1 /* 2 * Per core/cpu state 3 * 4 * Used to coordinate shared registers between HT threads or 5 * among events on a single PMU. 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/stddef.h> 11 #include <linux/types.h> 12 #include <linux/init.h> 13 #include <linux/slab.h> 14 #include <linux/export.h> 15 #include <linux/nmi.h> 16 17 #include <asm/cpufeature.h> 18 #include <asm/hardirq.h> 19 #include <asm/intel-family.h> 20 #include <asm/apic.h> 21 22 #include "../perf_event.h" 23 24 /* 25 * Intel PerfMon, used on Core and later. 26 */ 27 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly = 28 { 29 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c, 30 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0, 31 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e, 32 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e, 33 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4, 34 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5, 35 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c, 36 [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */ 37 }; 38 39 static struct event_constraint intel_core_event_constraints[] __read_mostly = 40 { 41 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */ 42 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */ 43 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */ 44 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */ 45 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */ 46 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */ 47 EVENT_CONSTRAINT_END 48 }; 49 50 static struct event_constraint intel_core2_event_constraints[] __read_mostly = 51 { 52 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 53 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 54 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 55 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */ 56 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */ 57 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */ 58 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */ 59 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */ 60 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */ 61 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */ 62 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */ 63 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */ 64 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */ 65 EVENT_CONSTRAINT_END 66 }; 67 68 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly = 69 { 70 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 71 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 72 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 73 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */ 74 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */ 75 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */ 76 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */ 77 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */ 78 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */ 79 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */ 80 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */ 81 EVENT_CONSTRAINT_END 82 }; 83 84 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly = 85 { 86 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 87 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0), 88 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b), 89 EVENT_EXTRA_END 90 }; 91 92 static struct event_constraint intel_westmere_event_constraints[] __read_mostly = 93 { 94 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 95 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 96 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 97 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */ 98 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */ 99 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */ 100 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */ 101 EVENT_CONSTRAINT_END 102 }; 103 104 static struct event_constraint intel_snb_event_constraints[] __read_mostly = 105 { 106 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 107 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 108 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 109 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */ 110 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */ 111 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ 112 INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */ 113 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */ 114 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */ 115 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */ 116 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */ 117 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ 118 119 /* 120 * When HT is off these events can only run on the bottom 4 counters 121 * When HT is on, they are impacted by the HT bug and require EXCL access 122 */ 123 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */ 124 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 125 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 126 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 127 128 EVENT_CONSTRAINT_END 129 }; 130 131 static struct event_constraint intel_ivb_event_constraints[] __read_mostly = 132 { 133 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 134 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 135 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 136 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */ 137 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */ 138 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */ 139 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */ 140 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */ 141 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */ 142 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */ 143 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ 144 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */ 145 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */ 146 147 /* 148 * When HT is off these events can only run on the bottom 4 counters 149 * When HT is on, they are impacted by the HT bug and require EXCL access 150 */ 151 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */ 152 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 153 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 154 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 155 156 EVENT_CONSTRAINT_END 157 }; 158 159 static struct extra_reg intel_westmere_extra_regs[] __read_mostly = 160 { 161 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 162 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0), 163 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1), 164 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b), 165 EVENT_EXTRA_END 166 }; 167 168 static struct event_constraint intel_v1_event_constraints[] __read_mostly = 169 { 170 EVENT_CONSTRAINT_END 171 }; 172 173 static struct event_constraint intel_gen_event_constraints[] __read_mostly = 174 { 175 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 176 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 177 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 178 EVENT_CONSTRAINT_END 179 }; 180 181 static struct event_constraint intel_slm_event_constraints[] __read_mostly = 182 { 183 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 184 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 185 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */ 186 EVENT_CONSTRAINT_END 187 }; 188 189 static struct event_constraint intel_skl_event_constraints[] = { 190 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 191 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 192 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 193 INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */ 194 195 /* 196 * when HT is off, these can only run on the bottom 4 counters 197 */ 198 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */ 199 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */ 200 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */ 201 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */ 202 INTEL_EVENT_CONSTRAINT(0xc6, 0xf), /* FRONTEND_RETIRED.* */ 203 204 EVENT_CONSTRAINT_END 205 }; 206 207 static struct extra_reg intel_knl_extra_regs[] __read_mostly = { 208 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0), 209 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1), 210 EVENT_EXTRA_END 211 }; 212 213 static struct extra_reg intel_snb_extra_regs[] __read_mostly = { 214 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 215 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0), 216 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1), 217 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), 218 EVENT_EXTRA_END 219 }; 220 221 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = { 222 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 223 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0), 224 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1), 225 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), 226 EVENT_EXTRA_END 227 }; 228 229 static struct extra_reg intel_skl_extra_regs[] __read_mostly = { 230 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0), 231 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1), 232 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), 233 /* 234 * Note the low 8 bits eventsel code is not a continuous field, containing 235 * some #GPing bits. These are masked out. 236 */ 237 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE), 238 EVENT_EXTRA_END 239 }; 240 241 EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3"); 242 EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3"); 243 EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2"); 244 245 static struct attribute *nhm_events_attrs[] = { 246 EVENT_PTR(mem_ld_nhm), 247 NULL, 248 }; 249 250 /* 251 * topdown events for Intel Core CPUs. 252 * 253 * The events are all in slots, which is a free slot in a 4 wide 254 * pipeline. Some events are already reported in slots, for cycle 255 * events we multiply by the pipeline width (4). 256 * 257 * With Hyper Threading on, topdown metrics are either summed or averaged 258 * between the threads of a core: (count_t0 + count_t1). 259 * 260 * For the average case the metric is always scaled to pipeline width, 261 * so we use factor 2 ((count_t0 + count_t1) / 2 * 4) 262 */ 263 264 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots, 265 "event=0x3c,umask=0x0", /* cpu_clk_unhalted.thread */ 266 "event=0x3c,umask=0x0,any=1"); /* cpu_clk_unhalted.thread_any */ 267 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2"); 268 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued, 269 "event=0xe,umask=0x1"); /* uops_issued.any */ 270 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired, 271 "event=0xc2,umask=0x2"); /* uops_retired.retire_slots */ 272 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles, 273 "event=0x9c,umask=0x1"); /* idq_uops_not_delivered_core */ 274 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles, 275 "event=0xd,umask=0x3,cmask=1", /* int_misc.recovery_cycles */ 276 "event=0xd,umask=0x3,cmask=1,any=1"); /* int_misc.recovery_cycles_any */ 277 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale, 278 "4", "2"); 279 280 static struct attribute *snb_events_attrs[] = { 281 EVENT_PTR(mem_ld_snb), 282 EVENT_PTR(mem_st_snb), 283 EVENT_PTR(td_slots_issued), 284 EVENT_PTR(td_slots_retired), 285 EVENT_PTR(td_fetch_bubbles), 286 EVENT_PTR(td_total_slots), 287 EVENT_PTR(td_total_slots_scale), 288 EVENT_PTR(td_recovery_bubbles), 289 EVENT_PTR(td_recovery_bubbles_scale), 290 NULL, 291 }; 292 293 static struct event_constraint intel_hsw_event_constraints[] = { 294 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 295 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 296 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 297 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */ 298 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */ 299 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */ 300 /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ 301 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), 302 /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */ 303 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), 304 /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */ 305 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), 306 307 /* 308 * When HT is off these events can only run on the bottom 4 counters 309 * When HT is on, they are impacted by the HT bug and require EXCL access 310 */ 311 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */ 312 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 313 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 314 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 315 316 EVENT_CONSTRAINT_END 317 }; 318 319 static struct event_constraint intel_bdw_event_constraints[] = { 320 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 321 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 322 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 323 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */ 324 INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */ 325 /* 326 * when HT is off, these can only run on the bottom 4 counters 327 */ 328 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */ 329 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */ 330 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */ 331 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */ 332 EVENT_CONSTRAINT_END 333 }; 334 335 static u64 intel_pmu_event_map(int hw_event) 336 { 337 return intel_perfmon_event_map[hw_event]; 338 } 339 340 /* 341 * Notes on the events: 342 * - data reads do not include code reads (comparable to earlier tables) 343 * - data counts include speculative execution (except L1 write, dtlb, bpu) 344 * - remote node access includes remote memory, remote cache, remote mmio. 345 * - prefetches are not included in the counts. 346 * - icache miss does not include decoded icache 347 */ 348 349 #define SKL_DEMAND_DATA_RD BIT_ULL(0) 350 #define SKL_DEMAND_RFO BIT_ULL(1) 351 #define SKL_ANY_RESPONSE BIT_ULL(16) 352 #define SKL_SUPPLIER_NONE BIT_ULL(17) 353 #define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26) 354 #define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27) 355 #define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28) 356 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29) 357 #define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \ 358 SKL_L3_MISS_REMOTE_HOP0_DRAM| \ 359 SKL_L3_MISS_REMOTE_HOP1_DRAM| \ 360 SKL_L3_MISS_REMOTE_HOP2P_DRAM) 361 #define SKL_SPL_HIT BIT_ULL(30) 362 #define SKL_SNOOP_NONE BIT_ULL(31) 363 #define SKL_SNOOP_NOT_NEEDED BIT_ULL(32) 364 #define SKL_SNOOP_MISS BIT_ULL(33) 365 #define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34) 366 #define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35) 367 #define SKL_SNOOP_HITM BIT_ULL(36) 368 #define SKL_SNOOP_NON_DRAM BIT_ULL(37) 369 #define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \ 370 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \ 371 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \ 372 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM) 373 #define SKL_DEMAND_READ SKL_DEMAND_DATA_RD 374 #define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \ 375 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \ 376 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \ 377 SKL_SNOOP_HITM|SKL_SPL_HIT) 378 #define SKL_DEMAND_WRITE SKL_DEMAND_RFO 379 #define SKL_LLC_ACCESS SKL_ANY_RESPONSE 380 #define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \ 381 SKL_L3_MISS_REMOTE_HOP1_DRAM| \ 382 SKL_L3_MISS_REMOTE_HOP2P_DRAM) 383 384 static __initconst const u64 skl_hw_cache_event_ids 385 [PERF_COUNT_HW_CACHE_MAX] 386 [PERF_COUNT_HW_CACHE_OP_MAX] 387 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 388 { 389 [ C(L1D ) ] = { 390 [ C(OP_READ) ] = { 391 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */ 392 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */ 393 }, 394 [ C(OP_WRITE) ] = { 395 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */ 396 [ C(RESULT_MISS) ] = 0x0, 397 }, 398 [ C(OP_PREFETCH) ] = { 399 [ C(RESULT_ACCESS) ] = 0x0, 400 [ C(RESULT_MISS) ] = 0x0, 401 }, 402 }, 403 [ C(L1I ) ] = { 404 [ C(OP_READ) ] = { 405 [ C(RESULT_ACCESS) ] = 0x0, 406 [ C(RESULT_MISS) ] = 0x283, /* ICACHE_64B.MISS */ 407 }, 408 [ C(OP_WRITE) ] = { 409 [ C(RESULT_ACCESS) ] = -1, 410 [ C(RESULT_MISS) ] = -1, 411 }, 412 [ C(OP_PREFETCH) ] = { 413 [ C(RESULT_ACCESS) ] = 0x0, 414 [ C(RESULT_MISS) ] = 0x0, 415 }, 416 }, 417 [ C(LL ) ] = { 418 [ C(OP_READ) ] = { 419 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 420 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 421 }, 422 [ C(OP_WRITE) ] = { 423 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 424 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 425 }, 426 [ C(OP_PREFETCH) ] = { 427 [ C(RESULT_ACCESS) ] = 0x0, 428 [ C(RESULT_MISS) ] = 0x0, 429 }, 430 }, 431 [ C(DTLB) ] = { 432 [ C(OP_READ) ] = { 433 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */ 434 [ C(RESULT_MISS) ] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */ 435 }, 436 [ C(OP_WRITE) ] = { 437 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */ 438 [ C(RESULT_MISS) ] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */ 439 }, 440 [ C(OP_PREFETCH) ] = { 441 [ C(RESULT_ACCESS) ] = 0x0, 442 [ C(RESULT_MISS) ] = 0x0, 443 }, 444 }, 445 [ C(ITLB) ] = { 446 [ C(OP_READ) ] = { 447 [ C(RESULT_ACCESS) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */ 448 [ C(RESULT_MISS) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */ 449 }, 450 [ C(OP_WRITE) ] = { 451 [ C(RESULT_ACCESS) ] = -1, 452 [ C(RESULT_MISS) ] = -1, 453 }, 454 [ C(OP_PREFETCH) ] = { 455 [ C(RESULT_ACCESS) ] = -1, 456 [ C(RESULT_MISS) ] = -1, 457 }, 458 }, 459 [ C(BPU ) ] = { 460 [ C(OP_READ) ] = { 461 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */ 462 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */ 463 }, 464 [ C(OP_WRITE) ] = { 465 [ C(RESULT_ACCESS) ] = -1, 466 [ C(RESULT_MISS) ] = -1, 467 }, 468 [ C(OP_PREFETCH) ] = { 469 [ C(RESULT_ACCESS) ] = -1, 470 [ C(RESULT_MISS) ] = -1, 471 }, 472 }, 473 [ C(NODE) ] = { 474 [ C(OP_READ) ] = { 475 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 476 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 477 }, 478 [ C(OP_WRITE) ] = { 479 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 480 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 481 }, 482 [ C(OP_PREFETCH) ] = { 483 [ C(RESULT_ACCESS) ] = 0x0, 484 [ C(RESULT_MISS) ] = 0x0, 485 }, 486 }, 487 }; 488 489 static __initconst const u64 skl_hw_cache_extra_regs 490 [PERF_COUNT_HW_CACHE_MAX] 491 [PERF_COUNT_HW_CACHE_OP_MAX] 492 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 493 { 494 [ C(LL ) ] = { 495 [ C(OP_READ) ] = { 496 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ| 497 SKL_LLC_ACCESS|SKL_ANY_SNOOP, 498 [ C(RESULT_MISS) ] = SKL_DEMAND_READ| 499 SKL_L3_MISS|SKL_ANY_SNOOP| 500 SKL_SUPPLIER_NONE, 501 }, 502 [ C(OP_WRITE) ] = { 503 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE| 504 SKL_LLC_ACCESS|SKL_ANY_SNOOP, 505 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE| 506 SKL_L3_MISS|SKL_ANY_SNOOP| 507 SKL_SUPPLIER_NONE, 508 }, 509 [ C(OP_PREFETCH) ] = { 510 [ C(RESULT_ACCESS) ] = 0x0, 511 [ C(RESULT_MISS) ] = 0x0, 512 }, 513 }, 514 [ C(NODE) ] = { 515 [ C(OP_READ) ] = { 516 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ| 517 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM, 518 [ C(RESULT_MISS) ] = SKL_DEMAND_READ| 519 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM, 520 }, 521 [ C(OP_WRITE) ] = { 522 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE| 523 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM, 524 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE| 525 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM, 526 }, 527 [ C(OP_PREFETCH) ] = { 528 [ C(RESULT_ACCESS) ] = 0x0, 529 [ C(RESULT_MISS) ] = 0x0, 530 }, 531 }, 532 }; 533 534 #define SNB_DMND_DATA_RD (1ULL << 0) 535 #define SNB_DMND_RFO (1ULL << 1) 536 #define SNB_DMND_IFETCH (1ULL << 2) 537 #define SNB_DMND_WB (1ULL << 3) 538 #define SNB_PF_DATA_RD (1ULL << 4) 539 #define SNB_PF_RFO (1ULL << 5) 540 #define SNB_PF_IFETCH (1ULL << 6) 541 #define SNB_LLC_DATA_RD (1ULL << 7) 542 #define SNB_LLC_RFO (1ULL << 8) 543 #define SNB_LLC_IFETCH (1ULL << 9) 544 #define SNB_BUS_LOCKS (1ULL << 10) 545 #define SNB_STRM_ST (1ULL << 11) 546 #define SNB_OTHER (1ULL << 15) 547 #define SNB_RESP_ANY (1ULL << 16) 548 #define SNB_NO_SUPP (1ULL << 17) 549 #define SNB_LLC_HITM (1ULL << 18) 550 #define SNB_LLC_HITE (1ULL << 19) 551 #define SNB_LLC_HITS (1ULL << 20) 552 #define SNB_LLC_HITF (1ULL << 21) 553 #define SNB_LOCAL (1ULL << 22) 554 #define SNB_REMOTE (0xffULL << 23) 555 #define SNB_SNP_NONE (1ULL << 31) 556 #define SNB_SNP_NOT_NEEDED (1ULL << 32) 557 #define SNB_SNP_MISS (1ULL << 33) 558 #define SNB_NO_FWD (1ULL << 34) 559 #define SNB_SNP_FWD (1ULL << 35) 560 #define SNB_HITM (1ULL << 36) 561 #define SNB_NON_DRAM (1ULL << 37) 562 563 #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD) 564 #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO) 565 #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO) 566 567 #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \ 568 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \ 569 SNB_HITM) 570 571 #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY) 572 #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY) 573 574 #define SNB_L3_ACCESS SNB_RESP_ANY 575 #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM) 576 577 static __initconst const u64 snb_hw_cache_extra_regs 578 [PERF_COUNT_HW_CACHE_MAX] 579 [PERF_COUNT_HW_CACHE_OP_MAX] 580 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 581 { 582 [ C(LL ) ] = { 583 [ C(OP_READ) ] = { 584 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS, 585 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS, 586 }, 587 [ C(OP_WRITE) ] = { 588 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS, 589 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS, 590 }, 591 [ C(OP_PREFETCH) ] = { 592 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS, 593 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS, 594 }, 595 }, 596 [ C(NODE) ] = { 597 [ C(OP_READ) ] = { 598 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY, 599 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE, 600 }, 601 [ C(OP_WRITE) ] = { 602 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY, 603 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE, 604 }, 605 [ C(OP_PREFETCH) ] = { 606 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY, 607 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE, 608 }, 609 }, 610 }; 611 612 static __initconst const u64 snb_hw_cache_event_ids 613 [PERF_COUNT_HW_CACHE_MAX] 614 [PERF_COUNT_HW_CACHE_OP_MAX] 615 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 616 { 617 [ C(L1D) ] = { 618 [ C(OP_READ) ] = { 619 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */ 620 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */ 621 }, 622 [ C(OP_WRITE) ] = { 623 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */ 624 [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */ 625 }, 626 [ C(OP_PREFETCH) ] = { 627 [ C(RESULT_ACCESS) ] = 0x0, 628 [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */ 629 }, 630 }, 631 [ C(L1I ) ] = { 632 [ C(OP_READ) ] = { 633 [ C(RESULT_ACCESS) ] = 0x0, 634 [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */ 635 }, 636 [ C(OP_WRITE) ] = { 637 [ C(RESULT_ACCESS) ] = -1, 638 [ C(RESULT_MISS) ] = -1, 639 }, 640 [ C(OP_PREFETCH) ] = { 641 [ C(RESULT_ACCESS) ] = 0x0, 642 [ C(RESULT_MISS) ] = 0x0, 643 }, 644 }, 645 [ C(LL ) ] = { 646 [ C(OP_READ) ] = { 647 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ 648 [ C(RESULT_ACCESS) ] = 0x01b7, 649 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ 650 [ C(RESULT_MISS) ] = 0x01b7, 651 }, 652 [ C(OP_WRITE) ] = { 653 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ 654 [ C(RESULT_ACCESS) ] = 0x01b7, 655 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ 656 [ C(RESULT_MISS) ] = 0x01b7, 657 }, 658 [ C(OP_PREFETCH) ] = { 659 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ 660 [ C(RESULT_ACCESS) ] = 0x01b7, 661 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ 662 [ C(RESULT_MISS) ] = 0x01b7, 663 }, 664 }, 665 [ C(DTLB) ] = { 666 [ C(OP_READ) ] = { 667 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */ 668 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */ 669 }, 670 [ C(OP_WRITE) ] = { 671 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */ 672 [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */ 673 }, 674 [ C(OP_PREFETCH) ] = { 675 [ C(RESULT_ACCESS) ] = 0x0, 676 [ C(RESULT_MISS) ] = 0x0, 677 }, 678 }, 679 [ C(ITLB) ] = { 680 [ C(OP_READ) ] = { 681 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */ 682 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */ 683 }, 684 [ C(OP_WRITE) ] = { 685 [ C(RESULT_ACCESS) ] = -1, 686 [ C(RESULT_MISS) ] = -1, 687 }, 688 [ C(OP_PREFETCH) ] = { 689 [ C(RESULT_ACCESS) ] = -1, 690 [ C(RESULT_MISS) ] = -1, 691 }, 692 }, 693 [ C(BPU ) ] = { 694 [ C(OP_READ) ] = { 695 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ 696 [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */ 697 }, 698 [ C(OP_WRITE) ] = { 699 [ C(RESULT_ACCESS) ] = -1, 700 [ C(RESULT_MISS) ] = -1, 701 }, 702 [ C(OP_PREFETCH) ] = { 703 [ C(RESULT_ACCESS) ] = -1, 704 [ C(RESULT_MISS) ] = -1, 705 }, 706 }, 707 [ C(NODE) ] = { 708 [ C(OP_READ) ] = { 709 [ C(RESULT_ACCESS) ] = 0x01b7, 710 [ C(RESULT_MISS) ] = 0x01b7, 711 }, 712 [ C(OP_WRITE) ] = { 713 [ C(RESULT_ACCESS) ] = 0x01b7, 714 [ C(RESULT_MISS) ] = 0x01b7, 715 }, 716 [ C(OP_PREFETCH) ] = { 717 [ C(RESULT_ACCESS) ] = 0x01b7, 718 [ C(RESULT_MISS) ] = 0x01b7, 719 }, 720 }, 721 722 }; 723 724 /* 725 * Notes on the events: 726 * - data reads do not include code reads (comparable to earlier tables) 727 * - data counts include speculative execution (except L1 write, dtlb, bpu) 728 * - remote node access includes remote memory, remote cache, remote mmio. 729 * - prefetches are not included in the counts because they are not 730 * reliably counted. 731 */ 732 733 #define HSW_DEMAND_DATA_RD BIT_ULL(0) 734 #define HSW_DEMAND_RFO BIT_ULL(1) 735 #define HSW_ANY_RESPONSE BIT_ULL(16) 736 #define HSW_SUPPLIER_NONE BIT_ULL(17) 737 #define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22) 738 #define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27) 739 #define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28) 740 #define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29) 741 #define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \ 742 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \ 743 HSW_L3_MISS_REMOTE_HOP2P) 744 #define HSW_SNOOP_NONE BIT_ULL(31) 745 #define HSW_SNOOP_NOT_NEEDED BIT_ULL(32) 746 #define HSW_SNOOP_MISS BIT_ULL(33) 747 #define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34) 748 #define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35) 749 #define HSW_SNOOP_HITM BIT_ULL(36) 750 #define HSW_SNOOP_NON_DRAM BIT_ULL(37) 751 #define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \ 752 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \ 753 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \ 754 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM) 755 #define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM) 756 #define HSW_DEMAND_READ HSW_DEMAND_DATA_RD 757 #define HSW_DEMAND_WRITE HSW_DEMAND_RFO 758 #define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\ 759 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P) 760 #define HSW_LLC_ACCESS HSW_ANY_RESPONSE 761 762 #define BDW_L3_MISS_LOCAL BIT(26) 763 #define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \ 764 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \ 765 HSW_L3_MISS_REMOTE_HOP2P) 766 767 768 static __initconst const u64 hsw_hw_cache_event_ids 769 [PERF_COUNT_HW_CACHE_MAX] 770 [PERF_COUNT_HW_CACHE_OP_MAX] 771 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 772 { 773 [ C(L1D ) ] = { 774 [ C(OP_READ) ] = { 775 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 776 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */ 777 }, 778 [ C(OP_WRITE) ] = { 779 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 780 [ C(RESULT_MISS) ] = 0x0, 781 }, 782 [ C(OP_PREFETCH) ] = { 783 [ C(RESULT_ACCESS) ] = 0x0, 784 [ C(RESULT_MISS) ] = 0x0, 785 }, 786 }, 787 [ C(L1I ) ] = { 788 [ C(OP_READ) ] = { 789 [ C(RESULT_ACCESS) ] = 0x0, 790 [ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */ 791 }, 792 [ C(OP_WRITE) ] = { 793 [ C(RESULT_ACCESS) ] = -1, 794 [ C(RESULT_MISS) ] = -1, 795 }, 796 [ C(OP_PREFETCH) ] = { 797 [ C(RESULT_ACCESS) ] = 0x0, 798 [ C(RESULT_MISS) ] = 0x0, 799 }, 800 }, 801 [ C(LL ) ] = { 802 [ C(OP_READ) ] = { 803 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 804 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 805 }, 806 [ C(OP_WRITE) ] = { 807 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 808 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 809 }, 810 [ C(OP_PREFETCH) ] = { 811 [ C(RESULT_ACCESS) ] = 0x0, 812 [ C(RESULT_MISS) ] = 0x0, 813 }, 814 }, 815 [ C(DTLB) ] = { 816 [ C(OP_READ) ] = { 817 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 818 [ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */ 819 }, 820 [ C(OP_WRITE) ] = { 821 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 822 [ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */ 823 }, 824 [ C(OP_PREFETCH) ] = { 825 [ C(RESULT_ACCESS) ] = 0x0, 826 [ C(RESULT_MISS) ] = 0x0, 827 }, 828 }, 829 [ C(ITLB) ] = { 830 [ C(OP_READ) ] = { 831 [ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */ 832 [ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */ 833 }, 834 [ C(OP_WRITE) ] = { 835 [ C(RESULT_ACCESS) ] = -1, 836 [ C(RESULT_MISS) ] = -1, 837 }, 838 [ C(OP_PREFETCH) ] = { 839 [ C(RESULT_ACCESS) ] = -1, 840 [ C(RESULT_MISS) ] = -1, 841 }, 842 }, 843 [ C(BPU ) ] = { 844 [ C(OP_READ) ] = { 845 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */ 846 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */ 847 }, 848 [ C(OP_WRITE) ] = { 849 [ C(RESULT_ACCESS) ] = -1, 850 [ C(RESULT_MISS) ] = -1, 851 }, 852 [ C(OP_PREFETCH) ] = { 853 [ C(RESULT_ACCESS) ] = -1, 854 [ C(RESULT_MISS) ] = -1, 855 }, 856 }, 857 [ C(NODE) ] = { 858 [ C(OP_READ) ] = { 859 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 860 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 861 }, 862 [ C(OP_WRITE) ] = { 863 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 864 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 865 }, 866 [ C(OP_PREFETCH) ] = { 867 [ C(RESULT_ACCESS) ] = 0x0, 868 [ C(RESULT_MISS) ] = 0x0, 869 }, 870 }, 871 }; 872 873 static __initconst const u64 hsw_hw_cache_extra_regs 874 [PERF_COUNT_HW_CACHE_MAX] 875 [PERF_COUNT_HW_CACHE_OP_MAX] 876 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 877 { 878 [ C(LL ) ] = { 879 [ C(OP_READ) ] = { 880 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ| 881 HSW_LLC_ACCESS, 882 [ C(RESULT_MISS) ] = HSW_DEMAND_READ| 883 HSW_L3_MISS|HSW_ANY_SNOOP, 884 }, 885 [ C(OP_WRITE) ] = { 886 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE| 887 HSW_LLC_ACCESS, 888 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE| 889 HSW_L3_MISS|HSW_ANY_SNOOP, 890 }, 891 [ C(OP_PREFETCH) ] = { 892 [ C(RESULT_ACCESS) ] = 0x0, 893 [ C(RESULT_MISS) ] = 0x0, 894 }, 895 }, 896 [ C(NODE) ] = { 897 [ C(OP_READ) ] = { 898 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ| 899 HSW_L3_MISS_LOCAL_DRAM| 900 HSW_SNOOP_DRAM, 901 [ C(RESULT_MISS) ] = HSW_DEMAND_READ| 902 HSW_L3_MISS_REMOTE| 903 HSW_SNOOP_DRAM, 904 }, 905 [ C(OP_WRITE) ] = { 906 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE| 907 HSW_L3_MISS_LOCAL_DRAM| 908 HSW_SNOOP_DRAM, 909 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE| 910 HSW_L3_MISS_REMOTE| 911 HSW_SNOOP_DRAM, 912 }, 913 [ C(OP_PREFETCH) ] = { 914 [ C(RESULT_ACCESS) ] = 0x0, 915 [ C(RESULT_MISS) ] = 0x0, 916 }, 917 }, 918 }; 919 920 static __initconst const u64 westmere_hw_cache_event_ids 921 [PERF_COUNT_HW_CACHE_MAX] 922 [PERF_COUNT_HW_CACHE_OP_MAX] 923 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 924 { 925 [ C(L1D) ] = { 926 [ C(OP_READ) ] = { 927 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ 928 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */ 929 }, 930 [ C(OP_WRITE) ] = { 931 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ 932 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */ 933 }, 934 [ C(OP_PREFETCH) ] = { 935 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */ 936 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */ 937 }, 938 }, 939 [ C(L1I ) ] = { 940 [ C(OP_READ) ] = { 941 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ 942 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ 943 }, 944 [ C(OP_WRITE) ] = { 945 [ C(RESULT_ACCESS) ] = -1, 946 [ C(RESULT_MISS) ] = -1, 947 }, 948 [ C(OP_PREFETCH) ] = { 949 [ C(RESULT_ACCESS) ] = 0x0, 950 [ C(RESULT_MISS) ] = 0x0, 951 }, 952 }, 953 [ C(LL ) ] = { 954 [ C(OP_READ) ] = { 955 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ 956 [ C(RESULT_ACCESS) ] = 0x01b7, 957 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ 958 [ C(RESULT_MISS) ] = 0x01b7, 959 }, 960 /* 961 * Use RFO, not WRITEBACK, because a write miss would typically occur 962 * on RFO. 963 */ 964 [ C(OP_WRITE) ] = { 965 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ 966 [ C(RESULT_ACCESS) ] = 0x01b7, 967 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ 968 [ C(RESULT_MISS) ] = 0x01b7, 969 }, 970 [ C(OP_PREFETCH) ] = { 971 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ 972 [ C(RESULT_ACCESS) ] = 0x01b7, 973 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ 974 [ C(RESULT_MISS) ] = 0x01b7, 975 }, 976 }, 977 [ C(DTLB) ] = { 978 [ C(OP_READ) ] = { 979 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ 980 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */ 981 }, 982 [ C(OP_WRITE) ] = { 983 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ 984 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */ 985 }, 986 [ C(OP_PREFETCH) ] = { 987 [ C(RESULT_ACCESS) ] = 0x0, 988 [ C(RESULT_MISS) ] = 0x0, 989 }, 990 }, 991 [ C(ITLB) ] = { 992 [ C(OP_READ) ] = { 993 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */ 994 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */ 995 }, 996 [ C(OP_WRITE) ] = { 997 [ C(RESULT_ACCESS) ] = -1, 998 [ C(RESULT_MISS) ] = -1, 999 }, 1000 [ C(OP_PREFETCH) ] = { 1001 [ C(RESULT_ACCESS) ] = -1, 1002 [ C(RESULT_MISS) ] = -1, 1003 }, 1004 }, 1005 [ C(BPU ) ] = { 1006 [ C(OP_READ) ] = { 1007 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ 1008 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */ 1009 }, 1010 [ C(OP_WRITE) ] = { 1011 [ C(RESULT_ACCESS) ] = -1, 1012 [ C(RESULT_MISS) ] = -1, 1013 }, 1014 [ C(OP_PREFETCH) ] = { 1015 [ C(RESULT_ACCESS) ] = -1, 1016 [ C(RESULT_MISS) ] = -1, 1017 }, 1018 }, 1019 [ C(NODE) ] = { 1020 [ C(OP_READ) ] = { 1021 [ C(RESULT_ACCESS) ] = 0x01b7, 1022 [ C(RESULT_MISS) ] = 0x01b7, 1023 }, 1024 [ C(OP_WRITE) ] = { 1025 [ C(RESULT_ACCESS) ] = 0x01b7, 1026 [ C(RESULT_MISS) ] = 0x01b7, 1027 }, 1028 [ C(OP_PREFETCH) ] = { 1029 [ C(RESULT_ACCESS) ] = 0x01b7, 1030 [ C(RESULT_MISS) ] = 0x01b7, 1031 }, 1032 }, 1033 }; 1034 1035 /* 1036 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits; 1037 * See IA32 SDM Vol 3B 30.6.1.3 1038 */ 1039 1040 #define NHM_DMND_DATA_RD (1 << 0) 1041 #define NHM_DMND_RFO (1 << 1) 1042 #define NHM_DMND_IFETCH (1 << 2) 1043 #define NHM_DMND_WB (1 << 3) 1044 #define NHM_PF_DATA_RD (1 << 4) 1045 #define NHM_PF_DATA_RFO (1 << 5) 1046 #define NHM_PF_IFETCH (1 << 6) 1047 #define NHM_OFFCORE_OTHER (1 << 7) 1048 #define NHM_UNCORE_HIT (1 << 8) 1049 #define NHM_OTHER_CORE_HIT_SNP (1 << 9) 1050 #define NHM_OTHER_CORE_HITM (1 << 10) 1051 /* reserved */ 1052 #define NHM_REMOTE_CACHE_FWD (1 << 12) 1053 #define NHM_REMOTE_DRAM (1 << 13) 1054 #define NHM_LOCAL_DRAM (1 << 14) 1055 #define NHM_NON_DRAM (1 << 15) 1056 1057 #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD) 1058 #define NHM_REMOTE (NHM_REMOTE_DRAM) 1059 1060 #define NHM_DMND_READ (NHM_DMND_DATA_RD) 1061 #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB) 1062 #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO) 1063 1064 #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM) 1065 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD) 1066 #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS) 1067 1068 static __initconst const u64 nehalem_hw_cache_extra_regs 1069 [PERF_COUNT_HW_CACHE_MAX] 1070 [PERF_COUNT_HW_CACHE_OP_MAX] 1071 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1072 { 1073 [ C(LL ) ] = { 1074 [ C(OP_READ) ] = { 1075 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS, 1076 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS, 1077 }, 1078 [ C(OP_WRITE) ] = { 1079 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS, 1080 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS, 1081 }, 1082 [ C(OP_PREFETCH) ] = { 1083 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS, 1084 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS, 1085 }, 1086 }, 1087 [ C(NODE) ] = { 1088 [ C(OP_READ) ] = { 1089 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE, 1090 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE, 1091 }, 1092 [ C(OP_WRITE) ] = { 1093 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE, 1094 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE, 1095 }, 1096 [ C(OP_PREFETCH) ] = { 1097 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE, 1098 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE, 1099 }, 1100 }, 1101 }; 1102 1103 static __initconst const u64 nehalem_hw_cache_event_ids 1104 [PERF_COUNT_HW_CACHE_MAX] 1105 [PERF_COUNT_HW_CACHE_OP_MAX] 1106 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1107 { 1108 [ C(L1D) ] = { 1109 [ C(OP_READ) ] = { 1110 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ 1111 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */ 1112 }, 1113 [ C(OP_WRITE) ] = { 1114 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ 1115 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */ 1116 }, 1117 [ C(OP_PREFETCH) ] = { 1118 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */ 1119 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */ 1120 }, 1121 }, 1122 [ C(L1I ) ] = { 1123 [ C(OP_READ) ] = { 1124 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ 1125 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ 1126 }, 1127 [ C(OP_WRITE) ] = { 1128 [ C(RESULT_ACCESS) ] = -1, 1129 [ C(RESULT_MISS) ] = -1, 1130 }, 1131 [ C(OP_PREFETCH) ] = { 1132 [ C(RESULT_ACCESS) ] = 0x0, 1133 [ C(RESULT_MISS) ] = 0x0, 1134 }, 1135 }, 1136 [ C(LL ) ] = { 1137 [ C(OP_READ) ] = { 1138 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ 1139 [ C(RESULT_ACCESS) ] = 0x01b7, 1140 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ 1141 [ C(RESULT_MISS) ] = 0x01b7, 1142 }, 1143 /* 1144 * Use RFO, not WRITEBACK, because a write miss would typically occur 1145 * on RFO. 1146 */ 1147 [ C(OP_WRITE) ] = { 1148 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ 1149 [ C(RESULT_ACCESS) ] = 0x01b7, 1150 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ 1151 [ C(RESULT_MISS) ] = 0x01b7, 1152 }, 1153 [ C(OP_PREFETCH) ] = { 1154 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ 1155 [ C(RESULT_ACCESS) ] = 0x01b7, 1156 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ 1157 [ C(RESULT_MISS) ] = 0x01b7, 1158 }, 1159 }, 1160 [ C(DTLB) ] = { 1161 [ C(OP_READ) ] = { 1162 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */ 1163 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */ 1164 }, 1165 [ C(OP_WRITE) ] = { 1166 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */ 1167 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */ 1168 }, 1169 [ C(OP_PREFETCH) ] = { 1170 [ C(RESULT_ACCESS) ] = 0x0, 1171 [ C(RESULT_MISS) ] = 0x0, 1172 }, 1173 }, 1174 [ C(ITLB) ] = { 1175 [ C(OP_READ) ] = { 1176 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */ 1177 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */ 1178 }, 1179 [ C(OP_WRITE) ] = { 1180 [ C(RESULT_ACCESS) ] = -1, 1181 [ C(RESULT_MISS) ] = -1, 1182 }, 1183 [ C(OP_PREFETCH) ] = { 1184 [ C(RESULT_ACCESS) ] = -1, 1185 [ C(RESULT_MISS) ] = -1, 1186 }, 1187 }, 1188 [ C(BPU ) ] = { 1189 [ C(OP_READ) ] = { 1190 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ 1191 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */ 1192 }, 1193 [ C(OP_WRITE) ] = { 1194 [ C(RESULT_ACCESS) ] = -1, 1195 [ C(RESULT_MISS) ] = -1, 1196 }, 1197 [ C(OP_PREFETCH) ] = { 1198 [ C(RESULT_ACCESS) ] = -1, 1199 [ C(RESULT_MISS) ] = -1, 1200 }, 1201 }, 1202 [ C(NODE) ] = { 1203 [ C(OP_READ) ] = { 1204 [ C(RESULT_ACCESS) ] = 0x01b7, 1205 [ C(RESULT_MISS) ] = 0x01b7, 1206 }, 1207 [ C(OP_WRITE) ] = { 1208 [ C(RESULT_ACCESS) ] = 0x01b7, 1209 [ C(RESULT_MISS) ] = 0x01b7, 1210 }, 1211 [ C(OP_PREFETCH) ] = { 1212 [ C(RESULT_ACCESS) ] = 0x01b7, 1213 [ C(RESULT_MISS) ] = 0x01b7, 1214 }, 1215 }, 1216 }; 1217 1218 static __initconst const u64 core2_hw_cache_event_ids 1219 [PERF_COUNT_HW_CACHE_MAX] 1220 [PERF_COUNT_HW_CACHE_OP_MAX] 1221 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1222 { 1223 [ C(L1D) ] = { 1224 [ C(OP_READ) ] = { 1225 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */ 1226 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */ 1227 }, 1228 [ C(OP_WRITE) ] = { 1229 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */ 1230 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */ 1231 }, 1232 [ C(OP_PREFETCH) ] = { 1233 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */ 1234 [ C(RESULT_MISS) ] = 0, 1235 }, 1236 }, 1237 [ C(L1I ) ] = { 1238 [ C(OP_READ) ] = { 1239 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */ 1240 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */ 1241 }, 1242 [ C(OP_WRITE) ] = { 1243 [ C(RESULT_ACCESS) ] = -1, 1244 [ C(RESULT_MISS) ] = -1, 1245 }, 1246 [ C(OP_PREFETCH) ] = { 1247 [ C(RESULT_ACCESS) ] = 0, 1248 [ C(RESULT_MISS) ] = 0, 1249 }, 1250 }, 1251 [ C(LL ) ] = { 1252 [ C(OP_READ) ] = { 1253 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */ 1254 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */ 1255 }, 1256 [ C(OP_WRITE) ] = { 1257 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */ 1258 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */ 1259 }, 1260 [ C(OP_PREFETCH) ] = { 1261 [ C(RESULT_ACCESS) ] = 0, 1262 [ C(RESULT_MISS) ] = 0, 1263 }, 1264 }, 1265 [ C(DTLB) ] = { 1266 [ C(OP_READ) ] = { 1267 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */ 1268 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */ 1269 }, 1270 [ C(OP_WRITE) ] = { 1271 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */ 1272 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */ 1273 }, 1274 [ C(OP_PREFETCH) ] = { 1275 [ C(RESULT_ACCESS) ] = 0, 1276 [ C(RESULT_MISS) ] = 0, 1277 }, 1278 }, 1279 [ C(ITLB) ] = { 1280 [ C(OP_READ) ] = { 1281 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ 1282 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */ 1283 }, 1284 [ C(OP_WRITE) ] = { 1285 [ C(RESULT_ACCESS) ] = -1, 1286 [ C(RESULT_MISS) ] = -1, 1287 }, 1288 [ C(OP_PREFETCH) ] = { 1289 [ C(RESULT_ACCESS) ] = -1, 1290 [ C(RESULT_MISS) ] = -1, 1291 }, 1292 }, 1293 [ C(BPU ) ] = { 1294 [ C(OP_READ) ] = { 1295 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ 1296 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ 1297 }, 1298 [ C(OP_WRITE) ] = { 1299 [ C(RESULT_ACCESS) ] = -1, 1300 [ C(RESULT_MISS) ] = -1, 1301 }, 1302 [ C(OP_PREFETCH) ] = { 1303 [ C(RESULT_ACCESS) ] = -1, 1304 [ C(RESULT_MISS) ] = -1, 1305 }, 1306 }, 1307 }; 1308 1309 static __initconst const u64 atom_hw_cache_event_ids 1310 [PERF_COUNT_HW_CACHE_MAX] 1311 [PERF_COUNT_HW_CACHE_OP_MAX] 1312 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1313 { 1314 [ C(L1D) ] = { 1315 [ C(OP_READ) ] = { 1316 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */ 1317 [ C(RESULT_MISS) ] = 0, 1318 }, 1319 [ C(OP_WRITE) ] = { 1320 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */ 1321 [ C(RESULT_MISS) ] = 0, 1322 }, 1323 [ C(OP_PREFETCH) ] = { 1324 [ C(RESULT_ACCESS) ] = 0x0, 1325 [ C(RESULT_MISS) ] = 0, 1326 }, 1327 }, 1328 [ C(L1I ) ] = { 1329 [ C(OP_READ) ] = { 1330 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ 1331 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ 1332 }, 1333 [ C(OP_WRITE) ] = { 1334 [ C(RESULT_ACCESS) ] = -1, 1335 [ C(RESULT_MISS) ] = -1, 1336 }, 1337 [ C(OP_PREFETCH) ] = { 1338 [ C(RESULT_ACCESS) ] = 0, 1339 [ C(RESULT_MISS) ] = 0, 1340 }, 1341 }, 1342 [ C(LL ) ] = { 1343 [ C(OP_READ) ] = { 1344 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */ 1345 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */ 1346 }, 1347 [ C(OP_WRITE) ] = { 1348 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */ 1349 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */ 1350 }, 1351 [ C(OP_PREFETCH) ] = { 1352 [ C(RESULT_ACCESS) ] = 0, 1353 [ C(RESULT_MISS) ] = 0, 1354 }, 1355 }, 1356 [ C(DTLB) ] = { 1357 [ C(OP_READ) ] = { 1358 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */ 1359 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */ 1360 }, 1361 [ C(OP_WRITE) ] = { 1362 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */ 1363 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */ 1364 }, 1365 [ C(OP_PREFETCH) ] = { 1366 [ C(RESULT_ACCESS) ] = 0, 1367 [ C(RESULT_MISS) ] = 0, 1368 }, 1369 }, 1370 [ C(ITLB) ] = { 1371 [ C(OP_READ) ] = { 1372 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ 1373 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */ 1374 }, 1375 [ C(OP_WRITE) ] = { 1376 [ C(RESULT_ACCESS) ] = -1, 1377 [ C(RESULT_MISS) ] = -1, 1378 }, 1379 [ C(OP_PREFETCH) ] = { 1380 [ C(RESULT_ACCESS) ] = -1, 1381 [ C(RESULT_MISS) ] = -1, 1382 }, 1383 }, 1384 [ C(BPU ) ] = { 1385 [ C(OP_READ) ] = { 1386 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ 1387 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ 1388 }, 1389 [ C(OP_WRITE) ] = { 1390 [ C(RESULT_ACCESS) ] = -1, 1391 [ C(RESULT_MISS) ] = -1, 1392 }, 1393 [ C(OP_PREFETCH) ] = { 1394 [ C(RESULT_ACCESS) ] = -1, 1395 [ C(RESULT_MISS) ] = -1, 1396 }, 1397 }, 1398 }; 1399 1400 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c"); 1401 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2"); 1402 /* no_alloc_cycles.not_delivered */ 1403 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm, 1404 "event=0xca,umask=0x50"); 1405 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2"); 1406 /* uops_retired.all */ 1407 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm, 1408 "event=0xc2,umask=0x10"); 1409 /* uops_retired.all */ 1410 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm, 1411 "event=0xc2,umask=0x10"); 1412 1413 static struct attribute *slm_events_attrs[] = { 1414 EVENT_PTR(td_total_slots_slm), 1415 EVENT_PTR(td_total_slots_scale_slm), 1416 EVENT_PTR(td_fetch_bubbles_slm), 1417 EVENT_PTR(td_fetch_bubbles_scale_slm), 1418 EVENT_PTR(td_slots_issued_slm), 1419 EVENT_PTR(td_slots_retired_slm), 1420 NULL 1421 }; 1422 1423 static struct extra_reg intel_slm_extra_regs[] __read_mostly = 1424 { 1425 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 1426 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0), 1427 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1), 1428 EVENT_EXTRA_END 1429 }; 1430 1431 #define SLM_DMND_READ SNB_DMND_DATA_RD 1432 #define SLM_DMND_WRITE SNB_DMND_RFO 1433 #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO) 1434 1435 #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM) 1436 #define SLM_LLC_ACCESS SNB_RESP_ANY 1437 #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM) 1438 1439 static __initconst const u64 slm_hw_cache_extra_regs 1440 [PERF_COUNT_HW_CACHE_MAX] 1441 [PERF_COUNT_HW_CACHE_OP_MAX] 1442 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1443 { 1444 [ C(LL ) ] = { 1445 [ C(OP_READ) ] = { 1446 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS, 1447 [ C(RESULT_MISS) ] = 0, 1448 }, 1449 [ C(OP_WRITE) ] = { 1450 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS, 1451 [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS, 1452 }, 1453 [ C(OP_PREFETCH) ] = { 1454 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS, 1455 [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS, 1456 }, 1457 }, 1458 }; 1459 1460 static __initconst const u64 slm_hw_cache_event_ids 1461 [PERF_COUNT_HW_CACHE_MAX] 1462 [PERF_COUNT_HW_CACHE_OP_MAX] 1463 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1464 { 1465 [ C(L1D) ] = { 1466 [ C(OP_READ) ] = { 1467 [ C(RESULT_ACCESS) ] = 0, 1468 [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */ 1469 }, 1470 [ C(OP_WRITE) ] = { 1471 [ C(RESULT_ACCESS) ] = 0, 1472 [ C(RESULT_MISS) ] = 0, 1473 }, 1474 [ C(OP_PREFETCH) ] = { 1475 [ C(RESULT_ACCESS) ] = 0, 1476 [ C(RESULT_MISS) ] = 0, 1477 }, 1478 }, 1479 [ C(L1I ) ] = { 1480 [ C(OP_READ) ] = { 1481 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */ 1482 [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */ 1483 }, 1484 [ C(OP_WRITE) ] = { 1485 [ C(RESULT_ACCESS) ] = -1, 1486 [ C(RESULT_MISS) ] = -1, 1487 }, 1488 [ C(OP_PREFETCH) ] = { 1489 [ C(RESULT_ACCESS) ] = 0, 1490 [ C(RESULT_MISS) ] = 0, 1491 }, 1492 }, 1493 [ C(LL ) ] = { 1494 [ C(OP_READ) ] = { 1495 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ 1496 [ C(RESULT_ACCESS) ] = 0x01b7, 1497 [ C(RESULT_MISS) ] = 0, 1498 }, 1499 [ C(OP_WRITE) ] = { 1500 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ 1501 [ C(RESULT_ACCESS) ] = 0x01b7, 1502 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ 1503 [ C(RESULT_MISS) ] = 0x01b7, 1504 }, 1505 [ C(OP_PREFETCH) ] = { 1506 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ 1507 [ C(RESULT_ACCESS) ] = 0x01b7, 1508 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ 1509 [ C(RESULT_MISS) ] = 0x01b7, 1510 }, 1511 }, 1512 [ C(DTLB) ] = { 1513 [ C(OP_READ) ] = { 1514 [ C(RESULT_ACCESS) ] = 0, 1515 [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */ 1516 }, 1517 [ C(OP_WRITE) ] = { 1518 [ C(RESULT_ACCESS) ] = 0, 1519 [ C(RESULT_MISS) ] = 0, 1520 }, 1521 [ C(OP_PREFETCH) ] = { 1522 [ C(RESULT_ACCESS) ] = 0, 1523 [ C(RESULT_MISS) ] = 0, 1524 }, 1525 }, 1526 [ C(ITLB) ] = { 1527 [ C(OP_READ) ] = { 1528 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ 1529 [ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */ 1530 }, 1531 [ C(OP_WRITE) ] = { 1532 [ C(RESULT_ACCESS) ] = -1, 1533 [ C(RESULT_MISS) ] = -1, 1534 }, 1535 [ C(OP_PREFETCH) ] = { 1536 [ C(RESULT_ACCESS) ] = -1, 1537 [ C(RESULT_MISS) ] = -1, 1538 }, 1539 }, 1540 [ C(BPU ) ] = { 1541 [ C(OP_READ) ] = { 1542 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ 1543 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ 1544 }, 1545 [ C(OP_WRITE) ] = { 1546 [ C(RESULT_ACCESS) ] = -1, 1547 [ C(RESULT_MISS) ] = -1, 1548 }, 1549 [ C(OP_PREFETCH) ] = { 1550 [ C(RESULT_ACCESS) ] = -1, 1551 [ C(RESULT_MISS) ] = -1, 1552 }, 1553 }, 1554 }; 1555 1556 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c"); 1557 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3"); 1558 /* UOPS_NOT_DELIVERED.ANY */ 1559 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c"); 1560 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */ 1561 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02"); 1562 /* UOPS_RETIRED.ANY */ 1563 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2"); 1564 /* UOPS_ISSUED.ANY */ 1565 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e"); 1566 1567 static struct attribute *glm_events_attrs[] = { 1568 EVENT_PTR(td_total_slots_glm), 1569 EVENT_PTR(td_total_slots_scale_glm), 1570 EVENT_PTR(td_fetch_bubbles_glm), 1571 EVENT_PTR(td_recovery_bubbles_glm), 1572 EVENT_PTR(td_slots_issued_glm), 1573 EVENT_PTR(td_slots_retired_glm), 1574 NULL 1575 }; 1576 1577 static struct extra_reg intel_glm_extra_regs[] __read_mostly = { 1578 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 1579 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0), 1580 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1), 1581 EVENT_EXTRA_END 1582 }; 1583 1584 #define GLM_DEMAND_DATA_RD BIT_ULL(0) 1585 #define GLM_DEMAND_RFO BIT_ULL(1) 1586 #define GLM_ANY_RESPONSE BIT_ULL(16) 1587 #define GLM_SNP_NONE_OR_MISS BIT_ULL(33) 1588 #define GLM_DEMAND_READ GLM_DEMAND_DATA_RD 1589 #define GLM_DEMAND_WRITE GLM_DEMAND_RFO 1590 #define GLM_DEMAND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO) 1591 #define GLM_LLC_ACCESS GLM_ANY_RESPONSE 1592 #define GLM_SNP_ANY (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM) 1593 #define GLM_LLC_MISS (GLM_SNP_ANY|SNB_NON_DRAM) 1594 1595 static __initconst const u64 glm_hw_cache_event_ids 1596 [PERF_COUNT_HW_CACHE_MAX] 1597 [PERF_COUNT_HW_CACHE_OP_MAX] 1598 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1599 [C(L1D)] = { 1600 [C(OP_READ)] = { 1601 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 1602 [C(RESULT_MISS)] = 0x0, 1603 }, 1604 [C(OP_WRITE)] = { 1605 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 1606 [C(RESULT_MISS)] = 0x0, 1607 }, 1608 [C(OP_PREFETCH)] = { 1609 [C(RESULT_ACCESS)] = 0x0, 1610 [C(RESULT_MISS)] = 0x0, 1611 }, 1612 }, 1613 [C(L1I)] = { 1614 [C(OP_READ)] = { 1615 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */ 1616 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */ 1617 }, 1618 [C(OP_WRITE)] = { 1619 [C(RESULT_ACCESS)] = -1, 1620 [C(RESULT_MISS)] = -1, 1621 }, 1622 [C(OP_PREFETCH)] = { 1623 [C(RESULT_ACCESS)] = 0x0, 1624 [C(RESULT_MISS)] = 0x0, 1625 }, 1626 }, 1627 [C(LL)] = { 1628 [C(OP_READ)] = { 1629 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1630 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1631 }, 1632 [C(OP_WRITE)] = { 1633 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1634 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1635 }, 1636 [C(OP_PREFETCH)] = { 1637 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1638 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1639 }, 1640 }, 1641 [C(DTLB)] = { 1642 [C(OP_READ)] = { 1643 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 1644 [C(RESULT_MISS)] = 0x0, 1645 }, 1646 [C(OP_WRITE)] = { 1647 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 1648 [C(RESULT_MISS)] = 0x0, 1649 }, 1650 [C(OP_PREFETCH)] = { 1651 [C(RESULT_ACCESS)] = 0x0, 1652 [C(RESULT_MISS)] = 0x0, 1653 }, 1654 }, 1655 [C(ITLB)] = { 1656 [C(OP_READ)] = { 1657 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */ 1658 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */ 1659 }, 1660 [C(OP_WRITE)] = { 1661 [C(RESULT_ACCESS)] = -1, 1662 [C(RESULT_MISS)] = -1, 1663 }, 1664 [C(OP_PREFETCH)] = { 1665 [C(RESULT_ACCESS)] = -1, 1666 [C(RESULT_MISS)] = -1, 1667 }, 1668 }, 1669 [C(BPU)] = { 1670 [C(OP_READ)] = { 1671 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ 1672 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */ 1673 }, 1674 [C(OP_WRITE)] = { 1675 [C(RESULT_ACCESS)] = -1, 1676 [C(RESULT_MISS)] = -1, 1677 }, 1678 [C(OP_PREFETCH)] = { 1679 [C(RESULT_ACCESS)] = -1, 1680 [C(RESULT_MISS)] = -1, 1681 }, 1682 }, 1683 }; 1684 1685 static __initconst const u64 glm_hw_cache_extra_regs 1686 [PERF_COUNT_HW_CACHE_MAX] 1687 [PERF_COUNT_HW_CACHE_OP_MAX] 1688 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1689 [C(LL)] = { 1690 [C(OP_READ)] = { 1691 [C(RESULT_ACCESS)] = GLM_DEMAND_READ| 1692 GLM_LLC_ACCESS, 1693 [C(RESULT_MISS)] = GLM_DEMAND_READ| 1694 GLM_LLC_MISS, 1695 }, 1696 [C(OP_WRITE)] = { 1697 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE| 1698 GLM_LLC_ACCESS, 1699 [C(RESULT_MISS)] = GLM_DEMAND_WRITE| 1700 GLM_LLC_MISS, 1701 }, 1702 [C(OP_PREFETCH)] = { 1703 [C(RESULT_ACCESS)] = GLM_DEMAND_PREFETCH| 1704 GLM_LLC_ACCESS, 1705 [C(RESULT_MISS)] = GLM_DEMAND_PREFETCH| 1706 GLM_LLC_MISS, 1707 }, 1708 }, 1709 }; 1710 1711 static __initconst const u64 glp_hw_cache_event_ids 1712 [PERF_COUNT_HW_CACHE_MAX] 1713 [PERF_COUNT_HW_CACHE_OP_MAX] 1714 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1715 [C(L1D)] = { 1716 [C(OP_READ)] = { 1717 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 1718 [C(RESULT_MISS)] = 0x0, 1719 }, 1720 [C(OP_WRITE)] = { 1721 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 1722 [C(RESULT_MISS)] = 0x0, 1723 }, 1724 [C(OP_PREFETCH)] = { 1725 [C(RESULT_ACCESS)] = 0x0, 1726 [C(RESULT_MISS)] = 0x0, 1727 }, 1728 }, 1729 [C(L1I)] = { 1730 [C(OP_READ)] = { 1731 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */ 1732 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */ 1733 }, 1734 [C(OP_WRITE)] = { 1735 [C(RESULT_ACCESS)] = -1, 1736 [C(RESULT_MISS)] = -1, 1737 }, 1738 [C(OP_PREFETCH)] = { 1739 [C(RESULT_ACCESS)] = 0x0, 1740 [C(RESULT_MISS)] = 0x0, 1741 }, 1742 }, 1743 [C(LL)] = { 1744 [C(OP_READ)] = { 1745 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1746 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1747 }, 1748 [C(OP_WRITE)] = { 1749 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1750 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1751 }, 1752 [C(OP_PREFETCH)] = { 1753 [C(RESULT_ACCESS)] = 0x0, 1754 [C(RESULT_MISS)] = 0x0, 1755 }, 1756 }, 1757 [C(DTLB)] = { 1758 [C(OP_READ)] = { 1759 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 1760 [C(RESULT_MISS)] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */ 1761 }, 1762 [C(OP_WRITE)] = { 1763 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 1764 [C(RESULT_MISS)] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */ 1765 }, 1766 [C(OP_PREFETCH)] = { 1767 [C(RESULT_ACCESS)] = 0x0, 1768 [C(RESULT_MISS)] = 0x0, 1769 }, 1770 }, 1771 [C(ITLB)] = { 1772 [C(OP_READ)] = { 1773 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */ 1774 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */ 1775 }, 1776 [C(OP_WRITE)] = { 1777 [C(RESULT_ACCESS)] = -1, 1778 [C(RESULT_MISS)] = -1, 1779 }, 1780 [C(OP_PREFETCH)] = { 1781 [C(RESULT_ACCESS)] = -1, 1782 [C(RESULT_MISS)] = -1, 1783 }, 1784 }, 1785 [C(BPU)] = { 1786 [C(OP_READ)] = { 1787 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ 1788 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */ 1789 }, 1790 [C(OP_WRITE)] = { 1791 [C(RESULT_ACCESS)] = -1, 1792 [C(RESULT_MISS)] = -1, 1793 }, 1794 [C(OP_PREFETCH)] = { 1795 [C(RESULT_ACCESS)] = -1, 1796 [C(RESULT_MISS)] = -1, 1797 }, 1798 }, 1799 }; 1800 1801 static __initconst const u64 glp_hw_cache_extra_regs 1802 [PERF_COUNT_HW_CACHE_MAX] 1803 [PERF_COUNT_HW_CACHE_OP_MAX] 1804 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1805 [C(LL)] = { 1806 [C(OP_READ)] = { 1807 [C(RESULT_ACCESS)] = GLM_DEMAND_READ| 1808 GLM_LLC_ACCESS, 1809 [C(RESULT_MISS)] = GLM_DEMAND_READ| 1810 GLM_LLC_MISS, 1811 }, 1812 [C(OP_WRITE)] = { 1813 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE| 1814 GLM_LLC_ACCESS, 1815 [C(RESULT_MISS)] = GLM_DEMAND_WRITE| 1816 GLM_LLC_MISS, 1817 }, 1818 [C(OP_PREFETCH)] = { 1819 [C(RESULT_ACCESS)] = 0x0, 1820 [C(RESULT_MISS)] = 0x0, 1821 }, 1822 }, 1823 }; 1824 1825 #define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */ 1826 #define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */ 1827 #define KNL_MCDRAM_LOCAL BIT_ULL(21) 1828 #define KNL_MCDRAM_FAR BIT_ULL(22) 1829 #define KNL_DDR_LOCAL BIT_ULL(23) 1830 #define KNL_DDR_FAR BIT_ULL(24) 1831 #define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \ 1832 KNL_DDR_LOCAL | KNL_DDR_FAR) 1833 #define KNL_L2_READ SLM_DMND_READ 1834 #define KNL_L2_WRITE SLM_DMND_WRITE 1835 #define KNL_L2_PREFETCH SLM_DMND_PREFETCH 1836 #define KNL_L2_ACCESS SLM_LLC_ACCESS 1837 #define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \ 1838 KNL_DRAM_ANY | SNB_SNP_ANY | \ 1839 SNB_NON_DRAM) 1840 1841 static __initconst const u64 knl_hw_cache_extra_regs 1842 [PERF_COUNT_HW_CACHE_MAX] 1843 [PERF_COUNT_HW_CACHE_OP_MAX] 1844 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1845 [C(LL)] = { 1846 [C(OP_READ)] = { 1847 [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS, 1848 [C(RESULT_MISS)] = 0, 1849 }, 1850 [C(OP_WRITE)] = { 1851 [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS, 1852 [C(RESULT_MISS)] = KNL_L2_WRITE | KNL_L2_MISS, 1853 }, 1854 [C(OP_PREFETCH)] = { 1855 [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS, 1856 [C(RESULT_MISS)] = KNL_L2_PREFETCH | KNL_L2_MISS, 1857 }, 1858 }, 1859 }; 1860 1861 /* 1862 * Used from PMIs where the LBRs are already disabled. 1863 * 1864 * This function could be called consecutively. It is required to remain in 1865 * disabled state if called consecutively. 1866 * 1867 * During consecutive calls, the same disable value will be written to related 1868 * registers, so the PMU state remains unchanged. 1869 * 1870 * intel_bts events don't coexist with intel PMU's BTS events because of 1871 * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them 1872 * disabled around intel PMU's event batching etc, only inside the PMI handler. 1873 */ 1874 static void __intel_pmu_disable_all(void) 1875 { 1876 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1877 1878 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0); 1879 1880 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) 1881 intel_pmu_disable_bts(); 1882 1883 intel_pmu_pebs_disable_all(); 1884 } 1885 1886 static void intel_pmu_disable_all(void) 1887 { 1888 __intel_pmu_disable_all(); 1889 intel_pmu_lbr_disable_all(); 1890 } 1891 1892 static void __intel_pmu_enable_all(int added, bool pmi) 1893 { 1894 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1895 1896 intel_pmu_pebs_enable_all(); 1897 intel_pmu_lbr_enable_all(pmi); 1898 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 1899 x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask); 1900 1901 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) { 1902 struct perf_event *event = 1903 cpuc->events[INTEL_PMC_IDX_FIXED_BTS]; 1904 1905 if (WARN_ON_ONCE(!event)) 1906 return; 1907 1908 intel_pmu_enable_bts(event->hw.config); 1909 } 1910 } 1911 1912 static void intel_pmu_enable_all(int added) 1913 { 1914 __intel_pmu_enable_all(added, false); 1915 } 1916 1917 /* 1918 * Workaround for: 1919 * Intel Errata AAK100 (model 26) 1920 * Intel Errata AAP53 (model 30) 1921 * Intel Errata BD53 (model 44) 1922 * 1923 * The official story: 1924 * These chips need to be 'reset' when adding counters by programming the 1925 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either 1926 * in sequence on the same PMC or on different PMCs. 1927 * 1928 * In practise it appears some of these events do in fact count, and 1929 * we need to programm all 4 events. 1930 */ 1931 static void intel_pmu_nhm_workaround(void) 1932 { 1933 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1934 static const unsigned long nhm_magic[4] = { 1935 0x4300B5, 1936 0x4300D2, 1937 0x4300B1, 1938 0x4300B1 1939 }; 1940 struct perf_event *event; 1941 int i; 1942 1943 /* 1944 * The Errata requires below steps: 1945 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL; 1946 * 2) Configure 4 PERFEVTSELx with the magic events and clear 1947 * the corresponding PMCx; 1948 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL; 1949 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL; 1950 * 5) Clear 4 pairs of ERFEVTSELx and PMCx; 1951 */ 1952 1953 /* 1954 * The real steps we choose are a little different from above. 1955 * A) To reduce MSR operations, we don't run step 1) as they 1956 * are already cleared before this function is called; 1957 * B) Call x86_perf_event_update to save PMCx before configuring 1958 * PERFEVTSELx with magic number; 1959 * C) With step 5), we do clear only when the PERFEVTSELx is 1960 * not used currently. 1961 * D) Call x86_perf_event_set_period to restore PMCx; 1962 */ 1963 1964 /* We always operate 4 pairs of PERF Counters */ 1965 for (i = 0; i < 4; i++) { 1966 event = cpuc->events[i]; 1967 if (event) 1968 x86_perf_event_update(event); 1969 } 1970 1971 for (i = 0; i < 4; i++) { 1972 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]); 1973 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0); 1974 } 1975 1976 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf); 1977 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0); 1978 1979 for (i = 0; i < 4; i++) { 1980 event = cpuc->events[i]; 1981 1982 if (event) { 1983 x86_perf_event_set_period(event); 1984 __x86_pmu_enable_event(&event->hw, 1985 ARCH_PERFMON_EVENTSEL_ENABLE); 1986 } else 1987 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0); 1988 } 1989 } 1990 1991 static void intel_pmu_nhm_enable_all(int added) 1992 { 1993 if (added) 1994 intel_pmu_nhm_workaround(); 1995 intel_pmu_enable_all(added); 1996 } 1997 1998 static inline u64 intel_pmu_get_status(void) 1999 { 2000 u64 status; 2001 2002 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); 2003 2004 return status; 2005 } 2006 2007 static inline void intel_pmu_ack_status(u64 ack) 2008 { 2009 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack); 2010 } 2011 2012 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc) 2013 { 2014 int idx = hwc->idx - INTEL_PMC_IDX_FIXED; 2015 u64 ctrl_val, mask; 2016 2017 mask = 0xfULL << (idx * 4); 2018 2019 rdmsrl(hwc->config_base, ctrl_val); 2020 ctrl_val &= ~mask; 2021 wrmsrl(hwc->config_base, ctrl_val); 2022 } 2023 2024 static inline bool event_is_checkpointed(struct perf_event *event) 2025 { 2026 return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0; 2027 } 2028 2029 static void intel_pmu_disable_event(struct perf_event *event) 2030 { 2031 struct hw_perf_event *hwc = &event->hw; 2032 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2033 2034 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) { 2035 intel_pmu_disable_bts(); 2036 intel_pmu_drain_bts_buffer(); 2037 return; 2038 } 2039 2040 cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx); 2041 cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx); 2042 cpuc->intel_cp_status &= ~(1ull << hwc->idx); 2043 2044 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) { 2045 intel_pmu_disable_fixed(hwc); 2046 return; 2047 } 2048 2049 x86_pmu_disable_event(event); 2050 2051 if (unlikely(event->attr.precise_ip)) 2052 intel_pmu_pebs_disable(event); 2053 } 2054 2055 static void intel_pmu_del_event(struct perf_event *event) 2056 { 2057 if (needs_branch_stack(event)) 2058 intel_pmu_lbr_del(event); 2059 if (event->attr.precise_ip) 2060 intel_pmu_pebs_del(event); 2061 } 2062 2063 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc) 2064 { 2065 int idx = hwc->idx - INTEL_PMC_IDX_FIXED; 2066 u64 ctrl_val, bits, mask; 2067 2068 /* 2069 * Enable IRQ generation (0x8), 2070 * and enable ring-3 counting (0x2) and ring-0 counting (0x1) 2071 * if requested: 2072 */ 2073 bits = 0x8ULL; 2074 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR) 2075 bits |= 0x2; 2076 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS) 2077 bits |= 0x1; 2078 2079 /* 2080 * ANY bit is supported in v3 and up 2081 */ 2082 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY) 2083 bits |= 0x4; 2084 2085 bits <<= (idx * 4); 2086 mask = 0xfULL << (idx * 4); 2087 2088 rdmsrl(hwc->config_base, ctrl_val); 2089 ctrl_val &= ~mask; 2090 ctrl_val |= bits; 2091 wrmsrl(hwc->config_base, ctrl_val); 2092 } 2093 2094 static void intel_pmu_enable_event(struct perf_event *event) 2095 { 2096 struct hw_perf_event *hwc = &event->hw; 2097 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2098 2099 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) { 2100 if (!__this_cpu_read(cpu_hw_events.enabled)) 2101 return; 2102 2103 intel_pmu_enable_bts(hwc->config); 2104 return; 2105 } 2106 2107 if (event->attr.exclude_host) 2108 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx); 2109 if (event->attr.exclude_guest) 2110 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx); 2111 2112 if (unlikely(event_is_checkpointed(event))) 2113 cpuc->intel_cp_status |= (1ull << hwc->idx); 2114 2115 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) { 2116 intel_pmu_enable_fixed(hwc); 2117 return; 2118 } 2119 2120 if (unlikely(event->attr.precise_ip)) 2121 intel_pmu_pebs_enable(event); 2122 2123 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); 2124 } 2125 2126 static void intel_pmu_add_event(struct perf_event *event) 2127 { 2128 if (event->attr.precise_ip) 2129 intel_pmu_pebs_add(event); 2130 if (needs_branch_stack(event)) 2131 intel_pmu_lbr_add(event); 2132 } 2133 2134 /* 2135 * Save and restart an expired event. Called by NMI contexts, 2136 * so it has to be careful about preempting normal event ops: 2137 */ 2138 int intel_pmu_save_and_restart(struct perf_event *event) 2139 { 2140 x86_perf_event_update(event); 2141 /* 2142 * For a checkpointed counter always reset back to 0. This 2143 * avoids a situation where the counter overflows, aborts the 2144 * transaction and is then set back to shortly before the 2145 * overflow, and overflows and aborts again. 2146 */ 2147 if (unlikely(event_is_checkpointed(event))) { 2148 /* No race with NMIs because the counter should not be armed */ 2149 wrmsrl(event->hw.event_base, 0); 2150 local64_set(&event->hw.prev_count, 0); 2151 } 2152 return x86_perf_event_set_period(event); 2153 } 2154 2155 static void intel_pmu_reset(void) 2156 { 2157 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds); 2158 unsigned long flags; 2159 int idx; 2160 2161 if (!x86_pmu.num_counters) 2162 return; 2163 2164 local_irq_save(flags); 2165 2166 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id()); 2167 2168 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 2169 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull); 2170 wrmsrl_safe(x86_pmu_event_addr(idx), 0ull); 2171 } 2172 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) 2173 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull); 2174 2175 if (ds) 2176 ds->bts_index = ds->bts_buffer_base; 2177 2178 /* Ack all overflows and disable fixed counters */ 2179 if (x86_pmu.version >= 2) { 2180 intel_pmu_ack_status(intel_pmu_get_status()); 2181 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0); 2182 } 2183 2184 /* Reset LBRs and LBR freezing */ 2185 if (x86_pmu.lbr_nr) { 2186 update_debugctlmsr(get_debugctlmsr() & 2187 ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR)); 2188 } 2189 2190 local_irq_restore(flags); 2191 } 2192 2193 /* 2194 * This handler is triggered by the local APIC, so the APIC IRQ handling 2195 * rules apply: 2196 */ 2197 static int intel_pmu_handle_irq(struct pt_regs *regs) 2198 { 2199 struct perf_sample_data data; 2200 struct cpu_hw_events *cpuc; 2201 int bit, loops; 2202 u64 status; 2203 int handled; 2204 2205 cpuc = this_cpu_ptr(&cpu_hw_events); 2206 2207 /* 2208 * No known reason to not always do late ACK, 2209 * but just in case do it opt-in. 2210 */ 2211 if (!x86_pmu.late_ack) 2212 apic_write(APIC_LVTPC, APIC_DM_NMI); 2213 intel_bts_disable_local(); 2214 __intel_pmu_disable_all(); 2215 handled = intel_pmu_drain_bts_buffer(); 2216 handled += intel_bts_interrupt(); 2217 status = intel_pmu_get_status(); 2218 if (!status) 2219 goto done; 2220 2221 loops = 0; 2222 again: 2223 intel_pmu_lbr_read(); 2224 intel_pmu_ack_status(status); 2225 if (++loops > 100) { 2226 static bool warned = false; 2227 if (!warned) { 2228 WARN(1, "perfevents: irq loop stuck!\n"); 2229 perf_event_print_debug(); 2230 warned = true; 2231 } 2232 intel_pmu_reset(); 2233 goto done; 2234 } 2235 2236 inc_irq_stat(apic_perf_irqs); 2237 2238 2239 /* 2240 * Ignore a range of extra bits in status that do not indicate 2241 * overflow by themselves. 2242 */ 2243 status &= ~(GLOBAL_STATUS_COND_CHG | 2244 GLOBAL_STATUS_ASIF | 2245 GLOBAL_STATUS_LBRS_FROZEN); 2246 if (!status) 2247 goto done; 2248 /* 2249 * In case multiple PEBS events are sampled at the same time, 2250 * it is possible to have GLOBAL_STATUS bit 62 set indicating 2251 * PEBS buffer overflow and also seeing at most 3 PEBS counters 2252 * having their bits set in the status register. This is a sign 2253 * that there was at least one PEBS record pending at the time 2254 * of the PMU interrupt. PEBS counters must only be processed 2255 * via the drain_pebs() calls and not via the regular sample 2256 * processing loop coming after that the function, otherwise 2257 * phony regular samples may be generated in the sampling buffer 2258 * not marked with the EXACT tag. Another possibility is to have 2259 * one PEBS event and at least one non-PEBS event whic hoverflows 2260 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will 2261 * not be set, yet the overflow status bit for the PEBS counter will 2262 * be on Skylake. 2263 * 2264 * To avoid this problem, we systematically ignore the PEBS-enabled 2265 * counters from the GLOBAL_STATUS mask and we always process PEBS 2266 * events via drain_pebs(). 2267 */ 2268 status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK); 2269 2270 /* 2271 * PEBS overflow sets bit 62 in the global status register 2272 */ 2273 if (__test_and_clear_bit(62, (unsigned long *)&status)) { 2274 handled++; 2275 x86_pmu.drain_pebs(regs); 2276 status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI; 2277 } 2278 2279 /* 2280 * Intel PT 2281 */ 2282 if (__test_and_clear_bit(55, (unsigned long *)&status)) { 2283 handled++; 2284 intel_pt_interrupt(); 2285 } 2286 2287 /* 2288 * Checkpointed counters can lead to 'spurious' PMIs because the 2289 * rollback caused by the PMI will have cleared the overflow status 2290 * bit. Therefore always force probe these counters. 2291 */ 2292 status |= cpuc->intel_cp_status; 2293 2294 for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) { 2295 struct perf_event *event = cpuc->events[bit]; 2296 2297 handled++; 2298 2299 if (!test_bit(bit, cpuc->active_mask)) 2300 continue; 2301 2302 if (!intel_pmu_save_and_restart(event)) 2303 continue; 2304 2305 perf_sample_data_init(&data, 0, event->hw.last_period); 2306 2307 if (has_branch_stack(event)) 2308 data.br_stack = &cpuc->lbr_stack; 2309 2310 if (perf_event_overflow(event, &data, regs)) 2311 x86_pmu_stop(event, 0); 2312 } 2313 2314 /* 2315 * Repeat if there is more work to be done: 2316 */ 2317 status = intel_pmu_get_status(); 2318 if (status) 2319 goto again; 2320 2321 done: 2322 /* Only restore PMU state when it's active. See x86_pmu_disable(). */ 2323 if (cpuc->enabled) 2324 __intel_pmu_enable_all(0, true); 2325 intel_bts_enable_local(); 2326 2327 /* 2328 * Only unmask the NMI after the overflow counters 2329 * have been reset. This avoids spurious NMIs on 2330 * Haswell CPUs. 2331 */ 2332 if (x86_pmu.late_ack) 2333 apic_write(APIC_LVTPC, APIC_DM_NMI); 2334 return handled; 2335 } 2336 2337 static struct event_constraint * 2338 intel_bts_constraints(struct perf_event *event) 2339 { 2340 struct hw_perf_event *hwc = &event->hw; 2341 unsigned int hw_event, bts_event; 2342 2343 if (event->attr.freq) 2344 return NULL; 2345 2346 hw_event = hwc->config & INTEL_ARCH_EVENT_MASK; 2347 bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 2348 2349 if (unlikely(hw_event == bts_event && hwc->sample_period == 1)) 2350 return &bts_constraint; 2351 2352 return NULL; 2353 } 2354 2355 static int intel_alt_er(int idx, u64 config) 2356 { 2357 int alt_idx = idx; 2358 2359 if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1)) 2360 return idx; 2361 2362 if (idx == EXTRA_REG_RSP_0) 2363 alt_idx = EXTRA_REG_RSP_1; 2364 2365 if (idx == EXTRA_REG_RSP_1) 2366 alt_idx = EXTRA_REG_RSP_0; 2367 2368 if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask) 2369 return idx; 2370 2371 return alt_idx; 2372 } 2373 2374 static void intel_fixup_er(struct perf_event *event, int idx) 2375 { 2376 event->hw.extra_reg.idx = idx; 2377 2378 if (idx == EXTRA_REG_RSP_0) { 2379 event->hw.config &= ~INTEL_ARCH_EVENT_MASK; 2380 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event; 2381 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0; 2382 } else if (idx == EXTRA_REG_RSP_1) { 2383 event->hw.config &= ~INTEL_ARCH_EVENT_MASK; 2384 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event; 2385 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1; 2386 } 2387 } 2388 2389 /* 2390 * manage allocation of shared extra msr for certain events 2391 * 2392 * sharing can be: 2393 * per-cpu: to be shared between the various events on a single PMU 2394 * per-core: per-cpu + shared by HT threads 2395 */ 2396 static struct event_constraint * 2397 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc, 2398 struct perf_event *event, 2399 struct hw_perf_event_extra *reg) 2400 { 2401 struct event_constraint *c = &emptyconstraint; 2402 struct er_account *era; 2403 unsigned long flags; 2404 int idx = reg->idx; 2405 2406 /* 2407 * reg->alloc can be set due to existing state, so for fake cpuc we 2408 * need to ignore this, otherwise we might fail to allocate proper fake 2409 * state for this extra reg constraint. Also see the comment below. 2410 */ 2411 if (reg->alloc && !cpuc->is_fake) 2412 return NULL; /* call x86_get_event_constraint() */ 2413 2414 again: 2415 era = &cpuc->shared_regs->regs[idx]; 2416 /* 2417 * we use spin_lock_irqsave() to avoid lockdep issues when 2418 * passing a fake cpuc 2419 */ 2420 raw_spin_lock_irqsave(&era->lock, flags); 2421 2422 if (!atomic_read(&era->ref) || era->config == reg->config) { 2423 2424 /* 2425 * If its a fake cpuc -- as per validate_{group,event}() we 2426 * shouldn't touch event state and we can avoid doing so 2427 * since both will only call get_event_constraints() once 2428 * on each event, this avoids the need for reg->alloc. 2429 * 2430 * Not doing the ER fixup will only result in era->reg being 2431 * wrong, but since we won't actually try and program hardware 2432 * this isn't a problem either. 2433 */ 2434 if (!cpuc->is_fake) { 2435 if (idx != reg->idx) 2436 intel_fixup_er(event, idx); 2437 2438 /* 2439 * x86_schedule_events() can call get_event_constraints() 2440 * multiple times on events in the case of incremental 2441 * scheduling(). reg->alloc ensures we only do the ER 2442 * allocation once. 2443 */ 2444 reg->alloc = 1; 2445 } 2446 2447 /* lock in msr value */ 2448 era->config = reg->config; 2449 era->reg = reg->reg; 2450 2451 /* one more user */ 2452 atomic_inc(&era->ref); 2453 2454 /* 2455 * need to call x86_get_event_constraint() 2456 * to check if associated event has constraints 2457 */ 2458 c = NULL; 2459 } else { 2460 idx = intel_alt_er(idx, reg->config); 2461 if (idx != reg->idx) { 2462 raw_spin_unlock_irqrestore(&era->lock, flags); 2463 goto again; 2464 } 2465 } 2466 raw_spin_unlock_irqrestore(&era->lock, flags); 2467 2468 return c; 2469 } 2470 2471 static void 2472 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc, 2473 struct hw_perf_event_extra *reg) 2474 { 2475 struct er_account *era; 2476 2477 /* 2478 * Only put constraint if extra reg was actually allocated. Also takes 2479 * care of event which do not use an extra shared reg. 2480 * 2481 * Also, if this is a fake cpuc we shouldn't touch any event state 2482 * (reg->alloc) and we don't care about leaving inconsistent cpuc state 2483 * either since it'll be thrown out. 2484 */ 2485 if (!reg->alloc || cpuc->is_fake) 2486 return; 2487 2488 era = &cpuc->shared_regs->regs[reg->idx]; 2489 2490 /* one fewer user */ 2491 atomic_dec(&era->ref); 2492 2493 /* allocate again next time */ 2494 reg->alloc = 0; 2495 } 2496 2497 static struct event_constraint * 2498 intel_shared_regs_constraints(struct cpu_hw_events *cpuc, 2499 struct perf_event *event) 2500 { 2501 struct event_constraint *c = NULL, *d; 2502 struct hw_perf_event_extra *xreg, *breg; 2503 2504 xreg = &event->hw.extra_reg; 2505 if (xreg->idx != EXTRA_REG_NONE) { 2506 c = __intel_shared_reg_get_constraints(cpuc, event, xreg); 2507 if (c == &emptyconstraint) 2508 return c; 2509 } 2510 breg = &event->hw.branch_reg; 2511 if (breg->idx != EXTRA_REG_NONE) { 2512 d = __intel_shared_reg_get_constraints(cpuc, event, breg); 2513 if (d == &emptyconstraint) { 2514 __intel_shared_reg_put_constraints(cpuc, xreg); 2515 c = d; 2516 } 2517 } 2518 return c; 2519 } 2520 2521 struct event_constraint * 2522 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 2523 struct perf_event *event) 2524 { 2525 struct event_constraint *c; 2526 2527 if (x86_pmu.event_constraints) { 2528 for_each_event_constraint(c, x86_pmu.event_constraints) { 2529 if ((event->hw.config & c->cmask) == c->code) { 2530 event->hw.flags |= c->flags; 2531 return c; 2532 } 2533 } 2534 } 2535 2536 return &unconstrained; 2537 } 2538 2539 static struct event_constraint * 2540 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 2541 struct perf_event *event) 2542 { 2543 struct event_constraint *c; 2544 2545 c = intel_bts_constraints(event); 2546 if (c) 2547 return c; 2548 2549 c = intel_shared_regs_constraints(cpuc, event); 2550 if (c) 2551 return c; 2552 2553 c = intel_pebs_constraints(event); 2554 if (c) 2555 return c; 2556 2557 return x86_get_event_constraints(cpuc, idx, event); 2558 } 2559 2560 static void 2561 intel_start_scheduling(struct cpu_hw_events *cpuc) 2562 { 2563 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 2564 struct intel_excl_states *xl; 2565 int tid = cpuc->excl_thread_id; 2566 2567 /* 2568 * nothing needed if in group validation mode 2569 */ 2570 if (cpuc->is_fake || !is_ht_workaround_enabled()) 2571 return; 2572 2573 /* 2574 * no exclusion needed 2575 */ 2576 if (WARN_ON_ONCE(!excl_cntrs)) 2577 return; 2578 2579 xl = &excl_cntrs->states[tid]; 2580 2581 xl->sched_started = true; 2582 /* 2583 * lock shared state until we are done scheduling 2584 * in stop_event_scheduling() 2585 * makes scheduling appear as a transaction 2586 */ 2587 raw_spin_lock(&excl_cntrs->lock); 2588 } 2589 2590 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr) 2591 { 2592 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 2593 struct event_constraint *c = cpuc->event_constraint[idx]; 2594 struct intel_excl_states *xl; 2595 int tid = cpuc->excl_thread_id; 2596 2597 if (cpuc->is_fake || !is_ht_workaround_enabled()) 2598 return; 2599 2600 if (WARN_ON_ONCE(!excl_cntrs)) 2601 return; 2602 2603 if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) 2604 return; 2605 2606 xl = &excl_cntrs->states[tid]; 2607 2608 lockdep_assert_held(&excl_cntrs->lock); 2609 2610 if (c->flags & PERF_X86_EVENT_EXCL) 2611 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE; 2612 else 2613 xl->state[cntr] = INTEL_EXCL_SHARED; 2614 } 2615 2616 static void 2617 intel_stop_scheduling(struct cpu_hw_events *cpuc) 2618 { 2619 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 2620 struct intel_excl_states *xl; 2621 int tid = cpuc->excl_thread_id; 2622 2623 /* 2624 * nothing needed if in group validation mode 2625 */ 2626 if (cpuc->is_fake || !is_ht_workaround_enabled()) 2627 return; 2628 /* 2629 * no exclusion needed 2630 */ 2631 if (WARN_ON_ONCE(!excl_cntrs)) 2632 return; 2633 2634 xl = &excl_cntrs->states[tid]; 2635 2636 xl->sched_started = false; 2637 /* 2638 * release shared state lock (acquired in intel_start_scheduling()) 2639 */ 2640 raw_spin_unlock(&excl_cntrs->lock); 2641 } 2642 2643 static struct event_constraint * 2644 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event, 2645 int idx, struct event_constraint *c) 2646 { 2647 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 2648 struct intel_excl_states *xlo; 2649 int tid = cpuc->excl_thread_id; 2650 int is_excl, i; 2651 2652 /* 2653 * validating a group does not require 2654 * enforcing cross-thread exclusion 2655 */ 2656 if (cpuc->is_fake || !is_ht_workaround_enabled()) 2657 return c; 2658 2659 /* 2660 * no exclusion needed 2661 */ 2662 if (WARN_ON_ONCE(!excl_cntrs)) 2663 return c; 2664 2665 /* 2666 * because we modify the constraint, we need 2667 * to make a copy. Static constraints come 2668 * from static const tables. 2669 * 2670 * only needed when constraint has not yet 2671 * been cloned (marked dynamic) 2672 */ 2673 if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) { 2674 struct event_constraint *cx; 2675 2676 /* 2677 * grab pre-allocated constraint entry 2678 */ 2679 cx = &cpuc->constraint_list[idx]; 2680 2681 /* 2682 * initialize dynamic constraint 2683 * with static constraint 2684 */ 2685 *cx = *c; 2686 2687 /* 2688 * mark constraint as dynamic, so we 2689 * can free it later on 2690 */ 2691 cx->flags |= PERF_X86_EVENT_DYNAMIC; 2692 c = cx; 2693 } 2694 2695 /* 2696 * From here on, the constraint is dynamic. 2697 * Either it was just allocated above, or it 2698 * was allocated during a earlier invocation 2699 * of this function 2700 */ 2701 2702 /* 2703 * state of sibling HT 2704 */ 2705 xlo = &excl_cntrs->states[tid ^ 1]; 2706 2707 /* 2708 * event requires exclusive counter access 2709 * across HT threads 2710 */ 2711 is_excl = c->flags & PERF_X86_EVENT_EXCL; 2712 if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) { 2713 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT; 2714 if (!cpuc->n_excl++) 2715 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1); 2716 } 2717 2718 /* 2719 * Modify static constraint with current dynamic 2720 * state of thread 2721 * 2722 * EXCLUSIVE: sibling counter measuring exclusive event 2723 * SHARED : sibling counter measuring non-exclusive event 2724 * UNUSED : sibling counter unused 2725 */ 2726 for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) { 2727 /* 2728 * exclusive event in sibling counter 2729 * our corresponding counter cannot be used 2730 * regardless of our event 2731 */ 2732 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) 2733 __clear_bit(i, c->idxmsk); 2734 /* 2735 * if measuring an exclusive event, sibling 2736 * measuring non-exclusive, then counter cannot 2737 * be used 2738 */ 2739 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) 2740 __clear_bit(i, c->idxmsk); 2741 } 2742 2743 /* 2744 * recompute actual bit weight for scheduling algorithm 2745 */ 2746 c->weight = hweight64(c->idxmsk64); 2747 2748 /* 2749 * if we return an empty mask, then switch 2750 * back to static empty constraint to avoid 2751 * the cost of freeing later on 2752 */ 2753 if (c->weight == 0) 2754 c = &emptyconstraint; 2755 2756 return c; 2757 } 2758 2759 static struct event_constraint * 2760 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 2761 struct perf_event *event) 2762 { 2763 struct event_constraint *c1 = NULL; 2764 struct event_constraint *c2; 2765 2766 if (idx >= 0) /* fake does < 0 */ 2767 c1 = cpuc->event_constraint[idx]; 2768 2769 /* 2770 * first time only 2771 * - static constraint: no change across incremental scheduling calls 2772 * - dynamic constraint: handled by intel_get_excl_constraints() 2773 */ 2774 c2 = __intel_get_event_constraints(cpuc, idx, event); 2775 if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) { 2776 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX); 2777 c1->weight = c2->weight; 2778 c2 = c1; 2779 } 2780 2781 if (cpuc->excl_cntrs) 2782 return intel_get_excl_constraints(cpuc, event, idx, c2); 2783 2784 return c2; 2785 } 2786 2787 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc, 2788 struct perf_event *event) 2789 { 2790 struct hw_perf_event *hwc = &event->hw; 2791 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 2792 int tid = cpuc->excl_thread_id; 2793 struct intel_excl_states *xl; 2794 2795 /* 2796 * nothing needed if in group validation mode 2797 */ 2798 if (cpuc->is_fake) 2799 return; 2800 2801 if (WARN_ON_ONCE(!excl_cntrs)) 2802 return; 2803 2804 if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) { 2805 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT; 2806 if (!--cpuc->n_excl) 2807 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0); 2808 } 2809 2810 /* 2811 * If event was actually assigned, then mark the counter state as 2812 * unused now. 2813 */ 2814 if (hwc->idx >= 0) { 2815 xl = &excl_cntrs->states[tid]; 2816 2817 /* 2818 * put_constraint may be called from x86_schedule_events() 2819 * which already has the lock held so here make locking 2820 * conditional. 2821 */ 2822 if (!xl->sched_started) 2823 raw_spin_lock(&excl_cntrs->lock); 2824 2825 xl->state[hwc->idx] = INTEL_EXCL_UNUSED; 2826 2827 if (!xl->sched_started) 2828 raw_spin_unlock(&excl_cntrs->lock); 2829 } 2830 } 2831 2832 static void 2833 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc, 2834 struct perf_event *event) 2835 { 2836 struct hw_perf_event_extra *reg; 2837 2838 reg = &event->hw.extra_reg; 2839 if (reg->idx != EXTRA_REG_NONE) 2840 __intel_shared_reg_put_constraints(cpuc, reg); 2841 2842 reg = &event->hw.branch_reg; 2843 if (reg->idx != EXTRA_REG_NONE) 2844 __intel_shared_reg_put_constraints(cpuc, reg); 2845 } 2846 2847 static void intel_put_event_constraints(struct cpu_hw_events *cpuc, 2848 struct perf_event *event) 2849 { 2850 intel_put_shared_regs_event_constraints(cpuc, event); 2851 2852 /* 2853 * is PMU has exclusive counter restrictions, then 2854 * all events are subject to and must call the 2855 * put_excl_constraints() routine 2856 */ 2857 if (cpuc->excl_cntrs) 2858 intel_put_excl_constraints(cpuc, event); 2859 } 2860 2861 static void intel_pebs_aliases_core2(struct perf_event *event) 2862 { 2863 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) { 2864 /* 2865 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P 2866 * (0x003c) so that we can use it with PEBS. 2867 * 2868 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't 2869 * PEBS capable. However we can use INST_RETIRED.ANY_P 2870 * (0x00c0), which is a PEBS capable event, to get the same 2871 * count. 2872 * 2873 * INST_RETIRED.ANY_P counts the number of cycles that retires 2874 * CNTMASK instructions. By setting CNTMASK to a value (16) 2875 * larger than the maximum number of instructions that can be 2876 * retired per cycle (4) and then inverting the condition, we 2877 * count all cycles that retire 16 or less instructions, which 2878 * is every cycle. 2879 * 2880 * Thereby we gain a PEBS capable cycle counter. 2881 */ 2882 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16); 2883 2884 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK); 2885 event->hw.config = alt_config; 2886 } 2887 } 2888 2889 static void intel_pebs_aliases_snb(struct perf_event *event) 2890 { 2891 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) { 2892 /* 2893 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P 2894 * (0x003c) so that we can use it with PEBS. 2895 * 2896 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't 2897 * PEBS capable. However we can use UOPS_RETIRED.ALL 2898 * (0x01c2), which is a PEBS capable event, to get the same 2899 * count. 2900 * 2901 * UOPS_RETIRED.ALL counts the number of cycles that retires 2902 * CNTMASK micro-ops. By setting CNTMASK to a value (16) 2903 * larger than the maximum number of micro-ops that can be 2904 * retired per cycle (4) and then inverting the condition, we 2905 * count all cycles that retire 16 or less micro-ops, which 2906 * is every cycle. 2907 * 2908 * Thereby we gain a PEBS capable cycle counter. 2909 */ 2910 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16); 2911 2912 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK); 2913 event->hw.config = alt_config; 2914 } 2915 } 2916 2917 static void intel_pebs_aliases_precdist(struct perf_event *event) 2918 { 2919 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) { 2920 /* 2921 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P 2922 * (0x003c) so that we can use it with PEBS. 2923 * 2924 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't 2925 * PEBS capable. However we can use INST_RETIRED.PREC_DIST 2926 * (0x01c0), which is a PEBS capable event, to get the same 2927 * count. 2928 * 2929 * The PREC_DIST event has special support to minimize sample 2930 * shadowing effects. One drawback is that it can be 2931 * only programmed on counter 1, but that seems like an 2932 * acceptable trade off. 2933 */ 2934 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16); 2935 2936 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK); 2937 event->hw.config = alt_config; 2938 } 2939 } 2940 2941 static void intel_pebs_aliases_ivb(struct perf_event *event) 2942 { 2943 if (event->attr.precise_ip < 3) 2944 return intel_pebs_aliases_snb(event); 2945 return intel_pebs_aliases_precdist(event); 2946 } 2947 2948 static void intel_pebs_aliases_skl(struct perf_event *event) 2949 { 2950 if (event->attr.precise_ip < 3) 2951 return intel_pebs_aliases_core2(event); 2952 return intel_pebs_aliases_precdist(event); 2953 } 2954 2955 static unsigned long intel_pmu_free_running_flags(struct perf_event *event) 2956 { 2957 unsigned long flags = x86_pmu.free_running_flags; 2958 2959 if (event->attr.use_clockid) 2960 flags &= ~PERF_SAMPLE_TIME; 2961 if (!event->attr.exclude_kernel) 2962 flags &= ~PERF_SAMPLE_REGS_USER; 2963 if (event->attr.sample_regs_user & ~PEBS_REGS) 2964 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR); 2965 return flags; 2966 } 2967 2968 static int intel_pmu_hw_config(struct perf_event *event) 2969 { 2970 int ret = x86_pmu_hw_config(event); 2971 2972 if (ret) 2973 return ret; 2974 2975 if (event->attr.precise_ip) { 2976 if (!event->attr.freq) { 2977 event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD; 2978 if (!(event->attr.sample_type & 2979 ~intel_pmu_free_running_flags(event))) 2980 event->hw.flags |= PERF_X86_EVENT_FREERUNNING; 2981 } 2982 if (x86_pmu.pebs_aliases) 2983 x86_pmu.pebs_aliases(event); 2984 } 2985 2986 if (needs_branch_stack(event)) { 2987 ret = intel_pmu_setup_lbr_filter(event); 2988 if (ret) 2989 return ret; 2990 2991 /* 2992 * BTS is set up earlier in this path, so don't account twice 2993 */ 2994 if (!intel_pmu_has_bts(event)) { 2995 /* disallow lbr if conflicting events are present */ 2996 if (x86_add_exclusive(x86_lbr_exclusive_lbr)) 2997 return -EBUSY; 2998 2999 event->destroy = hw_perf_lbr_event_destroy; 3000 } 3001 } 3002 3003 if (event->attr.type != PERF_TYPE_RAW) 3004 return 0; 3005 3006 if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY)) 3007 return 0; 3008 3009 if (x86_pmu.version < 3) 3010 return -EINVAL; 3011 3012 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3013 return -EACCES; 3014 3015 event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY; 3016 3017 return 0; 3018 } 3019 3020 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr) 3021 { 3022 if (x86_pmu.guest_get_msrs) 3023 return x86_pmu.guest_get_msrs(nr); 3024 *nr = 0; 3025 return NULL; 3026 } 3027 EXPORT_SYMBOL_GPL(perf_guest_get_msrs); 3028 3029 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr) 3030 { 3031 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 3032 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs; 3033 3034 arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL; 3035 arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask; 3036 arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask; 3037 /* 3038 * If PMU counter has PEBS enabled it is not enough to disable counter 3039 * on a guest entry since PEBS memory write can overshoot guest entry 3040 * and corrupt guest memory. Disabling PEBS solves the problem. 3041 */ 3042 arr[1].msr = MSR_IA32_PEBS_ENABLE; 3043 arr[1].host = cpuc->pebs_enabled; 3044 arr[1].guest = 0; 3045 3046 *nr = 2; 3047 return arr; 3048 } 3049 3050 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr) 3051 { 3052 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 3053 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs; 3054 int idx; 3055 3056 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 3057 struct perf_event *event = cpuc->events[idx]; 3058 3059 arr[idx].msr = x86_pmu_config_addr(idx); 3060 arr[idx].host = arr[idx].guest = 0; 3061 3062 if (!test_bit(idx, cpuc->active_mask)) 3063 continue; 3064 3065 arr[idx].host = arr[idx].guest = 3066 event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE; 3067 3068 if (event->attr.exclude_host) 3069 arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE; 3070 else if (event->attr.exclude_guest) 3071 arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE; 3072 } 3073 3074 *nr = x86_pmu.num_counters; 3075 return arr; 3076 } 3077 3078 static void core_pmu_enable_event(struct perf_event *event) 3079 { 3080 if (!event->attr.exclude_host) 3081 x86_pmu_enable_event(event); 3082 } 3083 3084 static void core_pmu_enable_all(int added) 3085 { 3086 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 3087 int idx; 3088 3089 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 3090 struct hw_perf_event *hwc = &cpuc->events[idx]->hw; 3091 3092 if (!test_bit(idx, cpuc->active_mask) || 3093 cpuc->events[idx]->attr.exclude_host) 3094 continue; 3095 3096 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); 3097 } 3098 } 3099 3100 static int hsw_hw_config(struct perf_event *event) 3101 { 3102 int ret = intel_pmu_hw_config(event); 3103 3104 if (ret) 3105 return ret; 3106 if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE)) 3107 return 0; 3108 event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED); 3109 3110 /* 3111 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with 3112 * PEBS or in ANY thread mode. Since the results are non-sensical forbid 3113 * this combination. 3114 */ 3115 if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) && 3116 ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) || 3117 event->attr.precise_ip > 0)) 3118 return -EOPNOTSUPP; 3119 3120 if (event_is_checkpointed(event)) { 3121 /* 3122 * Sampling of checkpointed events can cause situations where 3123 * the CPU constantly aborts because of a overflow, which is 3124 * then checkpointed back and ignored. Forbid checkpointing 3125 * for sampling. 3126 * 3127 * But still allow a long sampling period, so that perf stat 3128 * from KVM works. 3129 */ 3130 if (event->attr.sample_period > 0 && 3131 event->attr.sample_period < 0x7fffffff) 3132 return -EOPNOTSUPP; 3133 } 3134 return 0; 3135 } 3136 3137 static struct event_constraint counter0_constraint = 3138 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1); 3139 3140 static struct event_constraint counter2_constraint = 3141 EVENT_CONSTRAINT(0, 0x4, 0); 3142 3143 static struct event_constraint * 3144 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 3145 struct perf_event *event) 3146 { 3147 struct event_constraint *c; 3148 3149 c = intel_get_event_constraints(cpuc, idx, event); 3150 3151 /* Handle special quirk on in_tx_checkpointed only in counter 2 */ 3152 if (event->hw.config & HSW_IN_TX_CHECKPOINTED) { 3153 if (c->idxmsk64 & (1U << 2)) 3154 return &counter2_constraint; 3155 return &emptyconstraint; 3156 } 3157 3158 return c; 3159 } 3160 3161 static struct event_constraint * 3162 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 3163 struct perf_event *event) 3164 { 3165 struct event_constraint *c; 3166 3167 /* :ppp means to do reduced skid PEBS which is PMC0 only. */ 3168 if (event->attr.precise_ip == 3) 3169 return &counter0_constraint; 3170 3171 c = intel_get_event_constraints(cpuc, idx, event); 3172 3173 return c; 3174 } 3175 3176 /* 3177 * Broadwell: 3178 * 3179 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared 3180 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine 3181 * the two to enforce a minimum period of 128 (the smallest value that has bits 3182 * 0-5 cleared and >= 100). 3183 * 3184 * Because of how the code in x86_perf_event_set_period() works, the truncation 3185 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period 3186 * to make up for the 'lost' events due to carrying the 'error' in period_left. 3187 * 3188 * Therefore the effective (average) period matches the requested period, 3189 * despite coarser hardware granularity. 3190 */ 3191 static unsigned bdw_limit_period(struct perf_event *event, unsigned left) 3192 { 3193 if ((event->hw.config & INTEL_ARCH_EVENT_MASK) == 3194 X86_CONFIG(.event=0xc0, .umask=0x01)) { 3195 if (left < 128) 3196 left = 128; 3197 left &= ~0x3fu; 3198 } 3199 return left; 3200 } 3201 3202 PMU_FORMAT_ATTR(event, "config:0-7" ); 3203 PMU_FORMAT_ATTR(umask, "config:8-15" ); 3204 PMU_FORMAT_ATTR(edge, "config:18" ); 3205 PMU_FORMAT_ATTR(pc, "config:19" ); 3206 PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */ 3207 PMU_FORMAT_ATTR(inv, "config:23" ); 3208 PMU_FORMAT_ATTR(cmask, "config:24-31" ); 3209 PMU_FORMAT_ATTR(in_tx, "config:32"); 3210 PMU_FORMAT_ATTR(in_tx_cp, "config:33"); 3211 3212 static struct attribute *intel_arch_formats_attr[] = { 3213 &format_attr_event.attr, 3214 &format_attr_umask.attr, 3215 &format_attr_edge.attr, 3216 &format_attr_pc.attr, 3217 &format_attr_inv.attr, 3218 &format_attr_cmask.attr, 3219 NULL, 3220 }; 3221 3222 ssize_t intel_event_sysfs_show(char *page, u64 config) 3223 { 3224 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT); 3225 3226 return x86_event_sysfs_show(page, config, event); 3227 } 3228 3229 struct intel_shared_regs *allocate_shared_regs(int cpu) 3230 { 3231 struct intel_shared_regs *regs; 3232 int i; 3233 3234 regs = kzalloc_node(sizeof(struct intel_shared_regs), 3235 GFP_KERNEL, cpu_to_node(cpu)); 3236 if (regs) { 3237 /* 3238 * initialize the locks to keep lockdep happy 3239 */ 3240 for (i = 0; i < EXTRA_REG_MAX; i++) 3241 raw_spin_lock_init(®s->regs[i].lock); 3242 3243 regs->core_id = -1; 3244 } 3245 return regs; 3246 } 3247 3248 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu) 3249 { 3250 struct intel_excl_cntrs *c; 3251 3252 c = kzalloc_node(sizeof(struct intel_excl_cntrs), 3253 GFP_KERNEL, cpu_to_node(cpu)); 3254 if (c) { 3255 raw_spin_lock_init(&c->lock); 3256 c->core_id = -1; 3257 } 3258 return c; 3259 } 3260 3261 static int intel_pmu_cpu_prepare(int cpu) 3262 { 3263 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 3264 3265 if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) { 3266 cpuc->shared_regs = allocate_shared_regs(cpu); 3267 if (!cpuc->shared_regs) 3268 goto err; 3269 } 3270 3271 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) { 3272 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint); 3273 3274 cpuc->constraint_list = kzalloc(sz, GFP_KERNEL); 3275 if (!cpuc->constraint_list) 3276 goto err_shared_regs; 3277 3278 cpuc->excl_cntrs = allocate_excl_cntrs(cpu); 3279 if (!cpuc->excl_cntrs) 3280 goto err_constraint_list; 3281 3282 cpuc->excl_thread_id = 0; 3283 } 3284 3285 return 0; 3286 3287 err_constraint_list: 3288 kfree(cpuc->constraint_list); 3289 cpuc->constraint_list = NULL; 3290 3291 err_shared_regs: 3292 kfree(cpuc->shared_regs); 3293 cpuc->shared_regs = NULL; 3294 3295 err: 3296 return -ENOMEM; 3297 } 3298 3299 static void flip_smm_bit(void *data) 3300 { 3301 unsigned long set = *(unsigned long *)data; 3302 3303 if (set > 0) { 3304 msr_set_bit(MSR_IA32_DEBUGCTLMSR, 3305 DEBUGCTLMSR_FREEZE_IN_SMM_BIT); 3306 } else { 3307 msr_clear_bit(MSR_IA32_DEBUGCTLMSR, 3308 DEBUGCTLMSR_FREEZE_IN_SMM_BIT); 3309 } 3310 } 3311 3312 static void intel_pmu_cpu_starting(int cpu) 3313 { 3314 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 3315 int core_id = topology_core_id(cpu); 3316 int i; 3317 3318 init_debug_store_on_cpu(cpu); 3319 /* 3320 * Deal with CPUs that don't clear their LBRs on power-up. 3321 */ 3322 intel_pmu_lbr_reset(); 3323 3324 cpuc->lbr_sel = NULL; 3325 3326 flip_smm_bit(&x86_pmu.attr_freeze_on_smi); 3327 3328 if (!cpuc->shared_regs) 3329 return; 3330 3331 if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) { 3332 for_each_cpu(i, topology_sibling_cpumask(cpu)) { 3333 struct intel_shared_regs *pc; 3334 3335 pc = per_cpu(cpu_hw_events, i).shared_regs; 3336 if (pc && pc->core_id == core_id) { 3337 cpuc->kfree_on_online[0] = cpuc->shared_regs; 3338 cpuc->shared_regs = pc; 3339 break; 3340 } 3341 } 3342 cpuc->shared_regs->core_id = core_id; 3343 cpuc->shared_regs->refcnt++; 3344 } 3345 3346 if (x86_pmu.lbr_sel_map) 3347 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR]; 3348 3349 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) { 3350 for_each_cpu(i, topology_sibling_cpumask(cpu)) { 3351 struct cpu_hw_events *sibling; 3352 struct intel_excl_cntrs *c; 3353 3354 sibling = &per_cpu(cpu_hw_events, i); 3355 c = sibling->excl_cntrs; 3356 if (c && c->core_id == core_id) { 3357 cpuc->kfree_on_online[1] = cpuc->excl_cntrs; 3358 cpuc->excl_cntrs = c; 3359 if (!sibling->excl_thread_id) 3360 cpuc->excl_thread_id = 1; 3361 break; 3362 } 3363 } 3364 cpuc->excl_cntrs->core_id = core_id; 3365 cpuc->excl_cntrs->refcnt++; 3366 } 3367 } 3368 3369 static void free_excl_cntrs(int cpu) 3370 { 3371 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 3372 struct intel_excl_cntrs *c; 3373 3374 c = cpuc->excl_cntrs; 3375 if (c) { 3376 if (c->core_id == -1 || --c->refcnt == 0) 3377 kfree(c); 3378 cpuc->excl_cntrs = NULL; 3379 kfree(cpuc->constraint_list); 3380 cpuc->constraint_list = NULL; 3381 } 3382 } 3383 3384 static void intel_pmu_cpu_dying(int cpu) 3385 { 3386 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 3387 struct intel_shared_regs *pc; 3388 3389 pc = cpuc->shared_regs; 3390 if (pc) { 3391 if (pc->core_id == -1 || --pc->refcnt == 0) 3392 kfree(pc); 3393 cpuc->shared_regs = NULL; 3394 } 3395 3396 free_excl_cntrs(cpu); 3397 3398 fini_debug_store_on_cpu(cpu); 3399 } 3400 3401 static void intel_pmu_sched_task(struct perf_event_context *ctx, 3402 bool sched_in) 3403 { 3404 intel_pmu_pebs_sched_task(ctx, sched_in); 3405 intel_pmu_lbr_sched_task(ctx, sched_in); 3406 } 3407 3408 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63"); 3409 3410 PMU_FORMAT_ATTR(ldlat, "config1:0-15"); 3411 3412 PMU_FORMAT_ATTR(frontend, "config1:0-23"); 3413 3414 static struct attribute *intel_arch3_formats_attr[] = { 3415 &format_attr_event.attr, 3416 &format_attr_umask.attr, 3417 &format_attr_edge.attr, 3418 &format_attr_pc.attr, 3419 &format_attr_any.attr, 3420 &format_attr_inv.attr, 3421 &format_attr_cmask.attr, 3422 NULL, 3423 }; 3424 3425 static struct attribute *hsw_format_attr[] = { 3426 &format_attr_in_tx.attr, 3427 &format_attr_in_tx_cp.attr, 3428 &format_attr_offcore_rsp.attr, 3429 &format_attr_ldlat.attr, 3430 NULL 3431 }; 3432 3433 static struct attribute *nhm_format_attr[] = { 3434 &format_attr_offcore_rsp.attr, 3435 &format_attr_ldlat.attr, 3436 NULL 3437 }; 3438 3439 static struct attribute *slm_format_attr[] = { 3440 &format_attr_offcore_rsp.attr, 3441 NULL 3442 }; 3443 3444 static struct attribute *skl_format_attr[] = { 3445 &format_attr_frontend.attr, 3446 NULL, 3447 }; 3448 3449 static __initconst const struct x86_pmu core_pmu = { 3450 .name = "core", 3451 .handle_irq = x86_pmu_handle_irq, 3452 .disable_all = x86_pmu_disable_all, 3453 .enable_all = core_pmu_enable_all, 3454 .enable = core_pmu_enable_event, 3455 .disable = x86_pmu_disable_event, 3456 .hw_config = x86_pmu_hw_config, 3457 .schedule_events = x86_schedule_events, 3458 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0, 3459 .perfctr = MSR_ARCH_PERFMON_PERFCTR0, 3460 .event_map = intel_pmu_event_map, 3461 .max_events = ARRAY_SIZE(intel_perfmon_event_map), 3462 .apic = 1, 3463 .free_running_flags = PEBS_FREERUNNING_FLAGS, 3464 3465 /* 3466 * Intel PMCs cannot be accessed sanely above 32-bit width, 3467 * so we install an artificial 1<<31 period regardless of 3468 * the generic event period: 3469 */ 3470 .max_period = (1ULL<<31) - 1, 3471 .get_event_constraints = intel_get_event_constraints, 3472 .put_event_constraints = intel_put_event_constraints, 3473 .event_constraints = intel_core_event_constraints, 3474 .guest_get_msrs = core_guest_get_msrs, 3475 .format_attrs = intel_arch_formats_attr, 3476 .events_sysfs_show = intel_event_sysfs_show, 3477 3478 /* 3479 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs 3480 * together with PMU version 1 and thus be using core_pmu with 3481 * shared_regs. We need following callbacks here to allocate 3482 * it properly. 3483 */ 3484 .cpu_prepare = intel_pmu_cpu_prepare, 3485 .cpu_starting = intel_pmu_cpu_starting, 3486 .cpu_dying = intel_pmu_cpu_dying, 3487 }; 3488 3489 static __initconst const struct x86_pmu intel_pmu = { 3490 .name = "Intel", 3491 .handle_irq = intel_pmu_handle_irq, 3492 .disable_all = intel_pmu_disable_all, 3493 .enable_all = intel_pmu_enable_all, 3494 .enable = intel_pmu_enable_event, 3495 .disable = intel_pmu_disable_event, 3496 .add = intel_pmu_add_event, 3497 .del = intel_pmu_del_event, 3498 .hw_config = intel_pmu_hw_config, 3499 .schedule_events = x86_schedule_events, 3500 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0, 3501 .perfctr = MSR_ARCH_PERFMON_PERFCTR0, 3502 .event_map = intel_pmu_event_map, 3503 .max_events = ARRAY_SIZE(intel_perfmon_event_map), 3504 .apic = 1, 3505 .free_running_flags = PEBS_FREERUNNING_FLAGS, 3506 /* 3507 * Intel PMCs cannot be accessed sanely above 32 bit width, 3508 * so we install an artificial 1<<31 period regardless of 3509 * the generic event period: 3510 */ 3511 .max_period = (1ULL << 31) - 1, 3512 .get_event_constraints = intel_get_event_constraints, 3513 .put_event_constraints = intel_put_event_constraints, 3514 .pebs_aliases = intel_pebs_aliases_core2, 3515 3516 .format_attrs = intel_arch3_formats_attr, 3517 .events_sysfs_show = intel_event_sysfs_show, 3518 3519 .cpu_prepare = intel_pmu_cpu_prepare, 3520 .cpu_starting = intel_pmu_cpu_starting, 3521 .cpu_dying = intel_pmu_cpu_dying, 3522 .guest_get_msrs = intel_guest_get_msrs, 3523 .sched_task = intel_pmu_sched_task, 3524 }; 3525 3526 static __init void intel_clovertown_quirk(void) 3527 { 3528 /* 3529 * PEBS is unreliable due to: 3530 * 3531 * AJ67 - PEBS may experience CPL leaks 3532 * AJ68 - PEBS PMI may be delayed by one event 3533 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12] 3534 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS 3535 * 3536 * AJ67 could be worked around by restricting the OS/USR flags. 3537 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI. 3538 * 3539 * AJ106 could possibly be worked around by not allowing LBR 3540 * usage from PEBS, including the fixup. 3541 * AJ68 could possibly be worked around by always programming 3542 * a pebs_event_reset[0] value and coping with the lost events. 3543 * 3544 * But taken together it might just make sense to not enable PEBS on 3545 * these chips. 3546 */ 3547 pr_warn("PEBS disabled due to CPU errata\n"); 3548 x86_pmu.pebs = 0; 3549 x86_pmu.pebs_constraints = NULL; 3550 } 3551 3552 static int intel_snb_pebs_broken(int cpu) 3553 { 3554 u32 rev = UINT_MAX; /* default to broken for unknown models */ 3555 3556 switch (cpu_data(cpu).x86_model) { 3557 case INTEL_FAM6_SANDYBRIDGE: 3558 rev = 0x28; 3559 break; 3560 3561 case INTEL_FAM6_SANDYBRIDGE_X: 3562 switch (cpu_data(cpu).x86_stepping) { 3563 case 6: rev = 0x618; break; 3564 case 7: rev = 0x70c; break; 3565 } 3566 } 3567 3568 return (cpu_data(cpu).microcode < rev); 3569 } 3570 3571 static void intel_snb_check_microcode(void) 3572 { 3573 int pebs_broken = 0; 3574 int cpu; 3575 3576 for_each_online_cpu(cpu) { 3577 if ((pebs_broken = intel_snb_pebs_broken(cpu))) 3578 break; 3579 } 3580 3581 if (pebs_broken == x86_pmu.pebs_broken) 3582 return; 3583 3584 /* 3585 * Serialized by the microcode lock.. 3586 */ 3587 if (x86_pmu.pebs_broken) { 3588 pr_info("PEBS enabled due to microcode update\n"); 3589 x86_pmu.pebs_broken = 0; 3590 } else { 3591 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n"); 3592 x86_pmu.pebs_broken = 1; 3593 } 3594 } 3595 3596 static bool is_lbr_from(unsigned long msr) 3597 { 3598 unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr; 3599 3600 return x86_pmu.lbr_from <= msr && msr < lbr_from_nr; 3601 } 3602 3603 /* 3604 * Under certain circumstances, access certain MSR may cause #GP. 3605 * The function tests if the input MSR can be safely accessed. 3606 */ 3607 static bool check_msr(unsigned long msr, u64 mask) 3608 { 3609 u64 val_old, val_new, val_tmp; 3610 3611 /* 3612 * Read the current value, change it and read it back to see if it 3613 * matches, this is needed to detect certain hardware emulators 3614 * (qemu/kvm) that don't trap on the MSR access and always return 0s. 3615 */ 3616 if (rdmsrl_safe(msr, &val_old)) 3617 return false; 3618 3619 /* 3620 * Only change the bits which can be updated by wrmsrl. 3621 */ 3622 val_tmp = val_old ^ mask; 3623 3624 if (is_lbr_from(msr)) 3625 val_tmp = lbr_from_signext_quirk_wr(val_tmp); 3626 3627 if (wrmsrl_safe(msr, val_tmp) || 3628 rdmsrl_safe(msr, &val_new)) 3629 return false; 3630 3631 /* 3632 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value 3633 * should equal rdmsrl()'s even with the quirk. 3634 */ 3635 if (val_new != val_tmp) 3636 return false; 3637 3638 if (is_lbr_from(msr)) 3639 val_old = lbr_from_signext_quirk_wr(val_old); 3640 3641 /* Here it's sure that the MSR can be safely accessed. 3642 * Restore the old value and return. 3643 */ 3644 wrmsrl(msr, val_old); 3645 3646 return true; 3647 } 3648 3649 static __init void intel_sandybridge_quirk(void) 3650 { 3651 x86_pmu.check_microcode = intel_snb_check_microcode; 3652 cpus_read_lock(); 3653 intel_snb_check_microcode(); 3654 cpus_read_unlock(); 3655 } 3656 3657 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = { 3658 { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" }, 3659 { PERF_COUNT_HW_INSTRUCTIONS, "instructions" }, 3660 { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" }, 3661 { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" }, 3662 { PERF_COUNT_HW_CACHE_MISSES, "cache misses" }, 3663 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" }, 3664 { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" }, 3665 }; 3666 3667 static __init void intel_arch_events_quirk(void) 3668 { 3669 int bit; 3670 3671 /* disable event that reported as not presend by cpuid */ 3672 for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) { 3673 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0; 3674 pr_warn("CPUID marked event: \'%s\' unavailable\n", 3675 intel_arch_events_map[bit].name); 3676 } 3677 } 3678 3679 static __init void intel_nehalem_quirk(void) 3680 { 3681 union cpuid10_ebx ebx; 3682 3683 ebx.full = x86_pmu.events_maskl; 3684 if (ebx.split.no_branch_misses_retired) { 3685 /* 3686 * Erratum AAJ80 detected, we work it around by using 3687 * the BR_MISP_EXEC.ANY event. This will over-count 3688 * branch-misses, but it's still much better than the 3689 * architectural event which is often completely bogus: 3690 */ 3691 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89; 3692 ebx.split.no_branch_misses_retired = 0; 3693 x86_pmu.events_maskl = ebx.full; 3694 pr_info("CPU erratum AAJ80 worked around\n"); 3695 } 3696 } 3697 3698 /* 3699 * enable software workaround for errata: 3700 * SNB: BJ122 3701 * IVB: BV98 3702 * HSW: HSD29 3703 * 3704 * Only needed when HT is enabled. However detecting 3705 * if HT is enabled is difficult (model specific). So instead, 3706 * we enable the workaround in the early boot, and verify if 3707 * it is needed in a later initcall phase once we have valid 3708 * topology information to check if HT is actually enabled 3709 */ 3710 static __init void intel_ht_bug(void) 3711 { 3712 x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED; 3713 3714 x86_pmu.start_scheduling = intel_start_scheduling; 3715 x86_pmu.commit_scheduling = intel_commit_scheduling; 3716 x86_pmu.stop_scheduling = intel_stop_scheduling; 3717 } 3718 3719 EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3"); 3720 EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82") 3721 3722 /* Haswell special events */ 3723 EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1"); 3724 EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2"); 3725 EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4"); 3726 EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2"); 3727 EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1"); 3728 EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1"); 3729 EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2"); 3730 EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4"); 3731 EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2"); 3732 EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1"); 3733 EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1"); 3734 EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1"); 3735 3736 static struct attribute *hsw_events_attrs[] = { 3737 EVENT_PTR(mem_ld_hsw), 3738 EVENT_PTR(mem_st_hsw), 3739 EVENT_PTR(td_slots_issued), 3740 EVENT_PTR(td_slots_retired), 3741 EVENT_PTR(td_fetch_bubbles), 3742 EVENT_PTR(td_total_slots), 3743 EVENT_PTR(td_total_slots_scale), 3744 EVENT_PTR(td_recovery_bubbles), 3745 EVENT_PTR(td_recovery_bubbles_scale), 3746 NULL 3747 }; 3748 3749 static struct attribute *hsw_tsx_events_attrs[] = { 3750 EVENT_PTR(tx_start), 3751 EVENT_PTR(tx_commit), 3752 EVENT_PTR(tx_abort), 3753 EVENT_PTR(tx_capacity), 3754 EVENT_PTR(tx_conflict), 3755 EVENT_PTR(el_start), 3756 EVENT_PTR(el_commit), 3757 EVENT_PTR(el_abort), 3758 EVENT_PTR(el_capacity), 3759 EVENT_PTR(el_conflict), 3760 EVENT_PTR(cycles_t), 3761 EVENT_PTR(cycles_ct), 3762 NULL 3763 }; 3764 3765 static __init struct attribute **get_hsw_events_attrs(void) 3766 { 3767 return boot_cpu_has(X86_FEATURE_RTM) ? 3768 merge_attr(hsw_events_attrs, hsw_tsx_events_attrs) : 3769 hsw_events_attrs; 3770 } 3771 3772 static ssize_t freeze_on_smi_show(struct device *cdev, 3773 struct device_attribute *attr, 3774 char *buf) 3775 { 3776 return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi); 3777 } 3778 3779 static DEFINE_MUTEX(freeze_on_smi_mutex); 3780 3781 static ssize_t freeze_on_smi_store(struct device *cdev, 3782 struct device_attribute *attr, 3783 const char *buf, size_t count) 3784 { 3785 unsigned long val; 3786 ssize_t ret; 3787 3788 ret = kstrtoul(buf, 0, &val); 3789 if (ret) 3790 return ret; 3791 3792 if (val > 1) 3793 return -EINVAL; 3794 3795 mutex_lock(&freeze_on_smi_mutex); 3796 3797 if (x86_pmu.attr_freeze_on_smi == val) 3798 goto done; 3799 3800 x86_pmu.attr_freeze_on_smi = val; 3801 3802 get_online_cpus(); 3803 on_each_cpu(flip_smm_bit, &val, 1); 3804 put_online_cpus(); 3805 done: 3806 mutex_unlock(&freeze_on_smi_mutex); 3807 3808 return count; 3809 } 3810 3811 static DEVICE_ATTR_RW(freeze_on_smi); 3812 3813 static ssize_t branches_show(struct device *cdev, 3814 struct device_attribute *attr, 3815 char *buf) 3816 { 3817 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr); 3818 } 3819 3820 static DEVICE_ATTR_RO(branches); 3821 3822 static struct attribute *lbr_attrs[] = { 3823 &dev_attr_branches.attr, 3824 NULL 3825 }; 3826 3827 static char pmu_name_str[30]; 3828 3829 static ssize_t pmu_name_show(struct device *cdev, 3830 struct device_attribute *attr, 3831 char *buf) 3832 { 3833 return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str); 3834 } 3835 3836 static DEVICE_ATTR_RO(pmu_name); 3837 3838 static struct attribute *intel_pmu_caps_attrs[] = { 3839 &dev_attr_pmu_name.attr, 3840 NULL 3841 }; 3842 3843 static struct attribute *intel_pmu_attrs[] = { 3844 &dev_attr_freeze_on_smi.attr, 3845 NULL, 3846 }; 3847 3848 __init int intel_pmu_init(void) 3849 { 3850 struct attribute **extra_attr = NULL; 3851 struct attribute **to_free = NULL; 3852 union cpuid10_edx edx; 3853 union cpuid10_eax eax; 3854 union cpuid10_ebx ebx; 3855 struct event_constraint *c; 3856 unsigned int unused; 3857 struct extra_reg *er; 3858 int version, i; 3859 char *name; 3860 3861 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) { 3862 switch (boot_cpu_data.x86) { 3863 case 0x6: 3864 return p6_pmu_init(); 3865 case 0xb: 3866 return knc_pmu_init(); 3867 case 0xf: 3868 return p4_pmu_init(); 3869 } 3870 return -ENODEV; 3871 } 3872 3873 /* 3874 * Check whether the Architectural PerfMon supports 3875 * Branch Misses Retired hw_event or not. 3876 */ 3877 cpuid(10, &eax.full, &ebx.full, &unused, &edx.full); 3878 if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT) 3879 return -ENODEV; 3880 3881 version = eax.split.version_id; 3882 if (version < 2) 3883 x86_pmu = core_pmu; 3884 else 3885 x86_pmu = intel_pmu; 3886 3887 x86_pmu.version = version; 3888 x86_pmu.num_counters = eax.split.num_counters; 3889 x86_pmu.cntval_bits = eax.split.bit_width; 3890 x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1; 3891 3892 x86_pmu.events_maskl = ebx.full; 3893 x86_pmu.events_mask_len = eax.split.mask_length; 3894 3895 x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters); 3896 3897 3898 x86_pmu.attrs = intel_pmu_attrs; 3899 /* 3900 * Quirk: v2 perfmon does not report fixed-purpose events, so 3901 * assume at least 3 events, when not running in a hypervisor: 3902 */ 3903 if (version > 1) { 3904 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR); 3905 3906 x86_pmu.num_counters_fixed = 3907 max((int)edx.split.num_counters_fixed, assume); 3908 } 3909 3910 if (boot_cpu_has(X86_FEATURE_PDCM)) { 3911 u64 capabilities; 3912 3913 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities); 3914 x86_pmu.intel_cap.capabilities = capabilities; 3915 } 3916 3917 intel_ds_init(); 3918 3919 x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */ 3920 3921 /* 3922 * Install the hw-cache-events table: 3923 */ 3924 switch (boot_cpu_data.x86_model) { 3925 case INTEL_FAM6_CORE_YONAH: 3926 pr_cont("Core events, "); 3927 name = "core"; 3928 break; 3929 3930 case INTEL_FAM6_CORE2_MEROM: 3931 x86_add_quirk(intel_clovertown_quirk); 3932 case INTEL_FAM6_CORE2_MEROM_L: 3933 case INTEL_FAM6_CORE2_PENRYN: 3934 case INTEL_FAM6_CORE2_DUNNINGTON: 3935 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids, 3936 sizeof(hw_cache_event_ids)); 3937 3938 intel_pmu_lbr_init_core(); 3939 3940 x86_pmu.event_constraints = intel_core2_event_constraints; 3941 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints; 3942 pr_cont("Core2 events, "); 3943 name = "core2"; 3944 break; 3945 3946 case INTEL_FAM6_NEHALEM: 3947 case INTEL_FAM6_NEHALEM_EP: 3948 case INTEL_FAM6_NEHALEM_EX: 3949 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids, 3950 sizeof(hw_cache_event_ids)); 3951 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs, 3952 sizeof(hw_cache_extra_regs)); 3953 3954 intel_pmu_lbr_init_nhm(); 3955 3956 x86_pmu.event_constraints = intel_nehalem_event_constraints; 3957 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints; 3958 x86_pmu.enable_all = intel_pmu_nhm_enable_all; 3959 x86_pmu.extra_regs = intel_nehalem_extra_regs; 3960 3961 x86_pmu.cpu_events = nhm_events_attrs; 3962 3963 /* UOPS_ISSUED.STALLED_CYCLES */ 3964 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 3965 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); 3966 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */ 3967 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 3968 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1); 3969 3970 intel_pmu_pebs_data_source_nhm(); 3971 x86_add_quirk(intel_nehalem_quirk); 3972 x86_pmu.pebs_no_tlb = 1; 3973 extra_attr = nhm_format_attr; 3974 3975 pr_cont("Nehalem events, "); 3976 name = "nehalem"; 3977 break; 3978 3979 case INTEL_FAM6_ATOM_PINEVIEW: 3980 case INTEL_FAM6_ATOM_LINCROFT: 3981 case INTEL_FAM6_ATOM_PENWELL: 3982 case INTEL_FAM6_ATOM_CLOVERVIEW: 3983 case INTEL_FAM6_ATOM_CEDARVIEW: 3984 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids, 3985 sizeof(hw_cache_event_ids)); 3986 3987 intel_pmu_lbr_init_atom(); 3988 3989 x86_pmu.event_constraints = intel_gen_event_constraints; 3990 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints; 3991 x86_pmu.pebs_aliases = intel_pebs_aliases_core2; 3992 pr_cont("Atom events, "); 3993 name = "bonnell"; 3994 break; 3995 3996 case INTEL_FAM6_ATOM_SILVERMONT1: 3997 case INTEL_FAM6_ATOM_SILVERMONT2: 3998 case INTEL_FAM6_ATOM_AIRMONT: 3999 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids, 4000 sizeof(hw_cache_event_ids)); 4001 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs, 4002 sizeof(hw_cache_extra_regs)); 4003 4004 intel_pmu_lbr_init_slm(); 4005 4006 x86_pmu.event_constraints = intel_slm_event_constraints; 4007 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints; 4008 x86_pmu.extra_regs = intel_slm_extra_regs; 4009 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4010 x86_pmu.cpu_events = slm_events_attrs; 4011 extra_attr = slm_format_attr; 4012 pr_cont("Silvermont events, "); 4013 name = "silvermont"; 4014 break; 4015 4016 case INTEL_FAM6_ATOM_GOLDMONT: 4017 case INTEL_FAM6_ATOM_DENVERTON: 4018 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids, 4019 sizeof(hw_cache_event_ids)); 4020 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs, 4021 sizeof(hw_cache_extra_regs)); 4022 4023 intel_pmu_lbr_init_skl(); 4024 4025 x86_pmu.event_constraints = intel_slm_event_constraints; 4026 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints; 4027 x86_pmu.extra_regs = intel_glm_extra_regs; 4028 /* 4029 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS 4030 * for precise cycles. 4031 * :pp is identical to :ppp 4032 */ 4033 x86_pmu.pebs_aliases = NULL; 4034 x86_pmu.pebs_prec_dist = true; 4035 x86_pmu.lbr_pt_coexist = true; 4036 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4037 x86_pmu.cpu_events = glm_events_attrs; 4038 extra_attr = slm_format_attr; 4039 pr_cont("Goldmont events, "); 4040 name = "goldmont"; 4041 break; 4042 4043 case INTEL_FAM6_ATOM_GEMINI_LAKE: 4044 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids, 4045 sizeof(hw_cache_event_ids)); 4046 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs, 4047 sizeof(hw_cache_extra_regs)); 4048 4049 intel_pmu_lbr_init_skl(); 4050 4051 x86_pmu.event_constraints = intel_slm_event_constraints; 4052 x86_pmu.pebs_constraints = intel_glp_pebs_event_constraints; 4053 x86_pmu.extra_regs = intel_glm_extra_regs; 4054 /* 4055 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS 4056 * for precise cycles. 4057 */ 4058 x86_pmu.pebs_aliases = NULL; 4059 x86_pmu.pebs_prec_dist = true; 4060 x86_pmu.lbr_pt_coexist = true; 4061 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4062 x86_pmu.get_event_constraints = glp_get_event_constraints; 4063 x86_pmu.cpu_events = glm_events_attrs; 4064 /* Goldmont Plus has 4-wide pipeline */ 4065 event_attr_td_total_slots_scale_glm.event_str = "4"; 4066 extra_attr = slm_format_attr; 4067 pr_cont("Goldmont plus events, "); 4068 name = "goldmont_plus"; 4069 break; 4070 4071 case INTEL_FAM6_WESTMERE: 4072 case INTEL_FAM6_WESTMERE_EP: 4073 case INTEL_FAM6_WESTMERE_EX: 4074 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids, 4075 sizeof(hw_cache_event_ids)); 4076 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs, 4077 sizeof(hw_cache_extra_regs)); 4078 4079 intel_pmu_lbr_init_nhm(); 4080 4081 x86_pmu.event_constraints = intel_westmere_event_constraints; 4082 x86_pmu.enable_all = intel_pmu_nhm_enable_all; 4083 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints; 4084 x86_pmu.extra_regs = intel_westmere_extra_regs; 4085 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4086 4087 x86_pmu.cpu_events = nhm_events_attrs; 4088 4089 /* UOPS_ISSUED.STALLED_CYCLES */ 4090 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 4091 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); 4092 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */ 4093 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 4094 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1); 4095 4096 intel_pmu_pebs_data_source_nhm(); 4097 extra_attr = nhm_format_attr; 4098 pr_cont("Westmere events, "); 4099 name = "westmere"; 4100 break; 4101 4102 case INTEL_FAM6_SANDYBRIDGE: 4103 case INTEL_FAM6_SANDYBRIDGE_X: 4104 x86_add_quirk(intel_sandybridge_quirk); 4105 x86_add_quirk(intel_ht_bug); 4106 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids, 4107 sizeof(hw_cache_event_ids)); 4108 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs, 4109 sizeof(hw_cache_extra_regs)); 4110 4111 intel_pmu_lbr_init_snb(); 4112 4113 x86_pmu.event_constraints = intel_snb_event_constraints; 4114 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints; 4115 x86_pmu.pebs_aliases = intel_pebs_aliases_snb; 4116 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X) 4117 x86_pmu.extra_regs = intel_snbep_extra_regs; 4118 else 4119 x86_pmu.extra_regs = intel_snb_extra_regs; 4120 4121 4122 /* all extra regs are per-cpu when HT is on */ 4123 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4124 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 4125 4126 x86_pmu.cpu_events = snb_events_attrs; 4127 4128 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */ 4129 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 4130 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); 4131 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/ 4132 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 4133 X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1); 4134 4135 extra_attr = nhm_format_attr; 4136 4137 pr_cont("SandyBridge events, "); 4138 name = "sandybridge"; 4139 break; 4140 4141 case INTEL_FAM6_IVYBRIDGE: 4142 case INTEL_FAM6_IVYBRIDGE_X: 4143 x86_add_quirk(intel_ht_bug); 4144 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids, 4145 sizeof(hw_cache_event_ids)); 4146 /* dTLB-load-misses on IVB is different than SNB */ 4147 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */ 4148 4149 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs, 4150 sizeof(hw_cache_extra_regs)); 4151 4152 intel_pmu_lbr_init_snb(); 4153 4154 x86_pmu.event_constraints = intel_ivb_event_constraints; 4155 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints; 4156 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb; 4157 x86_pmu.pebs_prec_dist = true; 4158 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X) 4159 x86_pmu.extra_regs = intel_snbep_extra_regs; 4160 else 4161 x86_pmu.extra_regs = intel_snb_extra_regs; 4162 /* all extra regs are per-cpu when HT is on */ 4163 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4164 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 4165 4166 x86_pmu.cpu_events = snb_events_attrs; 4167 4168 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */ 4169 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 4170 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); 4171 4172 extra_attr = nhm_format_attr; 4173 4174 pr_cont("IvyBridge events, "); 4175 name = "ivybridge"; 4176 break; 4177 4178 4179 case INTEL_FAM6_HASWELL_CORE: 4180 case INTEL_FAM6_HASWELL_X: 4181 case INTEL_FAM6_HASWELL_ULT: 4182 case INTEL_FAM6_HASWELL_GT3E: 4183 x86_add_quirk(intel_ht_bug); 4184 x86_pmu.late_ack = true; 4185 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 4186 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); 4187 4188 intel_pmu_lbr_init_hsw(); 4189 4190 x86_pmu.event_constraints = intel_hsw_event_constraints; 4191 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints; 4192 x86_pmu.extra_regs = intel_snbep_extra_regs; 4193 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb; 4194 x86_pmu.pebs_prec_dist = true; 4195 /* all extra regs are per-cpu when HT is on */ 4196 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4197 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 4198 4199 x86_pmu.hw_config = hsw_hw_config; 4200 x86_pmu.get_event_constraints = hsw_get_event_constraints; 4201 x86_pmu.cpu_events = get_hsw_events_attrs(); 4202 x86_pmu.lbr_double_abort = true; 4203 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? 4204 hsw_format_attr : nhm_format_attr; 4205 pr_cont("Haswell events, "); 4206 name = "haswell"; 4207 break; 4208 4209 case INTEL_FAM6_BROADWELL_CORE: 4210 case INTEL_FAM6_BROADWELL_XEON_D: 4211 case INTEL_FAM6_BROADWELL_GT3E: 4212 case INTEL_FAM6_BROADWELL_X: 4213 x86_pmu.late_ack = true; 4214 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 4215 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); 4216 4217 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */ 4218 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ | 4219 BDW_L3_MISS|HSW_SNOOP_DRAM; 4220 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS| 4221 HSW_SNOOP_DRAM; 4222 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ| 4223 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM; 4224 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE| 4225 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM; 4226 4227 intel_pmu_lbr_init_hsw(); 4228 4229 x86_pmu.event_constraints = intel_bdw_event_constraints; 4230 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints; 4231 x86_pmu.extra_regs = intel_snbep_extra_regs; 4232 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb; 4233 x86_pmu.pebs_prec_dist = true; 4234 /* all extra regs are per-cpu when HT is on */ 4235 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4236 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 4237 4238 x86_pmu.hw_config = hsw_hw_config; 4239 x86_pmu.get_event_constraints = hsw_get_event_constraints; 4240 x86_pmu.cpu_events = get_hsw_events_attrs(); 4241 x86_pmu.limit_period = bdw_limit_period; 4242 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? 4243 hsw_format_attr : nhm_format_attr; 4244 pr_cont("Broadwell events, "); 4245 name = "broadwell"; 4246 break; 4247 4248 case INTEL_FAM6_XEON_PHI_KNL: 4249 case INTEL_FAM6_XEON_PHI_KNM: 4250 memcpy(hw_cache_event_ids, 4251 slm_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 4252 memcpy(hw_cache_extra_regs, 4253 knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); 4254 intel_pmu_lbr_init_knl(); 4255 4256 x86_pmu.event_constraints = intel_slm_event_constraints; 4257 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints; 4258 x86_pmu.extra_regs = intel_knl_extra_regs; 4259 4260 /* all extra regs are per-cpu when HT is on */ 4261 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4262 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 4263 extra_attr = slm_format_attr; 4264 pr_cont("Knights Landing/Mill events, "); 4265 name = "knights-landing"; 4266 break; 4267 4268 case INTEL_FAM6_SKYLAKE_MOBILE: 4269 case INTEL_FAM6_SKYLAKE_DESKTOP: 4270 case INTEL_FAM6_SKYLAKE_X: 4271 case INTEL_FAM6_KABYLAKE_MOBILE: 4272 case INTEL_FAM6_KABYLAKE_DESKTOP: 4273 x86_pmu.late_ack = true; 4274 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 4275 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); 4276 intel_pmu_lbr_init_skl(); 4277 4278 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */ 4279 event_attr_td_recovery_bubbles.event_str_noht = 4280 "event=0xd,umask=0x1,cmask=1"; 4281 event_attr_td_recovery_bubbles.event_str_ht = 4282 "event=0xd,umask=0x1,cmask=1,any=1"; 4283 4284 x86_pmu.event_constraints = intel_skl_event_constraints; 4285 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints; 4286 x86_pmu.extra_regs = intel_skl_extra_regs; 4287 x86_pmu.pebs_aliases = intel_pebs_aliases_skl; 4288 x86_pmu.pebs_prec_dist = true; 4289 /* all extra regs are per-cpu when HT is on */ 4290 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4291 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 4292 4293 x86_pmu.hw_config = hsw_hw_config; 4294 x86_pmu.get_event_constraints = hsw_get_event_constraints; 4295 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? 4296 hsw_format_attr : nhm_format_attr; 4297 extra_attr = merge_attr(extra_attr, skl_format_attr); 4298 to_free = extra_attr; 4299 x86_pmu.cpu_events = get_hsw_events_attrs(); 4300 intel_pmu_pebs_data_source_skl( 4301 boot_cpu_data.x86_model == INTEL_FAM6_SKYLAKE_X); 4302 pr_cont("Skylake events, "); 4303 name = "skylake"; 4304 break; 4305 4306 default: 4307 switch (x86_pmu.version) { 4308 case 1: 4309 x86_pmu.event_constraints = intel_v1_event_constraints; 4310 pr_cont("generic architected perfmon v1, "); 4311 name = "generic_arch_v1"; 4312 break; 4313 default: 4314 /* 4315 * default constraints for v2 and up 4316 */ 4317 x86_pmu.event_constraints = intel_gen_event_constraints; 4318 pr_cont("generic architected perfmon, "); 4319 name = "generic_arch_v2+"; 4320 break; 4321 } 4322 } 4323 4324 snprintf(pmu_name_str, sizeof pmu_name_str, "%s", name); 4325 4326 if (version >= 2 && extra_attr) { 4327 x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr, 4328 extra_attr); 4329 WARN_ON(!x86_pmu.format_attrs); 4330 } 4331 4332 if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) { 4333 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!", 4334 x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC); 4335 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC; 4336 } 4337 x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1; 4338 4339 if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) { 4340 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!", 4341 x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED); 4342 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED; 4343 } 4344 4345 x86_pmu.intel_ctrl |= 4346 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED; 4347 4348 if (x86_pmu.event_constraints) { 4349 /* 4350 * event on fixed counter2 (REF_CYCLES) only works on this 4351 * counter, so do not extend mask to generic counters 4352 */ 4353 for_each_event_constraint(c, x86_pmu.event_constraints) { 4354 if (c->cmask == FIXED_EVENT_FLAGS 4355 && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) { 4356 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1; 4357 } 4358 c->idxmsk64 &= 4359 ~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed)); 4360 c->weight = hweight64(c->idxmsk64); 4361 } 4362 } 4363 4364 /* 4365 * Access LBR MSR may cause #GP under certain circumstances. 4366 * E.g. KVM doesn't support LBR MSR 4367 * Check all LBT MSR here. 4368 * Disable LBR access if any LBR MSRs can not be accessed. 4369 */ 4370 if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL)) 4371 x86_pmu.lbr_nr = 0; 4372 for (i = 0; i < x86_pmu.lbr_nr; i++) { 4373 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) && 4374 check_msr(x86_pmu.lbr_to + i, 0xffffUL))) 4375 x86_pmu.lbr_nr = 0; 4376 } 4377 4378 x86_pmu.caps_attrs = intel_pmu_caps_attrs; 4379 4380 if (x86_pmu.lbr_nr) { 4381 x86_pmu.caps_attrs = merge_attr(x86_pmu.caps_attrs, lbr_attrs); 4382 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr); 4383 } 4384 4385 /* 4386 * Access extra MSR may cause #GP under certain circumstances. 4387 * E.g. KVM doesn't support offcore event 4388 * Check all extra_regs here. 4389 */ 4390 if (x86_pmu.extra_regs) { 4391 for (er = x86_pmu.extra_regs; er->msr; er++) { 4392 er->extra_msr_access = check_msr(er->msr, 0x11UL); 4393 /* Disable LBR select mapping */ 4394 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access) 4395 x86_pmu.lbr_sel_map = NULL; 4396 } 4397 } 4398 4399 /* Support full width counters using alternative MSR range */ 4400 if (x86_pmu.intel_cap.full_width_write) { 4401 x86_pmu.max_period = x86_pmu.cntval_mask >> 1; 4402 x86_pmu.perfctr = MSR_IA32_PMC0; 4403 pr_cont("full-width counters, "); 4404 } 4405 4406 kfree(to_free); 4407 return 0; 4408 } 4409 4410 /* 4411 * HT bug: phase 2 init 4412 * Called once we have valid topology information to check 4413 * whether or not HT is enabled 4414 * If HT is off, then we disable the workaround 4415 */ 4416 static __init int fixup_ht_bug(void) 4417 { 4418 int c; 4419 /* 4420 * problem not present on this CPU model, nothing to do 4421 */ 4422 if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED)) 4423 return 0; 4424 4425 if (topology_max_smt_threads() > 1) { 4426 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n"); 4427 return 0; 4428 } 4429 4430 cpus_read_lock(); 4431 4432 hardlockup_detector_perf_stop(); 4433 4434 x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED); 4435 4436 x86_pmu.start_scheduling = NULL; 4437 x86_pmu.commit_scheduling = NULL; 4438 x86_pmu.stop_scheduling = NULL; 4439 4440 hardlockup_detector_perf_restart(); 4441 4442 for_each_online_cpu(c) 4443 free_excl_cntrs(c); 4444 4445 cpus_read_unlock(); 4446 pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n"); 4447 return 0; 4448 } 4449 subsys_initcall(fixup_ht_bug) 4450