */ 1025 /* Allow all events as PEBS with no flags */ 1026 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 1027 EVENT_CONSTRAINT_END 1028 }; 1029 1030 struct event_constraint intel_icl_pebs_event_constraints[] = { 1031 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x100000000ULL), /* old INST_RETIRED.PREC_DIST */ 1032 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0100, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */ 1033 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL), /* SLOTS */ 1034 1035 INTEL_PLD_CONSTRAINT(0x1cd, 0xff), /* MEM_TRANS_RETIRED.LOAD_LATENCY */ 1036 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */ 1037 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */ 1038 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */ 1039 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */ 1040 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */ 1041 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */ 1042 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */ 1043 1044 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */ 1045 1046 INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */ 1047 1048 /* 1049 * Everything else is handled by PMU_FL_PEBS_ALL, because we 1050 * need the full constraints from the main table. 1051 */ 1052 1053 EVENT_CONSTRAINT_END 1054 }; 1055 1056 struct event_constraint intel_spr_pebs_event_constraints[] = { 1057 INTEL_FLAGS_UEVENT_CONSTRAINT(0x100, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */ 1058 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL), 1059 1060 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xfe), 1061 INTEL_PLD_CONSTRAINT(0x1cd, 0xfe), 1062 INTEL_PSD_CONSTRAINT(0x2cd, 0x1), 1063 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */ 1064 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */ 1065 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */ 1066 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */ 1067 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */ 1068 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */ 1069 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */ 1070 1071 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), 1072 1073 INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf), 1074 1075 /* 1076 * Everything else is handled by PMU_FL_PEBS_ALL, because we 1077 * need the full constraints from the main table. 1078 */ 1079 1080 EVENT_CONSTRAINT_END 1081 }; 1082 1083 struct event_constraint *intel_pebs_constraints(struct perf_event *event) 1084 { 1085 struct event_constraint *pebs_constraints = hybrid(event->pmu, pebs_constraints); 1086 struct event_constraint *c; 1087 1088 if (!event->attr.precise_ip) 1089 return NULL; 1090 1091 if (pebs_constraints) { 1092 for_each_event_constraint(c, pebs_constraints) { 1093 if (constraint_match(c, event->hw.config)) { 1094 event->hw.flags |= c->flags; 1095 return c; 1096 } 1097 } 1098 } 1099 1100 /* 1101 * Extended PEBS support 1102 * Makes the PEBS code search the normal constraints. 1103 */ 1104 if (x86_pmu.flags & PMU_FL_PEBS_ALL) 1105 return NULL; 1106 1107 return &emptyconstraint; 1108 } 1109 1110 /* 1111 * We need the sched_task callback even for per-cpu events when we use 1112 * the large interrupt threshold, such that we can provide PID and TID 1113 * to PEBS samples. 1114 */ 1115 static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc) 1116 { 1117 if (cpuc->n_pebs == cpuc->n_pebs_via_pt) 1118 return false; 1119 1120 return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs); 1121 } 1122 1123 void intel_pmu_pebs_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in) 1124 { 1125 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1126 1127 if (!sched_in && pebs_needs_sched_cb(cpuc)) 1128 intel_pmu_drain_pebs_buffer(); 1129 } 1130 1131 static inline void pebs_update_threshold(struct cpu_hw_events *cpuc) 1132 { 1133 struct debug_store *ds = cpuc->ds; 1134 int max_pebs_events = hybrid(cpuc->pmu, max_pebs_events); 1135 int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed); 1136 u64 threshold; 1137 int reserved; 1138 1139 if (cpuc->n_pebs_via_pt) 1140 return; 1141 1142 if (x86_pmu.flags & PMU_FL_PEBS_ALL) 1143 reserved = max_pebs_events + num_counters_fixed; 1144 else 1145 reserved = max_pebs_events; 1146 1147 if (cpuc->n_pebs == cpuc->n_large_pebs) { 1148 threshold = ds->pebs_absolute_maximum - 1149 reserved * cpuc->pebs_record_size; 1150 } else { 1151 threshold = ds->pebs_buffer_base + cpuc->pebs_record_size; 1152 } 1153 1154 ds->pebs_interrupt_threshold = threshold; 1155 } 1156 1157 static void adaptive_pebs_record_size_update(void) 1158 { 1159 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1160 u64 pebs_data_cfg = cpuc->pebs_data_cfg; 1161 int sz = sizeof(struct pebs_basic); 1162 1163 if (pebs_data_cfg & PEBS_DATACFG_MEMINFO) 1164 sz += sizeof(struct pebs_meminfo); 1165 if (pebs_data_cfg & PEBS_DATACFG_GP) 1166 sz += sizeof(struct pebs_gprs); 1167 if (pebs_data_cfg & PEBS_DATACFG_XMMS) 1168 sz += sizeof(struct pebs_xmm); 1169 if (pebs_data_cfg & PEBS_DATACFG_LBRS) 1170 sz += x86_pmu.lbr_nr * sizeof(struct lbr_entry); 1171 1172 cpuc->pebs_record_size = sz; 1173 } 1174 1175 #define PERF_PEBS_MEMINFO_TYPE (PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC | \ 1176 PERF_SAMPLE_PHYS_ADDR | \ 1177 PERF_SAMPLE_WEIGHT_TYPE | \ 1178 PERF_SAMPLE_TRANSACTION | \ 1179 PERF_SAMPLE_DATA_PAGE_SIZE) 1180 1181 static u64 pebs_update_adaptive_cfg(struct perf_event *event) 1182 { 1183 struct perf_event_attr *attr = &event->attr; 1184 u64 sample_type = attr->sample_type; 1185 u64 pebs_data_cfg = 0; 1186 bool gprs, tsx_weight; 1187 1188 if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) && 1189 attr->precise_ip > 1) 1190 return pebs_data_cfg; 1191 1192 if (sample_type & PERF_PEBS_MEMINFO_TYPE) 1193 pebs_data_cfg |= PEBS_DATACFG_MEMINFO; 1194 1195 /* 1196 * We need GPRs when: 1197 * + user requested them 1198 * + precise_ip < 2 for the non event IP 1199 * + For RTM TSX weight we need GPRs for the abort code. 1200 */ 1201 gprs = (sample_type & PERF_SAMPLE_REGS_INTR) && 1202 (attr->sample_regs_intr & PEBS_GP_REGS); 1203 1204 tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT_TYPE) && 1205 ((attr->config & INTEL_ARCH_EVENT_MASK) == 1206 x86_pmu.rtm_abort_event); 1207 1208 if (gprs || (attr->precise_ip < 2) || tsx_weight) 1209 pebs_data_cfg |= PEBS_DATACFG_GP; 1210 1211 if ((sample_type & PERF_SAMPLE_REGS_INTR) && 1212 (attr->sample_regs_intr & PERF_REG_EXTENDED_MASK)) 1213 pebs_data_cfg |= PEBS_DATACFG_XMMS; 1214 1215 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 1216 /* 1217 * For now always log all LBRs. Could configure this 1218 * later. 1219 */ 1220 pebs_data_cfg |= PEBS_DATACFG_LBRS | 1221 ((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT); 1222 } 1223 1224 return pebs_data_cfg; 1225 } 1226 1227 static void 1228 pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc, 1229 struct perf_event *event, bool add) 1230 { 1231 struct pmu *pmu = event->pmu; 1232 1233 /* 1234 * Make sure we get updated with the first PEBS 1235 * event. It will trigger also during removal, but 1236 * that does not hurt: 1237 */ 1238 if (cpuc->n_pebs == 1) 1239 cpuc->pebs_data_cfg = PEBS_UPDATE_DS_SW; 1240 1241 if (needed_cb != pebs_needs_sched_cb(cpuc)) { 1242 if (!needed_cb) 1243 perf_sched_cb_inc(pmu); 1244 else 1245 perf_sched_cb_dec(pmu); 1246 1247 cpuc->pebs_data_cfg |= PEBS_UPDATE_DS_SW; 1248 } 1249 1250 /* 1251 * The PEBS record doesn't shrink on pmu::del(). Doing so would require 1252 * iterating all remaining PEBS events to reconstruct the config. 1253 */ 1254 if (x86_pmu.intel_cap.pebs_baseline && add) { 1255 u64 pebs_data_cfg; 1256 1257 pebs_data_cfg = pebs_update_adaptive_cfg(event); 1258 /* 1259 * Be sure to update the thresholds when we change the record. 1260 */ 1261 if (pebs_data_cfg & ~cpuc->pebs_data_cfg) 1262 cpuc->pebs_data_cfg |= pebs_data_cfg | PEBS_UPDATE_DS_SW; 1263 } 1264 } 1265 1266 void intel_pmu_pebs_add(struct perf_event *event) 1267 { 1268 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1269 struct hw_perf_event *hwc = &event->hw; 1270 bool needed_cb = pebs_needs_sched_cb(cpuc); 1271 1272 cpuc->n_pebs++; 1273 if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS) 1274 cpuc->n_large_pebs++; 1275 if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT) 1276 cpuc->n_pebs_via_pt++; 1277 1278 pebs_update_state(needed_cb, cpuc, event, true); 1279 } 1280 1281 static void intel_pmu_pebs_via_pt_disable(struct perf_event *event) 1282 { 1283 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1284 1285 if (!is_pebs_pt(event)) 1286 return; 1287 1288 if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK)) 1289 cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK; 1290 } 1291 1292 static void intel_pmu_pebs_via_pt_enable(struct perf_event *event) 1293 { 1294 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1295 struct hw_perf_event *hwc = &event->hw; 1296 struct debug_store *ds = cpuc->ds; 1297 u64 value = ds->pebs_event_reset[hwc->idx]; 1298 u32 base = MSR_RELOAD_PMC0; 1299 unsigned int idx = hwc->idx; 1300 1301 if (!is_pebs_pt(event)) 1302 return; 1303 1304 if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS)) 1305 cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD; 1306 1307 cpuc->pebs_enabled |= PEBS_OUTPUT_PT; 1308 1309 if (hwc->idx >= INTEL_PMC_IDX_FIXED) { 1310 base = MSR_RELOAD_FIXED_CTR0; 1311 idx = hwc->idx - INTEL_PMC_IDX_FIXED; 1312 if (x86_pmu.intel_cap.pebs_format < 5) 1313 value = ds->pebs_event_reset[MAX_PEBS_EVENTS_FMT4 + idx]; 1314 else 1315 value = ds->pebs_event_reset[MAX_PEBS_EVENTS + idx]; 1316 } 1317 wrmsrl(base + idx, value); 1318 } 1319 1320 static inline void intel_pmu_drain_large_pebs(struct cpu_hw_events *cpuc) 1321 { 1322 if (cpuc->n_pebs == cpuc->n_large_pebs && 1323 cpuc->n_pebs != cpuc->n_pebs_via_pt) 1324 intel_pmu_drain_pebs_buffer(); 1325 } 1326 1327 void intel_pmu_pebs_enable(struct perf_event *event) 1328 { 1329 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1330 u64 pebs_data_cfg = cpuc->pebs_data_cfg & ~PEBS_UPDATE_DS_SW; 1331 struct hw_perf_event *hwc = &event->hw; 1332 struct debug_store *ds = cpuc->ds; 1333 unsigned int idx = hwc->idx; 1334 1335 hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT; 1336 1337 cpuc->pebs_enabled |= 1ULL << hwc->idx; 1338 1339 if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5)) 1340 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32); 1341 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST) 1342 cpuc->pebs_enabled |= 1ULL << 63; 1343 1344 if (x86_pmu.intel_cap.pebs_baseline) { 1345 hwc->config |= ICL_EVENTSEL_ADAPTIVE; 1346 if (pebs_data_cfg != cpuc->active_pebs_data_cfg) { 1347 /* 1348 * drain_pebs() assumes uniform record size; 1349 * hence we need to drain when changing said 1350 * size. 1351 */ 1352 intel_pmu_drain_large_pebs(cpuc); 1353 adaptive_pebs_record_size_update(); 1354 wrmsrl(MSR_PEBS_DATA_CFG, pebs_data_cfg); 1355 cpuc->active_pebs_data_cfg = pebs_data_cfg; 1356 } 1357 } 1358 if (cpuc->pebs_data_cfg & PEBS_UPDATE_DS_SW) { 1359 cpuc->pebs_data_cfg = pebs_data_cfg; 1360 pebs_update_threshold(cpuc); 1361 } 1362 1363 if (idx >= INTEL_PMC_IDX_FIXED) { 1364 if (x86_pmu.intel_cap.pebs_format < 5) 1365 idx = MAX_PEBS_EVENTS_FMT4 + (idx - INTEL_PMC_IDX_FIXED); 1366 else 1367 idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED); 1368 } 1369 1370 /* 1371 * Use auto-reload if possible to save a MSR write in the PMI. 1372 * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD. 1373 */ 1374 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) { 1375 ds->pebs_event_reset[idx] = 1376 (u64)(-hwc->sample_period) & x86_pmu.cntval_mask; 1377 } else { 1378 ds->pebs_event_reset[idx] = 0; 1379 } 1380 1381 intel_pmu_pebs_via_pt_enable(event); 1382 } 1383 1384 void intel_pmu_pebs_del(struct perf_event *event) 1385 { 1386 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1387 struct hw_perf_event *hwc = &event->hw; 1388 bool needed_cb = pebs_needs_sched_cb(cpuc); 1389 1390 cpuc->n_pebs--; 1391 if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS) 1392 cpuc->n_large_pebs--; 1393 if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT) 1394 cpuc->n_pebs_via_pt--; 1395 1396 pebs_update_state(needed_cb, cpuc, event, false); 1397 } 1398 1399 void intel_pmu_pebs_disable(struct perf_event *event) 1400 { 1401 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1402 struct hw_perf_event *hwc = &event->hw; 1403 1404 intel_pmu_drain_large_pebs(cpuc); 1405 1406 cpuc->pebs_enabled &= ~(1ULL << hwc->idx); 1407 1408 if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && 1409 (x86_pmu.version < 5)) 1410 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32)); 1411 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST) 1412 cpuc->pebs_enabled &= ~(1ULL << 63); 1413 1414 intel_pmu_pebs_via_pt_disable(event); 1415 1416 if (cpuc->enabled) 1417 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled); 1418 1419 hwc->config |= ARCH_PERFMON_EVENTSEL_INT; 1420 } 1421 1422 void intel_pmu_pebs_enable_all(void) 1423 { 1424 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1425 1426 if (cpuc->pebs_enabled) 1427 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled); 1428 } 1429 1430 void intel_pmu_pebs_disable_all(void) 1431 { 1432 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1433 1434 if (cpuc->pebs_enabled) 1435 __intel_pmu_pebs_disable_all(); 1436 } 1437 1438 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs) 1439 { 1440 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1441 unsigned long from = cpuc->lbr_entries[0].from; 1442 unsigned long old_to, to = cpuc->lbr_entries[0].to; 1443 unsigned long ip = regs->ip; 1444 int is_64bit = 0; 1445 void *kaddr; 1446 int size; 1447 1448 /* 1449 * We don't need to fixup if the PEBS assist is fault like 1450 */ 1451 if (!x86_pmu.intel_cap.pebs_trap) 1452 return 1; 1453 1454 /* 1455 * No LBR entry, no basic block, no rewinding 1456 */ 1457 if (!cpuc->lbr_stack.nr || !from || !to) 1458 return 0; 1459 1460 /* 1461 * Basic blocks should never cross user/kernel boundaries 1462 */ 1463 if (kernel_ip(ip) != kernel_ip(to)) 1464 return 0; 1465 1466 /* 1467 * unsigned math, either ip is before the start (impossible) or 1468 * the basic block is larger than 1 page (sanity) 1469 */ 1470 if ((ip - to) > PEBS_FIXUP_SIZE) 1471 return 0; 1472 1473 /* 1474 * We sampled a branch insn, rewind using the LBR stack 1475 */ 1476 if (ip == to) { 1477 set_linear_ip(regs, from); 1478 return 1; 1479 } 1480 1481 size = ip - to; 1482 if (!kernel_ip(ip)) { 1483 int bytes; 1484 u8 *buf = this_cpu_read(insn_buffer); 1485 1486 /* 'size' must fit our buffer, see above */ 1487 bytes = copy_from_user_nmi(buf, (void __user *)to, size); 1488 if (bytes != 0) 1489 return 0; 1490 1491 kaddr = buf; 1492 } else { 1493 kaddr = (void *)to; 1494 } 1495 1496 do { 1497 struct insn insn; 1498 1499 old_to = to; 1500 1501 #ifdef CONFIG_X86_64 1502 is_64bit = kernel_ip(to) || any_64bit_mode(regs); 1503 #endif 1504 insn_init(&insn, kaddr, size, is_64bit); 1505 1506 /* 1507 * Make sure there was not a problem decoding the instruction. 1508 * This is doubly important because we have an infinite loop if 1509 * insn.length=0. 1510 */ 1511 if (insn_get_length(&insn)) 1512 break; 1513 1514 to += insn.length; 1515 kaddr += insn.length; 1516 size -= insn.length; 1517 } while (to < ip); 1518 1519 if (to == ip) { 1520 set_linear_ip(regs, old_to); 1521 return 1; 1522 } 1523 1524 /* 1525 * Even though we decoded the basic block, the instruction stream 1526 * never matched the given IP, either the TO or the IP got corrupted. 1527 */ 1528 return 0; 1529 } 1530 1531 static inline u64 intel_get_tsx_weight(u64 tsx_tuning) 1532 { 1533 if (tsx_tuning) { 1534 union hsw_tsx_tuning tsx = { .value = tsx_tuning }; 1535 return tsx.cycles_last_block; 1536 } 1537 return 0; 1538 } 1539 1540 static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax) 1541 { 1542 u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32; 1543 1544 /* For RTM XABORTs also log the abort code from AX */ 1545 if ((txn & PERF_TXN_TRANSACTION) && (ax & 1)) 1546 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT; 1547 return txn; 1548 } 1549 1550 static inline u64 get_pebs_status(void *n) 1551 { 1552 if (x86_pmu.intel_cap.pebs_format < 4) 1553 return ((struct pebs_record_nhm *)n)->status; 1554 return ((struct pebs_basic *)n)->applicable_counters; 1555 } 1556 1557 #define PERF_X86_EVENT_PEBS_HSW_PREC \ 1558 (PERF_X86_EVENT_PEBS_ST_HSW | \ 1559 PERF_X86_EVENT_PEBS_LD_HSW | \ 1560 PERF_X86_EVENT_PEBS_NA_HSW) 1561 1562 static u64 get_data_src(struct perf_event *event, u64 aux) 1563 { 1564 u64 val = PERF_MEM_NA; 1565 int fl = event->hw.flags; 1566 bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC); 1567 1568 if (fl & PERF_X86_EVENT_PEBS_LDLAT) 1569 val = load_latency_data(event, aux); 1570 else if (fl & PERF_X86_EVENT_PEBS_STLAT) 1571 val = store_latency_data(event, aux); 1572 else if (fl & PERF_X86_EVENT_PEBS_LAT_HYBRID) 1573 val = x86_pmu.pebs_latency_data(event, aux); 1574 else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC)) 1575 val = precise_datala_hsw(event, aux); 1576 else if (fst) 1577 val = precise_store_data(aux); 1578 return val; 1579 } 1580 1581 static void setup_pebs_time(struct perf_event *event, 1582 struct perf_sample_data *data, 1583 u64 tsc) 1584 { 1585 /* Converting to a user-defined clock is not supported yet. */ 1586 if (event->attr.use_clockid != 0) 1587 return; 1588 1589 /* 1590 * Doesn't support the conversion when the TSC is unstable. 1591 * The TSC unstable case is a corner case and very unlikely to 1592 * happen. If it happens, the TSC in a PEBS record will be 1593 * dropped and fall back to perf_event_clock(). 1594 */ 1595 if (!using_native_sched_clock() || !sched_clock_stable()) 1596 return; 1597 1598 data->time = native_sched_clock_from_tsc(tsc) + __sched_clock_offset; 1599 data->sample_flags |= PERF_SAMPLE_TIME; 1600 } 1601 1602 #define PERF_SAMPLE_ADDR_TYPE (PERF_SAMPLE_ADDR | \ 1603 PERF_SAMPLE_PHYS_ADDR | \ 1604 PERF_SAMPLE_DATA_PAGE_SIZE) 1605 1606 static void setup_pebs_fixed_sample_data(struct perf_event *event, 1607 struct pt_regs *iregs, void *__pebs, 1608 struct perf_sample_data *data, 1609 struct pt_regs *regs) 1610 { 1611 /* 1612 * We cast to the biggest pebs_record but are careful not to 1613 * unconditionally access the 'extra' entries. 1614 */ 1615 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1616 struct pebs_record_skl *pebs = __pebs; 1617 u64 sample_type; 1618 int fll; 1619 1620 if (pebs == NULL) 1621 return; 1622 1623 sample_type = event->attr.sample_type; 1624 fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT; 1625 1626 perf_sample_data_init(data, 0, event->hw.last_period); 1627 1628 data->period = event->hw.last_period; 1629 1630 /* 1631 * Use latency for weight (only avail with PEBS-LL) 1632 */ 1633 if (fll && (sample_type & PERF_SAMPLE_WEIGHT_TYPE)) { 1634 data->weight.full = pebs->lat; 1635 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 1636 } 1637 1638 /* 1639 * data.data_src encodes the data source 1640 */ 1641 if (sample_type & PERF_SAMPLE_DATA_SRC) { 1642 data->data_src.val = get_data_src(event, pebs->dse); 1643 data->sample_flags |= PERF_SAMPLE_DATA_SRC; 1644 } 1645 1646 /* 1647 * We must however always use iregs for the unwinder to stay sane; the 1648 * record BP,SP,IP can point into thin air when the record is from a 1649 * previous PMI context or an (I)RET happened between the record and 1650 * PMI. 1651 */ 1652 if (sample_type & PERF_SAMPLE_CALLCHAIN) 1653 perf_sample_save_callchain(data, event, iregs); 1654 1655 /* 1656 * We use the interrupt regs as a base because the PEBS record does not 1657 * contain a full regs set, specifically it seems to lack segment 1658 * descriptors, which get used by things like user_mode(). 1659 * 1660 * In the simple case fix up only the IP for PERF_SAMPLE_IP. 1661 */ 1662 *regs = *iregs; 1663 1664 /* 1665 * Initialize regs_>flags from PEBS, 1666 * Clear exact bit (which uses x86 EFLAGS Reserved bit 3), 1667 * i.e., do not rely on it being zero: 1668 */ 1669 regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT; 1670 1671 if (sample_type & PERF_SAMPLE_REGS_INTR) { 1672 regs->ax = pebs->ax; 1673 regs->bx = pebs->bx; 1674 regs->cx = pebs->cx; 1675 regs->dx = pebs->dx; 1676 regs->si = pebs->si; 1677 regs->di = pebs->di; 1678 1679 regs->bp = pebs->bp; 1680 regs->sp = pebs->sp; 1681 1682 #ifndef CONFIG_X86_32 1683 regs->r8 = pebs->r8; 1684 regs->r9 = pebs->r9; 1685 regs->r10 = pebs->r10; 1686 regs->r11 = pebs->r11; 1687 regs->r12 = pebs->r12; 1688 regs->r13 = pebs->r13; 1689 regs->r14 = pebs->r14; 1690 regs->r15 = pebs->r15; 1691 #endif 1692 } 1693 1694 if (event->attr.precise_ip > 1) { 1695 /* 1696 * Haswell and later processors have an 'eventing IP' 1697 * (real IP) which fixes the off-by-1 skid in hardware. 1698 * Use it when precise_ip >= 2 : 1699 */ 1700 if (x86_pmu.intel_cap.pebs_format >= 2) { 1701 set_linear_ip(regs, pebs->real_ip); 1702 regs->flags |= PERF_EFLAGS_EXACT; 1703 } else { 1704 /* Otherwise, use PEBS off-by-1 IP: */ 1705 set_linear_ip(regs, pebs->ip); 1706 1707 /* 1708 * With precise_ip >= 2, try to fix up the off-by-1 IP 1709 * using the LBR. If successful, the fixup function 1710 * corrects regs->ip and calls set_linear_ip() on regs: 1711 */ 1712 if (intel_pmu_pebs_fixup_ip(regs)) 1713 regs->flags |= PERF_EFLAGS_EXACT; 1714 } 1715 } else { 1716 /* 1717 * When precise_ip == 1, return the PEBS off-by-1 IP, 1718 * no fixup attempted: 1719 */ 1720 set_linear_ip(regs, pebs->ip); 1721 } 1722 1723 1724 if ((sample_type & PERF_SAMPLE_ADDR_TYPE) && 1725 x86_pmu.intel_cap.pebs_format >= 1) { 1726 data->addr = pebs->dla; 1727 data->sample_flags |= PERF_SAMPLE_ADDR; 1728 } 1729 1730 if (x86_pmu.intel_cap.pebs_format >= 2) { 1731 /* Only set the TSX weight when no memory weight. */ 1732 if ((sample_type & PERF_SAMPLE_WEIGHT_TYPE) && !fll) { 1733 data->weight.full = intel_get_tsx_weight(pebs->tsx_tuning); 1734 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 1735 } 1736 if (sample_type & PERF_SAMPLE_TRANSACTION) { 1737 data->txn = intel_get_tsx_transaction(pebs->tsx_tuning, 1738 pebs->ax); 1739 data->sample_flags |= PERF_SAMPLE_TRANSACTION; 1740 } 1741 } 1742 1743 /* 1744 * v3 supplies an accurate time stamp, so we use that 1745 * for the time stamp. 1746 * 1747 * We can only do this for the default trace clock. 1748 */ 1749 if (x86_pmu.intel_cap.pebs_format >= 3) 1750 setup_pebs_time(event, data, pebs->tsc); 1751 1752 if (has_branch_stack(event)) 1753 perf_sample_save_brstack(data, event, &cpuc->lbr_stack); 1754 } 1755 1756 static void adaptive_pebs_save_regs(struct pt_regs *regs, 1757 struct pebs_gprs *gprs) 1758 { 1759 regs->ax = gprs->ax; 1760 regs->bx = gprs->bx; 1761 regs->cx = gprs->cx; 1762 regs->dx = gprs->dx; 1763 regs->si = gprs->si; 1764 regs->di = gprs->di; 1765 regs->bp = gprs->bp; 1766 regs->sp = gprs->sp; 1767 #ifndef CONFIG_X86_32 1768 regs->r8 = gprs->r8; 1769 regs->r9 = gprs->r9; 1770 regs->r10 = gprs->r10; 1771 regs->r11 = gprs->r11; 1772 regs->r12 = gprs->r12; 1773 regs->r13 = gprs->r13; 1774 regs->r14 = gprs->r14; 1775 regs->r15 = gprs->r15; 1776 #endif 1777 } 1778 1779 #define PEBS_LATENCY_MASK 0xffff 1780 #define PEBS_CACHE_LATENCY_OFFSET 32 1781 #define PEBS_RETIRE_LATENCY_OFFSET 32 1782 1783 /* 1784 * With adaptive PEBS the layout depends on what fields are configured. 1785 */ 1786 1787 static void setup_pebs_adaptive_sample_data(struct perf_event *event, 1788 struct pt_regs *iregs, void *__pebs, 1789 struct perf_sample_data *data, 1790 struct pt_regs *regs) 1791 { 1792 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1793 struct pebs_basic *basic = __pebs; 1794 void *next_record = basic + 1; 1795 u64 sample_type; 1796 u64 format_size; 1797 struct pebs_meminfo *meminfo = NULL; 1798 struct pebs_gprs *gprs = NULL; 1799 struct x86_perf_regs *perf_regs; 1800 1801 if (basic == NULL) 1802 return; 1803 1804 perf_regs = container_of(regs, struct x86_perf_regs, regs); 1805 perf_regs->xmm_regs = NULL; 1806 1807 sample_type = event->attr.sample_type; 1808 format_size = basic->format_size; 1809 perf_sample_data_init(data, 0, event->hw.last_period); 1810 data->period = event->hw.last_period; 1811 1812 setup_pebs_time(event, data, basic->tsc); 1813 1814 /* 1815 * We must however always use iregs for the unwinder to stay sane; the 1816 * record BP,SP,IP can point into thin air when the record is from a 1817 * previous PMI context or an (I)RET happened between the record and 1818 * PMI. 1819 */ 1820 if (sample_type & PERF_SAMPLE_CALLCHAIN) 1821 perf_sample_save_callchain(data, event, iregs); 1822 1823 *regs = *iregs; 1824 /* The ip in basic is EventingIP */ 1825 set_linear_ip(regs, basic->ip); 1826 regs->flags = PERF_EFLAGS_EXACT; 1827 1828 if ((sample_type & PERF_SAMPLE_WEIGHT_STRUCT) && (x86_pmu.flags & PMU_FL_RETIRE_LATENCY)) 1829 data->weight.var3_w = format_size >> PEBS_RETIRE_LATENCY_OFFSET & PEBS_LATENCY_MASK; 1830 1831 /* 1832 * The record for MEMINFO is in front of GP 1833 * But PERF_SAMPLE_TRANSACTION needs gprs->ax. 1834 * Save the pointer here but process later. 1835 */ 1836 if (format_size & PEBS_DATACFG_MEMINFO) { 1837 meminfo = next_record; 1838 next_record = meminfo + 1; 1839 } 1840 1841 if (format_size & PEBS_DATACFG_GP) { 1842 gprs = next_record; 1843 next_record = gprs + 1; 1844 1845 if (event->attr.precise_ip < 2) { 1846 set_linear_ip(regs, gprs->ip); 1847 regs->flags &= ~PERF_EFLAGS_EXACT; 1848 } 1849 1850 if (sample_type & PERF_SAMPLE_REGS_INTR) 1851 adaptive_pebs_save_regs(regs, gprs); 1852 } 1853 1854 if (format_size & PEBS_DATACFG_MEMINFO) { 1855 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) { 1856 u64 weight = meminfo->latency; 1857 1858 if (x86_pmu.flags & PMU_FL_INSTR_LATENCY) { 1859 data->weight.var2_w = weight & PEBS_LATENCY_MASK; 1860 weight >>= PEBS_CACHE_LATENCY_OFFSET; 1861 } 1862 1863 /* 1864 * Although meminfo::latency is defined as a u64, 1865 * only the lower 32 bits include the valid data 1866 * in practice on Ice Lake and earlier platforms. 1867 */ 1868 if (sample_type & PERF_SAMPLE_WEIGHT) { 1869 data->weight.full = weight ?: 1870 intel_get_tsx_weight(meminfo->tsx_tuning); 1871 } else { 1872 data->weight.var1_dw = (u32)(weight & PEBS_LATENCY_MASK) ?: 1873 intel_get_tsx_weight(meminfo->tsx_tuning); 1874 } 1875 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 1876 } 1877 1878 if (sample_type & PERF_SAMPLE_DATA_SRC) { 1879 data->data_src.val = get_data_src(event, meminfo->aux); 1880 data->sample_flags |= PERF_SAMPLE_DATA_SRC; 1881 } 1882 1883 if (sample_type & PERF_SAMPLE_ADDR_TYPE) { 1884 data->addr = meminfo->address; 1885 data->sample_flags |= PERF_SAMPLE_ADDR; 1886 } 1887 1888 if (sample_type & PERF_SAMPLE_TRANSACTION) { 1889 data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning, 1890 gprs ? gprs->ax : 0); 1891 data->sample_flags |= PERF_SAMPLE_TRANSACTION; 1892 } 1893 } 1894 1895 if (format_size & PEBS_DATACFG_XMMS) { 1896 struct pebs_xmm *xmm = next_record; 1897 1898 next_record = xmm + 1; 1899 perf_regs->xmm_regs = xmm->xmm; 1900 } 1901 1902 if (format_size & PEBS_DATACFG_LBRS) { 1903 struct lbr_entry *lbr = next_record; 1904 int num_lbr = ((format_size >> PEBS_DATACFG_LBR_SHIFT) 1905 & 0xff) + 1; 1906 next_record = next_record + num_lbr * sizeof(struct lbr_entry); 1907 1908 if (has_branch_stack(event)) { 1909 intel_pmu_store_pebs_lbrs(lbr); 1910 perf_sample_save_brstack(data, event, &cpuc->lbr_stack); 1911 } 1912 } 1913 1914 WARN_ONCE(next_record != __pebs + (format_size >> 48), 1915 "PEBS record size %llu, expected %llu, config %llx\n", 1916 format_size >> 48, 1917 (u64)(next_record - __pebs), 1918 basic->format_size); 1919 } 1920 1921 static inline void * 1922 get_next_pebs_record_by_bit(void *base, void *top, int bit) 1923 { 1924 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1925 void *at; 1926 u64 pebs_status; 1927 1928 /* 1929 * fmt0 does not have a status bitfield (does not use 1930 * perf_record_nhm format) 1931 */ 1932 if (x86_pmu.intel_cap.pebs_format < 1) 1933 return base; 1934 1935 if (base == NULL) 1936 return NULL; 1937 1938 for (at = base; at < top; at += cpuc->pebs_record_size) { 1939 unsigned long status = get_pebs_status(at); 1940 1941 if (test_bit(bit, (unsigned long *)&status)) { 1942 /* PEBS v3 has accurate status bits */ 1943 if (x86_pmu.intel_cap.pebs_format >= 3) 1944 return at; 1945 1946 if (status == (1 << bit)) 1947 return at; 1948 1949 /* clear non-PEBS bit and re-check */ 1950 pebs_status = status & cpuc->pebs_enabled; 1951 pebs_status &= PEBS_COUNTER_MASK; 1952 if (pebs_status == (1 << bit)) 1953 return at; 1954 } 1955 } 1956 return NULL; 1957 } 1958 1959 void intel_pmu_auto_reload_read(struct perf_event *event) 1960 { 1961 WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)); 1962 1963 perf_pmu_disable(event->pmu); 1964 intel_pmu_drain_pebs_buffer(); 1965 perf_pmu_enable(event->pmu); 1966 } 1967 1968 /* 1969 * Special variant of intel_pmu_save_and_restart() for auto-reload. 1970 */ 1971 static int 1972 intel_pmu_save_and_restart_reload(struct perf_event *event, int count) 1973 { 1974 struct hw_perf_event *hwc = &event->hw; 1975 int shift = 64 - x86_pmu.cntval_bits; 1976 u64 period = hwc->sample_period; 1977 u64 prev_raw_count, new_raw_count; 1978 s64 new, old; 1979 1980 WARN_ON(!period); 1981 1982 /* 1983 * drain_pebs() only happens when the PMU is disabled. 1984 */ 1985 WARN_ON(this_cpu_read(cpu_hw_events.enabled)); 1986 1987 prev_raw_count = local64_read(&hwc->prev_count); 1988 rdpmcl(hwc->event_base_rdpmc, new_raw_count); 1989 local64_set(&hwc->prev_count, new_raw_count); 1990 1991 /* 1992 * Since the counter increments a negative counter value and 1993 * overflows on the sign switch, giving the interval: 1994 * 1995 * [-period, 0] 1996 * 1997 * the difference between two consecutive reads is: 1998 * 1999 * A) value2 - value1; 2000 * when no overflows have happened in between, 2001 * 2002 * B) (0 - value1) + (value2 - (-period)); 2003 * when one overflow happened in between, 2004 * 2005 * C) (0 - value1) + (n - 1) * (period) + (value2 - (-period)); 2006 * when @n overflows happened in between. 2007 * 2008 * Here A) is the obvious difference, B) is the extension to the 2009 * discrete interval, where the first term is to the top of the 2010 * interval and the second term is from the bottom of the next 2011 * interval and C) the extension to multiple intervals, where the 2012 * middle term is the whole intervals covered. 2013 * 2014 * An equivalent of C, by reduction, is: 2015 * 2016 * value2 - value1 + n * period 2017 */ 2018 new = ((s64)(new_raw_count << shift) >> shift); 2019 old = ((s64)(prev_raw_count << shift) >> shift); 2020 local64_add(new - old + count * period, &event->count); 2021 2022 local64_set(&hwc->period_left, -new); 2023 2024 perf_event_update_userpage(event); 2025 2026 return 0; 2027 } 2028 2029 static __always_inline void 2030 __intel_pmu_pebs_event(struct perf_event *event, 2031 struct pt_regs *iregs, 2032 struct perf_sample_data *data, 2033 void *base, void *top, 2034 int bit, int count, 2035 void (*setup_sample)(struct perf_event *, 2036 struct pt_regs *, 2037 void *, 2038 struct perf_sample_data *, 2039 struct pt_regs *)) 2040 { 2041 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2042 struct hw_perf_event *hwc = &event->hw; 2043 struct x86_perf_regs perf_regs; 2044 struct pt_regs *regs = &perf_regs.regs; 2045 void *at = get_next_pebs_record_by_bit(base, top, bit); 2046 static struct pt_regs dummy_iregs; 2047 2048 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) { 2049 /* 2050 * Now, auto-reload is only enabled in fixed period mode. 2051 * The reload value is always hwc->sample_period. 2052 * May need to change it, if auto-reload is enabled in 2053 * freq mode later. 2054 */ 2055 intel_pmu_save_and_restart_reload(event, count); 2056 } else if (!intel_pmu_save_and_restart(event)) 2057 return; 2058 2059 if (!iregs) 2060 iregs = &dummy_iregs; 2061 2062 while (count > 1) { 2063 setup_sample(event, iregs, at, data, regs); 2064 perf_event_output(event, data, regs); 2065 at += cpuc->pebs_record_size; 2066 at = get_next_pebs_record_by_bit(at, top, bit); 2067 count--; 2068 } 2069 2070 setup_sample(event, iregs, at, data, regs); 2071 if (iregs == &dummy_iregs) { 2072 /* 2073 * The PEBS records may be drained in the non-overflow context, 2074 * e.g., large PEBS + context switch. Perf should treat the 2075 * last record the same as other PEBS records, and doesn't 2076 * invoke the generic overflow handler. 2077 */ 2078 perf_event_output(event, data, regs); 2079 } else { 2080 /* 2081 * All but the last records are processed. 2082 * The last one is left to be able to call the overflow handler. 2083 */ 2084 if (perf_event_overflow(event, data, regs)) 2085 x86_pmu_stop(event, 0); 2086 } 2087 } 2088 2089 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs, struct perf_sample_data *data) 2090 { 2091 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2092 struct debug_store *ds = cpuc->ds; 2093 struct perf_event *event = cpuc->events[0]; /* PMC0 only */ 2094 struct pebs_record_core *at, *top; 2095 int n; 2096 2097 if (!x86_pmu.pebs_active) 2098 return; 2099 2100 at = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base; 2101 top = (struct pebs_record_core *)(unsigned long)ds->pebs_index; 2102 2103 /* 2104 * Whatever else happens, drain the thing 2105 */ 2106 ds->pebs_index = ds->pebs_buffer_base; 2107 2108 if (!test_bit(0, cpuc->active_mask)) 2109 return; 2110 2111 WARN_ON_ONCE(!event); 2112 2113 if (!event->attr.precise_ip) 2114 return; 2115 2116 n = top - at; 2117 if (n <= 0) { 2118 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD) 2119 intel_pmu_save_and_restart_reload(event, 0); 2120 return; 2121 } 2122 2123 __intel_pmu_pebs_event(event, iregs, data, at, top, 0, n, 2124 setup_pebs_fixed_sample_data); 2125 } 2126 2127 static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, int size) 2128 { 2129 struct perf_event *event; 2130 int bit; 2131 2132 /* 2133 * The drain_pebs() could be called twice in a short period 2134 * for auto-reload event in pmu::read(). There are no 2135 * overflows have happened in between. 2136 * It needs to call intel_pmu_save_and_restart_reload() to 2137 * update the event->count for this case. 2138 */ 2139 for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled, size) { 2140 event = cpuc->events[bit]; 2141 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD) 2142 intel_pmu_save_and_restart_reload(event, 0); 2143 } 2144 } 2145 2146 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs, struct perf_sample_data *data) 2147 { 2148 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2149 struct debug_store *ds = cpuc->ds; 2150 struct perf_event *event; 2151 void *base, *at, *top; 2152 short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {}; 2153 short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {}; 2154 int bit, i, size; 2155 u64 mask; 2156 2157 if (!x86_pmu.pebs_active) 2158 return; 2159 2160 base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base; 2161 top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index; 2162 2163 ds->pebs_index = ds->pebs_buffer_base; 2164 2165 mask = (1ULL << x86_pmu.max_pebs_events) - 1; 2166 size = x86_pmu.max_pebs_events; 2167 if (x86_pmu.flags & PMU_FL_PEBS_ALL) { 2168 mask |= ((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED; 2169 size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed; 2170 } 2171 2172 if (unlikely(base >= top)) { 2173 intel_pmu_pebs_event_update_no_drain(cpuc, size); 2174 return; 2175 } 2176 2177 for (at = base; at < top; at += x86_pmu.pebs_record_size) { 2178 struct pebs_record_nhm *p = at; 2179 u64 pebs_status; 2180 2181 pebs_status = p->status & cpuc->pebs_enabled; 2182 pebs_status &= mask; 2183 2184 /* PEBS v3 has more accurate status bits */ 2185 if (x86_pmu.intel_cap.pebs_format >= 3) { 2186 for_each_set_bit(bit, (unsigned long *)&pebs_status, size) 2187 counts[bit]++; 2188 2189 continue; 2190 } 2191 2192 /* 2193 * On some CPUs the PEBS status can be zero when PEBS is 2194 * racing with clearing of GLOBAL_STATUS. 2195 * 2196 * Normally we would drop that record, but in the 2197 * case when there is only a single active PEBS event 2198 * we can assume it's for that event. 2199 */ 2200 if (!pebs_status && cpuc->pebs_enabled && 2201 !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1))) 2202 pebs_status = p->status = cpuc->pebs_enabled; 2203 2204 bit = find_first_bit((unsigned long *)&pebs_status, 2205 x86_pmu.max_pebs_events); 2206 if (bit >= x86_pmu.max_pebs_events) 2207 continue; 2208 2209 /* 2210 * The PEBS hardware does not deal well with the situation 2211 * when events happen near to each other and multiple bits 2212 * are set. But it should happen rarely. 2213 * 2214 * If these events include one PEBS and multiple non-PEBS 2215 * events, it doesn't impact PEBS record. The record will 2216 * be handled normally. (slow path) 2217 * 2218 * If these events include two or more PEBS events, the 2219 * records for the events can be collapsed into a single 2220 * one, and it's not possible to reconstruct all events 2221 * that caused the PEBS record. It's called collision. 2222 * If collision happened, the record will be dropped. 2223 */ 2224 if (pebs_status != (1ULL << bit)) { 2225 for_each_set_bit(i, (unsigned long *)&pebs_status, size) 2226 error[i]++; 2227 continue; 2228 } 2229 2230 counts[bit]++; 2231 } 2232 2233 for_each_set_bit(bit, (unsigned long *)&mask, size) { 2234 if ((counts[bit] == 0) && (error[bit] == 0)) 2235 continue; 2236 2237 event = cpuc->events[bit]; 2238 if (WARN_ON_ONCE(!event)) 2239 continue; 2240 2241 if (WARN_ON_ONCE(!event->attr.precise_ip)) 2242 continue; 2243 2244 /* log dropped samples number */ 2245 if (error[bit]) { 2246 perf_log_lost_samples(event, error[bit]); 2247 2248 if (iregs && perf_event_account_interrupt(event)) 2249 x86_pmu_stop(event, 0); 2250 } 2251 2252 if (counts[bit]) { 2253 __intel_pmu_pebs_event(event, iregs, data, base, 2254 top, bit, counts[bit], 2255 setup_pebs_fixed_sample_data); 2256 } 2257 } 2258 } 2259 2260 static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs, struct perf_sample_data *data) 2261 { 2262 short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {}; 2263 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2264 int max_pebs_events = hybrid(cpuc->pmu, max_pebs_events); 2265 int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed); 2266 struct debug_store *ds = cpuc->ds; 2267 struct perf_event *event; 2268 void *base, *at, *top; 2269 int bit, size; 2270 u64 mask; 2271 2272 if (!x86_pmu.pebs_active) 2273 return; 2274 2275 base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base; 2276 top = (struct pebs_basic *)(unsigned long)ds->pebs_index; 2277 2278 ds->pebs_index = ds->pebs_buffer_base; 2279 2280 mask = ((1ULL << max_pebs_events) - 1) | 2281 (((1ULL << num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED); 2282 size = INTEL_PMC_IDX_FIXED + num_counters_fixed; 2283 2284 if (unlikely(base >= top)) { 2285 intel_pmu_pebs_event_update_no_drain(cpuc, size); 2286 return; 2287 } 2288 2289 for (at = base; at < top; at += cpuc->pebs_record_size) { 2290 u64 pebs_status; 2291 2292 pebs_status = get_pebs_status(at) & cpuc->pebs_enabled; 2293 pebs_status &= mask; 2294 2295 for_each_set_bit(bit, (unsigned long *)&pebs_status, size) 2296 counts[bit]++; 2297 } 2298 2299 for_each_set_bit(bit, (unsigned long *)&mask, size) { 2300 if (counts[bit] == 0) 2301 continue; 2302 2303 event = cpuc->events[bit]; 2304 if (WARN_ON_ONCE(!event)) 2305 continue; 2306 2307 if (WARN_ON_ONCE(!event->attr.precise_ip)) 2308 continue; 2309 2310 __intel_pmu_pebs_event(event, iregs, data, base, 2311 top, bit, counts[bit], 2312 setup_pebs_adaptive_sample_data); 2313 } 2314 } 2315 2316 /* 2317 * BTS, PEBS probe and setup 2318 */ 2319 2320 void __init intel_ds_init(void) 2321 { 2322 /* 2323 * No support for 32bit formats 2324 */ 2325 if (!boot_cpu_has(X86_FEATURE_DTES64)) 2326 return; 2327 2328 x86_pmu.bts = boot_cpu_has(X86_FEATURE_BTS); 2329 x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS); 2330 x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE; 2331 if (x86_pmu.version <= 4) 2332 x86_pmu.pebs_no_isolation = 1; 2333 2334 if (x86_pmu.pebs) { 2335 char pebs_type = x86_pmu.intel_cap.pebs_trap ? '+' : '-'; 2336 char *pebs_qual = ""; 2337 int format = x86_pmu.intel_cap.pebs_format; 2338 2339 if (format < 4) 2340 x86_pmu.intel_cap.pebs_baseline = 0; 2341 2342 switch (format) { 2343 case 0: 2344 pr_cont("PEBS fmt0%c, ", pebs_type); 2345 x86_pmu.pebs_record_size = sizeof(struct pebs_record_core); 2346 /* 2347 * Using >PAGE_SIZE buffers makes the WRMSR to 2348 * PERF_GLOBAL_CTRL in intel_pmu_enable_all() 2349 * mysteriously hang on Core2. 2350 * 2351 * As a workaround, we don't do this. 2352 */ 2353 x86_pmu.pebs_buffer_size = PAGE_SIZE; 2354 x86_pmu.drain_pebs = intel_pmu_drain_pebs_core; 2355 break; 2356 2357 case 1: 2358 pr_cont("PEBS fmt1%c, ", pebs_type); 2359 x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm); 2360 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; 2361 break; 2362 2363 case 2: 2364 pr_cont("PEBS fmt2%c, ", pebs_type); 2365 x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw); 2366 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; 2367 break; 2368 2369 case 3: 2370 pr_cont("PEBS fmt3%c, ", pebs_type); 2371 x86_pmu.pebs_record_size = 2372 sizeof(struct pebs_record_skl); 2373 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; 2374 x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME; 2375 break; 2376 2377 case 5: 2378 x86_pmu.pebs_ept = 1; 2379 fallthrough; 2380 case 4: 2381 x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl; 2382 x86_pmu.pebs_record_size = sizeof(struct pebs_basic); 2383 if (x86_pmu.intel_cap.pebs_baseline) { 2384 x86_pmu.large_pebs_flags |= 2385 PERF_SAMPLE_BRANCH_STACK | 2386 PERF_SAMPLE_TIME; 2387 x86_pmu.flags |= PMU_FL_PEBS_ALL; 2388 x86_pmu.pebs_capable = ~0ULL; 2389 pebs_qual = "-baseline"; 2390 x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_EXTENDED_REGS; 2391 } else { 2392 /* Only basic record supported */ 2393 x86_pmu.large_pebs_flags &= 2394 ~(PERF_SAMPLE_ADDR | 2395 PERF_SAMPLE_TIME | 2396 PERF_SAMPLE_DATA_SRC | 2397 PERF_SAMPLE_TRANSACTION | 2398 PERF_SAMPLE_REGS_USER | 2399 PERF_SAMPLE_REGS_INTR); 2400 } 2401 pr_cont("PEBS fmt4%c%s, ", pebs_type, pebs_qual); 2402 2403 if (!is_hybrid() && x86_pmu.intel_cap.pebs_output_pt_available) { 2404 pr_cont("PEBS-via-PT, "); 2405 x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_AUX_OUTPUT; 2406 } 2407 2408 break; 2409 2410 default: 2411 pr_cont("no PEBS fmt%d%c, ", format, pebs_type); 2412 x86_pmu.pebs = 0; 2413 } 2414 } 2415 } 2416 2417 void perf_restore_debug_store(void) 2418 { 2419 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds); 2420 2421 if (!x86_pmu.bts && !x86_pmu.pebs) 2422 return; 2423 2424 wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds); 2425 } 2426