1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/bitops.h> 3 #include <linux/types.h> 4 #include <linux/slab.h> 5 6 #include <asm/cpu_entry_area.h> 7 #include <asm/perf_event.h> 8 #include <asm/tlbflush.h> 9 #include <asm/insn.h> 10 11 #include "../perf_event.h" 12 13 /* Waste a full page so it can be mapped into the cpu_entry_area */ 14 DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store); 15 16 /* The size of a BTS record in bytes: */ 17 #define BTS_RECORD_SIZE 24 18 19 #define PEBS_FIXUP_SIZE PAGE_SIZE 20 21 /* 22 * pebs_record_32 for p4 and core not supported 23 24 struct pebs_record_32 { 25 u32 flags, ip; 26 u32 ax, bc, cx, dx; 27 u32 si, di, bp, sp; 28 }; 29 30 */ 31 32 union intel_x86_pebs_dse { 33 u64 val; 34 struct { 35 unsigned int ld_dse:4; 36 unsigned int ld_stlb_miss:1; 37 unsigned int ld_locked:1; 38 unsigned int ld_reserved:26; 39 }; 40 struct { 41 unsigned int st_l1d_hit:1; 42 unsigned int st_reserved1:3; 43 unsigned int st_stlb_miss:1; 44 unsigned int st_locked:1; 45 unsigned int st_reserved2:26; 46 }; 47 }; 48 49 50 /* 51 * Map PEBS Load Latency Data Source encodings to generic 52 * memory data source information 53 */ 54 #define P(a, b) PERF_MEM_S(a, b) 55 #define OP_LH (P(OP, LOAD) | P(LVL, HIT)) 56 #define LEVEL(x) P(LVLNUM, x) 57 #define REM P(REMOTE, REMOTE) 58 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS)) 59 60 /* Version for Sandy Bridge and later */ 61 static u64 pebs_data_source[] = { 62 P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */ 63 OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x01: L1 local */ 64 OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */ 65 OP_LH | P(LVL, L2) | LEVEL(L2) | P(SNOOP, NONE), /* 0x03: L2 hit */ 66 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, NONE), /* 0x04: L3 hit */ 67 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, MISS), /* 0x05: L3 hit, snoop miss */ 68 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT), /* 0x06: L3 hit, snoop hit */ 69 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x07: L3 hit, snoop hitm */ 70 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x08: L3 miss snoop hit */ 71 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/ 72 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, HIT), /* 0x0a: L3 miss, shared */ 73 OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x0b: L3 miss, shared */ 74 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | SNOOP_NONE_MISS, /* 0x0c: L3 miss, excl */ 75 OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */ 76 OP_LH | P(LVL, IO) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */ 77 OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */ 78 }; 79 80 /* Patch up minor differences in the bits */ 81 void __init intel_pmu_pebs_data_source_nhm(void) 82 { 83 pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT); 84 pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); 85 pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); 86 } 87 88 void __init intel_pmu_pebs_data_source_skl(bool pmem) 89 { 90 u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4); 91 92 pebs_data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT); 93 pebs_data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT); 94 pebs_data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE); 95 pebs_data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD); 96 pebs_data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM); 97 } 98 99 static u64 precise_store_data(u64 status) 100 { 101 union intel_x86_pebs_dse dse; 102 u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2); 103 104 dse.val = status; 105 106 /* 107 * bit 4: TLB access 108 * 1 = stored missed 2nd level TLB 109 * 110 * so it either hit the walker or the OS 111 * otherwise hit 2nd level TLB 112 */ 113 if (dse.st_stlb_miss) 114 val |= P(TLB, MISS); 115 else 116 val |= P(TLB, HIT); 117 118 /* 119 * bit 0: hit L1 data cache 120 * if not set, then all we know is that 121 * it missed L1D 122 */ 123 if (dse.st_l1d_hit) 124 val |= P(LVL, HIT); 125 else 126 val |= P(LVL, MISS); 127 128 /* 129 * bit 5: Locked prefix 130 */ 131 if (dse.st_locked) 132 val |= P(LOCK, LOCKED); 133 134 return val; 135 } 136 137 static u64 precise_datala_hsw(struct perf_event *event, u64 status) 138 { 139 union perf_mem_data_src dse; 140 141 dse.val = PERF_MEM_NA; 142 143 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) 144 dse.mem_op = PERF_MEM_OP_STORE; 145 else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW) 146 dse.mem_op = PERF_MEM_OP_LOAD; 147 148 /* 149 * L1 info only valid for following events: 150 * 151 * MEM_UOPS_RETIRED.STLB_MISS_STORES 152 * MEM_UOPS_RETIRED.LOCK_STORES 153 * MEM_UOPS_RETIRED.SPLIT_STORES 154 * MEM_UOPS_RETIRED.ALL_STORES 155 */ 156 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) { 157 if (status & 1) 158 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT; 159 else 160 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS; 161 } 162 return dse.val; 163 } 164 165 static u64 load_latency_data(u64 status) 166 { 167 union intel_x86_pebs_dse dse; 168 u64 val; 169 170 dse.val = status; 171 172 /* 173 * use the mapping table for bit 0-3 174 */ 175 val = pebs_data_source[dse.ld_dse]; 176 177 /* 178 * Nehalem models do not support TLB, Lock infos 179 */ 180 if (x86_pmu.pebs_no_tlb) { 181 val |= P(TLB, NA) | P(LOCK, NA); 182 return val; 183 } 184 /* 185 * bit 4: TLB access 186 * 0 = did not miss 2nd level TLB 187 * 1 = missed 2nd level TLB 188 */ 189 if (dse.ld_stlb_miss) 190 val |= P(TLB, MISS) | P(TLB, L2); 191 else 192 val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2); 193 194 /* 195 * bit 5: locked prefix 196 */ 197 if (dse.ld_locked) 198 val |= P(LOCK, LOCKED); 199 200 return val; 201 } 202 203 struct pebs_record_core { 204 u64 flags, ip; 205 u64 ax, bx, cx, dx; 206 u64 si, di, bp, sp; 207 u64 r8, r9, r10, r11; 208 u64 r12, r13, r14, r15; 209 }; 210 211 struct pebs_record_nhm { 212 u64 flags, ip; 213 u64 ax, bx, cx, dx; 214 u64 si, di, bp, sp; 215 u64 r8, r9, r10, r11; 216 u64 r12, r13, r14, r15; 217 u64 status, dla, dse, lat; 218 }; 219 220 /* 221 * Same as pebs_record_nhm, with two additional fields. 222 */ 223 struct pebs_record_hsw { 224 u64 flags, ip; 225 u64 ax, bx, cx, dx; 226 u64 si, di, bp, sp; 227 u64 r8, r9, r10, r11; 228 u64 r12, r13, r14, r15; 229 u64 status, dla, dse, lat; 230 u64 real_ip, tsx_tuning; 231 }; 232 233 union hsw_tsx_tuning { 234 struct { 235 u32 cycles_last_block : 32, 236 hle_abort : 1, 237 rtm_abort : 1, 238 instruction_abort : 1, 239 non_instruction_abort : 1, 240 retry : 1, 241 data_conflict : 1, 242 capacity_writes : 1, 243 capacity_reads : 1; 244 }; 245 u64 value; 246 }; 247 248 #define PEBS_HSW_TSX_FLAGS 0xff00000000ULL 249 250 /* Same as HSW, plus TSC */ 251 252 struct pebs_record_skl { 253 u64 flags, ip; 254 u64 ax, bx, cx, dx; 255 u64 si, di, bp, sp; 256 u64 r8, r9, r10, r11; 257 u64 r12, r13, r14, r15; 258 u64 status, dla, dse, lat; 259 u64 real_ip, tsx_tuning; 260 u64 tsc; 261 }; 262 263 void init_debug_store_on_cpu(int cpu) 264 { 265 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds; 266 267 if (!ds) 268 return; 269 270 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 271 (u32)((u64)(unsigned long)ds), 272 (u32)((u64)(unsigned long)ds >> 32)); 273 } 274 275 void fini_debug_store_on_cpu(int cpu) 276 { 277 if (!per_cpu(cpu_hw_events, cpu).ds) 278 return; 279 280 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0); 281 } 282 283 static DEFINE_PER_CPU(void *, insn_buffer); 284 285 static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot) 286 { 287 unsigned long start = (unsigned long)cea; 288 phys_addr_t pa; 289 size_t msz = 0; 290 291 pa = virt_to_phys(addr); 292 293 preempt_disable(); 294 for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE) 295 cea_set_pte(cea, pa, prot); 296 297 /* 298 * This is a cross-CPU update of the cpu_entry_area, we must shoot down 299 * all TLB entries for it. 300 */ 301 flush_tlb_kernel_range(start, start + size); 302 preempt_enable(); 303 } 304 305 static void ds_clear_cea(void *cea, size_t size) 306 { 307 unsigned long start = (unsigned long)cea; 308 size_t msz = 0; 309 310 preempt_disable(); 311 for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE) 312 cea_set_pte(cea, 0, PAGE_NONE); 313 314 flush_tlb_kernel_range(start, start + size); 315 preempt_enable(); 316 } 317 318 static void *dsalloc_pages(size_t size, gfp_t flags, int cpu) 319 { 320 unsigned int order = get_order(size); 321 int node = cpu_to_node(cpu); 322 struct page *page; 323 324 page = __alloc_pages_node(node, flags | __GFP_ZERO, order); 325 return page ? page_address(page) : NULL; 326 } 327 328 static void dsfree_pages(const void *buffer, size_t size) 329 { 330 if (buffer) 331 free_pages((unsigned long)buffer, get_order(size)); 332 } 333 334 static int alloc_pebs_buffer(int cpu) 335 { 336 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); 337 struct debug_store *ds = hwev->ds; 338 size_t bsiz = x86_pmu.pebs_buffer_size; 339 int max, node = cpu_to_node(cpu); 340 void *buffer, *ibuffer, *cea; 341 342 if (!x86_pmu.pebs) 343 return 0; 344 345 buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu); 346 if (unlikely(!buffer)) 347 return -ENOMEM; 348 349 /* 350 * HSW+ already provides us the eventing ip; no need to allocate this 351 * buffer then. 352 */ 353 if (x86_pmu.intel_cap.pebs_format < 2) { 354 ibuffer = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node); 355 if (!ibuffer) { 356 dsfree_pages(buffer, bsiz); 357 return -ENOMEM; 358 } 359 per_cpu(insn_buffer, cpu) = ibuffer; 360 } 361 hwev->ds_pebs_vaddr = buffer; 362 /* Update the cpu entry area mapping */ 363 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer; 364 ds->pebs_buffer_base = (unsigned long) cea; 365 ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL); 366 ds->pebs_index = ds->pebs_buffer_base; 367 max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size); 368 ds->pebs_absolute_maximum = ds->pebs_buffer_base + max; 369 return 0; 370 } 371 372 static void release_pebs_buffer(int cpu) 373 { 374 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); 375 void *cea; 376 377 if (!x86_pmu.pebs) 378 return; 379 380 kfree(per_cpu(insn_buffer, cpu)); 381 per_cpu(insn_buffer, cpu) = NULL; 382 383 /* Clear the fixmap */ 384 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer; 385 ds_clear_cea(cea, x86_pmu.pebs_buffer_size); 386 dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size); 387 hwev->ds_pebs_vaddr = NULL; 388 } 389 390 static int alloc_bts_buffer(int cpu) 391 { 392 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); 393 struct debug_store *ds = hwev->ds; 394 void *buffer, *cea; 395 int max; 396 397 if (!x86_pmu.bts) 398 return 0; 399 400 buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu); 401 if (unlikely(!buffer)) { 402 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__); 403 return -ENOMEM; 404 } 405 hwev->ds_bts_vaddr = buffer; 406 /* Update the fixmap */ 407 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer; 408 ds->bts_buffer_base = (unsigned long) cea; 409 ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL); 410 ds->bts_index = ds->bts_buffer_base; 411 max = BTS_RECORD_SIZE * (BTS_BUFFER_SIZE / BTS_RECORD_SIZE); 412 ds->bts_absolute_maximum = ds->bts_buffer_base + max; 413 ds->bts_interrupt_threshold = ds->bts_absolute_maximum - (max / 16); 414 return 0; 415 } 416 417 static void release_bts_buffer(int cpu) 418 { 419 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); 420 void *cea; 421 422 if (!x86_pmu.bts) 423 return; 424 425 /* Clear the fixmap */ 426 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer; 427 ds_clear_cea(cea, BTS_BUFFER_SIZE); 428 dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE); 429 hwev->ds_bts_vaddr = NULL; 430 } 431 432 static int alloc_ds_buffer(int cpu) 433 { 434 struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store; 435 436 memset(ds, 0, sizeof(*ds)); 437 per_cpu(cpu_hw_events, cpu).ds = ds; 438 return 0; 439 } 440 441 static void release_ds_buffer(int cpu) 442 { 443 per_cpu(cpu_hw_events, cpu).ds = NULL; 444 } 445 446 void release_ds_buffers(void) 447 { 448 int cpu; 449 450 if (!x86_pmu.bts && !x86_pmu.pebs) 451 return; 452 453 for_each_possible_cpu(cpu) 454 release_ds_buffer(cpu); 455 456 for_each_possible_cpu(cpu) { 457 /* 458 * Again, ignore errors from offline CPUs, they will no longer 459 * observe cpu_hw_events.ds and not program the DS_AREA when 460 * they come up. 461 */ 462 fini_debug_store_on_cpu(cpu); 463 } 464 465 for_each_possible_cpu(cpu) { 466 release_pebs_buffer(cpu); 467 release_bts_buffer(cpu); 468 } 469 } 470 471 void reserve_ds_buffers(void) 472 { 473 int bts_err = 0, pebs_err = 0; 474 int cpu; 475 476 x86_pmu.bts_active = 0; 477 x86_pmu.pebs_active = 0; 478 479 if (!x86_pmu.bts && !x86_pmu.pebs) 480 return; 481 482 if (!x86_pmu.bts) 483 bts_err = 1; 484 485 if (!x86_pmu.pebs) 486 pebs_err = 1; 487 488 for_each_possible_cpu(cpu) { 489 if (alloc_ds_buffer(cpu)) { 490 bts_err = 1; 491 pebs_err = 1; 492 } 493 494 if (!bts_err && alloc_bts_buffer(cpu)) 495 bts_err = 1; 496 497 if (!pebs_err && alloc_pebs_buffer(cpu)) 498 pebs_err = 1; 499 500 if (bts_err && pebs_err) 501 break; 502 } 503 504 if (bts_err) { 505 for_each_possible_cpu(cpu) 506 release_bts_buffer(cpu); 507 } 508 509 if (pebs_err) { 510 for_each_possible_cpu(cpu) 511 release_pebs_buffer(cpu); 512 } 513 514 if (bts_err && pebs_err) { 515 for_each_possible_cpu(cpu) 516 release_ds_buffer(cpu); 517 } else { 518 if (x86_pmu.bts && !bts_err) 519 x86_pmu.bts_active = 1; 520 521 if (x86_pmu.pebs && !pebs_err) 522 x86_pmu.pebs_active = 1; 523 524 for_each_possible_cpu(cpu) { 525 /* 526 * Ignores wrmsr_on_cpu() errors for offline CPUs they 527 * will get this call through intel_pmu_cpu_starting(). 528 */ 529 init_debug_store_on_cpu(cpu); 530 } 531 } 532 } 533 534 /* 535 * BTS 536 */ 537 538 struct event_constraint bts_constraint = 539 EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0); 540 541 void intel_pmu_enable_bts(u64 config) 542 { 543 unsigned long debugctlmsr; 544 545 debugctlmsr = get_debugctlmsr(); 546 547 debugctlmsr |= DEBUGCTLMSR_TR; 548 debugctlmsr |= DEBUGCTLMSR_BTS; 549 if (config & ARCH_PERFMON_EVENTSEL_INT) 550 debugctlmsr |= DEBUGCTLMSR_BTINT; 551 552 if (!(config & ARCH_PERFMON_EVENTSEL_OS)) 553 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS; 554 555 if (!(config & ARCH_PERFMON_EVENTSEL_USR)) 556 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR; 557 558 update_debugctlmsr(debugctlmsr); 559 } 560 561 void intel_pmu_disable_bts(void) 562 { 563 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 564 unsigned long debugctlmsr; 565 566 if (!cpuc->ds) 567 return; 568 569 debugctlmsr = get_debugctlmsr(); 570 571 debugctlmsr &= 572 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT | 573 DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR); 574 575 update_debugctlmsr(debugctlmsr); 576 } 577 578 int intel_pmu_drain_bts_buffer(void) 579 { 580 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 581 struct debug_store *ds = cpuc->ds; 582 struct bts_record { 583 u64 from; 584 u64 to; 585 u64 flags; 586 }; 587 struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS]; 588 struct bts_record *at, *base, *top; 589 struct perf_output_handle handle; 590 struct perf_event_header header; 591 struct perf_sample_data data; 592 unsigned long skip = 0; 593 struct pt_regs regs; 594 595 if (!event) 596 return 0; 597 598 if (!x86_pmu.bts_active) 599 return 0; 600 601 base = (struct bts_record *)(unsigned long)ds->bts_buffer_base; 602 top = (struct bts_record *)(unsigned long)ds->bts_index; 603 604 if (top <= base) 605 return 0; 606 607 memset(®s, 0, sizeof(regs)); 608 609 ds->bts_index = ds->bts_buffer_base; 610 611 perf_sample_data_init(&data, 0, event->hw.last_period); 612 613 /* 614 * BTS leaks kernel addresses in branches across the cpl boundary, 615 * such as traps or system calls, so unless the user is asking for 616 * kernel tracing (and right now it's not possible), we'd need to 617 * filter them out. But first we need to count how many of those we 618 * have in the current batch. This is an extra O(n) pass, however, 619 * it's much faster than the other one especially considering that 620 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the 621 * alloc_bts_buffer()). 622 */ 623 for (at = base; at < top; at++) { 624 /* 625 * Note that right now *this* BTS code only works if 626 * attr::exclude_kernel is set, but let's keep this extra 627 * check here in case that changes. 628 */ 629 if (event->attr.exclude_kernel && 630 (kernel_ip(at->from) || kernel_ip(at->to))) 631 skip++; 632 } 633 634 /* 635 * Prepare a generic sample, i.e. fill in the invariant fields. 636 * We will overwrite the from and to address before we output 637 * the sample. 638 */ 639 rcu_read_lock(); 640 perf_prepare_sample(&header, &data, event, ®s); 641 642 if (perf_output_begin(&handle, event, header.size * 643 (top - base - skip))) 644 goto unlock; 645 646 for (at = base; at < top; at++) { 647 /* Filter out any records that contain kernel addresses. */ 648 if (event->attr.exclude_kernel && 649 (kernel_ip(at->from) || kernel_ip(at->to))) 650 continue; 651 652 data.ip = at->from; 653 data.addr = at->to; 654 655 perf_output_sample(&handle, &header, &data, event); 656 } 657 658 perf_output_end(&handle); 659 660 /* There's new data available. */ 661 event->hw.interrupts++; 662 event->pending_kill = POLL_IN; 663 unlock: 664 rcu_read_unlock(); 665 return 1; 666 } 667 668 static inline void intel_pmu_drain_pebs_buffer(void) 669 { 670 struct pt_regs regs; 671 672 x86_pmu.drain_pebs(®s); 673 } 674 675 /* 676 * PEBS 677 */ 678 struct event_constraint intel_core2_pebs_event_constraints[] = { 679 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */ 680 INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */ 681 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */ 682 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */ 683 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */ 684 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 685 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01), 686 EVENT_CONSTRAINT_END 687 }; 688 689 struct event_constraint intel_atom_pebs_event_constraints[] = { 690 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */ 691 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */ 692 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */ 693 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 694 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01), 695 /* Allow all events as PEBS with no flags */ 696 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), 697 EVENT_CONSTRAINT_END 698 }; 699 700 struct event_constraint intel_slm_pebs_event_constraints[] = { 701 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 702 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x1), 703 /* Allow all events as PEBS with no flags */ 704 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), 705 EVENT_CONSTRAINT_END 706 }; 707 708 struct event_constraint intel_glm_pebs_event_constraints[] = { 709 /* Allow all events as PEBS with no flags */ 710 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), 711 EVENT_CONSTRAINT_END 712 }; 713 714 struct event_constraint intel_glp_pebs_event_constraints[] = { 715 /* Allow all events as PEBS with no flags */ 716 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 717 EVENT_CONSTRAINT_END 718 }; 719 720 struct event_constraint intel_nehalem_pebs_event_constraints[] = { 721 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */ 722 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */ 723 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */ 724 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */ 725 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */ 726 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */ 727 INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */ 728 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */ 729 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */ 730 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */ 731 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */ 732 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 733 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f), 734 EVENT_CONSTRAINT_END 735 }; 736 737 struct event_constraint intel_westmere_pebs_event_constraints[] = { 738 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */ 739 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */ 740 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */ 741 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */ 742 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */ 743 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */ 744 INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */ 745 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */ 746 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */ 747 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */ 748 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */ 749 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ 750 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f), 751 EVENT_CONSTRAINT_END 752 }; 753 754 struct event_constraint intel_snb_pebs_event_constraints[] = { 755 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ 756 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */ 757 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */ 758 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ 759 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf), 760 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */ 761 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 762 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 763 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 764 /* Allow all events as PEBS with no flags */ 765 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 766 EVENT_CONSTRAINT_END 767 }; 768 769 struct event_constraint intel_ivb_pebs_event_constraints[] = { 770 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ 771 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */ 772 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */ 773 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ 774 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf), 775 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ 776 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2), 777 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */ 778 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 779 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 780 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 781 /* Allow all events as PEBS with no flags */ 782 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 783 EVENT_CONSTRAINT_END 784 }; 785 786 struct event_constraint intel_hsw_pebs_event_constraints[] = { 787 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ 788 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */ 789 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ 790 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf), 791 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ 792 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2), 793 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */ 794 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */ 795 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */ 796 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */ 797 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */ 798 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */ 799 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */ 800 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */ 801 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 802 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */ 803 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */ 804 /* Allow all events as PEBS with no flags */ 805 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 806 EVENT_CONSTRAINT_END 807 }; 808 809 struct event_constraint intel_bdw_pebs_event_constraints[] = { 810 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ 811 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */ 812 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ 813 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf), 814 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ 815 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2), 816 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */ 817 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */ 818 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */ 819 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */ 820 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */ 821 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */ 822 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */ 823 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */ 824 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 825 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */ 826 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */ 827 /* Allow all events as PEBS with no flags */ 828 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 829 EVENT_CONSTRAINT_END 830 }; 831 832 833 struct event_constraint intel_skl_pebs_event_constraints[] = { 834 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */ 835 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ 836 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2), 837 /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */ 838 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f), 839 INTEL_PLD_CONSTRAINT(0x1cd, 0xf), /* MEM_TRANS_RETIRED.* */ 840 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */ 841 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */ 842 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */ 843 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */ 844 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */ 845 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */ 846 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */ 847 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */ 848 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */ 849 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */ 850 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_L3_MISS_RETIRED.* */ 851 /* Allow all events as PEBS with no flags */ 852 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), 853 EVENT_CONSTRAINT_END 854 }; 855 856 struct event_constraint *intel_pebs_constraints(struct perf_event *event) 857 { 858 struct event_constraint *c; 859 860 if (!event->attr.precise_ip) 861 return NULL; 862 863 if (x86_pmu.pebs_constraints) { 864 for_each_event_constraint(c, x86_pmu.pebs_constraints) { 865 if ((event->hw.config & c->cmask) == c->code) { 866 event->hw.flags |= c->flags; 867 return c; 868 } 869 } 870 } 871 872 return &emptyconstraint; 873 } 874 875 /* 876 * We need the sched_task callback even for per-cpu events when we use 877 * the large interrupt threshold, such that we can provide PID and TID 878 * to PEBS samples. 879 */ 880 static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc) 881 { 882 return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs); 883 } 884 885 void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in) 886 { 887 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 888 889 if (!sched_in && pebs_needs_sched_cb(cpuc)) 890 intel_pmu_drain_pebs_buffer(); 891 } 892 893 static inline void pebs_update_threshold(struct cpu_hw_events *cpuc) 894 { 895 struct debug_store *ds = cpuc->ds; 896 u64 threshold; 897 898 if (cpuc->n_pebs == cpuc->n_large_pebs) { 899 threshold = ds->pebs_absolute_maximum - 900 x86_pmu.max_pebs_events * x86_pmu.pebs_record_size; 901 } else { 902 threshold = ds->pebs_buffer_base + x86_pmu.pebs_record_size; 903 } 904 905 ds->pebs_interrupt_threshold = threshold; 906 } 907 908 static void 909 pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc, struct pmu *pmu) 910 { 911 /* 912 * Make sure we get updated with the first PEBS 913 * event. It will trigger also during removal, but 914 * that does not hurt: 915 */ 916 bool update = cpuc->n_pebs == 1; 917 918 if (needed_cb != pebs_needs_sched_cb(cpuc)) { 919 if (!needed_cb) 920 perf_sched_cb_inc(pmu); 921 else 922 perf_sched_cb_dec(pmu); 923 924 update = true; 925 } 926 927 if (update) 928 pebs_update_threshold(cpuc); 929 } 930 931 void intel_pmu_pebs_add(struct perf_event *event) 932 { 933 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 934 struct hw_perf_event *hwc = &event->hw; 935 bool needed_cb = pebs_needs_sched_cb(cpuc); 936 937 cpuc->n_pebs++; 938 if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS) 939 cpuc->n_large_pebs++; 940 941 pebs_update_state(needed_cb, cpuc, event->ctx->pmu); 942 } 943 944 void intel_pmu_pebs_enable(struct perf_event *event) 945 { 946 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 947 struct hw_perf_event *hwc = &event->hw; 948 struct debug_store *ds = cpuc->ds; 949 950 hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT; 951 952 cpuc->pebs_enabled |= 1ULL << hwc->idx; 953 954 if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) 955 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32); 956 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST) 957 cpuc->pebs_enabled |= 1ULL << 63; 958 959 /* 960 * Use auto-reload if possible to save a MSR write in the PMI. 961 * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD. 962 */ 963 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) { 964 ds->pebs_event_reset[hwc->idx] = 965 (u64)(-hwc->sample_period) & x86_pmu.cntval_mask; 966 } else { 967 ds->pebs_event_reset[hwc->idx] = 0; 968 } 969 } 970 971 void intel_pmu_pebs_del(struct perf_event *event) 972 { 973 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 974 struct hw_perf_event *hwc = &event->hw; 975 bool needed_cb = pebs_needs_sched_cb(cpuc); 976 977 cpuc->n_pebs--; 978 if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS) 979 cpuc->n_large_pebs--; 980 981 pebs_update_state(needed_cb, cpuc, event->ctx->pmu); 982 } 983 984 void intel_pmu_pebs_disable(struct perf_event *event) 985 { 986 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 987 struct hw_perf_event *hwc = &event->hw; 988 989 if (cpuc->n_pebs == cpuc->n_large_pebs) 990 intel_pmu_drain_pebs_buffer(); 991 992 cpuc->pebs_enabled &= ~(1ULL << hwc->idx); 993 994 if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) 995 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32)); 996 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST) 997 cpuc->pebs_enabled &= ~(1ULL << 63); 998 999 if (cpuc->enabled) 1000 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled); 1001 1002 hwc->config |= ARCH_PERFMON_EVENTSEL_INT; 1003 } 1004 1005 void intel_pmu_pebs_enable_all(void) 1006 { 1007 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1008 1009 if (cpuc->pebs_enabled) 1010 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled); 1011 } 1012 1013 void intel_pmu_pebs_disable_all(void) 1014 { 1015 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1016 1017 if (cpuc->pebs_enabled) 1018 wrmsrl(MSR_IA32_PEBS_ENABLE, 0); 1019 } 1020 1021 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs) 1022 { 1023 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1024 unsigned long from = cpuc->lbr_entries[0].from; 1025 unsigned long old_to, to = cpuc->lbr_entries[0].to; 1026 unsigned long ip = regs->ip; 1027 int is_64bit = 0; 1028 void *kaddr; 1029 int size; 1030 1031 /* 1032 * We don't need to fixup if the PEBS assist is fault like 1033 */ 1034 if (!x86_pmu.intel_cap.pebs_trap) 1035 return 1; 1036 1037 /* 1038 * No LBR entry, no basic block, no rewinding 1039 */ 1040 if (!cpuc->lbr_stack.nr || !from || !to) 1041 return 0; 1042 1043 /* 1044 * Basic blocks should never cross user/kernel boundaries 1045 */ 1046 if (kernel_ip(ip) != kernel_ip(to)) 1047 return 0; 1048 1049 /* 1050 * unsigned math, either ip is before the start (impossible) or 1051 * the basic block is larger than 1 page (sanity) 1052 */ 1053 if ((ip - to) > PEBS_FIXUP_SIZE) 1054 return 0; 1055 1056 /* 1057 * We sampled a branch insn, rewind using the LBR stack 1058 */ 1059 if (ip == to) { 1060 set_linear_ip(regs, from); 1061 return 1; 1062 } 1063 1064 size = ip - to; 1065 if (!kernel_ip(ip)) { 1066 int bytes; 1067 u8 *buf = this_cpu_read(insn_buffer); 1068 1069 /* 'size' must fit our buffer, see above */ 1070 bytes = copy_from_user_nmi(buf, (void __user *)to, size); 1071 if (bytes != 0) 1072 return 0; 1073 1074 kaddr = buf; 1075 } else { 1076 kaddr = (void *)to; 1077 } 1078 1079 do { 1080 struct insn insn; 1081 1082 old_to = to; 1083 1084 #ifdef CONFIG_X86_64 1085 is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32); 1086 #endif 1087 insn_init(&insn, kaddr, size, is_64bit); 1088 insn_get_length(&insn); 1089 /* 1090 * Make sure there was not a problem decoding the 1091 * instruction and getting the length. This is 1092 * doubly important because we have an infinite 1093 * loop if insn.length=0. 1094 */ 1095 if (!insn.length) 1096 break; 1097 1098 to += insn.length; 1099 kaddr += insn.length; 1100 size -= insn.length; 1101 } while (to < ip); 1102 1103 if (to == ip) { 1104 set_linear_ip(regs, old_to); 1105 return 1; 1106 } 1107 1108 /* 1109 * Even though we decoded the basic block, the instruction stream 1110 * never matched the given IP, either the TO or the IP got corrupted. 1111 */ 1112 return 0; 1113 } 1114 1115 static inline u64 intel_hsw_weight(struct pebs_record_skl *pebs) 1116 { 1117 if (pebs->tsx_tuning) { 1118 union hsw_tsx_tuning tsx = { .value = pebs->tsx_tuning }; 1119 return tsx.cycles_last_block; 1120 } 1121 return 0; 1122 } 1123 1124 static inline u64 intel_hsw_transaction(struct pebs_record_skl *pebs) 1125 { 1126 u64 txn = (pebs->tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32; 1127 1128 /* For RTM XABORTs also log the abort code from AX */ 1129 if ((txn & PERF_TXN_TRANSACTION) && (pebs->ax & 1)) 1130 txn |= ((pebs->ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT; 1131 return txn; 1132 } 1133 1134 static void setup_pebs_sample_data(struct perf_event *event, 1135 struct pt_regs *iregs, void *__pebs, 1136 struct perf_sample_data *data, 1137 struct pt_regs *regs) 1138 { 1139 #define PERF_X86_EVENT_PEBS_HSW_PREC \ 1140 (PERF_X86_EVENT_PEBS_ST_HSW | \ 1141 PERF_X86_EVENT_PEBS_LD_HSW | \ 1142 PERF_X86_EVENT_PEBS_NA_HSW) 1143 /* 1144 * We cast to the biggest pebs_record but are careful not to 1145 * unconditionally access the 'extra' entries. 1146 */ 1147 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1148 struct pebs_record_skl *pebs = __pebs; 1149 u64 sample_type; 1150 int fll, fst, dsrc; 1151 int fl = event->hw.flags; 1152 1153 if (pebs == NULL) 1154 return; 1155 1156 regs->flags &= ~PERF_EFLAGS_EXACT; 1157 sample_type = event->attr.sample_type; 1158 dsrc = sample_type & PERF_SAMPLE_DATA_SRC; 1159 1160 fll = fl & PERF_X86_EVENT_PEBS_LDLAT; 1161 fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC); 1162 1163 perf_sample_data_init(data, 0, event->hw.last_period); 1164 1165 data->period = event->hw.last_period; 1166 1167 /* 1168 * Use latency for weight (only avail with PEBS-LL) 1169 */ 1170 if (fll && (sample_type & PERF_SAMPLE_WEIGHT)) 1171 data->weight = pebs->lat; 1172 1173 /* 1174 * data.data_src encodes the data source 1175 */ 1176 if (dsrc) { 1177 u64 val = PERF_MEM_NA; 1178 if (fll) 1179 val = load_latency_data(pebs->dse); 1180 else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC)) 1181 val = precise_datala_hsw(event, pebs->dse); 1182 else if (fst) 1183 val = precise_store_data(pebs->dse); 1184 data->data_src.val = val; 1185 } 1186 1187 /* 1188 * We use the interrupt regs as a base because the PEBS record does not 1189 * contain a full regs set, specifically it seems to lack segment 1190 * descriptors, which get used by things like user_mode(). 1191 * 1192 * In the simple case fix up only the IP for PERF_SAMPLE_IP. 1193 * 1194 * We must however always use BP,SP from iregs for the unwinder to stay 1195 * sane; the record BP,SP can point into thin air when the record is 1196 * from a previous PMI context or an (I)RET happend between the record 1197 * and PMI. 1198 */ 1199 *regs = *iregs; 1200 regs->flags = pebs->flags; 1201 1202 if (sample_type & PERF_SAMPLE_REGS_INTR) { 1203 regs->ax = pebs->ax; 1204 regs->bx = pebs->bx; 1205 regs->cx = pebs->cx; 1206 regs->dx = pebs->dx; 1207 regs->si = pebs->si; 1208 regs->di = pebs->di; 1209 1210 /* 1211 * Per the above; only set BP,SP if we don't need callchains. 1212 * 1213 * XXX: does this make sense? 1214 */ 1215 if (!(sample_type & PERF_SAMPLE_CALLCHAIN)) { 1216 regs->bp = pebs->bp; 1217 regs->sp = pebs->sp; 1218 } 1219 1220 /* 1221 * Preserve PERF_EFLAGS_VM from set_linear_ip(). 1222 */ 1223 regs->flags = pebs->flags | (regs->flags & PERF_EFLAGS_VM); 1224 #ifndef CONFIG_X86_32 1225 regs->r8 = pebs->r8; 1226 regs->r9 = pebs->r9; 1227 regs->r10 = pebs->r10; 1228 regs->r11 = pebs->r11; 1229 regs->r12 = pebs->r12; 1230 regs->r13 = pebs->r13; 1231 regs->r14 = pebs->r14; 1232 regs->r15 = pebs->r15; 1233 #endif 1234 } 1235 1236 if (event->attr.precise_ip > 1) { 1237 /* Haswell and later have the eventing IP, so use it: */ 1238 if (x86_pmu.intel_cap.pebs_format >= 2) { 1239 set_linear_ip(regs, pebs->real_ip); 1240 regs->flags |= PERF_EFLAGS_EXACT; 1241 } else { 1242 /* Otherwise use PEBS off-by-1 IP: */ 1243 set_linear_ip(regs, pebs->ip); 1244 1245 /* ... and try to fix it up using the LBR entries: */ 1246 if (intel_pmu_pebs_fixup_ip(regs)) 1247 regs->flags |= PERF_EFLAGS_EXACT; 1248 } 1249 } else 1250 set_linear_ip(regs, pebs->ip); 1251 1252 1253 if ((sample_type & (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR)) && 1254 x86_pmu.intel_cap.pebs_format >= 1) 1255 data->addr = pebs->dla; 1256 1257 if (x86_pmu.intel_cap.pebs_format >= 2) { 1258 /* Only set the TSX weight when no memory weight. */ 1259 if ((sample_type & PERF_SAMPLE_WEIGHT) && !fll) 1260 data->weight = intel_hsw_weight(pebs); 1261 1262 if (sample_type & PERF_SAMPLE_TRANSACTION) 1263 data->txn = intel_hsw_transaction(pebs); 1264 } 1265 1266 /* 1267 * v3 supplies an accurate time stamp, so we use that 1268 * for the time stamp. 1269 * 1270 * We can only do this for the default trace clock. 1271 */ 1272 if (x86_pmu.intel_cap.pebs_format >= 3 && 1273 event->attr.use_clockid == 0) 1274 data->time = native_sched_clock_from_tsc(pebs->tsc); 1275 1276 if (has_branch_stack(event)) 1277 data->br_stack = &cpuc->lbr_stack; 1278 } 1279 1280 static inline void * 1281 get_next_pebs_record_by_bit(void *base, void *top, int bit) 1282 { 1283 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1284 void *at; 1285 u64 pebs_status; 1286 1287 /* 1288 * fmt0 does not have a status bitfield (does not use 1289 * perf_record_nhm format) 1290 */ 1291 if (x86_pmu.intel_cap.pebs_format < 1) 1292 return base; 1293 1294 if (base == NULL) 1295 return NULL; 1296 1297 for (at = base; at < top; at += x86_pmu.pebs_record_size) { 1298 struct pebs_record_nhm *p = at; 1299 1300 if (test_bit(bit, (unsigned long *)&p->status)) { 1301 /* PEBS v3 has accurate status bits */ 1302 if (x86_pmu.intel_cap.pebs_format >= 3) 1303 return at; 1304 1305 if (p->status == (1 << bit)) 1306 return at; 1307 1308 /* clear non-PEBS bit and re-check */ 1309 pebs_status = p->status & cpuc->pebs_enabled; 1310 pebs_status &= PEBS_COUNTER_MASK; 1311 if (pebs_status == (1 << bit)) 1312 return at; 1313 } 1314 } 1315 return NULL; 1316 } 1317 1318 void intel_pmu_auto_reload_read(struct perf_event *event) 1319 { 1320 WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)); 1321 1322 perf_pmu_disable(event->pmu); 1323 intel_pmu_drain_pebs_buffer(); 1324 perf_pmu_enable(event->pmu); 1325 } 1326 1327 /* 1328 * Special variant of intel_pmu_save_and_restart() for auto-reload. 1329 */ 1330 static int 1331 intel_pmu_save_and_restart_reload(struct perf_event *event, int count) 1332 { 1333 struct hw_perf_event *hwc = &event->hw; 1334 int shift = 64 - x86_pmu.cntval_bits; 1335 u64 period = hwc->sample_period; 1336 u64 prev_raw_count, new_raw_count; 1337 s64 new, old; 1338 1339 WARN_ON(!period); 1340 1341 /* 1342 * drain_pebs() only happens when the PMU is disabled. 1343 */ 1344 WARN_ON(this_cpu_read(cpu_hw_events.enabled)); 1345 1346 prev_raw_count = local64_read(&hwc->prev_count); 1347 rdpmcl(hwc->event_base_rdpmc, new_raw_count); 1348 local64_set(&hwc->prev_count, new_raw_count); 1349 1350 /* 1351 * Since the counter increments a negative counter value and 1352 * overflows on the sign switch, giving the interval: 1353 * 1354 * [-period, 0] 1355 * 1356 * the difference between two consequtive reads is: 1357 * 1358 * A) value2 - value1; 1359 * when no overflows have happened in between, 1360 * 1361 * B) (0 - value1) + (value2 - (-period)); 1362 * when one overflow happened in between, 1363 * 1364 * C) (0 - value1) + (n - 1) * (period) + (value2 - (-period)); 1365 * when @n overflows happened in between. 1366 * 1367 * Here A) is the obvious difference, B) is the extension to the 1368 * discrete interval, where the first term is to the top of the 1369 * interval and the second term is from the bottom of the next 1370 * interval and C) the extension to multiple intervals, where the 1371 * middle term is the whole intervals covered. 1372 * 1373 * An equivalent of C, by reduction, is: 1374 * 1375 * value2 - value1 + n * period 1376 */ 1377 new = ((s64)(new_raw_count << shift) >> shift); 1378 old = ((s64)(prev_raw_count << shift) >> shift); 1379 local64_add(new - old + count * period, &event->count); 1380 1381 perf_event_update_userpage(event); 1382 1383 return 0; 1384 } 1385 1386 static void __intel_pmu_pebs_event(struct perf_event *event, 1387 struct pt_regs *iregs, 1388 void *base, void *top, 1389 int bit, int count) 1390 { 1391 struct hw_perf_event *hwc = &event->hw; 1392 struct perf_sample_data data; 1393 struct pt_regs regs; 1394 void *at = get_next_pebs_record_by_bit(base, top, bit); 1395 1396 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) { 1397 /* 1398 * Now, auto-reload is only enabled in fixed period mode. 1399 * The reload value is always hwc->sample_period. 1400 * May need to change it, if auto-reload is enabled in 1401 * freq mode later. 1402 */ 1403 intel_pmu_save_and_restart_reload(event, count); 1404 } else if (!intel_pmu_save_and_restart(event)) 1405 return; 1406 1407 while (count > 1) { 1408 setup_pebs_sample_data(event, iregs, at, &data, ®s); 1409 perf_event_output(event, &data, ®s); 1410 at += x86_pmu.pebs_record_size; 1411 at = get_next_pebs_record_by_bit(at, top, bit); 1412 count--; 1413 } 1414 1415 setup_pebs_sample_data(event, iregs, at, &data, ®s); 1416 1417 /* 1418 * All but the last records are processed. 1419 * The last one is left to be able to call the overflow handler. 1420 */ 1421 if (perf_event_overflow(event, &data, ®s)) { 1422 x86_pmu_stop(event, 0); 1423 return; 1424 } 1425 1426 } 1427 1428 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs) 1429 { 1430 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1431 struct debug_store *ds = cpuc->ds; 1432 struct perf_event *event = cpuc->events[0]; /* PMC0 only */ 1433 struct pebs_record_core *at, *top; 1434 int n; 1435 1436 if (!x86_pmu.pebs_active) 1437 return; 1438 1439 at = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base; 1440 top = (struct pebs_record_core *)(unsigned long)ds->pebs_index; 1441 1442 /* 1443 * Whatever else happens, drain the thing 1444 */ 1445 ds->pebs_index = ds->pebs_buffer_base; 1446 1447 if (!test_bit(0, cpuc->active_mask)) 1448 return; 1449 1450 WARN_ON_ONCE(!event); 1451 1452 if (!event->attr.precise_ip) 1453 return; 1454 1455 n = top - at; 1456 if (n <= 0) { 1457 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD) 1458 intel_pmu_save_and_restart_reload(event, 0); 1459 return; 1460 } 1461 1462 __intel_pmu_pebs_event(event, iregs, at, top, 0, n); 1463 } 1464 1465 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs) 1466 { 1467 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1468 struct debug_store *ds = cpuc->ds; 1469 struct perf_event *event; 1470 void *base, *at, *top; 1471 short counts[MAX_PEBS_EVENTS] = {}; 1472 short error[MAX_PEBS_EVENTS] = {}; 1473 int bit, i; 1474 1475 if (!x86_pmu.pebs_active) 1476 return; 1477 1478 base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base; 1479 top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index; 1480 1481 ds->pebs_index = ds->pebs_buffer_base; 1482 1483 if (unlikely(base >= top)) { 1484 /* 1485 * The drain_pebs() could be called twice in a short period 1486 * for auto-reload event in pmu::read(). There are no 1487 * overflows have happened in between. 1488 * It needs to call intel_pmu_save_and_restart_reload() to 1489 * update the event->count for this case. 1490 */ 1491 for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled, 1492 x86_pmu.max_pebs_events) { 1493 event = cpuc->events[bit]; 1494 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD) 1495 intel_pmu_save_and_restart_reload(event, 0); 1496 } 1497 return; 1498 } 1499 1500 for (at = base; at < top; at += x86_pmu.pebs_record_size) { 1501 struct pebs_record_nhm *p = at; 1502 u64 pebs_status; 1503 1504 pebs_status = p->status & cpuc->pebs_enabled; 1505 pebs_status &= (1ULL << x86_pmu.max_pebs_events) - 1; 1506 1507 /* PEBS v3 has more accurate status bits */ 1508 if (x86_pmu.intel_cap.pebs_format >= 3) { 1509 for_each_set_bit(bit, (unsigned long *)&pebs_status, 1510 x86_pmu.max_pebs_events) 1511 counts[bit]++; 1512 1513 continue; 1514 } 1515 1516 /* 1517 * On some CPUs the PEBS status can be zero when PEBS is 1518 * racing with clearing of GLOBAL_STATUS. 1519 * 1520 * Normally we would drop that record, but in the 1521 * case when there is only a single active PEBS event 1522 * we can assume it's for that event. 1523 */ 1524 if (!pebs_status && cpuc->pebs_enabled && 1525 !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1))) 1526 pebs_status = cpuc->pebs_enabled; 1527 1528 bit = find_first_bit((unsigned long *)&pebs_status, 1529 x86_pmu.max_pebs_events); 1530 if (bit >= x86_pmu.max_pebs_events) 1531 continue; 1532 1533 /* 1534 * The PEBS hardware does not deal well with the situation 1535 * when events happen near to each other and multiple bits 1536 * are set. But it should happen rarely. 1537 * 1538 * If these events include one PEBS and multiple non-PEBS 1539 * events, it doesn't impact PEBS record. The record will 1540 * be handled normally. (slow path) 1541 * 1542 * If these events include two or more PEBS events, the 1543 * records for the events can be collapsed into a single 1544 * one, and it's not possible to reconstruct all events 1545 * that caused the PEBS record. It's called collision. 1546 * If collision happened, the record will be dropped. 1547 */ 1548 if (p->status != (1ULL << bit)) { 1549 for_each_set_bit(i, (unsigned long *)&pebs_status, 1550 x86_pmu.max_pebs_events) 1551 error[i]++; 1552 continue; 1553 } 1554 1555 counts[bit]++; 1556 } 1557 1558 for (bit = 0; bit < x86_pmu.max_pebs_events; bit++) { 1559 if ((counts[bit] == 0) && (error[bit] == 0)) 1560 continue; 1561 1562 event = cpuc->events[bit]; 1563 if (WARN_ON_ONCE(!event)) 1564 continue; 1565 1566 if (WARN_ON_ONCE(!event->attr.precise_ip)) 1567 continue; 1568 1569 /* log dropped samples number */ 1570 if (error[bit]) { 1571 perf_log_lost_samples(event, error[bit]); 1572 1573 if (perf_event_account_interrupt(event)) 1574 x86_pmu_stop(event, 0); 1575 } 1576 1577 if (counts[bit]) { 1578 __intel_pmu_pebs_event(event, iregs, base, 1579 top, bit, counts[bit]); 1580 } 1581 } 1582 } 1583 1584 /* 1585 * BTS, PEBS probe and setup 1586 */ 1587 1588 void __init intel_ds_init(void) 1589 { 1590 /* 1591 * No support for 32bit formats 1592 */ 1593 if (!boot_cpu_has(X86_FEATURE_DTES64)) 1594 return; 1595 1596 x86_pmu.bts = boot_cpu_has(X86_FEATURE_BTS); 1597 x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS); 1598 x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE; 1599 if (x86_pmu.pebs) { 1600 char pebs_type = x86_pmu.intel_cap.pebs_trap ? '+' : '-'; 1601 int format = x86_pmu.intel_cap.pebs_format; 1602 1603 switch (format) { 1604 case 0: 1605 pr_cont("PEBS fmt0%c, ", pebs_type); 1606 x86_pmu.pebs_record_size = sizeof(struct pebs_record_core); 1607 /* 1608 * Using >PAGE_SIZE buffers makes the WRMSR to 1609 * PERF_GLOBAL_CTRL in intel_pmu_enable_all() 1610 * mysteriously hang on Core2. 1611 * 1612 * As a workaround, we don't do this. 1613 */ 1614 x86_pmu.pebs_buffer_size = PAGE_SIZE; 1615 x86_pmu.drain_pebs = intel_pmu_drain_pebs_core; 1616 break; 1617 1618 case 1: 1619 pr_cont("PEBS fmt1%c, ", pebs_type); 1620 x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm); 1621 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; 1622 break; 1623 1624 case 2: 1625 pr_cont("PEBS fmt2%c, ", pebs_type); 1626 x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw); 1627 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; 1628 break; 1629 1630 case 3: 1631 pr_cont("PEBS fmt3%c, ", pebs_type); 1632 x86_pmu.pebs_record_size = 1633 sizeof(struct pebs_record_skl); 1634 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; 1635 x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME; 1636 break; 1637 1638 default: 1639 pr_cont("no PEBS fmt%d%c, ", format, pebs_type); 1640 x86_pmu.pebs = 0; 1641 } 1642 } 1643 } 1644 1645 void perf_restore_debug_store(void) 1646 { 1647 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds); 1648 1649 if (!x86_pmu.bts && !x86_pmu.pebs) 1650 return; 1651 1652 wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds); 1653 } 1654