1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/bitops.h> 3 #include <linux/types.h> 4 #include <linux/slab.h> 5 6 #include <asm/cpu_entry_area.h> 7 #include <asm/perf_event.h> 8 #include <asm/tlbflush.h> 9 #include <asm/insn.h> 10 11 #include "../perf_event.h" 12 13 /* Waste a full page so it can be mapped into the cpu_entry_area */ 14 DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store); 15 16 /* The size of a BTS record in bytes: */ 17 #define BTS_RECORD_SIZE 24 18 19 #define PEBS_FIXUP_SIZE PAGE_SIZE 20 21 /* 22 * pebs_record_32 for p4 and core not supported 23 24 struct pebs_record_32 { 25 u32 flags, ip; 26 u32 ax, bc, cx, dx; 27 u32 si, di, bp, sp; 28 }; 29 30 */ 31 32 union intel_x86_pebs_dse { 33 u64 val; 34 struct { 35 unsigned int ld_dse:4; 36 unsigned int ld_stlb_miss:1; 37 unsigned int ld_locked:1; 38 unsigned int ld_reserved:26; 39 }; 40 struct { 41 unsigned int st_l1d_hit:1; 42 unsigned int st_reserved1:3; 43 unsigned int st_stlb_miss:1; 44 unsigned int st_locked:1; 45 unsigned int st_reserved2:26; 46 }; 47 }; 48 49 50 /* 51 * Map PEBS Load Latency Data Source encodings to generic 52 * memory data source information 53 */ 54 #define P(a, b) PERF_MEM_S(a, b) 55 #define OP_LH (P(OP, LOAD) | P(LVL, HIT)) 56 #define LEVEL(x) P(LVLNUM, x) 57 #define REM P(REMOTE, REMOTE) 58 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS)) 59 60 /* Version for Sandy Bridge and later */ 61 static u64 pebs_data_source[] = { 62 P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */ 63 OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x01: L1 local */ 64 OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */ 65 OP_LH | P(LVL, L2) | LEVEL(L2) | P(SNOOP, NONE), /* 0x03: L2 hit */ 66 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, NONE), /* 0x04: L3 hit */ 67 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, MISS), /* 0x05: L3 hit, snoop miss */ 68 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT), /* 0x06: L3 hit, snoop hit */ 69 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x07: L3 hit, snoop hitm */ 70 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x08: L3 miss snoop hit */ 71 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/ 72 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, HIT), /* 0x0a: L3 miss, shared */ 73 OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x0b: L3 miss, shared */ 74 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | SNOOP_NONE_MISS, /* 0x0c: L3 miss, excl */ 75 OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */ 76 OP_LH | P(LVL, IO) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */ 77 OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */ 78 }; 79 80 /* Patch up minor differences in the bits */ 81 void __init intel_pmu_pebs_data_source_nhm(void) 82 { 83 pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT); 84 pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); 85 pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); 86 } 87 88 void __init intel_pmu_pebs_data_source_skl(bool pmem) 89 { 90 u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4); 91 92 pebs_data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT); 93 pebs_data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT); 94 pebs_data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE); 95 pebs_data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD); 96 pebs_data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM); 97 } 98 99 static u64 precise_store_data(u64 status) 100 { 101 union intel_x86_pebs_dse dse; 102 u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2); 103 104 dse.val = status; 105 106 /* 107 * bit 4: TLB access 108 * 1 = stored missed 2nd level TLB 109 * 110 * so it either hit the walker or the OS 111 * otherwise hit 2nd level TLB 112 */ 113 if (dse.st_stlb_miss) 114 val |= P(TLB, MISS); 115 else 116 val |= P(TLB, HIT); 117 118 /* 119 * bit 0: hit L1 data cache 120 * if not set, then all we know is that 121 * it missed L1D 122 */ 123 if (dse.st_l1d_hit) 124 val |= P(LVL, HIT); 125 else 126 val |= P(LVL, MISS); 127 128 /* 129 * bit 5: Locked prefix 130 */ 131 if (dse.st_locked) 132 val |= P(LOCK, LOCKED); 133 134 return val; 135 } 136 137 static u64 precise_datala_hsw(struct perf_event *event, u64 status) 138 { 139 union perf_mem_data_src dse; 140 141 dse.val = PERF_MEM_NA; 142 143 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) 144 dse.mem_op = PERF_MEM_OP_STORE; 145 else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW) 146 dse.mem_op = PERF_MEM_OP_LOAD; 147 148 /* 149 * L1 info only valid for following events: 150 * 151 * MEM_UOPS_RETIRED.STLB_MISS_STORES 152 * MEM_UOPS_RETIRED.LOCK_STORES 153 * MEM_UOPS_RETIRED.SPLIT_STORES 154 * MEM_UOPS_RETIRED.ALL_STORES 155 */ 156 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) { 157 if (status & 1) 158 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT; 159 else 160 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS; 161 } 162 return dse.val; 163 } 164 165 static u64 load_latency_data(u64 status) 166 { 167 union intel_x86_pebs_dse dse; 168 u64 val; 169 170 dse.val = status; 171 172 /* 173 * use the mapping table for bit 0-3 174 */ 175 val = pebs_data_source[dse.ld_dse]; 176 177 /* 178 * Nehalem models do not support TLB, Lock infos 179 */ 180 if (x86_pmu.pebs_no_tlb) { 181 val |= P(TLB, NA) | P(LOCK, NA); 182 return val; 183 } 184 /* 185 * bit 4: TLB access 186 * 0 = did not miss 2nd level TLB 187 * 1 = missed 2nd level TLB 188 */ 189 if (dse.ld_stlb_miss) 190 val |= P(TLB, MISS) | P(TLB, L2); 191 else 192 val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2); 193 194 /* 195 * bit 5: locked prefix 196 */ 197 if (dse.ld_locked) 198 val |= P(LOCK, LOCKED); 199 200 return val; 201 } 202 203 struct pebs_record_core { 204 u64 flags, ip; 205 u64 ax, bx, cx, dx; 206 u64 si, di, bp, sp; 207 u64 r8, r9, r10, r11; 208 u64 r12, r13, r14, r15; 209 }; 210 211 struct pebs_record_nhm { 212 u64 flags, ip; 213 u64 ax, bx, cx, dx; 214 u64 si, di, bp, sp; 215 u64 r8, r9, r10, r11; 216 u64 r12, r13, r14, r15; 217 u64 status, dla, dse, lat; 218 }; 219 220 /* 221 * Same as pebs_record_nhm, with two additional fields. 222 */ 223 struct pebs_record_hsw { 224 u64 flags, ip; 225 u64 ax, bx, cx, dx; 226 u64 si, di, bp, sp; 227 u64 r8, r9, r10, r11; 228 u64 r12, r13, r14, r15; 229 u64 status, dla, dse, lat; 230 u64 real_ip, tsx_tuning; 231 }; 232 233 union hsw_tsx_tuning { 234 struct { 235 u32 cycles_last_block : 32, 236 hle_abort : 1, 237 rtm_abort : 1, 238 instruction_abort : 1, 239 non_instruction_abort : 1, 240 retry : 1, 241 data_conflict : 1, 242 capacity_writes : 1, 243 capacity_reads : 1; 244 }; 245 u64 value; 246 }; 247 248 #define PEBS_HSW_TSX_FLAGS 0xff00000000ULL 249 250 /* Same as HSW, plus TSC */ 251 252 struct pebs_record_skl { 253 u64 flags, ip; 254 u64 ax, bx, cx, dx; 255 u64 si, di, bp, sp; 256 u64 r8, r9, r10, r11; 257 u64 r12, r13, r14, r15; 258 u64 status, dla, dse, lat; 259 u64 real_ip, tsx_tuning; 260 u64 tsc; 261 }; 262 263 void init_debug_store_on_cpu(int cpu) 264 { 265 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds; 266 267 if (!ds) 268 return; 269 270 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 271 (u32)((u64)(unsigned long)ds), 272 (u32)((u64)(unsigned long)ds >> 32)); 273 } 274 275 void fini_debug_store_on_cpu(int cpu) 276 { 277 if (!per_cpu(cpu_hw_events, cpu).ds) 278 return; 279 280 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0); 281 } 282 283 static DEFINE_PER_CPU(void *, insn_buffer); 284 285 static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot) 286 { 287 unsigned long start = (unsigned long)cea; 288 phys_addr_t pa; 289 size_t msz = 0; 290 291 pa = virt_to_phys(addr); 292 293 preempt_disable(); 294 for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE) 295 cea_set_pte(cea, pa, prot); 296 297 /* 298 * This is a cross-CPU update of the cpu_entry_area, we must shoot down 299 * all TLB entries for it. 300 */ 301 flush_tlb_kernel_range(start, start + size); 302 preempt_enable(); 303 } 304 305 static void ds_clear_cea(void *cea, size_t size) 306 { 307 unsigned long start = (unsigned long)cea; 308 size_t msz = 0; 309 310 preempt_disable(); 311 for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE) 312 cea_set_pte(cea, 0, PAGE_NONE); 313 314 flush_tlb_kernel_range(start, start + size); 315 preempt_enable(); 316 } 317 318 static void *dsalloc_pages(size_t size, gfp_t flags, int cpu) 319 { 320 unsigned int order = get_order(size); 321 int node = cpu_to_node(cpu); 322 struct page *page; 323 324 page = __alloc_pages_node(node, flags | __GFP_ZERO, order); 325 return page ? page_address(page) : NULL; 326 } 327 328 static void dsfree_pages(const void *buffer, size_t size) 329 { 330 if (buffer) 331 free_pages((unsigned long)buffer, get_order(size)); 332 } 333 334 static int alloc_pebs_buffer(int cpu) 335 { 336 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); 337 struct debug_store *ds = hwev->ds; 338 size_t bsiz = x86_pmu.pebs_buffer_size; 339 int max, node = cpu_to_node(cpu); 340 void *buffer, *ibuffer, *cea; 341 342 if (!x86_pmu.pebs) 343 return 0; 344 345 buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu); 346 if (unlikely(!buffer)) 347 return -ENOMEM; 348 349 /* 350 * HSW+ already provides us the eventing ip; no need to allocate this 351 * buffer then. 352 */ 353 if (x86_pmu.intel_cap.pebs_format < 2) { 354 ibuffer = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node); 355 if (!ibuffer) { 356 dsfree_pages(buffer, bsiz); 357 return -ENOMEM; 358 } 359 per_cpu(insn_buffer, cpu) = ibuffer; 360 } 361 hwev->ds_pebs_vaddr = buffer; 362 /* Update the cpu entry area mapping */ 363 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer; 364 ds->pebs_buffer_base = (unsigned long) cea; 365 ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL); 366 ds->pebs_index = ds->pebs_buffer_base; 367 max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size); 368 ds->pebs_absolute_maximum = ds->pebs_buffer_base + max; 369 return 0; 370 } 371 372 static void release_pebs_buffer(int cpu) 373 { 374 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); 375 void *cea; 376 377 if (!x86_pmu.pebs) 378 return; 379 380 kfree(per_cpu(insn_buffer, cpu)); 381 per_cpu(insn_buffer, cpu) = NULL; 382 383 /* Clear the fixmap */ 384 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer; 385 ds_clear_cea(cea, x86_pmu.pebs_buffer_size); 386 dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size); 387 hwev->ds_pebs_vaddr = NULL; 388 } 389 390 static int alloc_bts_buffer(int cpu) 391 { 392 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); 393 struct debug_store *ds = hwev->ds; 394 void *buffer, *cea; 395 int max; 396 397 if (!x86_pmu.bts) 398 return 0; 399 400 buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu); 401 if (unlikely(!buffer)) { 402 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__); 403 return -ENOMEM; 404 } 405 hwev->ds_bts_vaddr = buffer; 406 /* Update the fixmap */ 407 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer; 408 ds->bts_buffer_base = (unsigned long) cea; 409 ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL); 410 ds->bts_index = ds->bts_buffer_base; 411 max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE; 412 ds->bts_absolute_maximum = ds->bts_buffer_base + 413 max * BTS_RECORD_SIZE; 414 ds->bts_interrupt_threshold = ds->bts_absolute_maximum - 415 (max / 16) * BTS_RECORD_SIZE; 416 return 0; 417 } 418 419 static void release_bts_buffer(int cpu) 420 { 421 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); 422 void *cea; 423 424 if (!x86_pmu.bts) 425 return; 426 427 /* Clear the fixmap */ 428 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer; 429 ds_clear_cea(cea, BTS_BUFFER_SIZE); 430 dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE); 431 hwev->ds_bts_vaddr = NULL; 432 } 433 434 static int alloc_ds_buffer(int cpu) 435 { 436 struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store; 437 438 memset(ds, 0, sizeof(*ds)); 439 per_cpu(cpu_hw_events, cpu).ds = ds; 440 return 0; 441 } 442 443 static void release_ds_buffer(int cpu) 444 { 445 per_cpu(cpu_hw_events, cpu).ds = NULL; 446 } 447 448 void release_ds_buffers(void) 449 { 450 int cpu; 451 452 if (!x86_pmu.bts && !x86_pmu.pebs) 453 return; 454 455 for_each_possible_cpu(cpu) 456 release_ds_buffer(cpu); 457 458 for_each_possible_cpu(cpu) { 459 /* 460 * Again, ignore errors from offline CPUs, they will no longer 461 * observe cpu_hw_events.ds and not program the DS_AREA when 462 * they come up. 463 */ 464 fini_debug_store_on_cpu(cpu); 465 } 466 467 for_each_possible_cpu(cpu) { 468 release_pebs_buffer(cpu); 469 release_bts_buffer(cpu); 470 } 471 } 472 473 void reserve_ds_buffers(void) 474 { 475 int bts_err = 0, pebs_err = 0; 476 int cpu; 477 478 x86_pmu.bts_active = 0; 479 x86_pmu.pebs_active = 0; 480 481 if (!x86_pmu.bts && !x86_pmu.pebs) 482 return; 483 484 if (!x86_pmu.bts) 485 bts_err = 1; 486 487 if (!x86_pmu.pebs) 488 pebs_err = 1; 489 490 for_each_possible_cpu(cpu) { 491 if (alloc_ds_buffer(cpu)) { 492 bts_err = 1; 493 pebs_err = 1; 494 } 495 496 if (!bts_err && alloc_bts_buffer(cpu)) 497 bts_err = 1; 498 499 if (!pebs_err && alloc_pebs_buffer(cpu)) 500 pebs_err = 1; 501 502 if (bts_err && pebs_err) 503 break; 504 } 505 506 if (bts_err) { 507 for_each_possible_cpu(cpu) 508 release_bts_buffer(cpu); 509 } 510 511 if (pebs_err) { 512 for_each_possible_cpu(cpu) 513 release_pebs_buffer(cpu); 514 } 515 516 if (bts_err && pebs_err) { 517 for_each_possible_cpu(cpu) 518 release_ds_buffer(cpu); 519 } else { 520 if (x86_pmu.bts && !bts_err) 521 x86_pmu.bts_active = 1; 522 523 if (x86_pmu.pebs && !pebs_err) 524 x86_pmu.pebs_active = 1; 525 526 for_each_possible_cpu(cpu) { 527 /* 528 * Ignores wrmsr_on_cpu() errors for offline CPUs they 529 * will get this call through intel_pmu_cpu_starting(). 530 */ 531 init_debug_store_on_cpu(cpu); 532 } 533 } 534 } 535 536 /* 537 * BTS 538 */ 539 540 struct event_constraint bts_constraint = 541 EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0); 542 543 void intel_pmu_enable_bts(u64 config) 544 { 545 unsigned long debugctlmsr; 546 547 debugctlmsr = get_debugctlmsr(); 548 549 debugctlmsr |= DEBUGCTLMSR_TR; 550 debugctlmsr |= DEBUGCTLMSR_BTS; 551 if (config & ARCH_PERFMON_EVENTSEL_INT) 552 debugctlmsr |= DEBUGCTLMSR_BTINT; 553 554 if (!(config & ARCH_PERFMON_EVENTSEL_OS)) 555 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS; 556 557 if (!(config & ARCH_PERFMON_EVENTSEL_USR)) 558 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR; 559 560 update_debugctlmsr(debugctlmsr); 561 } 562 563 void intel_pmu_disable_bts(void) 564 { 565 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 566 unsigned long debugctlmsr; 567 568 if (!cpuc->ds) 569 return; 570 571 debugctlmsr = get_debugctlmsr(); 572 573 debugctlmsr &= 574 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT | 575 DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR); 576 577 update_debugctlmsr(debugctlmsr); 578 } 579 580 int intel_pmu_drain_bts_buffer(void) 581 { 582 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 583 struct debug_store *ds = cpuc->ds; 584 struct bts_record { 585 u64 from; 586 u64 to; 587 u64 flags; 588 }; 589 struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS]; 590 struct bts_record *at, *base, *top; 591 struct perf_output_handle handle; 592 struct perf_event_header header; 593 struct perf_sample_data data; 594 unsigned long skip = 0; 595 struct pt_regs regs; 596 597 if (!event) 598 return 0; 599 600 if (!x86_pmu.bts_active) 601 return 0; 602 603 base = (struct bts_record *)(unsigned long)ds->bts_buffer_base; 604 top = (struct bts_record *)(unsigned long)ds->bts_index; 605 606 if (top <= base) 607 return 0; 608 609 memset(®s, 0, sizeof(regs)); 610 611 ds->bts_index = ds->bts_buffer_base; 612 613 perf_sample_data_init(&data, 0, event->hw.last_period); 614 615 /* 616 * BTS leaks kernel addresses in branches across the cpl boundary, 617 * such as traps or system calls, so unless the user is asking for 618 * kernel tracing (and right now it's not possible), we'd need to 619 * filter them out. But first we need to count how many of those we 620 * have in the current batch. This is an extra O(n) pass, however, 621 * it's much faster than the other one especially considering that 622 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the 623 * alloc_bts_buffer()). 624 */ 625 for (at = base; at < top; at++) { 626 /* 627 * Note that right now *this* BTS code only works if 628 * attr::exclude_kernel is set, but let's keep this extra 629 * check here in case that changes. 630 */ 631 if (event->attr.exclude_kernel && 632 (kernel_ip(at->from) || kernel_ip(at->to))) 633 skip++; 634 } 635 636 /* 637 * Prepare a generic sample, i.e. fill in the invariant fields. 638 * We will overwrite the from and to address before we output 639 * the sample. 640 */ 641 rcu_read_lock(); 642 perf_prepare_sample(&header, &data, event, ®s); 643 644 if (perf_output_begin(&handle, event, header.size * 645 (top - base - skip))) 646 goto unlock; 647 648 for (at = base; at < top; at++) { 649 /* Filter out any records that contain kernel addresses. */ 650 if (event->attr.exclude_kernel && 651 (kernel_ip(at->from) || kernel_ip(at->to))) 652 continue; 653 654 data.ip = at->from; 655 data.addr = at->to; 656 657 perf_output_sample(&handle, &header, &data, event); 658 } 659 660 perf_output_end(&handle); 661 662 /* There's new data available. */ 663 event->hw.interrupts++; 664 event->pending_kill = POLL_IN; 665 unlock: 666 rcu_read_unlock(); 667 return 1; 668 } 669 670 static inline void intel_pmu_drain_pebs_buffer(void) 671 { 672 struct pt_regs regs; 673 674 x86_pmu.drain_pebs(®s); 675 } 676 677 /* 678 * PEBS 679 */ 680 struct event_constraint intel_core2_pebs_event_constraints[] = { 681 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */ 682 INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */ 683 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */ 684 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */ 685 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */ 686 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 687 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01), 688 EVENT_CONSTRAINT_END 689 }; 690 691 struct event_constraint intel_atom_pebs_event_constraints[] = { 692 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */ 693 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */ 694 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */ 695 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 696 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01), 697 /* Allow all events as PEBS with no flags */ 698 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), 699 EVENT_CONSTRAINT_END 700 }; 701 702 struct event_constraint intel_slm_pebs_event_constraints[] = { 703 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 704 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x1), 705 /* Allow all events as PEBS with no flags */ 706 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), 707 EVENT_CONSTRAINT_END 708 }; 709 710 struct event_constraint intel_glm_pebs_event_constraints[] = { 711 /* Allow all events as PEBS with no flags */ 712 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), 713 EVENT_CONSTRAINT_END 714 }; 715 716 struct event_constraint intel_nehalem_pebs_event_constraints[] = { 717 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */ 718 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */ 719 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */ 720 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */ 721 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */ 722 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */ 723 INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */ 724 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */ 725 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */ 726 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */ 727 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */ 728 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 729 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f), 730 EVENT_CONSTRAINT_END 731 }; 732 733 struct event_constraint intel_westmere_pebs_event_constraints[] = { 734 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */ 735 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */ 736 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */ 737 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */ 738 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */ 739 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */ 740 INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */ 741 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */ 742 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */ 743 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */ 744 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */ 745 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 746 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f), 747 EVENT_CONSTRAINT_END 748 }; 749 750 struct event_constraint intel_snb_pebs_event_constraints[] = { 751 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ 752 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */ 753 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */ 754 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ 755 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf), 756 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */ 757 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 758 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 759 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 760 /* Allow all events as PEBS with no flags */ 761 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 762 EVENT_CONSTRAINT_END 763 }; 764 765 struct event_constraint intel_ivb_pebs_event_constraints[] = { 766 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ 767 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */ 768 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */ 769 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ 770 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf), 771 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ 772 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2), 773 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */ 774 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 775 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 776 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 777 /* Allow all events as PEBS with no flags */ 778 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 779 EVENT_CONSTRAINT_END 780 }; 781 782 struct event_constraint intel_hsw_pebs_event_constraints[] = { 783 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ 784 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */ 785 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ 786 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf), 787 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ 788 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2), 789 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */ 790 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */ 791 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */ 792 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */ 793 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */ 794 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */ 795 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */ 796 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */ 797 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 798 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */ 799 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */ 800 /* Allow all events as PEBS with no flags */ 801 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 802 EVENT_CONSTRAINT_END 803 }; 804 805 struct event_constraint intel_bdw_pebs_event_constraints[] = { 806 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ 807 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */ 808 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ 809 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf), 810 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ 811 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2), 812 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */ 813 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */ 814 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */ 815 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */ 816 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */ 817 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */ 818 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */ 819 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */ 820 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 821 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */ 822 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */ 823 /* Allow all events as PEBS with no flags */ 824 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 825 EVENT_CONSTRAINT_END 826 }; 827 828 829 struct event_constraint intel_skl_pebs_event_constraints[] = { 830 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */ 831 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ 832 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2), 833 /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */ 834 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f), 835 INTEL_PLD_CONSTRAINT(0x1cd, 0xf), /* MEM_TRANS_RETIRED.* */ 836 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */ 837 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */ 838 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */ 839 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */ 840 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */ 841 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */ 842 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */ 843 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */ 844 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */ 845 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */ 846 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_L3_MISS_RETIRED.* */ 847 /* Allow all events as PEBS with no flags */ 848 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 849 EVENT_CONSTRAINT_END 850 }; 851 852 struct event_constraint intel_icl_pebs_event_constraints[] = { 853 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */ 854 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x400000000ULL), /* SLOTS */ 855 856 INTEL_PLD_CONSTRAINT(0x1cd, 0xff), /* MEM_TRANS_RETIRED.LOAD_LATENCY */ 857 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x1d0, 0xf), /* MEM_INST_RETIRED.LOAD */ 858 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x2d0, 0xf), /* MEM_INST_RETIRED.STORE */ 859 860 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */ 861 862 INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */ 863 864 /* 865 * Everything else is handled by PMU_FL_PEBS_ALL, because we 866 * need the full constraints from the main table. 867 */ 868 869 EVENT_CONSTRAINT_END 870 }; 871 872 struct event_constraint *intel_pebs_constraints(struct perf_event *event) 873 { 874 struct event_constraint *c; 875 876 if (!event->attr.precise_ip) 877 return NULL; 878 879 if (x86_pmu.pebs_constraints) { 880 for_each_event_constraint(c, x86_pmu.pebs_constraints) { 881 if (constraint_match(c, event->hw.config)) { 882 event->hw.flags |= c->flags; 883 return c; 884 } 885 } 886 } 887 888 /* 889 * Extended PEBS support 890 * Makes the PEBS code search the normal constraints. 891 */ 892 if (x86_pmu.flags & PMU_FL_PEBS_ALL) 893 return NULL; 894 895 return &emptyconstraint; 896 } 897 898 /* 899 * We need the sched_task callback even for per-cpu events when we use 900 * the large interrupt threshold, such that we can provide PID and TID 901 * to PEBS samples. 902 */ 903 static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc) 904 { 905 return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs); 906 } 907 908 void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in) 909 { 910 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 911 912 if (!sched_in && pebs_needs_sched_cb(cpuc)) 913 intel_pmu_drain_pebs_buffer(); 914 } 915 916 static inline void pebs_update_threshold(struct cpu_hw_events *cpuc) 917 { 918 struct debug_store *ds = cpuc->ds; 919 u64 threshold; 920 int reserved; 921 922 if (x86_pmu.flags & PMU_FL_PEBS_ALL) 923 reserved = x86_pmu.max_pebs_events + x86_pmu.num_counters_fixed; 924 else 925 reserved = x86_pmu.max_pebs_events; 926 927 if (cpuc->n_pebs == cpuc->n_large_pebs) { 928 threshold = ds->pebs_absolute_maximum - 929 reserved * cpuc->pebs_record_size; 930 } else { 931 threshold = ds->pebs_buffer_base + cpuc->pebs_record_size; 932 } 933 934 ds->pebs_interrupt_threshold = threshold; 935 } 936 937 static void adaptive_pebs_record_size_update(void) 938 { 939 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 940 u64 pebs_data_cfg = cpuc->pebs_data_cfg; 941 int sz = sizeof(struct pebs_basic); 942 943 if (pebs_data_cfg & PEBS_DATACFG_MEMINFO) 944 sz += sizeof(struct pebs_meminfo); 945 if (pebs_data_cfg & PEBS_DATACFG_GP) 946 sz += sizeof(struct pebs_gprs); 947 if (pebs_data_cfg & PEBS_DATACFG_XMMS) 948 sz += sizeof(struct pebs_xmm); 949 if (pebs_data_cfg & PEBS_DATACFG_LBRS) 950 sz += x86_pmu.lbr_nr * sizeof(struct pebs_lbr_entry); 951 952 cpuc->pebs_record_size = sz; 953 } 954 955 #define PERF_PEBS_MEMINFO_TYPE (PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC | \ 956 PERF_SAMPLE_PHYS_ADDR | PERF_SAMPLE_WEIGHT | \ 957 PERF_SAMPLE_TRANSACTION) 958 959 static u64 pebs_update_adaptive_cfg(struct perf_event *event) 960 { 961 struct perf_event_attr *attr = &event->attr; 962 u64 sample_type = attr->sample_type; 963 u64 pebs_data_cfg = 0; 964 bool gprs, tsx_weight; 965 966 if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) && 967 attr->precise_ip > 1) 968 return pebs_data_cfg; 969 970 if (sample_type & PERF_PEBS_MEMINFO_TYPE) 971 pebs_data_cfg |= PEBS_DATACFG_MEMINFO; 972 973 /* 974 * We need GPRs when: 975 * + user requested them 976 * + precise_ip < 2 for the non event IP 977 * + For RTM TSX weight we need GPRs for the abort code. 978 */ 979 gprs = (sample_type & PERF_SAMPLE_REGS_INTR) && 980 (attr->sample_regs_intr & PEBS_GP_REGS); 981 982 tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT) && 983 ((attr->config & INTEL_ARCH_EVENT_MASK) == 984 x86_pmu.rtm_abort_event); 985 986 if (gprs || (attr->precise_ip < 2) || tsx_weight) 987 pebs_data_cfg |= PEBS_DATACFG_GP; 988 989 if ((sample_type & PERF_SAMPLE_REGS_INTR) && 990 (attr->sample_regs_intr & PEBS_XMM_REGS)) 991 pebs_data_cfg |= PEBS_DATACFG_XMMS; 992 993 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 994 /* 995 * For now always log all LBRs. Could configure this 996 * later. 997 */ 998 pebs_data_cfg |= PEBS_DATACFG_LBRS | 999 ((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT); 1000 } 1001 1002 return pebs_data_cfg; 1003 } 1004 1005 static void 1006 pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc, 1007 struct perf_event *event, bool add) 1008 { 1009 struct pmu *pmu = event->ctx->pmu; 1010 /* 1011 * Make sure we get updated with the first PEBS 1012 * event. It will trigger also during removal, but 1013 * that does not hurt: 1014 */ 1015 bool update = cpuc->n_pebs == 1; 1016 1017 if (needed_cb != pebs_needs_sched_cb(cpuc)) { 1018 if (!needed_cb) 1019 perf_sched_cb_inc(pmu); 1020 else 1021 perf_sched_cb_dec(pmu); 1022 1023 update = true; 1024 } 1025 1026 /* 1027 * The PEBS record doesn't shrink on pmu::del(). Doing so would require 1028 * iterating all remaining PEBS events to reconstruct the config. 1029 */ 1030 if (x86_pmu.intel_cap.pebs_baseline && add) { 1031 u64 pebs_data_cfg; 1032 1033 /* Clear pebs_data_cfg and pebs_record_size for first PEBS. */ 1034 if (cpuc->n_pebs == 1) { 1035 cpuc->pebs_data_cfg = 0; 1036 cpuc->pebs_record_size = sizeof(struct pebs_basic); 1037 } 1038 1039 pebs_data_cfg = pebs_update_adaptive_cfg(event); 1040 1041 /* Update pebs_record_size if new event requires more data. */ 1042 if (pebs_data_cfg & ~cpuc->pebs_data_cfg) { 1043 cpuc->pebs_data_cfg |= pebs_data_cfg; 1044 adaptive_pebs_record_size_update(); 1045 update = true; 1046 } 1047 } 1048 1049 if (update) 1050 pebs_update_threshold(cpuc); 1051 } 1052 1053 void intel_pmu_pebs_add(struct perf_event *event) 1054 { 1055 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1056 struct hw_perf_event *hwc = &event->hw; 1057 bool needed_cb = pebs_needs_sched_cb(cpuc); 1058 1059 cpuc->n_pebs++; 1060 if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS) 1061 cpuc->n_large_pebs++; 1062 1063 pebs_update_state(needed_cb, cpuc, event, true); 1064 } 1065 1066 void intel_pmu_pebs_enable(struct perf_event *event) 1067 { 1068 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1069 struct hw_perf_event *hwc = &event->hw; 1070 struct debug_store *ds = cpuc->ds; 1071 1072 hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT; 1073 1074 cpuc->pebs_enabled |= 1ULL << hwc->idx; 1075 1076 if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5)) 1077 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32); 1078 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST) 1079 cpuc->pebs_enabled |= 1ULL << 63; 1080 1081 if (x86_pmu.intel_cap.pebs_baseline) { 1082 hwc->config |= ICL_EVENTSEL_ADAPTIVE; 1083 if (cpuc->pebs_data_cfg != cpuc->active_pebs_data_cfg) { 1084 wrmsrl(MSR_PEBS_DATA_CFG, cpuc->pebs_data_cfg); 1085 cpuc->active_pebs_data_cfg = cpuc->pebs_data_cfg; 1086 } 1087 } 1088 1089 /* 1090 * Use auto-reload if possible to save a MSR write in the PMI. 1091 * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD. 1092 */ 1093 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) { 1094 unsigned int idx = hwc->idx; 1095 1096 if (idx >= INTEL_PMC_IDX_FIXED) 1097 idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED); 1098 ds->pebs_event_reset[idx] = 1099 (u64)(-hwc->sample_period) & x86_pmu.cntval_mask; 1100 } else { 1101 ds->pebs_event_reset[hwc->idx] = 0; 1102 } 1103 } 1104 1105 void intel_pmu_pebs_del(struct perf_event *event) 1106 { 1107 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1108 struct hw_perf_event *hwc = &event->hw; 1109 bool needed_cb = pebs_needs_sched_cb(cpuc); 1110 1111 cpuc->n_pebs--; 1112 if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS) 1113 cpuc->n_large_pebs--; 1114 1115 pebs_update_state(needed_cb, cpuc, event, false); 1116 } 1117 1118 void intel_pmu_pebs_disable(struct perf_event *event) 1119 { 1120 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1121 struct hw_perf_event *hwc = &event->hw; 1122 1123 if (cpuc->n_pebs == cpuc->n_large_pebs) 1124 intel_pmu_drain_pebs_buffer(); 1125 1126 cpuc->pebs_enabled &= ~(1ULL << hwc->idx); 1127 1128 if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && 1129 (x86_pmu.version < 5)) 1130 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32)); 1131 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST) 1132 cpuc->pebs_enabled &= ~(1ULL << 63); 1133 1134 if (cpuc->enabled) 1135 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled); 1136 1137 hwc->config |= ARCH_PERFMON_EVENTSEL_INT; 1138 } 1139 1140 void intel_pmu_pebs_enable_all(void) 1141 { 1142 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1143 1144 if (cpuc->pebs_enabled) 1145 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled); 1146 } 1147 1148 void intel_pmu_pebs_disable_all(void) 1149 { 1150 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1151 1152 if (cpuc->pebs_enabled) 1153 wrmsrl(MSR_IA32_PEBS_ENABLE, 0); 1154 } 1155 1156 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs) 1157 { 1158 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1159 unsigned long from = cpuc->lbr_entries[0].from; 1160 unsigned long old_to, to = cpuc->lbr_entries[0].to; 1161 unsigned long ip = regs->ip; 1162 int is_64bit = 0; 1163 void *kaddr; 1164 int size; 1165 1166 /* 1167 * We don't need to fixup if the PEBS assist is fault like 1168 */ 1169 if (!x86_pmu.intel_cap.pebs_trap) 1170 return 1; 1171 1172 /* 1173 * No LBR entry, no basic block, no rewinding 1174 */ 1175 if (!cpuc->lbr_stack.nr || !from || !to) 1176 return 0; 1177 1178 /* 1179 * Basic blocks should never cross user/kernel boundaries 1180 */ 1181 if (kernel_ip(ip) != kernel_ip(to)) 1182 return 0; 1183 1184 /* 1185 * unsigned math, either ip is before the start (impossible) or 1186 * the basic block is larger than 1 page (sanity) 1187 */ 1188 if ((ip - to) > PEBS_FIXUP_SIZE) 1189 return 0; 1190 1191 /* 1192 * We sampled a branch insn, rewind using the LBR stack 1193 */ 1194 if (ip == to) { 1195 set_linear_ip(regs, from); 1196 return 1; 1197 } 1198 1199 size = ip - to; 1200 if (!kernel_ip(ip)) { 1201 int bytes; 1202 u8 *buf = this_cpu_read(insn_buffer); 1203 1204 /* 'size' must fit our buffer, see above */ 1205 bytes = copy_from_user_nmi(buf, (void __user *)to, size); 1206 if (bytes != 0) 1207 return 0; 1208 1209 kaddr = buf; 1210 } else { 1211 kaddr = (void *)to; 1212 } 1213 1214 do { 1215 struct insn insn; 1216 1217 old_to = to; 1218 1219 #ifdef CONFIG_X86_64 1220 is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32); 1221 #endif 1222 insn_init(&insn, kaddr, size, is_64bit); 1223 insn_get_length(&insn); 1224 /* 1225 * Make sure there was not a problem decoding the 1226 * instruction and getting the length. This is 1227 * doubly important because we have an infinite 1228 * loop if insn.length=0. 1229 */ 1230 if (!insn.length) 1231 break; 1232 1233 to += insn.length; 1234 kaddr += insn.length; 1235 size -= insn.length; 1236 } while (to < ip); 1237 1238 if (to == ip) { 1239 set_linear_ip(regs, old_to); 1240 return 1; 1241 } 1242 1243 /* 1244 * Even though we decoded the basic block, the instruction stream 1245 * never matched the given IP, either the TO or the IP got corrupted. 1246 */ 1247 return 0; 1248 } 1249 1250 static inline u64 intel_get_tsx_weight(u64 tsx_tuning) 1251 { 1252 if (tsx_tuning) { 1253 union hsw_tsx_tuning tsx = { .value = tsx_tuning }; 1254 return tsx.cycles_last_block; 1255 } 1256 return 0; 1257 } 1258 1259 static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax) 1260 { 1261 u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32; 1262 1263 /* For RTM XABORTs also log the abort code from AX */ 1264 if ((txn & PERF_TXN_TRANSACTION) && (ax & 1)) 1265 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT; 1266 return txn; 1267 } 1268 1269 static inline u64 get_pebs_status(void *n) 1270 { 1271 if (x86_pmu.intel_cap.pebs_format < 4) 1272 return ((struct pebs_record_nhm *)n)->status; 1273 return ((struct pebs_basic *)n)->applicable_counters; 1274 } 1275 1276 #define PERF_X86_EVENT_PEBS_HSW_PREC \ 1277 (PERF_X86_EVENT_PEBS_ST_HSW | \ 1278 PERF_X86_EVENT_PEBS_LD_HSW | \ 1279 PERF_X86_EVENT_PEBS_NA_HSW) 1280 1281 static u64 get_data_src(struct perf_event *event, u64 aux) 1282 { 1283 u64 val = PERF_MEM_NA; 1284 int fl = event->hw.flags; 1285 bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC); 1286 1287 if (fl & PERF_X86_EVENT_PEBS_LDLAT) 1288 val = load_latency_data(aux); 1289 else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC)) 1290 val = precise_datala_hsw(event, aux); 1291 else if (fst) 1292 val = precise_store_data(aux); 1293 return val; 1294 } 1295 1296 static void setup_pebs_fixed_sample_data(struct perf_event *event, 1297 struct pt_regs *iregs, void *__pebs, 1298 struct perf_sample_data *data, 1299 struct pt_regs *regs) 1300 { 1301 /* 1302 * We cast to the biggest pebs_record but are careful not to 1303 * unconditionally access the 'extra' entries. 1304 */ 1305 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1306 struct pebs_record_skl *pebs = __pebs; 1307 u64 sample_type; 1308 int fll; 1309 1310 if (pebs == NULL) 1311 return; 1312 1313 sample_type = event->attr.sample_type; 1314 fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT; 1315 1316 perf_sample_data_init(data, 0, event->hw.last_period); 1317 1318 data->period = event->hw.last_period; 1319 1320 /* 1321 * Use latency for weight (only avail with PEBS-LL) 1322 */ 1323 if (fll && (sample_type & PERF_SAMPLE_WEIGHT)) 1324 data->weight = pebs->lat; 1325 1326 /* 1327 * data.data_src encodes the data source 1328 */ 1329 if (sample_type & PERF_SAMPLE_DATA_SRC) 1330 data->data_src.val = get_data_src(event, pebs->dse); 1331 1332 /* 1333 * We must however always use iregs for the unwinder to stay sane; the 1334 * record BP,SP,IP can point into thin air when the record is from a 1335 * previous PMI context or an (I)RET happened between the record and 1336 * PMI. 1337 */ 1338 if (sample_type & PERF_SAMPLE_CALLCHAIN) 1339 data->callchain = perf_callchain(event, iregs); 1340 1341 /* 1342 * We use the interrupt regs as a base because the PEBS record does not 1343 * contain a full regs set, specifically it seems to lack segment 1344 * descriptors, which get used by things like user_mode(). 1345 * 1346 * In the simple case fix up only the IP for PERF_SAMPLE_IP. 1347 */ 1348 *regs = *iregs; 1349 1350 /* 1351 * Initialize regs_>flags from PEBS, 1352 * Clear exact bit (which uses x86 EFLAGS Reserved bit 3), 1353 * i.e., do not rely on it being zero: 1354 */ 1355 regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT; 1356 1357 if (sample_type & PERF_SAMPLE_REGS_INTR) { 1358 regs->ax = pebs->ax; 1359 regs->bx = pebs->bx; 1360 regs->cx = pebs->cx; 1361 regs->dx = pebs->dx; 1362 regs->si = pebs->si; 1363 regs->di = pebs->di; 1364 1365 regs->bp = pebs->bp; 1366 regs->sp = pebs->sp; 1367 1368 #ifndef CONFIG_X86_32 1369 regs->r8 = pebs->r8; 1370 regs->r9 = pebs->r9; 1371 regs->r10 = pebs->r10; 1372 regs->r11 = pebs->r11; 1373 regs->r12 = pebs->r12; 1374 regs->r13 = pebs->r13; 1375 regs->r14 = pebs->r14; 1376 regs->r15 = pebs->r15; 1377 #endif 1378 } 1379 1380 if (event->attr.precise_ip > 1) { 1381 /* 1382 * Haswell and later processors have an 'eventing IP' 1383 * (real IP) which fixes the off-by-1 skid in hardware. 1384 * Use it when precise_ip >= 2 : 1385 */ 1386 if (x86_pmu.intel_cap.pebs_format >= 2) { 1387 set_linear_ip(regs, pebs->real_ip); 1388 regs->flags |= PERF_EFLAGS_EXACT; 1389 } else { 1390 /* Otherwise, use PEBS off-by-1 IP: */ 1391 set_linear_ip(regs, pebs->ip); 1392 1393 /* 1394 * With precise_ip >= 2, try to fix up the off-by-1 IP 1395 * using the LBR. If successful, the fixup function 1396 * corrects regs->ip and calls set_linear_ip() on regs: 1397 */ 1398 if (intel_pmu_pebs_fixup_ip(regs)) 1399 regs->flags |= PERF_EFLAGS_EXACT; 1400 } 1401 } else { 1402 /* 1403 * When precise_ip == 1, return the PEBS off-by-1 IP, 1404 * no fixup attempted: 1405 */ 1406 set_linear_ip(regs, pebs->ip); 1407 } 1408 1409 1410 if ((sample_type & (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR)) && 1411 x86_pmu.intel_cap.pebs_format >= 1) 1412 data->addr = pebs->dla; 1413 1414 if (x86_pmu.intel_cap.pebs_format >= 2) { 1415 /* Only set the TSX weight when no memory weight. */ 1416 if ((sample_type & PERF_SAMPLE_WEIGHT) && !fll) 1417 data->weight = intel_get_tsx_weight(pebs->tsx_tuning); 1418 1419 if (sample_type & PERF_SAMPLE_TRANSACTION) 1420 data->txn = intel_get_tsx_transaction(pebs->tsx_tuning, 1421 pebs->ax); 1422 } 1423 1424 /* 1425 * v3 supplies an accurate time stamp, so we use that 1426 * for the time stamp. 1427 * 1428 * We can only do this for the default trace clock. 1429 */ 1430 if (x86_pmu.intel_cap.pebs_format >= 3 && 1431 event->attr.use_clockid == 0) 1432 data->time = native_sched_clock_from_tsc(pebs->tsc); 1433 1434 if (has_branch_stack(event)) 1435 data->br_stack = &cpuc->lbr_stack; 1436 } 1437 1438 static void adaptive_pebs_save_regs(struct pt_regs *regs, 1439 struct pebs_gprs *gprs) 1440 { 1441 regs->ax = gprs->ax; 1442 regs->bx = gprs->bx; 1443 regs->cx = gprs->cx; 1444 regs->dx = gprs->dx; 1445 regs->si = gprs->si; 1446 regs->di = gprs->di; 1447 regs->bp = gprs->bp; 1448 regs->sp = gprs->sp; 1449 #ifndef CONFIG_X86_32 1450 regs->r8 = gprs->r8; 1451 regs->r9 = gprs->r9; 1452 regs->r10 = gprs->r10; 1453 regs->r11 = gprs->r11; 1454 regs->r12 = gprs->r12; 1455 regs->r13 = gprs->r13; 1456 regs->r14 = gprs->r14; 1457 regs->r15 = gprs->r15; 1458 #endif 1459 } 1460 1461 /* 1462 * With adaptive PEBS the layout depends on what fields are configured. 1463 */ 1464 1465 static void setup_pebs_adaptive_sample_data(struct perf_event *event, 1466 struct pt_regs *iregs, void *__pebs, 1467 struct perf_sample_data *data, 1468 struct pt_regs *regs) 1469 { 1470 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1471 struct pebs_basic *basic = __pebs; 1472 void *next_record = basic + 1; 1473 u64 sample_type; 1474 u64 format_size; 1475 struct pebs_meminfo *meminfo = NULL; 1476 struct pebs_gprs *gprs = NULL; 1477 struct x86_perf_regs *perf_regs; 1478 1479 if (basic == NULL) 1480 return; 1481 1482 perf_regs = container_of(regs, struct x86_perf_regs, regs); 1483 perf_regs->xmm_regs = NULL; 1484 1485 sample_type = event->attr.sample_type; 1486 format_size = basic->format_size; 1487 perf_sample_data_init(data, 0, event->hw.last_period); 1488 data->period = event->hw.last_period; 1489 1490 if (event->attr.use_clockid == 0) 1491 data->time = native_sched_clock_from_tsc(basic->tsc); 1492 1493 /* 1494 * We must however always use iregs for the unwinder to stay sane; the 1495 * record BP,SP,IP can point into thin air when the record is from a 1496 * previous PMI context or an (I)RET happened between the record and 1497 * PMI. 1498 */ 1499 if (sample_type & PERF_SAMPLE_CALLCHAIN) 1500 data->callchain = perf_callchain(event, iregs); 1501 1502 *regs = *iregs; 1503 /* The ip in basic is EventingIP */ 1504 set_linear_ip(regs, basic->ip); 1505 regs->flags = PERF_EFLAGS_EXACT; 1506 1507 /* 1508 * The record for MEMINFO is in front of GP 1509 * But PERF_SAMPLE_TRANSACTION needs gprs->ax. 1510 * Save the pointer here but process later. 1511 */ 1512 if (format_size & PEBS_DATACFG_MEMINFO) { 1513 meminfo = next_record; 1514 next_record = meminfo + 1; 1515 } 1516 1517 if (format_size & PEBS_DATACFG_GP) { 1518 gprs = next_record; 1519 next_record = gprs + 1; 1520 1521 if (event->attr.precise_ip < 2) { 1522 set_linear_ip(regs, gprs->ip); 1523 regs->flags &= ~PERF_EFLAGS_EXACT; 1524 } 1525 1526 if (sample_type & PERF_SAMPLE_REGS_INTR) 1527 adaptive_pebs_save_regs(regs, gprs); 1528 } 1529 1530 if (format_size & PEBS_DATACFG_MEMINFO) { 1531 if (sample_type & PERF_SAMPLE_WEIGHT) 1532 data->weight = meminfo->latency ?: 1533 intel_get_tsx_weight(meminfo->tsx_tuning); 1534 1535 if (sample_type & PERF_SAMPLE_DATA_SRC) 1536 data->data_src.val = get_data_src(event, meminfo->aux); 1537 1538 if (sample_type & (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR)) 1539 data->addr = meminfo->address; 1540 1541 if (sample_type & PERF_SAMPLE_TRANSACTION) 1542 data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning, 1543 gprs ? gprs->ax : 0); 1544 } 1545 1546 if (format_size & PEBS_DATACFG_XMMS) { 1547 struct pebs_xmm *xmm = next_record; 1548 1549 next_record = xmm + 1; 1550 perf_regs->xmm_regs = xmm->xmm; 1551 } 1552 1553 if (format_size & PEBS_DATACFG_LBRS) { 1554 struct pebs_lbr *lbr = next_record; 1555 int num_lbr = ((format_size >> PEBS_DATACFG_LBR_SHIFT) 1556 & 0xff) + 1; 1557 next_record = next_record + num_lbr*sizeof(struct pebs_lbr_entry); 1558 1559 if (has_branch_stack(event)) { 1560 intel_pmu_store_pebs_lbrs(lbr); 1561 data->br_stack = &cpuc->lbr_stack; 1562 } 1563 } 1564 1565 WARN_ONCE(next_record != __pebs + (format_size >> 48), 1566 "PEBS record size %llu, expected %llu, config %llx\n", 1567 format_size >> 48, 1568 (u64)(next_record - __pebs), 1569 basic->format_size); 1570 } 1571 1572 static inline void * 1573 get_next_pebs_record_by_bit(void *base, void *top, int bit) 1574 { 1575 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1576 void *at; 1577 u64 pebs_status; 1578 1579 /* 1580 * fmt0 does not have a status bitfield (does not use 1581 * perf_record_nhm format) 1582 */ 1583 if (x86_pmu.intel_cap.pebs_format < 1) 1584 return base; 1585 1586 if (base == NULL) 1587 return NULL; 1588 1589 for (at = base; at < top; at += cpuc->pebs_record_size) { 1590 unsigned long status = get_pebs_status(at); 1591 1592 if (test_bit(bit, (unsigned long *)&status)) { 1593 /* PEBS v3 has accurate status bits */ 1594 if (x86_pmu.intel_cap.pebs_format >= 3) 1595 return at; 1596 1597 if (status == (1 << bit)) 1598 return at; 1599 1600 /* clear non-PEBS bit and re-check */ 1601 pebs_status = status & cpuc->pebs_enabled; 1602 pebs_status &= PEBS_COUNTER_MASK; 1603 if (pebs_status == (1 << bit)) 1604 return at; 1605 } 1606 } 1607 return NULL; 1608 } 1609 1610 void intel_pmu_auto_reload_read(struct perf_event *event) 1611 { 1612 WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)); 1613 1614 perf_pmu_disable(event->pmu); 1615 intel_pmu_drain_pebs_buffer(); 1616 perf_pmu_enable(event->pmu); 1617 } 1618 1619 /* 1620 * Special variant of intel_pmu_save_and_restart() for auto-reload. 1621 */ 1622 static int 1623 intel_pmu_save_and_restart_reload(struct perf_event *event, int count) 1624 { 1625 struct hw_perf_event *hwc = &event->hw; 1626 int shift = 64 - x86_pmu.cntval_bits; 1627 u64 period = hwc->sample_period; 1628 u64 prev_raw_count, new_raw_count; 1629 s64 new, old; 1630 1631 WARN_ON(!period); 1632 1633 /* 1634 * drain_pebs() only happens when the PMU is disabled. 1635 */ 1636 WARN_ON(this_cpu_read(cpu_hw_events.enabled)); 1637 1638 prev_raw_count = local64_read(&hwc->prev_count); 1639 rdpmcl(hwc->event_base_rdpmc, new_raw_count); 1640 local64_set(&hwc->prev_count, new_raw_count); 1641 1642 /* 1643 * Since the counter increments a negative counter value and 1644 * overflows on the sign switch, giving the interval: 1645 * 1646 * [-period, 0] 1647 * 1648 * the difference between two consequtive reads is: 1649 * 1650 * A) value2 - value1; 1651 * when no overflows have happened in between, 1652 * 1653 * B) (0 - value1) + (value2 - (-period)); 1654 * when one overflow happened in between, 1655 * 1656 * C) (0 - value1) + (n - 1) * (period) + (value2 - (-period)); 1657 * when @n overflows happened in between. 1658 * 1659 * Here A) is the obvious difference, B) is the extension to the 1660 * discrete interval, where the first term is to the top of the 1661 * interval and the second term is from the bottom of the next 1662 * interval and C) the extension to multiple intervals, where the 1663 * middle term is the whole intervals covered. 1664 * 1665 * An equivalent of C, by reduction, is: 1666 * 1667 * value2 - value1 + n * period 1668 */ 1669 new = ((s64)(new_raw_count << shift) >> shift); 1670 old = ((s64)(prev_raw_count << shift) >> shift); 1671 local64_add(new - old + count * period, &event->count); 1672 1673 perf_event_update_userpage(event); 1674 1675 return 0; 1676 } 1677 1678 static void __intel_pmu_pebs_event(struct perf_event *event, 1679 struct pt_regs *iregs, 1680 void *base, void *top, 1681 int bit, int count, 1682 void (*setup_sample)(struct perf_event *, 1683 struct pt_regs *, 1684 void *, 1685 struct perf_sample_data *, 1686 struct pt_regs *)) 1687 { 1688 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1689 struct hw_perf_event *hwc = &event->hw; 1690 struct perf_sample_data data; 1691 struct x86_perf_regs perf_regs; 1692 struct pt_regs *regs = &perf_regs.regs; 1693 void *at = get_next_pebs_record_by_bit(base, top, bit); 1694 1695 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) { 1696 /* 1697 * Now, auto-reload is only enabled in fixed period mode. 1698 * The reload value is always hwc->sample_period. 1699 * May need to change it, if auto-reload is enabled in 1700 * freq mode later. 1701 */ 1702 intel_pmu_save_and_restart_reload(event, count); 1703 } else if (!intel_pmu_save_and_restart(event)) 1704 return; 1705 1706 while (count > 1) { 1707 setup_sample(event, iregs, at, &data, regs); 1708 perf_event_output(event, &data, regs); 1709 at += cpuc->pebs_record_size; 1710 at = get_next_pebs_record_by_bit(at, top, bit); 1711 count--; 1712 } 1713 1714 setup_sample(event, iregs, at, &data, regs); 1715 1716 /* 1717 * All but the last records are processed. 1718 * The last one is left to be able to call the overflow handler. 1719 */ 1720 if (perf_event_overflow(event, &data, regs)) { 1721 x86_pmu_stop(event, 0); 1722 return; 1723 } 1724 1725 } 1726 1727 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs) 1728 { 1729 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1730 struct debug_store *ds = cpuc->ds; 1731 struct perf_event *event = cpuc->events[0]; /* PMC0 only */ 1732 struct pebs_record_core *at, *top; 1733 int n; 1734 1735 if (!x86_pmu.pebs_active) 1736 return; 1737 1738 at = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base; 1739 top = (struct pebs_record_core *)(unsigned long)ds->pebs_index; 1740 1741 /* 1742 * Whatever else happens, drain the thing 1743 */ 1744 ds->pebs_index = ds->pebs_buffer_base; 1745 1746 if (!test_bit(0, cpuc->active_mask)) 1747 return; 1748 1749 WARN_ON_ONCE(!event); 1750 1751 if (!event->attr.precise_ip) 1752 return; 1753 1754 n = top - at; 1755 if (n <= 0) { 1756 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD) 1757 intel_pmu_save_and_restart_reload(event, 0); 1758 return; 1759 } 1760 1761 __intel_pmu_pebs_event(event, iregs, at, top, 0, n, 1762 setup_pebs_fixed_sample_data); 1763 } 1764 1765 static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, int size) 1766 { 1767 struct perf_event *event; 1768 int bit; 1769 1770 /* 1771 * The drain_pebs() could be called twice in a short period 1772 * for auto-reload event in pmu::read(). There are no 1773 * overflows have happened in between. 1774 * It needs to call intel_pmu_save_and_restart_reload() to 1775 * update the event->count for this case. 1776 */ 1777 for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled, size) { 1778 event = cpuc->events[bit]; 1779 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD) 1780 intel_pmu_save_and_restart_reload(event, 0); 1781 } 1782 } 1783 1784 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs) 1785 { 1786 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1787 struct debug_store *ds = cpuc->ds; 1788 struct perf_event *event; 1789 void *base, *at, *top; 1790 short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {}; 1791 short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {}; 1792 int bit, i, size; 1793 u64 mask; 1794 1795 if (!x86_pmu.pebs_active) 1796 return; 1797 1798 base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base; 1799 top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index; 1800 1801 ds->pebs_index = ds->pebs_buffer_base; 1802 1803 mask = (1ULL << x86_pmu.max_pebs_events) - 1; 1804 size = x86_pmu.max_pebs_events; 1805 if (x86_pmu.flags & PMU_FL_PEBS_ALL) { 1806 mask |= ((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED; 1807 size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed; 1808 } 1809 1810 if (unlikely(base >= top)) { 1811 intel_pmu_pebs_event_update_no_drain(cpuc, size); 1812 return; 1813 } 1814 1815 for (at = base; at < top; at += x86_pmu.pebs_record_size) { 1816 struct pebs_record_nhm *p = at; 1817 u64 pebs_status; 1818 1819 pebs_status = p->status & cpuc->pebs_enabled; 1820 pebs_status &= mask; 1821 1822 /* PEBS v3 has more accurate status bits */ 1823 if (x86_pmu.intel_cap.pebs_format >= 3) { 1824 for_each_set_bit(bit, (unsigned long *)&pebs_status, size) 1825 counts[bit]++; 1826 1827 continue; 1828 } 1829 1830 /* 1831 * On some CPUs the PEBS status can be zero when PEBS is 1832 * racing with clearing of GLOBAL_STATUS. 1833 * 1834 * Normally we would drop that record, but in the 1835 * case when there is only a single active PEBS event 1836 * we can assume it's for that event. 1837 */ 1838 if (!pebs_status && cpuc->pebs_enabled && 1839 !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1))) 1840 pebs_status = cpuc->pebs_enabled; 1841 1842 bit = find_first_bit((unsigned long *)&pebs_status, 1843 x86_pmu.max_pebs_events); 1844 if (bit >= x86_pmu.max_pebs_events) 1845 continue; 1846 1847 /* 1848 * The PEBS hardware does not deal well with the situation 1849 * when events happen near to each other and multiple bits 1850 * are set. But it should happen rarely. 1851 * 1852 * If these events include one PEBS and multiple non-PEBS 1853 * events, it doesn't impact PEBS record. The record will 1854 * be handled normally. (slow path) 1855 * 1856 * If these events include two or more PEBS events, the 1857 * records for the events can be collapsed into a single 1858 * one, and it's not possible to reconstruct all events 1859 * that caused the PEBS record. It's called collision. 1860 * If collision happened, the record will be dropped. 1861 */ 1862 if (p->status != (1ULL << bit)) { 1863 for_each_set_bit(i, (unsigned long *)&pebs_status, size) 1864 error[i]++; 1865 continue; 1866 } 1867 1868 counts[bit]++; 1869 } 1870 1871 for_each_set_bit(bit, (unsigned long *)&mask, size) { 1872 if ((counts[bit] == 0) && (error[bit] == 0)) 1873 continue; 1874 1875 event = cpuc->events[bit]; 1876 if (WARN_ON_ONCE(!event)) 1877 continue; 1878 1879 if (WARN_ON_ONCE(!event->attr.precise_ip)) 1880 continue; 1881 1882 /* log dropped samples number */ 1883 if (error[bit]) { 1884 perf_log_lost_samples(event, error[bit]); 1885 1886 if (perf_event_account_interrupt(event)) 1887 x86_pmu_stop(event, 0); 1888 } 1889 1890 if (counts[bit]) { 1891 __intel_pmu_pebs_event(event, iregs, base, 1892 top, bit, counts[bit], 1893 setup_pebs_fixed_sample_data); 1894 } 1895 } 1896 } 1897 1898 static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs) 1899 { 1900 short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {}; 1901 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1902 struct debug_store *ds = cpuc->ds; 1903 struct perf_event *event; 1904 void *base, *at, *top; 1905 int bit, size; 1906 u64 mask; 1907 1908 if (!x86_pmu.pebs_active) 1909 return; 1910 1911 base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base; 1912 top = (struct pebs_basic *)(unsigned long)ds->pebs_index; 1913 1914 ds->pebs_index = ds->pebs_buffer_base; 1915 1916 mask = ((1ULL << x86_pmu.max_pebs_events) - 1) | 1917 (((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED); 1918 size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed; 1919 1920 if (unlikely(base >= top)) { 1921 intel_pmu_pebs_event_update_no_drain(cpuc, size); 1922 return; 1923 } 1924 1925 for (at = base; at < top; at += cpuc->pebs_record_size) { 1926 u64 pebs_status; 1927 1928 pebs_status = get_pebs_status(at) & cpuc->pebs_enabled; 1929 pebs_status &= mask; 1930 1931 for_each_set_bit(bit, (unsigned long *)&pebs_status, size) 1932 counts[bit]++; 1933 } 1934 1935 for_each_set_bit(bit, (unsigned long *)&mask, size) { 1936 if (counts[bit] == 0) 1937 continue; 1938 1939 event = cpuc->events[bit]; 1940 if (WARN_ON_ONCE(!event)) 1941 continue; 1942 1943 if (WARN_ON_ONCE(!event->attr.precise_ip)) 1944 continue; 1945 1946 __intel_pmu_pebs_event(event, iregs, base, 1947 top, bit, counts[bit], 1948 setup_pebs_adaptive_sample_data); 1949 } 1950 } 1951 1952 /* 1953 * BTS, PEBS probe and setup 1954 */ 1955 1956 void __init intel_ds_init(void) 1957 { 1958 /* 1959 * No support for 32bit formats 1960 */ 1961 if (!boot_cpu_has(X86_FEATURE_DTES64)) 1962 return; 1963 1964 x86_pmu.bts = boot_cpu_has(X86_FEATURE_BTS); 1965 x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS); 1966 x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE; 1967 if (x86_pmu.version <= 4) { 1968 x86_pmu.pebs_no_isolation = 1; 1969 x86_pmu.pebs_no_xmm_regs = 1; 1970 } 1971 if (x86_pmu.pebs) { 1972 char pebs_type = x86_pmu.intel_cap.pebs_trap ? '+' : '-'; 1973 char *pebs_qual = ""; 1974 int format = x86_pmu.intel_cap.pebs_format; 1975 1976 if (format < 4) 1977 x86_pmu.intel_cap.pebs_baseline = 0; 1978 1979 switch (format) { 1980 case 0: 1981 pr_cont("PEBS fmt0%c, ", pebs_type); 1982 x86_pmu.pebs_record_size = sizeof(struct pebs_record_core); 1983 /* 1984 * Using >PAGE_SIZE buffers makes the WRMSR to 1985 * PERF_GLOBAL_CTRL in intel_pmu_enable_all() 1986 * mysteriously hang on Core2. 1987 * 1988 * As a workaround, we don't do this. 1989 */ 1990 x86_pmu.pebs_buffer_size = PAGE_SIZE; 1991 x86_pmu.drain_pebs = intel_pmu_drain_pebs_core; 1992 break; 1993 1994 case 1: 1995 pr_cont("PEBS fmt1%c, ", pebs_type); 1996 x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm); 1997 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; 1998 break; 1999 2000 case 2: 2001 pr_cont("PEBS fmt2%c, ", pebs_type); 2002 x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw); 2003 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; 2004 break; 2005 2006 case 3: 2007 pr_cont("PEBS fmt3%c, ", pebs_type); 2008 x86_pmu.pebs_record_size = 2009 sizeof(struct pebs_record_skl); 2010 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; 2011 x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME; 2012 break; 2013 2014 case 4: 2015 x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl; 2016 x86_pmu.pebs_record_size = sizeof(struct pebs_basic); 2017 if (x86_pmu.intel_cap.pebs_baseline) { 2018 x86_pmu.large_pebs_flags |= 2019 PERF_SAMPLE_BRANCH_STACK | 2020 PERF_SAMPLE_TIME; 2021 x86_pmu.flags |= PMU_FL_PEBS_ALL; 2022 pebs_qual = "-baseline"; 2023 } else { 2024 /* Only basic record supported */ 2025 x86_pmu.pebs_no_xmm_regs = 1; 2026 x86_pmu.large_pebs_flags &= 2027 ~(PERF_SAMPLE_ADDR | 2028 PERF_SAMPLE_TIME | 2029 PERF_SAMPLE_DATA_SRC | 2030 PERF_SAMPLE_TRANSACTION | 2031 PERF_SAMPLE_REGS_USER | 2032 PERF_SAMPLE_REGS_INTR); 2033 } 2034 pr_cont("PEBS fmt4%c%s, ", pebs_type, pebs_qual); 2035 break; 2036 2037 default: 2038 pr_cont("no PEBS fmt%d%c, ", format, pebs_type); 2039 x86_pmu.pebs = 0; 2040 } 2041 } 2042 } 2043 2044 void perf_restore_debug_store(void) 2045 { 2046 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds); 2047 2048 if (!x86_pmu.bts && !x86_pmu.pebs) 2049 return; 2050 2051 wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds); 2052 } 2053