xref: /openbmc/linux/arch/x86/events/intel/core.c (revision fb4a5dfca0f0a027e2d89be00e53adb2827943f6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Per core/cpu state
4  *
5  * Used to coordinate shared registers between HT threads or
6  * among events on a single PMU.
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
17 #include <linux/kvm_host.h>
18 
19 #include <asm/cpufeature.h>
20 #include <asm/hardirq.h>
21 #include <asm/intel-family.h>
22 #include <asm/intel_pt.h>
23 #include <asm/apic.h>
24 #include <asm/cpu_device_id.h>
25 
26 #include "../perf_event.h"
27 
28 /*
29  * Intel PerfMon, used on Core and later.
30  */
31 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
32 {
33 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
34 	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
35 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
36 	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
37 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
38 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
39 	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
40 	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
41 };
42 
43 static struct event_constraint intel_core_event_constraints[] __read_mostly =
44 {
45 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
46 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
47 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
48 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
49 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
50 	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
51 	EVENT_CONSTRAINT_END
52 };
53 
54 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
55 {
56 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
57 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
58 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
59 	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
60 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
61 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
62 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
63 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
64 	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
65 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
66 	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
67 	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
68 	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
69 	EVENT_CONSTRAINT_END
70 };
71 
72 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
73 {
74 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
75 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
76 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
77 	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
78 	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
79 	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
80 	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
81 	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
82 	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
83 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
84 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
85 	EVENT_CONSTRAINT_END
86 };
87 
88 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
89 {
90 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
91 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
92 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
93 	EVENT_EXTRA_END
94 };
95 
96 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
97 {
98 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
99 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
100 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
101 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
102 	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
103 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
104 	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
105 	EVENT_CONSTRAINT_END
106 };
107 
108 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
109 {
110 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
111 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
112 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
113 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
114 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
115 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
116 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
117 	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
118 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
119 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
120 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
121 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
122 
123 	/*
124 	 * When HT is off these events can only run on the bottom 4 counters
125 	 * When HT is on, they are impacted by the HT bug and require EXCL access
126 	 */
127 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
128 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
129 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
130 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
131 
132 	EVENT_CONSTRAINT_END
133 };
134 
135 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
136 {
137 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
138 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
139 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
140 	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
141 	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMPTY */
142 	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
143 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
144 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
145 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
146 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
147 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
148 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
149 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
150 
151 	/*
152 	 * When HT is off these events can only run on the bottom 4 counters
153 	 * When HT is on, they are impacted by the HT bug and require EXCL access
154 	 */
155 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
156 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
157 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
158 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
159 
160 	EVENT_CONSTRAINT_END
161 };
162 
163 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
164 {
165 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
166 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
167 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
168 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
169 	EVENT_EXTRA_END
170 };
171 
172 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
173 {
174 	EVENT_CONSTRAINT_END
175 };
176 
177 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
178 {
179 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
180 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
181 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
182 	EVENT_CONSTRAINT_END
183 };
184 
185 static struct event_constraint intel_v5_gen_event_constraints[] __read_mostly =
186 {
187 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
188 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
189 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
190 	FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
191 	FIXED_EVENT_CONSTRAINT(0x0500, 4),
192 	FIXED_EVENT_CONSTRAINT(0x0600, 5),
193 	FIXED_EVENT_CONSTRAINT(0x0700, 6),
194 	FIXED_EVENT_CONSTRAINT(0x0800, 7),
195 	FIXED_EVENT_CONSTRAINT(0x0900, 8),
196 	FIXED_EVENT_CONSTRAINT(0x0a00, 9),
197 	FIXED_EVENT_CONSTRAINT(0x0b00, 10),
198 	FIXED_EVENT_CONSTRAINT(0x0c00, 11),
199 	FIXED_EVENT_CONSTRAINT(0x0d00, 12),
200 	FIXED_EVENT_CONSTRAINT(0x0e00, 13),
201 	FIXED_EVENT_CONSTRAINT(0x0f00, 14),
202 	FIXED_EVENT_CONSTRAINT(0x1000, 15),
203 	EVENT_CONSTRAINT_END
204 };
205 
206 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
207 {
208 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
209 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
210 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
211 	EVENT_CONSTRAINT_END
212 };
213 
214 static struct event_constraint intel_skl_event_constraints[] = {
215 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
216 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
217 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
218 	INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
219 
220 	/*
221 	 * when HT is off, these can only run on the bottom 4 counters
222 	 */
223 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
224 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
225 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
226 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
227 	INTEL_EVENT_CONSTRAINT(0xc6, 0xf),	/* FRONTEND_RETIRED.* */
228 
229 	EVENT_CONSTRAINT_END
230 };
231 
232 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
233 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
234 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
235 	EVENT_EXTRA_END
236 };
237 
238 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
239 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
240 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
241 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
242 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
243 	EVENT_EXTRA_END
244 };
245 
246 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
247 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
248 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
249 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
250 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
251 	EVENT_EXTRA_END
252 };
253 
254 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
255 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
256 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
257 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
258 	/*
259 	 * Note the low 8 bits eventsel code is not a continuous field, containing
260 	 * some #GPing bits. These are masked out.
261 	 */
262 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
263 	EVENT_EXTRA_END
264 };
265 
266 static struct event_constraint intel_icl_event_constraints[] = {
267 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
268 	FIXED_EVENT_CONSTRAINT(0x01c0, 0),	/* old INST_RETIRED.PREC_DIST */
269 	FIXED_EVENT_CONSTRAINT(0x0100, 0),	/* INST_RETIRED.PREC_DIST */
270 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
271 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
272 	FIXED_EVENT_CONSTRAINT(0x0400, 3),	/* SLOTS */
273 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
274 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
275 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
276 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
277 	INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
278 	INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
279 	INTEL_EVENT_CONSTRAINT(0x32, 0xf),	/* SW_PREFETCH_ACCESS.* */
280 	INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x56, 0xf),
281 	INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
282 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_TOTAL */
283 	INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff),  /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
284 	INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
285 	INTEL_EVENT_CONSTRAINT(0xa3, 0xf),      /* CYCLE_ACTIVITY.* */
286 	INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
287 	INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
288 	INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
289 	INTEL_EVENT_CONSTRAINT(0xef, 0xf),
290 	INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
291 	EVENT_CONSTRAINT_END
292 };
293 
294 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
295 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
296 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
297 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
298 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
299 	EVENT_EXTRA_END
300 };
301 
302 static struct extra_reg intel_spr_extra_regs[] __read_mostly = {
303 	INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
304 	INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
305 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
306 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
307 	INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
308 	INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
309 	EVENT_EXTRA_END
310 };
311 
312 static struct event_constraint intel_spr_event_constraints[] = {
313 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
314 	FIXED_EVENT_CONSTRAINT(0x0100, 0),	/* INST_RETIRED.PREC_DIST */
315 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
316 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
317 	FIXED_EVENT_CONSTRAINT(0x0400, 3),	/* SLOTS */
318 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
319 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
320 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
321 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
322 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
323 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
324 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
325 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
326 
327 	INTEL_EVENT_CONSTRAINT(0x2e, 0xff),
328 	INTEL_EVENT_CONSTRAINT(0x3c, 0xff),
329 	/*
330 	 * Generally event codes < 0x90 are restricted to counters 0-3.
331 	 * The 0x2E and 0x3C are exception, which has no restriction.
332 	 */
333 	INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),
334 
335 	INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
336 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
337 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf),
338 	INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
339 	INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
340 	INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1),
341 	INTEL_EVENT_CONSTRAINT(0xce, 0x1),
342 	INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
343 	/*
344 	 * Generally event codes >= 0x90 are likely to have no restrictions.
345 	 * The exception are defined as above.
346 	 */
347 	INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff),
348 
349 	EVENT_CONSTRAINT_END
350 };
351 
352 
353 EVENT_ATTR_STR(mem-loads,	mem_ld_nhm,	"event=0x0b,umask=0x10,ldlat=3");
354 EVENT_ATTR_STR(mem-loads,	mem_ld_snb,	"event=0xcd,umask=0x1,ldlat=3");
355 EVENT_ATTR_STR(mem-stores,	mem_st_snb,	"event=0xcd,umask=0x2");
356 
357 static struct attribute *nhm_mem_events_attrs[] = {
358 	EVENT_PTR(mem_ld_nhm),
359 	NULL,
360 };
361 
362 /*
363  * topdown events for Intel Core CPUs.
364  *
365  * The events are all in slots, which is a free slot in a 4 wide
366  * pipeline. Some events are already reported in slots, for cycle
367  * events we multiply by the pipeline width (4).
368  *
369  * With Hyper Threading on, topdown metrics are either summed or averaged
370  * between the threads of a core: (count_t0 + count_t1).
371  *
372  * For the average case the metric is always scaled to pipeline width,
373  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
374  */
375 
376 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
377 	"event=0x3c,umask=0x0",			/* cpu_clk_unhalted.thread */
378 	"event=0x3c,umask=0x0,any=1");		/* cpu_clk_unhalted.thread_any */
379 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
380 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
381 	"event=0xe,umask=0x1");			/* uops_issued.any */
382 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
383 	"event=0xc2,umask=0x2");		/* uops_retired.retire_slots */
384 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
385 	"event=0x9c,umask=0x1");		/* idq_uops_not_delivered_core */
386 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
387 	"event=0xd,umask=0x3,cmask=1",		/* int_misc.recovery_cycles */
388 	"event=0xd,umask=0x3,cmask=1,any=1");	/* int_misc.recovery_cycles_any */
389 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
390 	"4", "2");
391 
392 EVENT_ATTR_STR(slots,			slots,			"event=0x00,umask=0x4");
393 EVENT_ATTR_STR(topdown-retiring,	td_retiring,		"event=0x00,umask=0x80");
394 EVENT_ATTR_STR(topdown-bad-spec,	td_bad_spec,		"event=0x00,umask=0x81");
395 EVENT_ATTR_STR(topdown-fe-bound,	td_fe_bound,		"event=0x00,umask=0x82");
396 EVENT_ATTR_STR(topdown-be-bound,	td_be_bound,		"event=0x00,umask=0x83");
397 EVENT_ATTR_STR(topdown-heavy-ops,	td_heavy_ops,		"event=0x00,umask=0x84");
398 EVENT_ATTR_STR(topdown-br-mispredict,	td_br_mispredict,	"event=0x00,umask=0x85");
399 EVENT_ATTR_STR(topdown-fetch-lat,	td_fetch_lat,		"event=0x00,umask=0x86");
400 EVENT_ATTR_STR(topdown-mem-bound,	td_mem_bound,		"event=0x00,umask=0x87");
401 
402 static struct attribute *snb_events_attrs[] = {
403 	EVENT_PTR(td_slots_issued),
404 	EVENT_PTR(td_slots_retired),
405 	EVENT_PTR(td_fetch_bubbles),
406 	EVENT_PTR(td_total_slots),
407 	EVENT_PTR(td_total_slots_scale),
408 	EVENT_PTR(td_recovery_bubbles),
409 	EVENT_PTR(td_recovery_bubbles_scale),
410 	NULL,
411 };
412 
413 static struct attribute *snb_mem_events_attrs[] = {
414 	EVENT_PTR(mem_ld_snb),
415 	EVENT_PTR(mem_st_snb),
416 	NULL,
417 };
418 
419 static struct event_constraint intel_hsw_event_constraints[] = {
420 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
421 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
422 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
423 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
424 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
425 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
426 	/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
427 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
428 	/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
429 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
430 	/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
431 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
432 
433 	/*
434 	 * When HT is off these events can only run on the bottom 4 counters
435 	 * When HT is on, they are impacted by the HT bug and require EXCL access
436 	 */
437 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
438 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
439 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
440 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
441 
442 	EVENT_CONSTRAINT_END
443 };
444 
445 static struct event_constraint intel_bdw_event_constraints[] = {
446 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
447 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
448 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
449 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
450 	INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),	/* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
451 	/*
452 	 * when HT is off, these can only run on the bottom 4 counters
453 	 */
454 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
455 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
456 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
457 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
458 	EVENT_CONSTRAINT_END
459 };
460 
461 static u64 intel_pmu_event_map(int hw_event)
462 {
463 	return intel_perfmon_event_map[hw_event];
464 }
465 
466 static __initconst const u64 spr_hw_cache_event_ids
467 				[PERF_COUNT_HW_CACHE_MAX]
468 				[PERF_COUNT_HW_CACHE_OP_MAX]
469 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
470 {
471  [ C(L1D ) ] = {
472 	[ C(OP_READ) ] = {
473 		[ C(RESULT_ACCESS) ] = 0x81d0,
474 		[ C(RESULT_MISS)   ] = 0xe124,
475 	},
476 	[ C(OP_WRITE) ] = {
477 		[ C(RESULT_ACCESS) ] = 0x82d0,
478 	},
479  },
480  [ C(L1I ) ] = {
481 	[ C(OP_READ) ] = {
482 		[ C(RESULT_MISS)   ] = 0xe424,
483 	},
484 	[ C(OP_WRITE) ] = {
485 		[ C(RESULT_ACCESS) ] = -1,
486 		[ C(RESULT_MISS)   ] = -1,
487 	},
488  },
489  [ C(LL  ) ] = {
490 	[ C(OP_READ) ] = {
491 		[ C(RESULT_ACCESS) ] = 0x12a,
492 		[ C(RESULT_MISS)   ] = 0x12a,
493 	},
494 	[ C(OP_WRITE) ] = {
495 		[ C(RESULT_ACCESS) ] = 0x12a,
496 		[ C(RESULT_MISS)   ] = 0x12a,
497 	},
498  },
499  [ C(DTLB) ] = {
500 	[ C(OP_READ) ] = {
501 		[ C(RESULT_ACCESS) ] = 0x81d0,
502 		[ C(RESULT_MISS)   ] = 0xe12,
503 	},
504 	[ C(OP_WRITE) ] = {
505 		[ C(RESULT_ACCESS) ] = 0x82d0,
506 		[ C(RESULT_MISS)   ] = 0xe13,
507 	},
508  },
509  [ C(ITLB) ] = {
510 	[ C(OP_READ) ] = {
511 		[ C(RESULT_ACCESS) ] = -1,
512 		[ C(RESULT_MISS)   ] = 0xe11,
513 	},
514 	[ C(OP_WRITE) ] = {
515 		[ C(RESULT_ACCESS) ] = -1,
516 		[ C(RESULT_MISS)   ] = -1,
517 	},
518 	[ C(OP_PREFETCH) ] = {
519 		[ C(RESULT_ACCESS) ] = -1,
520 		[ C(RESULT_MISS)   ] = -1,
521 	},
522  },
523  [ C(BPU ) ] = {
524 	[ C(OP_READ) ] = {
525 		[ C(RESULT_ACCESS) ] = 0x4c4,
526 		[ C(RESULT_MISS)   ] = 0x4c5,
527 	},
528 	[ C(OP_WRITE) ] = {
529 		[ C(RESULT_ACCESS) ] = -1,
530 		[ C(RESULT_MISS)   ] = -1,
531 	},
532 	[ C(OP_PREFETCH) ] = {
533 		[ C(RESULT_ACCESS) ] = -1,
534 		[ C(RESULT_MISS)   ] = -1,
535 	},
536  },
537  [ C(NODE) ] = {
538 	[ C(OP_READ) ] = {
539 		[ C(RESULT_ACCESS) ] = 0x12a,
540 		[ C(RESULT_MISS)   ] = 0x12a,
541 	},
542  },
543 };
544 
545 static __initconst const u64 spr_hw_cache_extra_regs
546 				[PERF_COUNT_HW_CACHE_MAX]
547 				[PERF_COUNT_HW_CACHE_OP_MAX]
548 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
549 {
550  [ C(LL  ) ] = {
551 	[ C(OP_READ) ] = {
552 		[ C(RESULT_ACCESS) ] = 0x10001,
553 		[ C(RESULT_MISS)   ] = 0x3fbfc00001,
554 	},
555 	[ C(OP_WRITE) ] = {
556 		[ C(RESULT_ACCESS) ] = 0x3f3ffc0002,
557 		[ C(RESULT_MISS)   ] = 0x3f3fc00002,
558 	},
559  },
560  [ C(NODE) ] = {
561 	[ C(OP_READ) ] = {
562 		[ C(RESULT_ACCESS) ] = 0x10c000001,
563 		[ C(RESULT_MISS)   ] = 0x3fb3000001,
564 	},
565  },
566 };
567 
568 /*
569  * Notes on the events:
570  * - data reads do not include code reads (comparable to earlier tables)
571  * - data counts include speculative execution (except L1 write, dtlb, bpu)
572  * - remote node access includes remote memory, remote cache, remote mmio.
573  * - prefetches are not included in the counts.
574  * - icache miss does not include decoded icache
575  */
576 
577 #define SKL_DEMAND_DATA_RD		BIT_ULL(0)
578 #define SKL_DEMAND_RFO			BIT_ULL(1)
579 #define SKL_ANY_RESPONSE		BIT_ULL(16)
580 #define SKL_SUPPLIER_NONE		BIT_ULL(17)
581 #define SKL_L3_MISS_LOCAL_DRAM		BIT_ULL(26)
582 #define SKL_L3_MISS_REMOTE_HOP0_DRAM	BIT_ULL(27)
583 #define SKL_L3_MISS_REMOTE_HOP1_DRAM	BIT_ULL(28)
584 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM	BIT_ULL(29)
585 #define SKL_L3_MISS			(SKL_L3_MISS_LOCAL_DRAM| \
586 					 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
587 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
588 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
589 #define SKL_SPL_HIT			BIT_ULL(30)
590 #define SKL_SNOOP_NONE			BIT_ULL(31)
591 #define SKL_SNOOP_NOT_NEEDED		BIT_ULL(32)
592 #define SKL_SNOOP_MISS			BIT_ULL(33)
593 #define SKL_SNOOP_HIT_NO_FWD		BIT_ULL(34)
594 #define SKL_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
595 #define SKL_SNOOP_HITM			BIT_ULL(36)
596 #define SKL_SNOOP_NON_DRAM		BIT_ULL(37)
597 #define SKL_ANY_SNOOP			(SKL_SPL_HIT|SKL_SNOOP_NONE| \
598 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
599 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
600 					 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
601 #define SKL_DEMAND_READ			SKL_DEMAND_DATA_RD
602 #define SKL_SNOOP_DRAM			(SKL_SNOOP_NONE| \
603 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
604 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
605 					 SKL_SNOOP_HITM|SKL_SPL_HIT)
606 #define SKL_DEMAND_WRITE		SKL_DEMAND_RFO
607 #define SKL_LLC_ACCESS			SKL_ANY_RESPONSE
608 #define SKL_L3_MISS_REMOTE		(SKL_L3_MISS_REMOTE_HOP0_DRAM| \
609 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
610 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
611 
612 static __initconst const u64 skl_hw_cache_event_ids
613 				[PERF_COUNT_HW_CACHE_MAX]
614 				[PERF_COUNT_HW_CACHE_OP_MAX]
615 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
616 {
617  [ C(L1D ) ] = {
618 	[ C(OP_READ) ] = {
619 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
620 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
621 	},
622 	[ C(OP_WRITE) ] = {
623 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
624 		[ C(RESULT_MISS)   ] = 0x0,
625 	},
626 	[ C(OP_PREFETCH) ] = {
627 		[ C(RESULT_ACCESS) ] = 0x0,
628 		[ C(RESULT_MISS)   ] = 0x0,
629 	},
630  },
631  [ C(L1I ) ] = {
632 	[ C(OP_READ) ] = {
633 		[ C(RESULT_ACCESS) ] = 0x0,
634 		[ C(RESULT_MISS)   ] = 0x283,	/* ICACHE_64B.MISS */
635 	},
636 	[ C(OP_WRITE) ] = {
637 		[ C(RESULT_ACCESS) ] = -1,
638 		[ C(RESULT_MISS)   ] = -1,
639 	},
640 	[ C(OP_PREFETCH) ] = {
641 		[ C(RESULT_ACCESS) ] = 0x0,
642 		[ C(RESULT_MISS)   ] = 0x0,
643 	},
644  },
645  [ C(LL  ) ] = {
646 	[ C(OP_READ) ] = {
647 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
648 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
649 	},
650 	[ C(OP_WRITE) ] = {
651 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
652 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
653 	},
654 	[ C(OP_PREFETCH) ] = {
655 		[ C(RESULT_ACCESS) ] = 0x0,
656 		[ C(RESULT_MISS)   ] = 0x0,
657 	},
658  },
659  [ C(DTLB) ] = {
660 	[ C(OP_READ) ] = {
661 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
662 		[ C(RESULT_MISS)   ] = 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
663 	},
664 	[ C(OP_WRITE) ] = {
665 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
666 		[ C(RESULT_MISS)   ] = 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
667 	},
668 	[ C(OP_PREFETCH) ] = {
669 		[ C(RESULT_ACCESS) ] = 0x0,
670 		[ C(RESULT_MISS)   ] = 0x0,
671 	},
672  },
673  [ C(ITLB) ] = {
674 	[ C(OP_READ) ] = {
675 		[ C(RESULT_ACCESS) ] = 0x2085,	/* ITLB_MISSES.STLB_HIT */
676 		[ C(RESULT_MISS)   ] = 0xe85,	/* ITLB_MISSES.WALK_COMPLETED */
677 	},
678 	[ C(OP_WRITE) ] = {
679 		[ C(RESULT_ACCESS) ] = -1,
680 		[ C(RESULT_MISS)   ] = -1,
681 	},
682 	[ C(OP_PREFETCH) ] = {
683 		[ C(RESULT_ACCESS) ] = -1,
684 		[ C(RESULT_MISS)   ] = -1,
685 	},
686  },
687  [ C(BPU ) ] = {
688 	[ C(OP_READ) ] = {
689 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
690 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
691 	},
692 	[ C(OP_WRITE) ] = {
693 		[ C(RESULT_ACCESS) ] = -1,
694 		[ C(RESULT_MISS)   ] = -1,
695 	},
696 	[ C(OP_PREFETCH) ] = {
697 		[ C(RESULT_ACCESS) ] = -1,
698 		[ C(RESULT_MISS)   ] = -1,
699 	},
700  },
701  [ C(NODE) ] = {
702 	[ C(OP_READ) ] = {
703 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
704 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
705 	},
706 	[ C(OP_WRITE) ] = {
707 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
708 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
709 	},
710 	[ C(OP_PREFETCH) ] = {
711 		[ C(RESULT_ACCESS) ] = 0x0,
712 		[ C(RESULT_MISS)   ] = 0x0,
713 	},
714  },
715 };
716 
717 static __initconst const u64 skl_hw_cache_extra_regs
718 				[PERF_COUNT_HW_CACHE_MAX]
719 				[PERF_COUNT_HW_CACHE_OP_MAX]
720 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
721 {
722  [ C(LL  ) ] = {
723 	[ C(OP_READ) ] = {
724 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
725 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
726 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
727 				       SKL_L3_MISS|SKL_ANY_SNOOP|
728 				       SKL_SUPPLIER_NONE,
729 	},
730 	[ C(OP_WRITE) ] = {
731 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
732 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
733 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
734 				       SKL_L3_MISS|SKL_ANY_SNOOP|
735 				       SKL_SUPPLIER_NONE,
736 	},
737 	[ C(OP_PREFETCH) ] = {
738 		[ C(RESULT_ACCESS) ] = 0x0,
739 		[ C(RESULT_MISS)   ] = 0x0,
740 	},
741  },
742  [ C(NODE) ] = {
743 	[ C(OP_READ) ] = {
744 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
745 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
746 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
747 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
748 	},
749 	[ C(OP_WRITE) ] = {
750 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
751 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
752 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
753 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
754 	},
755 	[ C(OP_PREFETCH) ] = {
756 		[ C(RESULT_ACCESS) ] = 0x0,
757 		[ C(RESULT_MISS)   ] = 0x0,
758 	},
759  },
760 };
761 
762 #define SNB_DMND_DATA_RD	(1ULL << 0)
763 #define SNB_DMND_RFO		(1ULL << 1)
764 #define SNB_DMND_IFETCH		(1ULL << 2)
765 #define SNB_DMND_WB		(1ULL << 3)
766 #define SNB_PF_DATA_RD		(1ULL << 4)
767 #define SNB_PF_RFO		(1ULL << 5)
768 #define SNB_PF_IFETCH		(1ULL << 6)
769 #define SNB_LLC_DATA_RD		(1ULL << 7)
770 #define SNB_LLC_RFO		(1ULL << 8)
771 #define SNB_LLC_IFETCH		(1ULL << 9)
772 #define SNB_BUS_LOCKS		(1ULL << 10)
773 #define SNB_STRM_ST		(1ULL << 11)
774 #define SNB_OTHER		(1ULL << 15)
775 #define SNB_RESP_ANY		(1ULL << 16)
776 #define SNB_NO_SUPP		(1ULL << 17)
777 #define SNB_LLC_HITM		(1ULL << 18)
778 #define SNB_LLC_HITE		(1ULL << 19)
779 #define SNB_LLC_HITS		(1ULL << 20)
780 #define SNB_LLC_HITF		(1ULL << 21)
781 #define SNB_LOCAL		(1ULL << 22)
782 #define SNB_REMOTE		(0xffULL << 23)
783 #define SNB_SNP_NONE		(1ULL << 31)
784 #define SNB_SNP_NOT_NEEDED	(1ULL << 32)
785 #define SNB_SNP_MISS		(1ULL << 33)
786 #define SNB_NO_FWD		(1ULL << 34)
787 #define SNB_SNP_FWD		(1ULL << 35)
788 #define SNB_HITM		(1ULL << 36)
789 #define SNB_NON_DRAM		(1ULL << 37)
790 
791 #define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
792 #define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
793 #define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
794 
795 #define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
796 				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
797 				 SNB_HITM)
798 
799 #define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
800 #define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)
801 
802 #define SNB_L3_ACCESS		SNB_RESP_ANY
803 #define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)
804 
805 static __initconst const u64 snb_hw_cache_extra_regs
806 				[PERF_COUNT_HW_CACHE_MAX]
807 				[PERF_COUNT_HW_CACHE_OP_MAX]
808 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
809 {
810  [ C(LL  ) ] = {
811 	[ C(OP_READ) ] = {
812 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
813 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
814 	},
815 	[ C(OP_WRITE) ] = {
816 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
817 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
818 	},
819 	[ C(OP_PREFETCH) ] = {
820 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
821 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
822 	},
823  },
824  [ C(NODE) ] = {
825 	[ C(OP_READ) ] = {
826 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
827 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
828 	},
829 	[ C(OP_WRITE) ] = {
830 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
831 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
832 	},
833 	[ C(OP_PREFETCH) ] = {
834 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
835 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
836 	},
837  },
838 };
839 
840 static __initconst const u64 snb_hw_cache_event_ids
841 				[PERF_COUNT_HW_CACHE_MAX]
842 				[PERF_COUNT_HW_CACHE_OP_MAX]
843 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
844 {
845  [ C(L1D) ] = {
846 	[ C(OP_READ) ] = {
847 		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
848 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
849 	},
850 	[ C(OP_WRITE) ] = {
851 		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
852 		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
853 	},
854 	[ C(OP_PREFETCH) ] = {
855 		[ C(RESULT_ACCESS) ] = 0x0,
856 		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
857 	},
858  },
859  [ C(L1I ) ] = {
860 	[ C(OP_READ) ] = {
861 		[ C(RESULT_ACCESS) ] = 0x0,
862 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
863 	},
864 	[ C(OP_WRITE) ] = {
865 		[ C(RESULT_ACCESS) ] = -1,
866 		[ C(RESULT_MISS)   ] = -1,
867 	},
868 	[ C(OP_PREFETCH) ] = {
869 		[ C(RESULT_ACCESS) ] = 0x0,
870 		[ C(RESULT_MISS)   ] = 0x0,
871 	},
872  },
873  [ C(LL  ) ] = {
874 	[ C(OP_READ) ] = {
875 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
876 		[ C(RESULT_ACCESS) ] = 0x01b7,
877 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
878 		[ C(RESULT_MISS)   ] = 0x01b7,
879 	},
880 	[ C(OP_WRITE) ] = {
881 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
882 		[ C(RESULT_ACCESS) ] = 0x01b7,
883 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
884 		[ C(RESULT_MISS)   ] = 0x01b7,
885 	},
886 	[ C(OP_PREFETCH) ] = {
887 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
888 		[ C(RESULT_ACCESS) ] = 0x01b7,
889 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
890 		[ C(RESULT_MISS)   ] = 0x01b7,
891 	},
892  },
893  [ C(DTLB) ] = {
894 	[ C(OP_READ) ] = {
895 		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
896 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
897 	},
898 	[ C(OP_WRITE) ] = {
899 		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
900 		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
901 	},
902 	[ C(OP_PREFETCH) ] = {
903 		[ C(RESULT_ACCESS) ] = 0x0,
904 		[ C(RESULT_MISS)   ] = 0x0,
905 	},
906  },
907  [ C(ITLB) ] = {
908 	[ C(OP_READ) ] = {
909 		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
910 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
911 	},
912 	[ C(OP_WRITE) ] = {
913 		[ C(RESULT_ACCESS) ] = -1,
914 		[ C(RESULT_MISS)   ] = -1,
915 	},
916 	[ C(OP_PREFETCH) ] = {
917 		[ C(RESULT_ACCESS) ] = -1,
918 		[ C(RESULT_MISS)   ] = -1,
919 	},
920  },
921  [ C(BPU ) ] = {
922 	[ C(OP_READ) ] = {
923 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
924 		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
925 	},
926 	[ C(OP_WRITE) ] = {
927 		[ C(RESULT_ACCESS) ] = -1,
928 		[ C(RESULT_MISS)   ] = -1,
929 	},
930 	[ C(OP_PREFETCH) ] = {
931 		[ C(RESULT_ACCESS) ] = -1,
932 		[ C(RESULT_MISS)   ] = -1,
933 	},
934  },
935  [ C(NODE) ] = {
936 	[ C(OP_READ) ] = {
937 		[ C(RESULT_ACCESS) ] = 0x01b7,
938 		[ C(RESULT_MISS)   ] = 0x01b7,
939 	},
940 	[ C(OP_WRITE) ] = {
941 		[ C(RESULT_ACCESS) ] = 0x01b7,
942 		[ C(RESULT_MISS)   ] = 0x01b7,
943 	},
944 	[ C(OP_PREFETCH) ] = {
945 		[ C(RESULT_ACCESS) ] = 0x01b7,
946 		[ C(RESULT_MISS)   ] = 0x01b7,
947 	},
948  },
949 
950 };
951 
952 /*
953  * Notes on the events:
954  * - data reads do not include code reads (comparable to earlier tables)
955  * - data counts include speculative execution (except L1 write, dtlb, bpu)
956  * - remote node access includes remote memory, remote cache, remote mmio.
957  * - prefetches are not included in the counts because they are not
958  *   reliably counted.
959  */
960 
961 #define HSW_DEMAND_DATA_RD		BIT_ULL(0)
962 #define HSW_DEMAND_RFO			BIT_ULL(1)
963 #define HSW_ANY_RESPONSE		BIT_ULL(16)
964 #define HSW_SUPPLIER_NONE		BIT_ULL(17)
965 #define HSW_L3_MISS_LOCAL_DRAM		BIT_ULL(22)
966 #define HSW_L3_MISS_REMOTE_HOP0		BIT_ULL(27)
967 #define HSW_L3_MISS_REMOTE_HOP1		BIT_ULL(28)
968 #define HSW_L3_MISS_REMOTE_HOP2P	BIT_ULL(29)
969 #define HSW_L3_MISS			(HSW_L3_MISS_LOCAL_DRAM| \
970 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
971 					 HSW_L3_MISS_REMOTE_HOP2P)
972 #define HSW_SNOOP_NONE			BIT_ULL(31)
973 #define HSW_SNOOP_NOT_NEEDED		BIT_ULL(32)
974 #define HSW_SNOOP_MISS			BIT_ULL(33)
975 #define HSW_SNOOP_HIT_NO_FWD		BIT_ULL(34)
976 #define HSW_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
977 #define HSW_SNOOP_HITM			BIT_ULL(36)
978 #define HSW_SNOOP_NON_DRAM		BIT_ULL(37)
979 #define HSW_ANY_SNOOP			(HSW_SNOOP_NONE| \
980 					 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
981 					 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
982 					 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
983 #define HSW_SNOOP_DRAM			(HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
984 #define HSW_DEMAND_READ			HSW_DEMAND_DATA_RD
985 #define HSW_DEMAND_WRITE		HSW_DEMAND_RFO
986 #define HSW_L3_MISS_REMOTE		(HSW_L3_MISS_REMOTE_HOP0|\
987 					 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
988 #define HSW_LLC_ACCESS			HSW_ANY_RESPONSE
989 
990 #define BDW_L3_MISS_LOCAL		BIT(26)
991 #define BDW_L3_MISS			(BDW_L3_MISS_LOCAL| \
992 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
993 					 HSW_L3_MISS_REMOTE_HOP2P)
994 
995 
996 static __initconst const u64 hsw_hw_cache_event_ids
997 				[PERF_COUNT_HW_CACHE_MAX]
998 				[PERF_COUNT_HW_CACHE_OP_MAX]
999 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1000 {
1001  [ C(L1D ) ] = {
1002 	[ C(OP_READ) ] = {
1003 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1004 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
1005 	},
1006 	[ C(OP_WRITE) ] = {
1007 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1008 		[ C(RESULT_MISS)   ] = 0x0,
1009 	},
1010 	[ C(OP_PREFETCH) ] = {
1011 		[ C(RESULT_ACCESS) ] = 0x0,
1012 		[ C(RESULT_MISS)   ] = 0x0,
1013 	},
1014  },
1015  [ C(L1I ) ] = {
1016 	[ C(OP_READ) ] = {
1017 		[ C(RESULT_ACCESS) ] = 0x0,
1018 		[ C(RESULT_MISS)   ] = 0x280,	/* ICACHE.MISSES */
1019 	},
1020 	[ C(OP_WRITE) ] = {
1021 		[ C(RESULT_ACCESS) ] = -1,
1022 		[ C(RESULT_MISS)   ] = -1,
1023 	},
1024 	[ C(OP_PREFETCH) ] = {
1025 		[ C(RESULT_ACCESS) ] = 0x0,
1026 		[ C(RESULT_MISS)   ] = 0x0,
1027 	},
1028  },
1029  [ C(LL  ) ] = {
1030 	[ C(OP_READ) ] = {
1031 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1032 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1033 	},
1034 	[ C(OP_WRITE) ] = {
1035 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1036 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1037 	},
1038 	[ C(OP_PREFETCH) ] = {
1039 		[ C(RESULT_ACCESS) ] = 0x0,
1040 		[ C(RESULT_MISS)   ] = 0x0,
1041 	},
1042  },
1043  [ C(DTLB) ] = {
1044 	[ C(OP_READ) ] = {
1045 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1046 		[ C(RESULT_MISS)   ] = 0x108,	/* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
1047 	},
1048 	[ C(OP_WRITE) ] = {
1049 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1050 		[ C(RESULT_MISS)   ] = 0x149,	/* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
1051 	},
1052 	[ C(OP_PREFETCH) ] = {
1053 		[ C(RESULT_ACCESS) ] = 0x0,
1054 		[ C(RESULT_MISS)   ] = 0x0,
1055 	},
1056  },
1057  [ C(ITLB) ] = {
1058 	[ C(OP_READ) ] = {
1059 		[ C(RESULT_ACCESS) ] = 0x6085,	/* ITLB_MISSES.STLB_HIT */
1060 		[ C(RESULT_MISS)   ] = 0x185,	/* ITLB_MISSES.MISS_CAUSES_A_WALK */
1061 	},
1062 	[ C(OP_WRITE) ] = {
1063 		[ C(RESULT_ACCESS) ] = -1,
1064 		[ C(RESULT_MISS)   ] = -1,
1065 	},
1066 	[ C(OP_PREFETCH) ] = {
1067 		[ C(RESULT_ACCESS) ] = -1,
1068 		[ C(RESULT_MISS)   ] = -1,
1069 	},
1070  },
1071  [ C(BPU ) ] = {
1072 	[ C(OP_READ) ] = {
1073 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1074 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1075 	},
1076 	[ C(OP_WRITE) ] = {
1077 		[ C(RESULT_ACCESS) ] = -1,
1078 		[ C(RESULT_MISS)   ] = -1,
1079 	},
1080 	[ C(OP_PREFETCH) ] = {
1081 		[ C(RESULT_ACCESS) ] = -1,
1082 		[ C(RESULT_MISS)   ] = -1,
1083 	},
1084  },
1085  [ C(NODE) ] = {
1086 	[ C(OP_READ) ] = {
1087 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1088 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1089 	},
1090 	[ C(OP_WRITE) ] = {
1091 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1092 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1093 	},
1094 	[ C(OP_PREFETCH) ] = {
1095 		[ C(RESULT_ACCESS) ] = 0x0,
1096 		[ C(RESULT_MISS)   ] = 0x0,
1097 	},
1098  },
1099 };
1100 
1101 static __initconst const u64 hsw_hw_cache_extra_regs
1102 				[PERF_COUNT_HW_CACHE_MAX]
1103 				[PERF_COUNT_HW_CACHE_OP_MAX]
1104 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1105 {
1106  [ C(LL  ) ] = {
1107 	[ C(OP_READ) ] = {
1108 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1109 				       HSW_LLC_ACCESS,
1110 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1111 				       HSW_L3_MISS|HSW_ANY_SNOOP,
1112 	},
1113 	[ C(OP_WRITE) ] = {
1114 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1115 				       HSW_LLC_ACCESS,
1116 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1117 				       HSW_L3_MISS|HSW_ANY_SNOOP,
1118 	},
1119 	[ C(OP_PREFETCH) ] = {
1120 		[ C(RESULT_ACCESS) ] = 0x0,
1121 		[ C(RESULT_MISS)   ] = 0x0,
1122 	},
1123  },
1124  [ C(NODE) ] = {
1125 	[ C(OP_READ) ] = {
1126 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1127 				       HSW_L3_MISS_LOCAL_DRAM|
1128 				       HSW_SNOOP_DRAM,
1129 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1130 				       HSW_L3_MISS_REMOTE|
1131 				       HSW_SNOOP_DRAM,
1132 	},
1133 	[ C(OP_WRITE) ] = {
1134 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1135 				       HSW_L3_MISS_LOCAL_DRAM|
1136 				       HSW_SNOOP_DRAM,
1137 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1138 				       HSW_L3_MISS_REMOTE|
1139 				       HSW_SNOOP_DRAM,
1140 	},
1141 	[ C(OP_PREFETCH) ] = {
1142 		[ C(RESULT_ACCESS) ] = 0x0,
1143 		[ C(RESULT_MISS)   ] = 0x0,
1144 	},
1145  },
1146 };
1147 
1148 static __initconst const u64 westmere_hw_cache_event_ids
1149 				[PERF_COUNT_HW_CACHE_MAX]
1150 				[PERF_COUNT_HW_CACHE_OP_MAX]
1151 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1152 {
1153  [ C(L1D) ] = {
1154 	[ C(OP_READ) ] = {
1155 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1156 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1157 	},
1158 	[ C(OP_WRITE) ] = {
1159 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1160 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1161 	},
1162 	[ C(OP_PREFETCH) ] = {
1163 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1164 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1165 	},
1166  },
1167  [ C(L1I ) ] = {
1168 	[ C(OP_READ) ] = {
1169 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1170 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1171 	},
1172 	[ C(OP_WRITE) ] = {
1173 		[ C(RESULT_ACCESS) ] = -1,
1174 		[ C(RESULT_MISS)   ] = -1,
1175 	},
1176 	[ C(OP_PREFETCH) ] = {
1177 		[ C(RESULT_ACCESS) ] = 0x0,
1178 		[ C(RESULT_MISS)   ] = 0x0,
1179 	},
1180  },
1181  [ C(LL  ) ] = {
1182 	[ C(OP_READ) ] = {
1183 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1184 		[ C(RESULT_ACCESS) ] = 0x01b7,
1185 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1186 		[ C(RESULT_MISS)   ] = 0x01b7,
1187 	},
1188 	/*
1189 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1190 	 * on RFO.
1191 	 */
1192 	[ C(OP_WRITE) ] = {
1193 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1194 		[ C(RESULT_ACCESS) ] = 0x01b7,
1195 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1196 		[ C(RESULT_MISS)   ] = 0x01b7,
1197 	},
1198 	[ C(OP_PREFETCH) ] = {
1199 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1200 		[ C(RESULT_ACCESS) ] = 0x01b7,
1201 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1202 		[ C(RESULT_MISS)   ] = 0x01b7,
1203 	},
1204  },
1205  [ C(DTLB) ] = {
1206 	[ C(OP_READ) ] = {
1207 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1208 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1209 	},
1210 	[ C(OP_WRITE) ] = {
1211 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1212 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1213 	},
1214 	[ C(OP_PREFETCH) ] = {
1215 		[ C(RESULT_ACCESS) ] = 0x0,
1216 		[ C(RESULT_MISS)   ] = 0x0,
1217 	},
1218  },
1219  [ C(ITLB) ] = {
1220 	[ C(OP_READ) ] = {
1221 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1222 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
1223 	},
1224 	[ C(OP_WRITE) ] = {
1225 		[ C(RESULT_ACCESS) ] = -1,
1226 		[ C(RESULT_MISS)   ] = -1,
1227 	},
1228 	[ C(OP_PREFETCH) ] = {
1229 		[ C(RESULT_ACCESS) ] = -1,
1230 		[ C(RESULT_MISS)   ] = -1,
1231 	},
1232  },
1233  [ C(BPU ) ] = {
1234 	[ C(OP_READ) ] = {
1235 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1236 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1237 	},
1238 	[ C(OP_WRITE) ] = {
1239 		[ C(RESULT_ACCESS) ] = -1,
1240 		[ C(RESULT_MISS)   ] = -1,
1241 	},
1242 	[ C(OP_PREFETCH) ] = {
1243 		[ C(RESULT_ACCESS) ] = -1,
1244 		[ C(RESULT_MISS)   ] = -1,
1245 	},
1246  },
1247  [ C(NODE) ] = {
1248 	[ C(OP_READ) ] = {
1249 		[ C(RESULT_ACCESS) ] = 0x01b7,
1250 		[ C(RESULT_MISS)   ] = 0x01b7,
1251 	},
1252 	[ C(OP_WRITE) ] = {
1253 		[ C(RESULT_ACCESS) ] = 0x01b7,
1254 		[ C(RESULT_MISS)   ] = 0x01b7,
1255 	},
1256 	[ C(OP_PREFETCH) ] = {
1257 		[ C(RESULT_ACCESS) ] = 0x01b7,
1258 		[ C(RESULT_MISS)   ] = 0x01b7,
1259 	},
1260  },
1261 };
1262 
1263 /*
1264  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1265  * See IA32 SDM Vol 3B 30.6.1.3
1266  */
1267 
1268 #define NHM_DMND_DATA_RD	(1 << 0)
1269 #define NHM_DMND_RFO		(1 << 1)
1270 #define NHM_DMND_IFETCH		(1 << 2)
1271 #define NHM_DMND_WB		(1 << 3)
1272 #define NHM_PF_DATA_RD		(1 << 4)
1273 #define NHM_PF_DATA_RFO		(1 << 5)
1274 #define NHM_PF_IFETCH		(1 << 6)
1275 #define NHM_OFFCORE_OTHER	(1 << 7)
1276 #define NHM_UNCORE_HIT		(1 << 8)
1277 #define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
1278 #define NHM_OTHER_CORE_HITM	(1 << 10)
1279         			/* reserved */
1280 #define NHM_REMOTE_CACHE_FWD	(1 << 12)
1281 #define NHM_REMOTE_DRAM		(1 << 13)
1282 #define NHM_LOCAL_DRAM		(1 << 14)
1283 #define NHM_NON_DRAM		(1 << 15)
1284 
1285 #define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1286 #define NHM_REMOTE		(NHM_REMOTE_DRAM)
1287 
1288 #define NHM_DMND_READ		(NHM_DMND_DATA_RD)
1289 #define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
1290 #define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1291 
1292 #define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1293 #define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1294 #define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
1295 
1296 static __initconst const u64 nehalem_hw_cache_extra_regs
1297 				[PERF_COUNT_HW_CACHE_MAX]
1298 				[PERF_COUNT_HW_CACHE_OP_MAX]
1299 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1300 {
1301  [ C(LL  ) ] = {
1302 	[ C(OP_READ) ] = {
1303 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1304 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1305 	},
1306 	[ C(OP_WRITE) ] = {
1307 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1308 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1309 	},
1310 	[ C(OP_PREFETCH) ] = {
1311 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1312 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1313 	},
1314  },
1315  [ C(NODE) ] = {
1316 	[ C(OP_READ) ] = {
1317 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1318 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1319 	},
1320 	[ C(OP_WRITE) ] = {
1321 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1322 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1323 	},
1324 	[ C(OP_PREFETCH) ] = {
1325 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1326 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1327 	},
1328  },
1329 };
1330 
1331 static __initconst const u64 nehalem_hw_cache_event_ids
1332 				[PERF_COUNT_HW_CACHE_MAX]
1333 				[PERF_COUNT_HW_CACHE_OP_MAX]
1334 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1335 {
1336  [ C(L1D) ] = {
1337 	[ C(OP_READ) ] = {
1338 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1339 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1340 	},
1341 	[ C(OP_WRITE) ] = {
1342 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1343 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1344 	},
1345 	[ C(OP_PREFETCH) ] = {
1346 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1347 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1348 	},
1349  },
1350  [ C(L1I ) ] = {
1351 	[ C(OP_READ) ] = {
1352 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1353 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1354 	},
1355 	[ C(OP_WRITE) ] = {
1356 		[ C(RESULT_ACCESS) ] = -1,
1357 		[ C(RESULT_MISS)   ] = -1,
1358 	},
1359 	[ C(OP_PREFETCH) ] = {
1360 		[ C(RESULT_ACCESS) ] = 0x0,
1361 		[ C(RESULT_MISS)   ] = 0x0,
1362 	},
1363  },
1364  [ C(LL  ) ] = {
1365 	[ C(OP_READ) ] = {
1366 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1367 		[ C(RESULT_ACCESS) ] = 0x01b7,
1368 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1369 		[ C(RESULT_MISS)   ] = 0x01b7,
1370 	},
1371 	/*
1372 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1373 	 * on RFO.
1374 	 */
1375 	[ C(OP_WRITE) ] = {
1376 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1377 		[ C(RESULT_ACCESS) ] = 0x01b7,
1378 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1379 		[ C(RESULT_MISS)   ] = 0x01b7,
1380 	},
1381 	[ C(OP_PREFETCH) ] = {
1382 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1383 		[ C(RESULT_ACCESS) ] = 0x01b7,
1384 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1385 		[ C(RESULT_MISS)   ] = 0x01b7,
1386 	},
1387  },
1388  [ C(DTLB) ] = {
1389 	[ C(OP_READ) ] = {
1390 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1391 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1392 	},
1393 	[ C(OP_WRITE) ] = {
1394 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1395 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1396 	},
1397 	[ C(OP_PREFETCH) ] = {
1398 		[ C(RESULT_ACCESS) ] = 0x0,
1399 		[ C(RESULT_MISS)   ] = 0x0,
1400 	},
1401  },
1402  [ C(ITLB) ] = {
1403 	[ C(OP_READ) ] = {
1404 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1405 		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1406 	},
1407 	[ C(OP_WRITE) ] = {
1408 		[ C(RESULT_ACCESS) ] = -1,
1409 		[ C(RESULT_MISS)   ] = -1,
1410 	},
1411 	[ C(OP_PREFETCH) ] = {
1412 		[ C(RESULT_ACCESS) ] = -1,
1413 		[ C(RESULT_MISS)   ] = -1,
1414 	},
1415  },
1416  [ C(BPU ) ] = {
1417 	[ C(OP_READ) ] = {
1418 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1419 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1420 	},
1421 	[ C(OP_WRITE) ] = {
1422 		[ C(RESULT_ACCESS) ] = -1,
1423 		[ C(RESULT_MISS)   ] = -1,
1424 	},
1425 	[ C(OP_PREFETCH) ] = {
1426 		[ C(RESULT_ACCESS) ] = -1,
1427 		[ C(RESULT_MISS)   ] = -1,
1428 	},
1429  },
1430  [ C(NODE) ] = {
1431 	[ C(OP_READ) ] = {
1432 		[ C(RESULT_ACCESS) ] = 0x01b7,
1433 		[ C(RESULT_MISS)   ] = 0x01b7,
1434 	},
1435 	[ C(OP_WRITE) ] = {
1436 		[ C(RESULT_ACCESS) ] = 0x01b7,
1437 		[ C(RESULT_MISS)   ] = 0x01b7,
1438 	},
1439 	[ C(OP_PREFETCH) ] = {
1440 		[ C(RESULT_ACCESS) ] = 0x01b7,
1441 		[ C(RESULT_MISS)   ] = 0x01b7,
1442 	},
1443  },
1444 };
1445 
1446 static __initconst const u64 core2_hw_cache_event_ids
1447 				[PERF_COUNT_HW_CACHE_MAX]
1448 				[PERF_COUNT_HW_CACHE_OP_MAX]
1449 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1450 {
1451  [ C(L1D) ] = {
1452 	[ C(OP_READ) ] = {
1453 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1454 		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1455 	},
1456 	[ C(OP_WRITE) ] = {
1457 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1458 		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1459 	},
1460 	[ C(OP_PREFETCH) ] = {
1461 		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1462 		[ C(RESULT_MISS)   ] = 0,
1463 	},
1464  },
1465  [ C(L1I ) ] = {
1466 	[ C(OP_READ) ] = {
1467 		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1468 		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1469 	},
1470 	[ C(OP_WRITE) ] = {
1471 		[ C(RESULT_ACCESS) ] = -1,
1472 		[ C(RESULT_MISS)   ] = -1,
1473 	},
1474 	[ C(OP_PREFETCH) ] = {
1475 		[ C(RESULT_ACCESS) ] = 0,
1476 		[ C(RESULT_MISS)   ] = 0,
1477 	},
1478  },
1479  [ C(LL  ) ] = {
1480 	[ C(OP_READ) ] = {
1481 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1482 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1483 	},
1484 	[ C(OP_WRITE) ] = {
1485 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1486 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1487 	},
1488 	[ C(OP_PREFETCH) ] = {
1489 		[ C(RESULT_ACCESS) ] = 0,
1490 		[ C(RESULT_MISS)   ] = 0,
1491 	},
1492  },
1493  [ C(DTLB) ] = {
1494 	[ C(OP_READ) ] = {
1495 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1496 		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1497 	},
1498 	[ C(OP_WRITE) ] = {
1499 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1500 		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1501 	},
1502 	[ C(OP_PREFETCH) ] = {
1503 		[ C(RESULT_ACCESS) ] = 0,
1504 		[ C(RESULT_MISS)   ] = 0,
1505 	},
1506  },
1507  [ C(ITLB) ] = {
1508 	[ C(OP_READ) ] = {
1509 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1510 		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1511 	},
1512 	[ C(OP_WRITE) ] = {
1513 		[ C(RESULT_ACCESS) ] = -1,
1514 		[ C(RESULT_MISS)   ] = -1,
1515 	},
1516 	[ C(OP_PREFETCH) ] = {
1517 		[ C(RESULT_ACCESS) ] = -1,
1518 		[ C(RESULT_MISS)   ] = -1,
1519 	},
1520  },
1521  [ C(BPU ) ] = {
1522 	[ C(OP_READ) ] = {
1523 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1524 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1525 	},
1526 	[ C(OP_WRITE) ] = {
1527 		[ C(RESULT_ACCESS) ] = -1,
1528 		[ C(RESULT_MISS)   ] = -1,
1529 	},
1530 	[ C(OP_PREFETCH) ] = {
1531 		[ C(RESULT_ACCESS) ] = -1,
1532 		[ C(RESULT_MISS)   ] = -1,
1533 	},
1534  },
1535 };
1536 
1537 static __initconst const u64 atom_hw_cache_event_ids
1538 				[PERF_COUNT_HW_CACHE_MAX]
1539 				[PERF_COUNT_HW_CACHE_OP_MAX]
1540 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1541 {
1542  [ C(L1D) ] = {
1543 	[ C(OP_READ) ] = {
1544 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1545 		[ C(RESULT_MISS)   ] = 0,
1546 	},
1547 	[ C(OP_WRITE) ] = {
1548 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1549 		[ C(RESULT_MISS)   ] = 0,
1550 	},
1551 	[ C(OP_PREFETCH) ] = {
1552 		[ C(RESULT_ACCESS) ] = 0x0,
1553 		[ C(RESULT_MISS)   ] = 0,
1554 	},
1555  },
1556  [ C(L1I ) ] = {
1557 	[ C(OP_READ) ] = {
1558 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1559 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1560 	},
1561 	[ C(OP_WRITE) ] = {
1562 		[ C(RESULT_ACCESS) ] = -1,
1563 		[ C(RESULT_MISS)   ] = -1,
1564 	},
1565 	[ C(OP_PREFETCH) ] = {
1566 		[ C(RESULT_ACCESS) ] = 0,
1567 		[ C(RESULT_MISS)   ] = 0,
1568 	},
1569  },
1570  [ C(LL  ) ] = {
1571 	[ C(OP_READ) ] = {
1572 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1573 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1574 	},
1575 	[ C(OP_WRITE) ] = {
1576 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1577 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1578 	},
1579 	[ C(OP_PREFETCH) ] = {
1580 		[ C(RESULT_ACCESS) ] = 0,
1581 		[ C(RESULT_MISS)   ] = 0,
1582 	},
1583  },
1584  [ C(DTLB) ] = {
1585 	[ C(OP_READ) ] = {
1586 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1587 		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1588 	},
1589 	[ C(OP_WRITE) ] = {
1590 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1591 		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1592 	},
1593 	[ C(OP_PREFETCH) ] = {
1594 		[ C(RESULT_ACCESS) ] = 0,
1595 		[ C(RESULT_MISS)   ] = 0,
1596 	},
1597  },
1598  [ C(ITLB) ] = {
1599 	[ C(OP_READ) ] = {
1600 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1601 		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1602 	},
1603 	[ C(OP_WRITE) ] = {
1604 		[ C(RESULT_ACCESS) ] = -1,
1605 		[ C(RESULT_MISS)   ] = -1,
1606 	},
1607 	[ C(OP_PREFETCH) ] = {
1608 		[ C(RESULT_ACCESS) ] = -1,
1609 		[ C(RESULT_MISS)   ] = -1,
1610 	},
1611  },
1612  [ C(BPU ) ] = {
1613 	[ C(OP_READ) ] = {
1614 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1615 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1616 	},
1617 	[ C(OP_WRITE) ] = {
1618 		[ C(RESULT_ACCESS) ] = -1,
1619 		[ C(RESULT_MISS)   ] = -1,
1620 	},
1621 	[ C(OP_PREFETCH) ] = {
1622 		[ C(RESULT_ACCESS) ] = -1,
1623 		[ C(RESULT_MISS)   ] = -1,
1624 	},
1625  },
1626 };
1627 
1628 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1629 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1630 /* no_alloc_cycles.not_delivered */
1631 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1632 	       "event=0xca,umask=0x50");
1633 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1634 /* uops_retired.all */
1635 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1636 	       "event=0xc2,umask=0x10");
1637 /* uops_retired.all */
1638 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1639 	       "event=0xc2,umask=0x10");
1640 
1641 static struct attribute *slm_events_attrs[] = {
1642 	EVENT_PTR(td_total_slots_slm),
1643 	EVENT_PTR(td_total_slots_scale_slm),
1644 	EVENT_PTR(td_fetch_bubbles_slm),
1645 	EVENT_PTR(td_fetch_bubbles_scale_slm),
1646 	EVENT_PTR(td_slots_issued_slm),
1647 	EVENT_PTR(td_slots_retired_slm),
1648 	NULL
1649 };
1650 
1651 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1652 {
1653 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1654 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1655 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1656 	EVENT_EXTRA_END
1657 };
1658 
1659 #define SLM_DMND_READ		SNB_DMND_DATA_RD
1660 #define SLM_DMND_WRITE		SNB_DMND_RFO
1661 #define SLM_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
1662 
1663 #define SLM_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1664 #define SLM_LLC_ACCESS		SNB_RESP_ANY
1665 #define SLM_LLC_MISS		(SLM_SNP_ANY|SNB_NON_DRAM)
1666 
1667 static __initconst const u64 slm_hw_cache_extra_regs
1668 				[PERF_COUNT_HW_CACHE_MAX]
1669 				[PERF_COUNT_HW_CACHE_OP_MAX]
1670 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1671 {
1672  [ C(LL  ) ] = {
1673 	[ C(OP_READ) ] = {
1674 		[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1675 		[ C(RESULT_MISS)   ] = 0,
1676 	},
1677 	[ C(OP_WRITE) ] = {
1678 		[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1679 		[ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1680 	},
1681 	[ C(OP_PREFETCH) ] = {
1682 		[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1683 		[ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1684 	},
1685  },
1686 };
1687 
1688 static __initconst const u64 slm_hw_cache_event_ids
1689 				[PERF_COUNT_HW_CACHE_MAX]
1690 				[PERF_COUNT_HW_CACHE_OP_MAX]
1691 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1692 {
1693  [ C(L1D) ] = {
1694 	[ C(OP_READ) ] = {
1695 		[ C(RESULT_ACCESS) ] = 0,
1696 		[ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1697 	},
1698 	[ C(OP_WRITE) ] = {
1699 		[ C(RESULT_ACCESS) ] = 0,
1700 		[ C(RESULT_MISS)   ] = 0,
1701 	},
1702 	[ C(OP_PREFETCH) ] = {
1703 		[ C(RESULT_ACCESS) ] = 0,
1704 		[ C(RESULT_MISS)   ] = 0,
1705 	},
1706  },
1707  [ C(L1I ) ] = {
1708 	[ C(OP_READ) ] = {
1709 		[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1710 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1711 	},
1712 	[ C(OP_WRITE) ] = {
1713 		[ C(RESULT_ACCESS) ] = -1,
1714 		[ C(RESULT_MISS)   ] = -1,
1715 	},
1716 	[ C(OP_PREFETCH) ] = {
1717 		[ C(RESULT_ACCESS) ] = 0,
1718 		[ C(RESULT_MISS)   ] = 0,
1719 	},
1720  },
1721  [ C(LL  ) ] = {
1722 	[ C(OP_READ) ] = {
1723 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1724 		[ C(RESULT_ACCESS) ] = 0x01b7,
1725 		[ C(RESULT_MISS)   ] = 0,
1726 	},
1727 	[ C(OP_WRITE) ] = {
1728 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1729 		[ C(RESULT_ACCESS) ] = 0x01b7,
1730 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1731 		[ C(RESULT_MISS)   ] = 0x01b7,
1732 	},
1733 	[ C(OP_PREFETCH) ] = {
1734 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1735 		[ C(RESULT_ACCESS) ] = 0x01b7,
1736 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1737 		[ C(RESULT_MISS)   ] = 0x01b7,
1738 	},
1739  },
1740  [ C(DTLB) ] = {
1741 	[ C(OP_READ) ] = {
1742 		[ C(RESULT_ACCESS) ] = 0,
1743 		[ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1744 	},
1745 	[ C(OP_WRITE) ] = {
1746 		[ C(RESULT_ACCESS) ] = 0,
1747 		[ C(RESULT_MISS)   ] = 0,
1748 	},
1749 	[ C(OP_PREFETCH) ] = {
1750 		[ C(RESULT_ACCESS) ] = 0,
1751 		[ C(RESULT_MISS)   ] = 0,
1752 	},
1753  },
1754  [ C(ITLB) ] = {
1755 	[ C(OP_READ) ] = {
1756 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1757 		[ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1758 	},
1759 	[ C(OP_WRITE) ] = {
1760 		[ C(RESULT_ACCESS) ] = -1,
1761 		[ C(RESULT_MISS)   ] = -1,
1762 	},
1763 	[ C(OP_PREFETCH) ] = {
1764 		[ C(RESULT_ACCESS) ] = -1,
1765 		[ C(RESULT_MISS)   ] = -1,
1766 	},
1767  },
1768  [ C(BPU ) ] = {
1769 	[ C(OP_READ) ] = {
1770 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1771 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1772 	},
1773 	[ C(OP_WRITE) ] = {
1774 		[ C(RESULT_ACCESS) ] = -1,
1775 		[ C(RESULT_MISS)   ] = -1,
1776 	},
1777 	[ C(OP_PREFETCH) ] = {
1778 		[ C(RESULT_ACCESS) ] = -1,
1779 		[ C(RESULT_MISS)   ] = -1,
1780 	},
1781  },
1782 };
1783 
1784 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1785 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1786 /* UOPS_NOT_DELIVERED.ANY */
1787 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1788 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1789 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1790 /* UOPS_RETIRED.ANY */
1791 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1792 /* UOPS_ISSUED.ANY */
1793 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1794 
1795 static struct attribute *glm_events_attrs[] = {
1796 	EVENT_PTR(td_total_slots_glm),
1797 	EVENT_PTR(td_total_slots_scale_glm),
1798 	EVENT_PTR(td_fetch_bubbles_glm),
1799 	EVENT_PTR(td_recovery_bubbles_glm),
1800 	EVENT_PTR(td_slots_issued_glm),
1801 	EVENT_PTR(td_slots_retired_glm),
1802 	NULL
1803 };
1804 
1805 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1806 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1807 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1808 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1809 	EVENT_EXTRA_END
1810 };
1811 
1812 #define GLM_DEMAND_DATA_RD		BIT_ULL(0)
1813 #define GLM_DEMAND_RFO			BIT_ULL(1)
1814 #define GLM_ANY_RESPONSE		BIT_ULL(16)
1815 #define GLM_SNP_NONE_OR_MISS		BIT_ULL(33)
1816 #define GLM_DEMAND_READ			GLM_DEMAND_DATA_RD
1817 #define GLM_DEMAND_WRITE		GLM_DEMAND_RFO
1818 #define GLM_DEMAND_PREFETCH		(SNB_PF_DATA_RD|SNB_PF_RFO)
1819 #define GLM_LLC_ACCESS			GLM_ANY_RESPONSE
1820 #define GLM_SNP_ANY			(GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1821 #define GLM_LLC_MISS			(GLM_SNP_ANY|SNB_NON_DRAM)
1822 
1823 static __initconst const u64 glm_hw_cache_event_ids
1824 				[PERF_COUNT_HW_CACHE_MAX]
1825 				[PERF_COUNT_HW_CACHE_OP_MAX]
1826 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1827 	[C(L1D)] = {
1828 		[C(OP_READ)] = {
1829 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1830 			[C(RESULT_MISS)]	= 0x0,
1831 		},
1832 		[C(OP_WRITE)] = {
1833 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1834 			[C(RESULT_MISS)]	= 0x0,
1835 		},
1836 		[C(OP_PREFETCH)] = {
1837 			[C(RESULT_ACCESS)]	= 0x0,
1838 			[C(RESULT_MISS)]	= 0x0,
1839 		},
1840 	},
1841 	[C(L1I)] = {
1842 		[C(OP_READ)] = {
1843 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1844 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1845 		},
1846 		[C(OP_WRITE)] = {
1847 			[C(RESULT_ACCESS)]	= -1,
1848 			[C(RESULT_MISS)]	= -1,
1849 		},
1850 		[C(OP_PREFETCH)] = {
1851 			[C(RESULT_ACCESS)]	= 0x0,
1852 			[C(RESULT_MISS)]	= 0x0,
1853 		},
1854 	},
1855 	[C(LL)] = {
1856 		[C(OP_READ)] = {
1857 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1858 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1859 		},
1860 		[C(OP_WRITE)] = {
1861 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1862 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1863 		},
1864 		[C(OP_PREFETCH)] = {
1865 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1866 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1867 		},
1868 	},
1869 	[C(DTLB)] = {
1870 		[C(OP_READ)] = {
1871 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1872 			[C(RESULT_MISS)]	= 0x0,
1873 		},
1874 		[C(OP_WRITE)] = {
1875 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1876 			[C(RESULT_MISS)]	= 0x0,
1877 		},
1878 		[C(OP_PREFETCH)] = {
1879 			[C(RESULT_ACCESS)]	= 0x0,
1880 			[C(RESULT_MISS)]	= 0x0,
1881 		},
1882 	},
1883 	[C(ITLB)] = {
1884 		[C(OP_READ)] = {
1885 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1886 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1887 		},
1888 		[C(OP_WRITE)] = {
1889 			[C(RESULT_ACCESS)]	= -1,
1890 			[C(RESULT_MISS)]	= -1,
1891 		},
1892 		[C(OP_PREFETCH)] = {
1893 			[C(RESULT_ACCESS)]	= -1,
1894 			[C(RESULT_MISS)]	= -1,
1895 		},
1896 	},
1897 	[C(BPU)] = {
1898 		[C(OP_READ)] = {
1899 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1900 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1901 		},
1902 		[C(OP_WRITE)] = {
1903 			[C(RESULT_ACCESS)]	= -1,
1904 			[C(RESULT_MISS)]	= -1,
1905 		},
1906 		[C(OP_PREFETCH)] = {
1907 			[C(RESULT_ACCESS)]	= -1,
1908 			[C(RESULT_MISS)]	= -1,
1909 		},
1910 	},
1911 };
1912 
1913 static __initconst const u64 glm_hw_cache_extra_regs
1914 				[PERF_COUNT_HW_CACHE_MAX]
1915 				[PERF_COUNT_HW_CACHE_OP_MAX]
1916 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1917 	[C(LL)] = {
1918 		[C(OP_READ)] = {
1919 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
1920 						  GLM_LLC_ACCESS,
1921 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
1922 						  GLM_LLC_MISS,
1923 		},
1924 		[C(OP_WRITE)] = {
1925 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
1926 						  GLM_LLC_ACCESS,
1927 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
1928 						  GLM_LLC_MISS,
1929 		},
1930 		[C(OP_PREFETCH)] = {
1931 			[C(RESULT_ACCESS)]	= GLM_DEMAND_PREFETCH|
1932 						  GLM_LLC_ACCESS,
1933 			[C(RESULT_MISS)]	= GLM_DEMAND_PREFETCH|
1934 						  GLM_LLC_MISS,
1935 		},
1936 	},
1937 };
1938 
1939 static __initconst const u64 glp_hw_cache_event_ids
1940 				[PERF_COUNT_HW_CACHE_MAX]
1941 				[PERF_COUNT_HW_CACHE_OP_MAX]
1942 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1943 	[C(L1D)] = {
1944 		[C(OP_READ)] = {
1945 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1946 			[C(RESULT_MISS)]	= 0x0,
1947 		},
1948 		[C(OP_WRITE)] = {
1949 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1950 			[C(RESULT_MISS)]	= 0x0,
1951 		},
1952 		[C(OP_PREFETCH)] = {
1953 			[C(RESULT_ACCESS)]	= 0x0,
1954 			[C(RESULT_MISS)]	= 0x0,
1955 		},
1956 	},
1957 	[C(L1I)] = {
1958 		[C(OP_READ)] = {
1959 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1960 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1961 		},
1962 		[C(OP_WRITE)] = {
1963 			[C(RESULT_ACCESS)]	= -1,
1964 			[C(RESULT_MISS)]	= -1,
1965 		},
1966 		[C(OP_PREFETCH)] = {
1967 			[C(RESULT_ACCESS)]	= 0x0,
1968 			[C(RESULT_MISS)]	= 0x0,
1969 		},
1970 	},
1971 	[C(LL)] = {
1972 		[C(OP_READ)] = {
1973 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1974 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1975 		},
1976 		[C(OP_WRITE)] = {
1977 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1978 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1979 		},
1980 		[C(OP_PREFETCH)] = {
1981 			[C(RESULT_ACCESS)]	= 0x0,
1982 			[C(RESULT_MISS)]	= 0x0,
1983 		},
1984 	},
1985 	[C(DTLB)] = {
1986 		[C(OP_READ)] = {
1987 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1988 			[C(RESULT_MISS)]	= 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
1989 		},
1990 		[C(OP_WRITE)] = {
1991 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1992 			[C(RESULT_MISS)]	= 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
1993 		},
1994 		[C(OP_PREFETCH)] = {
1995 			[C(RESULT_ACCESS)]	= 0x0,
1996 			[C(RESULT_MISS)]	= 0x0,
1997 		},
1998 	},
1999 	[C(ITLB)] = {
2000 		[C(OP_READ)] = {
2001 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
2002 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
2003 		},
2004 		[C(OP_WRITE)] = {
2005 			[C(RESULT_ACCESS)]	= -1,
2006 			[C(RESULT_MISS)]	= -1,
2007 		},
2008 		[C(OP_PREFETCH)] = {
2009 			[C(RESULT_ACCESS)]	= -1,
2010 			[C(RESULT_MISS)]	= -1,
2011 		},
2012 	},
2013 	[C(BPU)] = {
2014 		[C(OP_READ)] = {
2015 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
2016 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
2017 		},
2018 		[C(OP_WRITE)] = {
2019 			[C(RESULT_ACCESS)]	= -1,
2020 			[C(RESULT_MISS)]	= -1,
2021 		},
2022 		[C(OP_PREFETCH)] = {
2023 			[C(RESULT_ACCESS)]	= -1,
2024 			[C(RESULT_MISS)]	= -1,
2025 		},
2026 	},
2027 };
2028 
2029 static __initconst const u64 glp_hw_cache_extra_regs
2030 				[PERF_COUNT_HW_CACHE_MAX]
2031 				[PERF_COUNT_HW_CACHE_OP_MAX]
2032 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2033 	[C(LL)] = {
2034 		[C(OP_READ)] = {
2035 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
2036 						  GLM_LLC_ACCESS,
2037 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
2038 						  GLM_LLC_MISS,
2039 		},
2040 		[C(OP_WRITE)] = {
2041 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
2042 						  GLM_LLC_ACCESS,
2043 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
2044 						  GLM_LLC_MISS,
2045 		},
2046 		[C(OP_PREFETCH)] = {
2047 			[C(RESULT_ACCESS)]	= 0x0,
2048 			[C(RESULT_MISS)]	= 0x0,
2049 		},
2050 	},
2051 };
2052 
2053 #define TNT_LOCAL_DRAM			BIT_ULL(26)
2054 #define TNT_DEMAND_READ			GLM_DEMAND_DATA_RD
2055 #define TNT_DEMAND_WRITE		GLM_DEMAND_RFO
2056 #define TNT_LLC_ACCESS			GLM_ANY_RESPONSE
2057 #define TNT_SNP_ANY			(SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
2058 					 SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
2059 #define TNT_LLC_MISS			(TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
2060 
2061 static __initconst const u64 tnt_hw_cache_extra_regs
2062 				[PERF_COUNT_HW_CACHE_MAX]
2063 				[PERF_COUNT_HW_CACHE_OP_MAX]
2064 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2065 	[C(LL)] = {
2066 		[C(OP_READ)] = {
2067 			[C(RESULT_ACCESS)]	= TNT_DEMAND_READ|
2068 						  TNT_LLC_ACCESS,
2069 			[C(RESULT_MISS)]	= TNT_DEMAND_READ|
2070 						  TNT_LLC_MISS,
2071 		},
2072 		[C(OP_WRITE)] = {
2073 			[C(RESULT_ACCESS)]	= TNT_DEMAND_WRITE|
2074 						  TNT_LLC_ACCESS,
2075 			[C(RESULT_MISS)]	= TNT_DEMAND_WRITE|
2076 						  TNT_LLC_MISS,
2077 		},
2078 		[C(OP_PREFETCH)] = {
2079 			[C(RESULT_ACCESS)]	= 0x0,
2080 			[C(RESULT_MISS)]	= 0x0,
2081 		},
2082 	},
2083 };
2084 
2085 EVENT_ATTR_STR(topdown-fe-bound,       td_fe_bound_tnt,        "event=0x71,umask=0x0");
2086 EVENT_ATTR_STR(topdown-retiring,       td_retiring_tnt,        "event=0xc2,umask=0x0");
2087 EVENT_ATTR_STR(topdown-bad-spec,       td_bad_spec_tnt,        "event=0x73,umask=0x6");
2088 EVENT_ATTR_STR(topdown-be-bound,       td_be_bound_tnt,        "event=0x74,umask=0x0");
2089 
2090 static struct attribute *tnt_events_attrs[] = {
2091 	EVENT_PTR(td_fe_bound_tnt),
2092 	EVENT_PTR(td_retiring_tnt),
2093 	EVENT_PTR(td_bad_spec_tnt),
2094 	EVENT_PTR(td_be_bound_tnt),
2095 	NULL,
2096 };
2097 
2098 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
2099 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2100 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
2101 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
2102 	EVENT_EXTRA_END
2103 };
2104 
2105 EVENT_ATTR_STR(mem-loads,	mem_ld_grt,	"event=0xd0,umask=0x5,ldlat=3");
2106 EVENT_ATTR_STR(mem-stores,	mem_st_grt,	"event=0xd0,umask=0x6");
2107 
2108 static struct attribute *grt_mem_attrs[] = {
2109 	EVENT_PTR(mem_ld_grt),
2110 	EVENT_PTR(mem_st_grt),
2111 	NULL
2112 };
2113 
2114 static struct extra_reg intel_grt_extra_regs[] __read_mostly = {
2115 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2116 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
2117 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
2118 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2119 	EVENT_EXTRA_END
2120 };
2121 
2122 #define KNL_OT_L2_HITE		BIT_ULL(19) /* Other Tile L2 Hit */
2123 #define KNL_OT_L2_HITF		BIT_ULL(20) /* Other Tile L2 Hit */
2124 #define KNL_MCDRAM_LOCAL	BIT_ULL(21)
2125 #define KNL_MCDRAM_FAR		BIT_ULL(22)
2126 #define KNL_DDR_LOCAL		BIT_ULL(23)
2127 #define KNL_DDR_FAR		BIT_ULL(24)
2128 #define KNL_DRAM_ANY		(KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
2129 				    KNL_DDR_LOCAL | KNL_DDR_FAR)
2130 #define KNL_L2_READ		SLM_DMND_READ
2131 #define KNL_L2_WRITE		SLM_DMND_WRITE
2132 #define KNL_L2_PREFETCH		SLM_DMND_PREFETCH
2133 #define KNL_L2_ACCESS		SLM_LLC_ACCESS
2134 #define KNL_L2_MISS		(KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
2135 				   KNL_DRAM_ANY | SNB_SNP_ANY | \
2136 						  SNB_NON_DRAM)
2137 
2138 static __initconst const u64 knl_hw_cache_extra_regs
2139 				[PERF_COUNT_HW_CACHE_MAX]
2140 				[PERF_COUNT_HW_CACHE_OP_MAX]
2141 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2142 	[C(LL)] = {
2143 		[C(OP_READ)] = {
2144 			[C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
2145 			[C(RESULT_MISS)]   = 0,
2146 		},
2147 		[C(OP_WRITE)] = {
2148 			[C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
2149 			[C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
2150 		},
2151 		[C(OP_PREFETCH)] = {
2152 			[C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
2153 			[C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
2154 		},
2155 	},
2156 };
2157 
2158 /*
2159  * Used from PMIs where the LBRs are already disabled.
2160  *
2161  * This function could be called consecutively. It is required to remain in
2162  * disabled state if called consecutively.
2163  *
2164  * During consecutive calls, the same disable value will be written to related
2165  * registers, so the PMU state remains unchanged.
2166  *
2167  * intel_bts events don't coexist with intel PMU's BTS events because of
2168  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
2169  * disabled around intel PMU's event batching etc, only inside the PMI handler.
2170  *
2171  * Avoid PEBS_ENABLE MSR access in PMIs.
2172  * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
2173  * It doesn't matter if the PEBS is enabled or not.
2174  * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
2175  * access PEBS_ENABLE MSR in disable_all()/enable_all().
2176  * However, there are some cases which may change PEBS status, e.g. PMI
2177  * throttle. The PEBS_ENABLE should be updated where the status changes.
2178  */
2179 static __always_inline void __intel_pmu_disable_all(bool bts)
2180 {
2181 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2182 
2183 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2184 
2185 	if (bts && test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
2186 		intel_pmu_disable_bts();
2187 }
2188 
2189 static __always_inline void intel_pmu_disable_all(void)
2190 {
2191 	__intel_pmu_disable_all(true);
2192 	intel_pmu_pebs_disable_all();
2193 	intel_pmu_lbr_disable_all();
2194 }
2195 
2196 static void __intel_pmu_enable_all(int added, bool pmi)
2197 {
2198 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2199 	u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2200 
2201 	intel_pmu_lbr_enable_all(pmi);
2202 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
2203 	       intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
2204 
2205 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2206 		struct perf_event *event =
2207 			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
2208 
2209 		if (WARN_ON_ONCE(!event))
2210 			return;
2211 
2212 		intel_pmu_enable_bts(event->hw.config);
2213 	}
2214 }
2215 
2216 static void intel_pmu_enable_all(int added)
2217 {
2218 	intel_pmu_pebs_enable_all();
2219 	__intel_pmu_enable_all(added, false);
2220 }
2221 
2222 static noinline int
2223 __intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries,
2224 				  unsigned int cnt, unsigned long flags)
2225 {
2226 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2227 
2228 	intel_pmu_lbr_read();
2229 	cnt = min_t(unsigned int, cnt, x86_pmu.lbr_nr);
2230 
2231 	memcpy(entries, cpuc->lbr_entries, sizeof(struct perf_branch_entry) * cnt);
2232 	intel_pmu_enable_all(0);
2233 	local_irq_restore(flags);
2234 	return cnt;
2235 }
2236 
2237 static int
2238 intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2239 {
2240 	unsigned long flags;
2241 
2242 	/* must not have branches... */
2243 	local_irq_save(flags);
2244 	__intel_pmu_disable_all(false); /* we don't care about BTS */
2245 	__intel_pmu_lbr_disable();
2246 	/*            ... until here */
2247 	return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2248 }
2249 
2250 static int
2251 intel_pmu_snapshot_arch_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2252 {
2253 	unsigned long flags;
2254 
2255 	/* must not have branches... */
2256 	local_irq_save(flags);
2257 	__intel_pmu_disable_all(false); /* we don't care about BTS */
2258 	__intel_pmu_arch_lbr_disable();
2259 	/*            ... until here */
2260 	return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2261 }
2262 
2263 /*
2264  * Workaround for:
2265  *   Intel Errata AAK100 (model 26)
2266  *   Intel Errata AAP53  (model 30)
2267  *   Intel Errata BD53   (model 44)
2268  *
2269  * The official story:
2270  *   These chips need to be 'reset' when adding counters by programming the
2271  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2272  *   in sequence on the same PMC or on different PMCs.
2273  *
2274  * In practice it appears some of these events do in fact count, and
2275  * we need to program all 4 events.
2276  */
2277 static void intel_pmu_nhm_workaround(void)
2278 {
2279 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2280 	static const unsigned long nhm_magic[4] = {
2281 		0x4300B5,
2282 		0x4300D2,
2283 		0x4300B1,
2284 		0x4300B1
2285 	};
2286 	struct perf_event *event;
2287 	int i;
2288 
2289 	/*
2290 	 * The Errata requires below steps:
2291 	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2292 	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
2293 	 *    the corresponding PMCx;
2294 	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2295 	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2296 	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2297 	 */
2298 
2299 	/*
2300 	 * The real steps we choose are a little different from above.
2301 	 * A) To reduce MSR operations, we don't run step 1) as they
2302 	 *    are already cleared before this function is called;
2303 	 * B) Call x86_perf_event_update to save PMCx before configuring
2304 	 *    PERFEVTSELx with magic number;
2305 	 * C) With step 5), we do clear only when the PERFEVTSELx is
2306 	 *    not used currently.
2307 	 * D) Call x86_perf_event_set_period to restore PMCx;
2308 	 */
2309 
2310 	/* We always operate 4 pairs of PERF Counters */
2311 	for (i = 0; i < 4; i++) {
2312 		event = cpuc->events[i];
2313 		if (event)
2314 			x86_perf_event_update(event);
2315 	}
2316 
2317 	for (i = 0; i < 4; i++) {
2318 		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2319 		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2320 	}
2321 
2322 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2323 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2324 
2325 	for (i = 0; i < 4; i++) {
2326 		event = cpuc->events[i];
2327 
2328 		if (event) {
2329 			x86_perf_event_set_period(event);
2330 			__x86_pmu_enable_event(&event->hw,
2331 					ARCH_PERFMON_EVENTSEL_ENABLE);
2332 		} else
2333 			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2334 	}
2335 }
2336 
2337 static void intel_pmu_nhm_enable_all(int added)
2338 {
2339 	if (added)
2340 		intel_pmu_nhm_workaround();
2341 	intel_pmu_enable_all(added);
2342 }
2343 
2344 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2345 {
2346 	u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2347 
2348 	if (cpuc->tfa_shadow != val) {
2349 		cpuc->tfa_shadow = val;
2350 		wrmsrl(MSR_TSX_FORCE_ABORT, val);
2351 	}
2352 }
2353 
2354 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2355 {
2356 	/*
2357 	 * We're going to use PMC3, make sure TFA is set before we touch it.
2358 	 */
2359 	if (cntr == 3)
2360 		intel_set_tfa(cpuc, true);
2361 }
2362 
2363 static void intel_tfa_pmu_enable_all(int added)
2364 {
2365 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2366 
2367 	/*
2368 	 * If we find PMC3 is no longer used when we enable the PMU, we can
2369 	 * clear TFA.
2370 	 */
2371 	if (!test_bit(3, cpuc->active_mask))
2372 		intel_set_tfa(cpuc, false);
2373 
2374 	intel_pmu_enable_all(added);
2375 }
2376 
2377 static inline u64 intel_pmu_get_status(void)
2378 {
2379 	u64 status;
2380 
2381 	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2382 
2383 	return status;
2384 }
2385 
2386 static inline void intel_pmu_ack_status(u64 ack)
2387 {
2388 	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2389 }
2390 
2391 static inline bool event_is_checkpointed(struct perf_event *event)
2392 {
2393 	return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2394 }
2395 
2396 static inline void intel_set_masks(struct perf_event *event, int idx)
2397 {
2398 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2399 
2400 	if (event->attr.exclude_host)
2401 		__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2402 	if (event->attr.exclude_guest)
2403 		__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2404 	if (event_is_checkpointed(event))
2405 		__set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2406 }
2407 
2408 static inline void intel_clear_masks(struct perf_event *event, int idx)
2409 {
2410 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2411 
2412 	__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2413 	__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2414 	__clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2415 }
2416 
2417 static void intel_pmu_disable_fixed(struct perf_event *event)
2418 {
2419 	struct hw_perf_event *hwc = &event->hw;
2420 	u64 ctrl_val, mask;
2421 	int idx = hwc->idx;
2422 
2423 	if (is_topdown_idx(idx)) {
2424 		struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2425 
2426 		/*
2427 		 * When there are other active TopDown events,
2428 		 * don't disable the fixed counter 3.
2429 		 */
2430 		if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2431 			return;
2432 		idx = INTEL_PMC_IDX_FIXED_SLOTS;
2433 	}
2434 
2435 	intel_clear_masks(event, idx);
2436 
2437 	mask = 0xfULL << ((idx - INTEL_PMC_IDX_FIXED) * 4);
2438 	rdmsrl(hwc->config_base, ctrl_val);
2439 	ctrl_val &= ~mask;
2440 	wrmsrl(hwc->config_base, ctrl_val);
2441 }
2442 
2443 static void intel_pmu_disable_event(struct perf_event *event)
2444 {
2445 	struct hw_perf_event *hwc = &event->hw;
2446 	int idx = hwc->idx;
2447 
2448 	switch (idx) {
2449 	case 0 ... INTEL_PMC_IDX_FIXED - 1:
2450 		intel_clear_masks(event, idx);
2451 		x86_pmu_disable_event(event);
2452 		break;
2453 	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2454 	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2455 		intel_pmu_disable_fixed(event);
2456 		break;
2457 	case INTEL_PMC_IDX_FIXED_BTS:
2458 		intel_pmu_disable_bts();
2459 		intel_pmu_drain_bts_buffer();
2460 		return;
2461 	case INTEL_PMC_IDX_FIXED_VLBR:
2462 		intel_clear_masks(event, idx);
2463 		break;
2464 	default:
2465 		intel_clear_masks(event, idx);
2466 		pr_warn("Failed to disable the event with invalid index %d\n",
2467 			idx);
2468 		return;
2469 	}
2470 
2471 	/*
2472 	 * Needs to be called after x86_pmu_disable_event,
2473 	 * so we don't trigger the event without PEBS bit set.
2474 	 */
2475 	if (unlikely(event->attr.precise_ip))
2476 		intel_pmu_pebs_disable(event);
2477 }
2478 
2479 static void intel_pmu_assign_event(struct perf_event *event, int idx)
2480 {
2481 	if (is_pebs_pt(event))
2482 		perf_report_aux_output_id(event, idx);
2483 }
2484 
2485 static void intel_pmu_del_event(struct perf_event *event)
2486 {
2487 	if (needs_branch_stack(event))
2488 		intel_pmu_lbr_del(event);
2489 	if (event->attr.precise_ip)
2490 		intel_pmu_pebs_del(event);
2491 }
2492 
2493 static int icl_set_topdown_event_period(struct perf_event *event)
2494 {
2495 	struct hw_perf_event *hwc = &event->hw;
2496 	s64 left = local64_read(&hwc->period_left);
2497 
2498 	/*
2499 	 * The values in PERF_METRICS MSR are derived from fixed counter 3.
2500 	 * Software should start both registers, PERF_METRICS and fixed
2501 	 * counter 3, from zero.
2502 	 * Clear PERF_METRICS and Fixed counter 3 in initialization.
2503 	 * After that, both MSRs will be cleared for each read.
2504 	 * Don't need to clear them again.
2505 	 */
2506 	if (left == x86_pmu.max_period) {
2507 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2508 		wrmsrl(MSR_PERF_METRICS, 0);
2509 		hwc->saved_slots = 0;
2510 		hwc->saved_metric = 0;
2511 	}
2512 
2513 	if ((hwc->saved_slots) && is_slots_event(event)) {
2514 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
2515 		wrmsrl(MSR_PERF_METRICS, hwc->saved_metric);
2516 	}
2517 
2518 	perf_event_update_userpage(event);
2519 
2520 	return 0;
2521 }
2522 
2523 static int adl_set_topdown_event_period(struct perf_event *event)
2524 {
2525 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2526 
2527 	if (pmu->cpu_type != hybrid_big)
2528 		return 0;
2529 
2530 	return icl_set_topdown_event_period(event);
2531 }
2532 
2533 static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
2534 {
2535 	u32 val;
2536 
2537 	/*
2538 	 * The metric is reported as an 8bit integer fraction
2539 	 * summing up to 0xff.
2540 	 * slots-in-metric = (Metric / 0xff) * slots
2541 	 */
2542 	val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
2543 	return  mul_u64_u32_div(slots, val, 0xff);
2544 }
2545 
2546 static u64 icl_get_topdown_value(struct perf_event *event,
2547 				       u64 slots, u64 metrics)
2548 {
2549 	int idx = event->hw.idx;
2550 	u64 delta;
2551 
2552 	if (is_metric_idx(idx))
2553 		delta = icl_get_metrics_event_value(metrics, slots, idx);
2554 	else
2555 		delta = slots;
2556 
2557 	return delta;
2558 }
2559 
2560 static void __icl_update_topdown_event(struct perf_event *event,
2561 				       u64 slots, u64 metrics,
2562 				       u64 last_slots, u64 last_metrics)
2563 {
2564 	u64 delta, last = 0;
2565 
2566 	delta = icl_get_topdown_value(event, slots, metrics);
2567 	if (last_slots)
2568 		last = icl_get_topdown_value(event, last_slots, last_metrics);
2569 
2570 	/*
2571 	 * The 8bit integer fraction of metric may be not accurate,
2572 	 * especially when the changes is very small.
2573 	 * For example, if only a few bad_spec happens, the fraction
2574 	 * may be reduced from 1 to 0. If so, the bad_spec event value
2575 	 * will be 0 which is definitely less than the last value.
2576 	 * Avoid update event->count for this case.
2577 	 */
2578 	if (delta > last) {
2579 		delta -= last;
2580 		local64_add(delta, &event->count);
2581 	}
2582 }
2583 
2584 static void update_saved_topdown_regs(struct perf_event *event, u64 slots,
2585 				      u64 metrics, int metric_end)
2586 {
2587 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2588 	struct perf_event *other;
2589 	int idx;
2590 
2591 	event->hw.saved_slots = slots;
2592 	event->hw.saved_metric = metrics;
2593 
2594 	for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2595 		if (!is_topdown_idx(idx))
2596 			continue;
2597 		other = cpuc->events[idx];
2598 		other->hw.saved_slots = slots;
2599 		other->hw.saved_metric = metrics;
2600 	}
2601 }
2602 
2603 /*
2604  * Update all active Topdown events.
2605  *
2606  * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
2607  * modify by a NMI. PMU has to be disabled before calling this function.
2608  */
2609 
2610 static u64 intel_update_topdown_event(struct perf_event *event, int metric_end)
2611 {
2612 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2613 	struct perf_event *other;
2614 	u64 slots, metrics;
2615 	bool reset = true;
2616 	int idx;
2617 
2618 	/* read Fixed counter 3 */
2619 	rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots);
2620 	if (!slots)
2621 		return 0;
2622 
2623 	/* read PERF_METRICS */
2624 	rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics);
2625 
2626 	for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2627 		if (!is_topdown_idx(idx))
2628 			continue;
2629 		other = cpuc->events[idx];
2630 		__icl_update_topdown_event(other, slots, metrics,
2631 					   event ? event->hw.saved_slots : 0,
2632 					   event ? event->hw.saved_metric : 0);
2633 	}
2634 
2635 	/*
2636 	 * Check and update this event, which may have been cleared
2637 	 * in active_mask e.g. x86_pmu_stop()
2638 	 */
2639 	if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
2640 		__icl_update_topdown_event(event, slots, metrics,
2641 					   event->hw.saved_slots,
2642 					   event->hw.saved_metric);
2643 
2644 		/*
2645 		 * In x86_pmu_stop(), the event is cleared in active_mask first,
2646 		 * then drain the delta, which indicates context switch for
2647 		 * counting.
2648 		 * Save metric and slots for context switch.
2649 		 * Don't need to reset the PERF_METRICS and Fixed counter 3.
2650 		 * Because the values will be restored in next schedule in.
2651 		 */
2652 		update_saved_topdown_regs(event, slots, metrics, metric_end);
2653 		reset = false;
2654 	}
2655 
2656 	if (reset) {
2657 		/* The fixed counter 3 has to be written before the PERF_METRICS. */
2658 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2659 		wrmsrl(MSR_PERF_METRICS, 0);
2660 		if (event)
2661 			update_saved_topdown_regs(event, 0, 0, metric_end);
2662 	}
2663 
2664 	return slots;
2665 }
2666 
2667 static u64 icl_update_topdown_event(struct perf_event *event)
2668 {
2669 	return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE +
2670 						 x86_pmu.num_topdown_events - 1);
2671 }
2672 
2673 static u64 adl_update_topdown_event(struct perf_event *event)
2674 {
2675 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2676 
2677 	if (pmu->cpu_type != hybrid_big)
2678 		return 0;
2679 
2680 	return icl_update_topdown_event(event);
2681 }
2682 
2683 
2684 static void intel_pmu_read_topdown_event(struct perf_event *event)
2685 {
2686 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2687 
2688 	/* Only need to call update_topdown_event() once for group read. */
2689 	if ((cpuc->txn_flags & PERF_PMU_TXN_READ) &&
2690 	    !is_slots_event(event))
2691 		return;
2692 
2693 	perf_pmu_disable(event->pmu);
2694 	x86_pmu.update_topdown_event(event);
2695 	perf_pmu_enable(event->pmu);
2696 }
2697 
2698 static void intel_pmu_read_event(struct perf_event *event)
2699 {
2700 	if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2701 		intel_pmu_auto_reload_read(event);
2702 	else if (is_topdown_count(event) && x86_pmu.update_topdown_event)
2703 		intel_pmu_read_topdown_event(event);
2704 	else
2705 		x86_perf_event_update(event);
2706 }
2707 
2708 static void intel_pmu_enable_fixed(struct perf_event *event)
2709 {
2710 	struct hw_perf_event *hwc = &event->hw;
2711 	u64 ctrl_val, mask, bits = 0;
2712 	int idx = hwc->idx;
2713 
2714 	if (is_topdown_idx(idx)) {
2715 		struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2716 		/*
2717 		 * When there are other active TopDown events,
2718 		 * don't enable the fixed counter 3 again.
2719 		 */
2720 		if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2721 			return;
2722 
2723 		idx = INTEL_PMC_IDX_FIXED_SLOTS;
2724 	}
2725 
2726 	intel_set_masks(event, idx);
2727 
2728 	/*
2729 	 * Enable IRQ generation (0x8), if not PEBS,
2730 	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2731 	 * if requested:
2732 	 */
2733 	if (!event->attr.precise_ip)
2734 		bits |= 0x8;
2735 	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2736 		bits |= 0x2;
2737 	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2738 		bits |= 0x1;
2739 
2740 	/*
2741 	 * ANY bit is supported in v3 and up
2742 	 */
2743 	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2744 		bits |= 0x4;
2745 
2746 	idx -= INTEL_PMC_IDX_FIXED;
2747 	bits <<= (idx * 4);
2748 	mask = 0xfULL << (idx * 4);
2749 
2750 	if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2751 		bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2752 		mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2753 	}
2754 
2755 	rdmsrl(hwc->config_base, ctrl_val);
2756 	ctrl_val &= ~mask;
2757 	ctrl_val |= bits;
2758 	wrmsrl(hwc->config_base, ctrl_val);
2759 }
2760 
2761 static void intel_pmu_enable_event(struct perf_event *event)
2762 {
2763 	struct hw_perf_event *hwc = &event->hw;
2764 	int idx = hwc->idx;
2765 
2766 	if (unlikely(event->attr.precise_ip))
2767 		intel_pmu_pebs_enable(event);
2768 
2769 	switch (idx) {
2770 	case 0 ... INTEL_PMC_IDX_FIXED - 1:
2771 		intel_set_masks(event, idx);
2772 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2773 		break;
2774 	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2775 	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2776 		intel_pmu_enable_fixed(event);
2777 		break;
2778 	case INTEL_PMC_IDX_FIXED_BTS:
2779 		if (!__this_cpu_read(cpu_hw_events.enabled))
2780 			return;
2781 		intel_pmu_enable_bts(hwc->config);
2782 		break;
2783 	case INTEL_PMC_IDX_FIXED_VLBR:
2784 		intel_set_masks(event, idx);
2785 		break;
2786 	default:
2787 		pr_warn("Failed to enable the event with invalid index %d\n",
2788 			idx);
2789 	}
2790 }
2791 
2792 static void intel_pmu_add_event(struct perf_event *event)
2793 {
2794 	if (event->attr.precise_ip)
2795 		intel_pmu_pebs_add(event);
2796 	if (needs_branch_stack(event))
2797 		intel_pmu_lbr_add(event);
2798 }
2799 
2800 /*
2801  * Save and restart an expired event. Called by NMI contexts,
2802  * so it has to be careful about preempting normal event ops:
2803  */
2804 int intel_pmu_save_and_restart(struct perf_event *event)
2805 {
2806 	x86_perf_event_update(event);
2807 	/*
2808 	 * For a checkpointed counter always reset back to 0.  This
2809 	 * avoids a situation where the counter overflows, aborts the
2810 	 * transaction and is then set back to shortly before the
2811 	 * overflow, and overflows and aborts again.
2812 	 */
2813 	if (unlikely(event_is_checkpointed(event))) {
2814 		/* No race with NMIs because the counter should not be armed */
2815 		wrmsrl(event->hw.event_base, 0);
2816 		local64_set(&event->hw.prev_count, 0);
2817 	}
2818 	return x86_perf_event_set_period(event);
2819 }
2820 
2821 static void intel_pmu_reset(void)
2822 {
2823 	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2824 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2825 	int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
2826 	int num_counters = hybrid(cpuc->pmu, num_counters);
2827 	unsigned long flags;
2828 	int idx;
2829 
2830 	if (!num_counters)
2831 		return;
2832 
2833 	local_irq_save(flags);
2834 
2835 	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2836 
2837 	for (idx = 0; idx < num_counters; idx++) {
2838 		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2839 		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2840 	}
2841 	for (idx = 0; idx < num_counters_fixed; idx++) {
2842 		if (fixed_counter_disabled(idx, cpuc->pmu))
2843 			continue;
2844 		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2845 	}
2846 
2847 	if (ds)
2848 		ds->bts_index = ds->bts_buffer_base;
2849 
2850 	/* Ack all overflows and disable fixed counters */
2851 	if (x86_pmu.version >= 2) {
2852 		intel_pmu_ack_status(intel_pmu_get_status());
2853 		wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2854 	}
2855 
2856 	/* Reset LBRs and LBR freezing */
2857 	if (x86_pmu.lbr_nr) {
2858 		update_debugctlmsr(get_debugctlmsr() &
2859 			~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2860 	}
2861 
2862 	local_irq_restore(flags);
2863 }
2864 
2865 /*
2866  * We may be running with guest PEBS events created by KVM, and the
2867  * PEBS records are logged into the guest's DS and invisible to host.
2868  *
2869  * In the case of guest PEBS overflow, we only trigger a fake event
2870  * to emulate the PEBS overflow PMI for guest PEBS counters in KVM.
2871  * The guest will then vm-entry and check the guest DS area to read
2872  * the guest PEBS records.
2873  *
2874  * The contents and other behavior of the guest event do not matter.
2875  */
2876 static void x86_pmu_handle_guest_pebs(struct pt_regs *regs,
2877 				      struct perf_sample_data *data)
2878 {
2879 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2880 	u64 guest_pebs_idxs = cpuc->pebs_enabled & ~cpuc->intel_ctrl_host_mask;
2881 	struct perf_event *event = NULL;
2882 	int bit;
2883 
2884 	if (!unlikely(perf_guest_state()))
2885 		return;
2886 
2887 	if (!x86_pmu.pebs_ept || !x86_pmu.pebs_active ||
2888 	    !guest_pebs_idxs)
2889 		return;
2890 
2891 	for_each_set_bit(bit, (unsigned long *)&guest_pebs_idxs,
2892 			 INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed) {
2893 		event = cpuc->events[bit];
2894 		if (!event->attr.precise_ip)
2895 			continue;
2896 
2897 		perf_sample_data_init(data, 0, event->hw.last_period);
2898 		if (perf_event_overflow(event, data, regs))
2899 			x86_pmu_stop(event, 0);
2900 
2901 		/* Inject one fake event is enough. */
2902 		break;
2903 	}
2904 }
2905 
2906 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2907 {
2908 	struct perf_sample_data data;
2909 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2910 	int bit;
2911 	int handled = 0;
2912 	u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2913 
2914 	inc_irq_stat(apic_perf_irqs);
2915 
2916 	/*
2917 	 * Ignore a range of extra bits in status that do not indicate
2918 	 * overflow by themselves.
2919 	 */
2920 	status &= ~(GLOBAL_STATUS_COND_CHG |
2921 		    GLOBAL_STATUS_ASIF |
2922 		    GLOBAL_STATUS_LBRS_FROZEN);
2923 	if (!status)
2924 		return 0;
2925 	/*
2926 	 * In case multiple PEBS events are sampled at the same time,
2927 	 * it is possible to have GLOBAL_STATUS bit 62 set indicating
2928 	 * PEBS buffer overflow and also seeing at most 3 PEBS counters
2929 	 * having their bits set in the status register. This is a sign
2930 	 * that there was at least one PEBS record pending at the time
2931 	 * of the PMU interrupt. PEBS counters must only be processed
2932 	 * via the drain_pebs() calls and not via the regular sample
2933 	 * processing loop coming after that the function, otherwise
2934 	 * phony regular samples may be generated in the sampling buffer
2935 	 * not marked with the EXACT tag. Another possibility is to have
2936 	 * one PEBS event and at least one non-PEBS event which overflows
2937 	 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2938 	 * not be set, yet the overflow status bit for the PEBS counter will
2939 	 * be on Skylake.
2940 	 *
2941 	 * To avoid this problem, we systematically ignore the PEBS-enabled
2942 	 * counters from the GLOBAL_STATUS mask and we always process PEBS
2943 	 * events via drain_pebs().
2944 	 */
2945 	status &= ~(cpuc->pebs_enabled & x86_pmu.pebs_capable);
2946 
2947 	/*
2948 	 * PEBS overflow sets bit 62 in the global status register
2949 	 */
2950 	if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
2951 		u64 pebs_enabled = cpuc->pebs_enabled;
2952 
2953 		handled++;
2954 		x86_pmu_handle_guest_pebs(regs, &data);
2955 		x86_pmu.drain_pebs(regs, &data);
2956 		status &= intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2957 
2958 		/*
2959 		 * PMI throttle may be triggered, which stops the PEBS event.
2960 		 * Although cpuc->pebs_enabled is updated accordingly, the
2961 		 * MSR_IA32_PEBS_ENABLE is not updated. Because the
2962 		 * cpuc->enabled has been forced to 0 in PMI.
2963 		 * Update the MSR if pebs_enabled is changed.
2964 		 */
2965 		if (pebs_enabled != cpuc->pebs_enabled)
2966 			wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
2967 	}
2968 
2969 	/*
2970 	 * Intel PT
2971 	 */
2972 	if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
2973 		handled++;
2974 		if (!perf_guest_handle_intel_pt_intr())
2975 			intel_pt_interrupt();
2976 	}
2977 
2978 	/*
2979 	 * Intel Perf metrics
2980 	 */
2981 	if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
2982 		handled++;
2983 		if (x86_pmu.update_topdown_event)
2984 			x86_pmu.update_topdown_event(NULL);
2985 	}
2986 
2987 	/*
2988 	 * Checkpointed counters can lead to 'spurious' PMIs because the
2989 	 * rollback caused by the PMI will have cleared the overflow status
2990 	 * bit. Therefore always force probe these counters.
2991 	 */
2992 	status |= cpuc->intel_cp_status;
2993 
2994 	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2995 		struct perf_event *event = cpuc->events[bit];
2996 
2997 		handled++;
2998 
2999 		if (!test_bit(bit, cpuc->active_mask))
3000 			continue;
3001 
3002 		if (!intel_pmu_save_and_restart(event))
3003 			continue;
3004 
3005 		perf_sample_data_init(&data, 0, event->hw.last_period);
3006 
3007 		if (has_branch_stack(event))
3008 			data.br_stack = &cpuc->lbr_stack;
3009 
3010 		if (perf_event_overflow(event, &data, regs))
3011 			x86_pmu_stop(event, 0);
3012 	}
3013 
3014 	return handled;
3015 }
3016 
3017 /*
3018  * This handler is triggered by the local APIC, so the APIC IRQ handling
3019  * rules apply:
3020  */
3021 static int intel_pmu_handle_irq(struct pt_regs *regs)
3022 {
3023 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3024 	bool late_ack = hybrid_bit(cpuc->pmu, late_ack);
3025 	bool mid_ack = hybrid_bit(cpuc->pmu, mid_ack);
3026 	int loops;
3027 	u64 status;
3028 	int handled;
3029 	int pmu_enabled;
3030 
3031 	/*
3032 	 * Save the PMU state.
3033 	 * It needs to be restored when leaving the handler.
3034 	 */
3035 	pmu_enabled = cpuc->enabled;
3036 	/*
3037 	 * In general, the early ACK is only applied for old platforms.
3038 	 * For the big core starts from Haswell, the late ACK should be
3039 	 * applied.
3040 	 * For the small core after Tremont, we have to do the ACK right
3041 	 * before re-enabling counters, which is in the middle of the
3042 	 * NMI handler.
3043 	 */
3044 	if (!late_ack && !mid_ack)
3045 		apic_write(APIC_LVTPC, APIC_DM_NMI);
3046 	intel_bts_disable_local();
3047 	cpuc->enabled = 0;
3048 	__intel_pmu_disable_all(true);
3049 	handled = intel_pmu_drain_bts_buffer();
3050 	handled += intel_bts_interrupt();
3051 	status = intel_pmu_get_status();
3052 	if (!status)
3053 		goto done;
3054 
3055 	loops = 0;
3056 again:
3057 	intel_pmu_lbr_read();
3058 	intel_pmu_ack_status(status);
3059 	if (++loops > 100) {
3060 		static bool warned;
3061 
3062 		if (!warned) {
3063 			WARN(1, "perfevents: irq loop stuck!\n");
3064 			perf_event_print_debug();
3065 			warned = true;
3066 		}
3067 		intel_pmu_reset();
3068 		goto done;
3069 	}
3070 
3071 	handled += handle_pmi_common(regs, status);
3072 
3073 	/*
3074 	 * Repeat if there is more work to be done:
3075 	 */
3076 	status = intel_pmu_get_status();
3077 	if (status)
3078 		goto again;
3079 
3080 done:
3081 	if (mid_ack)
3082 		apic_write(APIC_LVTPC, APIC_DM_NMI);
3083 	/* Only restore PMU state when it's active. See x86_pmu_disable(). */
3084 	cpuc->enabled = pmu_enabled;
3085 	if (pmu_enabled)
3086 		__intel_pmu_enable_all(0, true);
3087 	intel_bts_enable_local();
3088 
3089 	/*
3090 	 * Only unmask the NMI after the overflow counters
3091 	 * have been reset. This avoids spurious NMIs on
3092 	 * Haswell CPUs.
3093 	 */
3094 	if (late_ack)
3095 		apic_write(APIC_LVTPC, APIC_DM_NMI);
3096 	return handled;
3097 }
3098 
3099 static struct event_constraint *
3100 intel_bts_constraints(struct perf_event *event)
3101 {
3102 	if (unlikely(intel_pmu_has_bts(event)))
3103 		return &bts_constraint;
3104 
3105 	return NULL;
3106 }
3107 
3108 /*
3109  * Note: matches a fake event, like Fixed2.
3110  */
3111 static struct event_constraint *
3112 intel_vlbr_constraints(struct perf_event *event)
3113 {
3114 	struct event_constraint *c = &vlbr_constraint;
3115 
3116 	if (unlikely(constraint_match(c, event->hw.config))) {
3117 		event->hw.flags |= c->flags;
3118 		return c;
3119 	}
3120 
3121 	return NULL;
3122 }
3123 
3124 static int intel_alt_er(struct cpu_hw_events *cpuc,
3125 			int idx, u64 config)
3126 {
3127 	struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs);
3128 	int alt_idx = idx;
3129 
3130 	if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
3131 		return idx;
3132 
3133 	if (idx == EXTRA_REG_RSP_0)
3134 		alt_idx = EXTRA_REG_RSP_1;
3135 
3136 	if (idx == EXTRA_REG_RSP_1)
3137 		alt_idx = EXTRA_REG_RSP_0;
3138 
3139 	if (config & ~extra_regs[alt_idx].valid_mask)
3140 		return idx;
3141 
3142 	return alt_idx;
3143 }
3144 
3145 static void intel_fixup_er(struct perf_event *event, int idx)
3146 {
3147 	struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
3148 	event->hw.extra_reg.idx = idx;
3149 
3150 	if (idx == EXTRA_REG_RSP_0) {
3151 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3152 		event->hw.config |= extra_regs[EXTRA_REG_RSP_0].event;
3153 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
3154 	} else if (idx == EXTRA_REG_RSP_1) {
3155 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3156 		event->hw.config |= extra_regs[EXTRA_REG_RSP_1].event;
3157 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
3158 	}
3159 }
3160 
3161 /*
3162  * manage allocation of shared extra msr for certain events
3163  *
3164  * sharing can be:
3165  * per-cpu: to be shared between the various events on a single PMU
3166  * per-core: per-cpu + shared by HT threads
3167  */
3168 static struct event_constraint *
3169 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
3170 				   struct perf_event *event,
3171 				   struct hw_perf_event_extra *reg)
3172 {
3173 	struct event_constraint *c = &emptyconstraint;
3174 	struct er_account *era;
3175 	unsigned long flags;
3176 	int idx = reg->idx;
3177 
3178 	/*
3179 	 * reg->alloc can be set due to existing state, so for fake cpuc we
3180 	 * need to ignore this, otherwise we might fail to allocate proper fake
3181 	 * state for this extra reg constraint. Also see the comment below.
3182 	 */
3183 	if (reg->alloc && !cpuc->is_fake)
3184 		return NULL; /* call x86_get_event_constraint() */
3185 
3186 again:
3187 	era = &cpuc->shared_regs->regs[idx];
3188 	/*
3189 	 * we use spin_lock_irqsave() to avoid lockdep issues when
3190 	 * passing a fake cpuc
3191 	 */
3192 	raw_spin_lock_irqsave(&era->lock, flags);
3193 
3194 	if (!atomic_read(&era->ref) || era->config == reg->config) {
3195 
3196 		/*
3197 		 * If its a fake cpuc -- as per validate_{group,event}() we
3198 		 * shouldn't touch event state and we can avoid doing so
3199 		 * since both will only call get_event_constraints() once
3200 		 * on each event, this avoids the need for reg->alloc.
3201 		 *
3202 		 * Not doing the ER fixup will only result in era->reg being
3203 		 * wrong, but since we won't actually try and program hardware
3204 		 * this isn't a problem either.
3205 		 */
3206 		if (!cpuc->is_fake) {
3207 			if (idx != reg->idx)
3208 				intel_fixup_er(event, idx);
3209 
3210 			/*
3211 			 * x86_schedule_events() can call get_event_constraints()
3212 			 * multiple times on events in the case of incremental
3213 			 * scheduling(). reg->alloc ensures we only do the ER
3214 			 * allocation once.
3215 			 */
3216 			reg->alloc = 1;
3217 		}
3218 
3219 		/* lock in msr value */
3220 		era->config = reg->config;
3221 		era->reg = reg->reg;
3222 
3223 		/* one more user */
3224 		atomic_inc(&era->ref);
3225 
3226 		/*
3227 		 * need to call x86_get_event_constraint()
3228 		 * to check if associated event has constraints
3229 		 */
3230 		c = NULL;
3231 	} else {
3232 		idx = intel_alt_er(cpuc, idx, reg->config);
3233 		if (idx != reg->idx) {
3234 			raw_spin_unlock_irqrestore(&era->lock, flags);
3235 			goto again;
3236 		}
3237 	}
3238 	raw_spin_unlock_irqrestore(&era->lock, flags);
3239 
3240 	return c;
3241 }
3242 
3243 static void
3244 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
3245 				   struct hw_perf_event_extra *reg)
3246 {
3247 	struct er_account *era;
3248 
3249 	/*
3250 	 * Only put constraint if extra reg was actually allocated. Also takes
3251 	 * care of event which do not use an extra shared reg.
3252 	 *
3253 	 * Also, if this is a fake cpuc we shouldn't touch any event state
3254 	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
3255 	 * either since it'll be thrown out.
3256 	 */
3257 	if (!reg->alloc || cpuc->is_fake)
3258 		return;
3259 
3260 	era = &cpuc->shared_regs->regs[reg->idx];
3261 
3262 	/* one fewer user */
3263 	atomic_dec(&era->ref);
3264 
3265 	/* allocate again next time */
3266 	reg->alloc = 0;
3267 }
3268 
3269 static struct event_constraint *
3270 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
3271 			      struct perf_event *event)
3272 {
3273 	struct event_constraint *c = NULL, *d;
3274 	struct hw_perf_event_extra *xreg, *breg;
3275 
3276 	xreg = &event->hw.extra_reg;
3277 	if (xreg->idx != EXTRA_REG_NONE) {
3278 		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
3279 		if (c == &emptyconstraint)
3280 			return c;
3281 	}
3282 	breg = &event->hw.branch_reg;
3283 	if (breg->idx != EXTRA_REG_NONE) {
3284 		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
3285 		if (d == &emptyconstraint) {
3286 			__intel_shared_reg_put_constraints(cpuc, xreg);
3287 			c = d;
3288 		}
3289 	}
3290 	return c;
3291 }
3292 
3293 struct event_constraint *
3294 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3295 			  struct perf_event *event)
3296 {
3297 	struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints);
3298 	struct event_constraint *c;
3299 
3300 	if (event_constraints) {
3301 		for_each_event_constraint(c, event_constraints) {
3302 			if (constraint_match(c, event->hw.config)) {
3303 				event->hw.flags |= c->flags;
3304 				return c;
3305 			}
3306 		}
3307 	}
3308 
3309 	return &hybrid_var(cpuc->pmu, unconstrained);
3310 }
3311 
3312 static struct event_constraint *
3313 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3314 			    struct perf_event *event)
3315 {
3316 	struct event_constraint *c;
3317 
3318 	c = intel_vlbr_constraints(event);
3319 	if (c)
3320 		return c;
3321 
3322 	c = intel_bts_constraints(event);
3323 	if (c)
3324 		return c;
3325 
3326 	c = intel_shared_regs_constraints(cpuc, event);
3327 	if (c)
3328 		return c;
3329 
3330 	c = intel_pebs_constraints(event);
3331 	if (c)
3332 		return c;
3333 
3334 	return x86_get_event_constraints(cpuc, idx, event);
3335 }
3336 
3337 static void
3338 intel_start_scheduling(struct cpu_hw_events *cpuc)
3339 {
3340 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3341 	struct intel_excl_states *xl;
3342 	int tid = cpuc->excl_thread_id;
3343 
3344 	/*
3345 	 * nothing needed if in group validation mode
3346 	 */
3347 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3348 		return;
3349 
3350 	/*
3351 	 * no exclusion needed
3352 	 */
3353 	if (WARN_ON_ONCE(!excl_cntrs))
3354 		return;
3355 
3356 	xl = &excl_cntrs->states[tid];
3357 
3358 	xl->sched_started = true;
3359 	/*
3360 	 * lock shared state until we are done scheduling
3361 	 * in stop_event_scheduling()
3362 	 * makes scheduling appear as a transaction
3363 	 */
3364 	raw_spin_lock(&excl_cntrs->lock);
3365 }
3366 
3367 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
3368 {
3369 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3370 	struct event_constraint *c = cpuc->event_constraint[idx];
3371 	struct intel_excl_states *xl;
3372 	int tid = cpuc->excl_thread_id;
3373 
3374 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3375 		return;
3376 
3377 	if (WARN_ON_ONCE(!excl_cntrs))
3378 		return;
3379 
3380 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
3381 		return;
3382 
3383 	xl = &excl_cntrs->states[tid];
3384 
3385 	lockdep_assert_held(&excl_cntrs->lock);
3386 
3387 	if (c->flags & PERF_X86_EVENT_EXCL)
3388 		xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
3389 	else
3390 		xl->state[cntr] = INTEL_EXCL_SHARED;
3391 }
3392 
3393 static void
3394 intel_stop_scheduling(struct cpu_hw_events *cpuc)
3395 {
3396 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3397 	struct intel_excl_states *xl;
3398 	int tid = cpuc->excl_thread_id;
3399 
3400 	/*
3401 	 * nothing needed if in group validation mode
3402 	 */
3403 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3404 		return;
3405 	/*
3406 	 * no exclusion needed
3407 	 */
3408 	if (WARN_ON_ONCE(!excl_cntrs))
3409 		return;
3410 
3411 	xl = &excl_cntrs->states[tid];
3412 
3413 	xl->sched_started = false;
3414 	/*
3415 	 * release shared state lock (acquired in intel_start_scheduling())
3416 	 */
3417 	raw_spin_unlock(&excl_cntrs->lock);
3418 }
3419 
3420 static struct event_constraint *
3421 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
3422 {
3423 	WARN_ON_ONCE(!cpuc->constraint_list);
3424 
3425 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
3426 		struct event_constraint *cx;
3427 
3428 		/*
3429 		 * grab pre-allocated constraint entry
3430 		 */
3431 		cx = &cpuc->constraint_list[idx];
3432 
3433 		/*
3434 		 * initialize dynamic constraint
3435 		 * with static constraint
3436 		 */
3437 		*cx = *c;
3438 
3439 		/*
3440 		 * mark constraint as dynamic
3441 		 */
3442 		cx->flags |= PERF_X86_EVENT_DYNAMIC;
3443 		c = cx;
3444 	}
3445 
3446 	return c;
3447 }
3448 
3449 static struct event_constraint *
3450 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
3451 			   int idx, struct event_constraint *c)
3452 {
3453 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3454 	struct intel_excl_states *xlo;
3455 	int tid = cpuc->excl_thread_id;
3456 	int is_excl, i, w;
3457 
3458 	/*
3459 	 * validating a group does not require
3460 	 * enforcing cross-thread  exclusion
3461 	 */
3462 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3463 		return c;
3464 
3465 	/*
3466 	 * no exclusion needed
3467 	 */
3468 	if (WARN_ON_ONCE(!excl_cntrs))
3469 		return c;
3470 
3471 	/*
3472 	 * because we modify the constraint, we need
3473 	 * to make a copy. Static constraints come
3474 	 * from static const tables.
3475 	 *
3476 	 * only needed when constraint has not yet
3477 	 * been cloned (marked dynamic)
3478 	 */
3479 	c = dyn_constraint(cpuc, c, idx);
3480 
3481 	/*
3482 	 * From here on, the constraint is dynamic.
3483 	 * Either it was just allocated above, or it
3484 	 * was allocated during a earlier invocation
3485 	 * of this function
3486 	 */
3487 
3488 	/*
3489 	 * state of sibling HT
3490 	 */
3491 	xlo = &excl_cntrs->states[tid ^ 1];
3492 
3493 	/*
3494 	 * event requires exclusive counter access
3495 	 * across HT threads
3496 	 */
3497 	is_excl = c->flags & PERF_X86_EVENT_EXCL;
3498 	if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
3499 		event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
3500 		if (!cpuc->n_excl++)
3501 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
3502 	}
3503 
3504 	/*
3505 	 * Modify static constraint with current dynamic
3506 	 * state of thread
3507 	 *
3508 	 * EXCLUSIVE: sibling counter measuring exclusive event
3509 	 * SHARED   : sibling counter measuring non-exclusive event
3510 	 * UNUSED   : sibling counter unused
3511 	 */
3512 	w = c->weight;
3513 	for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3514 		/*
3515 		 * exclusive event in sibling counter
3516 		 * our corresponding counter cannot be used
3517 		 * regardless of our event
3518 		 */
3519 		if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3520 			__clear_bit(i, c->idxmsk);
3521 			w--;
3522 			continue;
3523 		}
3524 		/*
3525 		 * if measuring an exclusive event, sibling
3526 		 * measuring non-exclusive, then counter cannot
3527 		 * be used
3528 		 */
3529 		if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3530 			__clear_bit(i, c->idxmsk);
3531 			w--;
3532 			continue;
3533 		}
3534 	}
3535 
3536 	/*
3537 	 * if we return an empty mask, then switch
3538 	 * back to static empty constraint to avoid
3539 	 * the cost of freeing later on
3540 	 */
3541 	if (!w)
3542 		c = &emptyconstraint;
3543 
3544 	c->weight = w;
3545 
3546 	return c;
3547 }
3548 
3549 static struct event_constraint *
3550 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3551 			    struct perf_event *event)
3552 {
3553 	struct event_constraint *c1, *c2;
3554 
3555 	c1 = cpuc->event_constraint[idx];
3556 
3557 	/*
3558 	 * first time only
3559 	 * - static constraint: no change across incremental scheduling calls
3560 	 * - dynamic constraint: handled by intel_get_excl_constraints()
3561 	 */
3562 	c2 = __intel_get_event_constraints(cpuc, idx, event);
3563 	if (c1) {
3564 	        WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3565 		bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3566 		c1->weight = c2->weight;
3567 		c2 = c1;
3568 	}
3569 
3570 	if (cpuc->excl_cntrs)
3571 		return intel_get_excl_constraints(cpuc, event, idx, c2);
3572 
3573 	return c2;
3574 }
3575 
3576 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3577 		struct perf_event *event)
3578 {
3579 	struct hw_perf_event *hwc = &event->hw;
3580 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3581 	int tid = cpuc->excl_thread_id;
3582 	struct intel_excl_states *xl;
3583 
3584 	/*
3585 	 * nothing needed if in group validation mode
3586 	 */
3587 	if (cpuc->is_fake)
3588 		return;
3589 
3590 	if (WARN_ON_ONCE(!excl_cntrs))
3591 		return;
3592 
3593 	if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3594 		hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3595 		if (!--cpuc->n_excl)
3596 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3597 	}
3598 
3599 	/*
3600 	 * If event was actually assigned, then mark the counter state as
3601 	 * unused now.
3602 	 */
3603 	if (hwc->idx >= 0) {
3604 		xl = &excl_cntrs->states[tid];
3605 
3606 		/*
3607 		 * put_constraint may be called from x86_schedule_events()
3608 		 * which already has the lock held so here make locking
3609 		 * conditional.
3610 		 */
3611 		if (!xl->sched_started)
3612 			raw_spin_lock(&excl_cntrs->lock);
3613 
3614 		xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3615 
3616 		if (!xl->sched_started)
3617 			raw_spin_unlock(&excl_cntrs->lock);
3618 	}
3619 }
3620 
3621 static void
3622 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3623 					struct perf_event *event)
3624 {
3625 	struct hw_perf_event_extra *reg;
3626 
3627 	reg = &event->hw.extra_reg;
3628 	if (reg->idx != EXTRA_REG_NONE)
3629 		__intel_shared_reg_put_constraints(cpuc, reg);
3630 
3631 	reg = &event->hw.branch_reg;
3632 	if (reg->idx != EXTRA_REG_NONE)
3633 		__intel_shared_reg_put_constraints(cpuc, reg);
3634 }
3635 
3636 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3637 					struct perf_event *event)
3638 {
3639 	intel_put_shared_regs_event_constraints(cpuc, event);
3640 
3641 	/*
3642 	 * is PMU has exclusive counter restrictions, then
3643 	 * all events are subject to and must call the
3644 	 * put_excl_constraints() routine
3645 	 */
3646 	if (cpuc->excl_cntrs)
3647 		intel_put_excl_constraints(cpuc, event);
3648 }
3649 
3650 static void intel_pebs_aliases_core2(struct perf_event *event)
3651 {
3652 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3653 		/*
3654 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3655 		 * (0x003c) so that we can use it with PEBS.
3656 		 *
3657 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3658 		 * PEBS capable. However we can use INST_RETIRED.ANY_P
3659 		 * (0x00c0), which is a PEBS capable event, to get the same
3660 		 * count.
3661 		 *
3662 		 * INST_RETIRED.ANY_P counts the number of cycles that retires
3663 		 * CNTMASK instructions. By setting CNTMASK to a value (16)
3664 		 * larger than the maximum number of instructions that can be
3665 		 * retired per cycle (4) and then inverting the condition, we
3666 		 * count all cycles that retire 16 or less instructions, which
3667 		 * is every cycle.
3668 		 *
3669 		 * Thereby we gain a PEBS capable cycle counter.
3670 		 */
3671 		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3672 
3673 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3674 		event->hw.config = alt_config;
3675 	}
3676 }
3677 
3678 static void intel_pebs_aliases_snb(struct perf_event *event)
3679 {
3680 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3681 		/*
3682 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3683 		 * (0x003c) so that we can use it with PEBS.
3684 		 *
3685 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3686 		 * PEBS capable. However we can use UOPS_RETIRED.ALL
3687 		 * (0x01c2), which is a PEBS capable event, to get the same
3688 		 * count.
3689 		 *
3690 		 * UOPS_RETIRED.ALL counts the number of cycles that retires
3691 		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3692 		 * larger than the maximum number of micro-ops that can be
3693 		 * retired per cycle (4) and then inverting the condition, we
3694 		 * count all cycles that retire 16 or less micro-ops, which
3695 		 * is every cycle.
3696 		 *
3697 		 * Thereby we gain a PEBS capable cycle counter.
3698 		 */
3699 		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3700 
3701 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3702 		event->hw.config = alt_config;
3703 	}
3704 }
3705 
3706 static void intel_pebs_aliases_precdist(struct perf_event *event)
3707 {
3708 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3709 		/*
3710 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3711 		 * (0x003c) so that we can use it with PEBS.
3712 		 *
3713 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3714 		 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3715 		 * (0x01c0), which is a PEBS capable event, to get the same
3716 		 * count.
3717 		 *
3718 		 * The PREC_DIST event has special support to minimize sample
3719 		 * shadowing effects. One drawback is that it can be
3720 		 * only programmed on counter 1, but that seems like an
3721 		 * acceptable trade off.
3722 		 */
3723 		u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3724 
3725 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3726 		event->hw.config = alt_config;
3727 	}
3728 }
3729 
3730 static void intel_pebs_aliases_ivb(struct perf_event *event)
3731 {
3732 	if (event->attr.precise_ip < 3)
3733 		return intel_pebs_aliases_snb(event);
3734 	return intel_pebs_aliases_precdist(event);
3735 }
3736 
3737 static void intel_pebs_aliases_skl(struct perf_event *event)
3738 {
3739 	if (event->attr.precise_ip < 3)
3740 		return intel_pebs_aliases_core2(event);
3741 	return intel_pebs_aliases_precdist(event);
3742 }
3743 
3744 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3745 {
3746 	unsigned long flags = x86_pmu.large_pebs_flags;
3747 
3748 	if (event->attr.use_clockid)
3749 		flags &= ~PERF_SAMPLE_TIME;
3750 	if (!event->attr.exclude_kernel)
3751 		flags &= ~PERF_SAMPLE_REGS_USER;
3752 	if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3753 		flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3754 	return flags;
3755 }
3756 
3757 static int intel_pmu_bts_config(struct perf_event *event)
3758 {
3759 	struct perf_event_attr *attr = &event->attr;
3760 
3761 	if (unlikely(intel_pmu_has_bts(event))) {
3762 		/* BTS is not supported by this architecture. */
3763 		if (!x86_pmu.bts_active)
3764 			return -EOPNOTSUPP;
3765 
3766 		/* BTS is currently only allowed for user-mode. */
3767 		if (!attr->exclude_kernel)
3768 			return -EOPNOTSUPP;
3769 
3770 		/* BTS is not allowed for precise events. */
3771 		if (attr->precise_ip)
3772 			return -EOPNOTSUPP;
3773 
3774 		/* disallow bts if conflicting events are present */
3775 		if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3776 			return -EBUSY;
3777 
3778 		event->destroy = hw_perf_lbr_event_destroy;
3779 	}
3780 
3781 	return 0;
3782 }
3783 
3784 static int core_pmu_hw_config(struct perf_event *event)
3785 {
3786 	int ret = x86_pmu_hw_config(event);
3787 
3788 	if (ret)
3789 		return ret;
3790 
3791 	return intel_pmu_bts_config(event);
3792 }
3793 
3794 #define INTEL_TD_METRIC_AVAILABLE_MAX	(INTEL_TD_METRIC_RETIRING + \
3795 					 ((x86_pmu.num_topdown_events - 1) << 8))
3796 
3797 static bool is_available_metric_event(struct perf_event *event)
3798 {
3799 	return is_metric_event(event) &&
3800 		event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX;
3801 }
3802 
3803 static inline bool is_mem_loads_event(struct perf_event *event)
3804 {
3805 	return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01);
3806 }
3807 
3808 static inline bool is_mem_loads_aux_event(struct perf_event *event)
3809 {
3810 	return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82);
3811 }
3812 
3813 static inline bool require_mem_loads_aux_event(struct perf_event *event)
3814 {
3815 	if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX))
3816 		return false;
3817 
3818 	if (is_hybrid())
3819 		return hybrid_pmu(event->pmu)->cpu_type == hybrid_big;
3820 
3821 	return true;
3822 }
3823 
3824 static inline bool intel_pmu_has_cap(struct perf_event *event, int idx)
3825 {
3826 	union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap);
3827 
3828 	return test_bit(idx, (unsigned long *)&intel_cap->capabilities);
3829 }
3830 
3831 static int intel_pmu_hw_config(struct perf_event *event)
3832 {
3833 	int ret = x86_pmu_hw_config(event);
3834 
3835 	if (ret)
3836 		return ret;
3837 
3838 	ret = intel_pmu_bts_config(event);
3839 	if (ret)
3840 		return ret;
3841 
3842 	if (event->attr.precise_ip) {
3843 		if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT)
3844 			return -EINVAL;
3845 
3846 		if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3847 			event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3848 			if (!(event->attr.sample_type &
3849 			      ~intel_pmu_large_pebs_flags(event))) {
3850 				event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3851 				event->attach_state |= PERF_ATTACH_SCHED_CB;
3852 			}
3853 		}
3854 		if (x86_pmu.pebs_aliases)
3855 			x86_pmu.pebs_aliases(event);
3856 
3857 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3858 			event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3859 	}
3860 
3861 	if (needs_branch_stack(event)) {
3862 		ret = intel_pmu_setup_lbr_filter(event);
3863 		if (ret)
3864 			return ret;
3865 		event->attach_state |= PERF_ATTACH_SCHED_CB;
3866 
3867 		/*
3868 		 * BTS is set up earlier in this path, so don't account twice
3869 		 */
3870 		if (!unlikely(intel_pmu_has_bts(event))) {
3871 			/* disallow lbr if conflicting events are present */
3872 			if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3873 				return -EBUSY;
3874 
3875 			event->destroy = hw_perf_lbr_event_destroy;
3876 		}
3877 	}
3878 
3879 	if (event->attr.aux_output) {
3880 		if (!event->attr.precise_ip)
3881 			return -EINVAL;
3882 
3883 		event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
3884 	}
3885 
3886 	if ((event->attr.type == PERF_TYPE_HARDWARE) ||
3887 	    (event->attr.type == PERF_TYPE_HW_CACHE))
3888 		return 0;
3889 
3890 	/*
3891 	 * Config Topdown slots and metric events
3892 	 *
3893 	 * The slots event on Fixed Counter 3 can support sampling,
3894 	 * which will be handled normally in x86_perf_event_update().
3895 	 *
3896 	 * Metric events don't support sampling and require being paired
3897 	 * with a slots event as group leader. When the slots event
3898 	 * is used in a metrics group, it too cannot support sampling.
3899 	 */
3900 	if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) {
3901 		if (event->attr.config1 || event->attr.config2)
3902 			return -EINVAL;
3903 
3904 		/*
3905 		 * The TopDown metrics events and slots event don't
3906 		 * support any filters.
3907 		 */
3908 		if (event->attr.config & X86_ALL_EVENT_FLAGS)
3909 			return -EINVAL;
3910 
3911 		if (is_available_metric_event(event)) {
3912 			struct perf_event *leader = event->group_leader;
3913 
3914 			/* The metric events don't support sampling. */
3915 			if (is_sampling_event(event))
3916 				return -EINVAL;
3917 
3918 			/* The metric events require a slots group leader. */
3919 			if (!is_slots_event(leader))
3920 				return -EINVAL;
3921 
3922 			/*
3923 			 * The leader/SLOTS must not be a sampling event for
3924 			 * metric use; hardware requires it starts at 0 when used
3925 			 * in conjunction with MSR_PERF_METRICS.
3926 			 */
3927 			if (is_sampling_event(leader))
3928 				return -EINVAL;
3929 
3930 			event->event_caps |= PERF_EV_CAP_SIBLING;
3931 			/*
3932 			 * Only once we have a METRICs sibling do we
3933 			 * need TopDown magic.
3934 			 */
3935 			leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
3936 			event->hw.flags  |= PERF_X86_EVENT_TOPDOWN;
3937 		}
3938 	}
3939 
3940 	/*
3941 	 * The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR
3942 	 * doesn't function quite right. As a work-around it needs to always be
3943 	 * co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82).
3944 	 * The actual count of this second event is irrelevant it just needs
3945 	 * to be active to make the first event function correctly.
3946 	 *
3947 	 * In a group, the auxiliary event must be in front of the load latency
3948 	 * event. The rule is to simplify the implementation of the check.
3949 	 * That's because perf cannot have a complete group at the moment.
3950 	 */
3951 	if (require_mem_loads_aux_event(event) &&
3952 	    (event->attr.sample_type & PERF_SAMPLE_DATA_SRC) &&
3953 	    is_mem_loads_event(event)) {
3954 		struct perf_event *leader = event->group_leader;
3955 		struct perf_event *sibling = NULL;
3956 
3957 		if (!is_mem_loads_aux_event(leader)) {
3958 			for_each_sibling_event(sibling, leader) {
3959 				if (is_mem_loads_aux_event(sibling))
3960 					break;
3961 			}
3962 			if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list))
3963 				return -ENODATA;
3964 		}
3965 	}
3966 
3967 	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3968 		return 0;
3969 
3970 	if (x86_pmu.version < 3)
3971 		return -EINVAL;
3972 
3973 	ret = perf_allow_cpu(&event->attr);
3974 	if (ret)
3975 		return ret;
3976 
3977 	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3978 
3979 	return 0;
3980 }
3981 
3982 /*
3983  * Currently, the only caller of this function is the atomic_switch_perf_msrs().
3984  * The host perf conext helps to prepare the values of the real hardware for
3985  * a set of msrs that need to be switched atomically in a vmx transaction.
3986  *
3987  * For example, the pseudocode needed to add a new msr should look like:
3988  *
3989  * arr[(*nr)++] = (struct perf_guest_switch_msr){
3990  *	.msr = the hardware msr address,
3991  *	.host = the value the hardware has when it doesn't run a guest,
3992  *	.guest = the value the hardware has when it runs a guest,
3993  * };
3994  *
3995  * These values have nothing to do with the emulated values the guest sees
3996  * when it uses {RD,WR}MSR, which should be handled by the KVM context,
3997  * specifically in the intel_pmu_{get,set}_msr().
3998  */
3999 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr, void *data)
4000 {
4001 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4002 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
4003 	struct kvm_pmu *kvm_pmu = (struct kvm_pmu *)data;
4004 	u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
4005 	u64 pebs_mask = cpuc->pebs_enabled & x86_pmu.pebs_capable;
4006 	int global_ctrl, pebs_enable;
4007 
4008 	*nr = 0;
4009 	global_ctrl = (*nr)++;
4010 	arr[global_ctrl] = (struct perf_guest_switch_msr){
4011 		.msr = MSR_CORE_PERF_GLOBAL_CTRL,
4012 		.host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask,
4013 		.guest = intel_ctrl & (~cpuc->intel_ctrl_host_mask | ~pebs_mask),
4014 	};
4015 
4016 	if (!x86_pmu.pebs)
4017 		return arr;
4018 
4019 	/*
4020 	 * If PMU counter has PEBS enabled it is not enough to
4021 	 * disable counter on a guest entry since PEBS memory
4022 	 * write can overshoot guest entry and corrupt guest
4023 	 * memory. Disabling PEBS solves the problem.
4024 	 *
4025 	 * Don't do this if the CPU already enforces it.
4026 	 */
4027 	if (x86_pmu.pebs_no_isolation) {
4028 		arr[(*nr)++] = (struct perf_guest_switch_msr){
4029 			.msr = MSR_IA32_PEBS_ENABLE,
4030 			.host = cpuc->pebs_enabled,
4031 			.guest = 0,
4032 		};
4033 		return arr;
4034 	}
4035 
4036 	if (!kvm_pmu || !x86_pmu.pebs_ept)
4037 		return arr;
4038 
4039 	arr[(*nr)++] = (struct perf_guest_switch_msr){
4040 		.msr = MSR_IA32_DS_AREA,
4041 		.host = (unsigned long)cpuc->ds,
4042 		.guest = kvm_pmu->ds_area,
4043 	};
4044 
4045 	if (x86_pmu.intel_cap.pebs_baseline) {
4046 		arr[(*nr)++] = (struct perf_guest_switch_msr){
4047 			.msr = MSR_PEBS_DATA_CFG,
4048 			.host = cpuc->pebs_data_cfg,
4049 			.guest = kvm_pmu->pebs_data_cfg,
4050 		};
4051 	}
4052 
4053 	pebs_enable = (*nr)++;
4054 	arr[pebs_enable] = (struct perf_guest_switch_msr){
4055 		.msr = MSR_IA32_PEBS_ENABLE,
4056 		.host = cpuc->pebs_enabled & ~cpuc->intel_ctrl_guest_mask,
4057 		.guest = pebs_mask & ~cpuc->intel_ctrl_host_mask,
4058 	};
4059 
4060 	if (arr[pebs_enable].host) {
4061 		/* Disable guest PEBS if host PEBS is enabled. */
4062 		arr[pebs_enable].guest = 0;
4063 	} else {
4064 		/* Disable guest PEBS thoroughly for cross-mapped PEBS counters. */
4065 		arr[pebs_enable].guest &= ~kvm_pmu->host_cross_mapped_mask;
4066 		arr[global_ctrl].guest &= ~kvm_pmu->host_cross_mapped_mask;
4067 		/* Set hw GLOBAL_CTRL bits for PEBS counter when it runs for guest */
4068 		arr[global_ctrl].guest |= arr[pebs_enable].guest;
4069 	}
4070 
4071 	return arr;
4072 }
4073 
4074 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr, void *data)
4075 {
4076 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4077 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
4078 	int idx;
4079 
4080 	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
4081 		struct perf_event *event = cpuc->events[idx];
4082 
4083 		arr[idx].msr = x86_pmu_config_addr(idx);
4084 		arr[idx].host = arr[idx].guest = 0;
4085 
4086 		if (!test_bit(idx, cpuc->active_mask))
4087 			continue;
4088 
4089 		arr[idx].host = arr[idx].guest =
4090 			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
4091 
4092 		if (event->attr.exclude_host)
4093 			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
4094 		else if (event->attr.exclude_guest)
4095 			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
4096 	}
4097 
4098 	*nr = x86_pmu.num_counters;
4099 	return arr;
4100 }
4101 
4102 static void core_pmu_enable_event(struct perf_event *event)
4103 {
4104 	if (!event->attr.exclude_host)
4105 		x86_pmu_enable_event(event);
4106 }
4107 
4108 static void core_pmu_enable_all(int added)
4109 {
4110 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4111 	int idx;
4112 
4113 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
4114 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
4115 
4116 		if (!test_bit(idx, cpuc->active_mask) ||
4117 				cpuc->events[idx]->attr.exclude_host)
4118 			continue;
4119 
4120 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
4121 	}
4122 }
4123 
4124 static int hsw_hw_config(struct perf_event *event)
4125 {
4126 	int ret = intel_pmu_hw_config(event);
4127 
4128 	if (ret)
4129 		return ret;
4130 	if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
4131 		return 0;
4132 	event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
4133 
4134 	/*
4135 	 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
4136 	 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
4137 	 * this combination.
4138 	 */
4139 	if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
4140 	     ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
4141 	      event->attr.precise_ip > 0))
4142 		return -EOPNOTSUPP;
4143 
4144 	if (event_is_checkpointed(event)) {
4145 		/*
4146 		 * Sampling of checkpointed events can cause situations where
4147 		 * the CPU constantly aborts because of a overflow, which is
4148 		 * then checkpointed back and ignored. Forbid checkpointing
4149 		 * for sampling.
4150 		 *
4151 		 * But still allow a long sampling period, so that perf stat
4152 		 * from KVM works.
4153 		 */
4154 		if (event->attr.sample_period > 0 &&
4155 		    event->attr.sample_period < 0x7fffffff)
4156 			return -EOPNOTSUPP;
4157 	}
4158 	return 0;
4159 }
4160 
4161 static struct event_constraint counter0_constraint =
4162 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
4163 
4164 static struct event_constraint counter2_constraint =
4165 			EVENT_CONSTRAINT(0, 0x4, 0);
4166 
4167 static struct event_constraint fixed0_constraint =
4168 			FIXED_EVENT_CONSTRAINT(0x00c0, 0);
4169 
4170 static struct event_constraint fixed0_counter0_constraint =
4171 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
4172 
4173 static struct event_constraint *
4174 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4175 			  struct perf_event *event)
4176 {
4177 	struct event_constraint *c;
4178 
4179 	c = intel_get_event_constraints(cpuc, idx, event);
4180 
4181 	/* Handle special quirk on in_tx_checkpointed only in counter 2 */
4182 	if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
4183 		if (c->idxmsk64 & (1U << 2))
4184 			return &counter2_constraint;
4185 		return &emptyconstraint;
4186 	}
4187 
4188 	return c;
4189 }
4190 
4191 static struct event_constraint *
4192 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4193 			  struct perf_event *event)
4194 {
4195 	/*
4196 	 * Fixed counter 0 has less skid.
4197 	 * Force instruction:ppp in Fixed counter 0
4198 	 */
4199 	if ((event->attr.precise_ip == 3) &&
4200 	    constraint_match(&fixed0_constraint, event->hw.config))
4201 		return &fixed0_constraint;
4202 
4203 	return hsw_get_event_constraints(cpuc, idx, event);
4204 }
4205 
4206 static struct event_constraint *
4207 spr_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4208 			  struct perf_event *event)
4209 {
4210 	struct event_constraint *c;
4211 
4212 	c = icl_get_event_constraints(cpuc, idx, event);
4213 
4214 	/*
4215 	 * The :ppp indicates the Precise Distribution (PDist) facility, which
4216 	 * is only supported on the GP counter 0. If a :ppp event which is not
4217 	 * available on the GP counter 0, error out.
4218 	 * Exception: Instruction PDIR is only available on the fixed counter 0.
4219 	 */
4220 	if ((event->attr.precise_ip == 3) &&
4221 	    !constraint_match(&fixed0_constraint, event->hw.config)) {
4222 		if (c->idxmsk64 & BIT_ULL(0))
4223 			return &counter0_constraint;
4224 
4225 		return &emptyconstraint;
4226 	}
4227 
4228 	return c;
4229 }
4230 
4231 static struct event_constraint *
4232 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4233 			  struct perf_event *event)
4234 {
4235 	struct event_constraint *c;
4236 
4237 	/* :ppp means to do reduced skid PEBS which is PMC0 only. */
4238 	if (event->attr.precise_ip == 3)
4239 		return &counter0_constraint;
4240 
4241 	c = intel_get_event_constraints(cpuc, idx, event);
4242 
4243 	return c;
4244 }
4245 
4246 static struct event_constraint *
4247 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4248 			  struct perf_event *event)
4249 {
4250 	struct event_constraint *c;
4251 
4252 	c = intel_get_event_constraints(cpuc, idx, event);
4253 
4254 	/*
4255 	 * :ppp means to do reduced skid PEBS,
4256 	 * which is available on PMC0 and fixed counter 0.
4257 	 */
4258 	if (event->attr.precise_ip == 3) {
4259 		/* Force instruction:ppp on PMC0 and Fixed counter 0 */
4260 		if (constraint_match(&fixed0_constraint, event->hw.config))
4261 			return &fixed0_counter0_constraint;
4262 
4263 		return &counter0_constraint;
4264 	}
4265 
4266 	return c;
4267 }
4268 
4269 static bool allow_tsx_force_abort = true;
4270 
4271 static struct event_constraint *
4272 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4273 			  struct perf_event *event)
4274 {
4275 	struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
4276 
4277 	/*
4278 	 * Without TFA we must not use PMC3.
4279 	 */
4280 	if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
4281 		c = dyn_constraint(cpuc, c, idx);
4282 		c->idxmsk64 &= ~(1ULL << 3);
4283 		c->weight--;
4284 	}
4285 
4286 	return c;
4287 }
4288 
4289 static struct event_constraint *
4290 adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4291 			  struct perf_event *event)
4292 {
4293 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4294 
4295 	if (pmu->cpu_type == hybrid_big)
4296 		return spr_get_event_constraints(cpuc, idx, event);
4297 	else if (pmu->cpu_type == hybrid_small)
4298 		return tnt_get_event_constraints(cpuc, idx, event);
4299 
4300 	WARN_ON(1);
4301 	return &emptyconstraint;
4302 }
4303 
4304 static int adl_hw_config(struct perf_event *event)
4305 {
4306 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4307 
4308 	if (pmu->cpu_type == hybrid_big)
4309 		return hsw_hw_config(event);
4310 	else if (pmu->cpu_type == hybrid_small)
4311 		return intel_pmu_hw_config(event);
4312 
4313 	WARN_ON(1);
4314 	return -EOPNOTSUPP;
4315 }
4316 
4317 static u8 adl_get_hybrid_cpu_type(void)
4318 {
4319 	return hybrid_big;
4320 }
4321 
4322 /*
4323  * Broadwell:
4324  *
4325  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
4326  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
4327  * the two to enforce a minimum period of 128 (the smallest value that has bits
4328  * 0-5 cleared and >= 100).
4329  *
4330  * Because of how the code in x86_perf_event_set_period() works, the truncation
4331  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
4332  * to make up for the 'lost' events due to carrying the 'error' in period_left.
4333  *
4334  * Therefore the effective (average) period matches the requested period,
4335  * despite coarser hardware granularity.
4336  */
4337 static u64 bdw_limit_period(struct perf_event *event, u64 left)
4338 {
4339 	if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
4340 			X86_CONFIG(.event=0xc0, .umask=0x01)) {
4341 		if (left < 128)
4342 			left = 128;
4343 		left &= ~0x3fULL;
4344 	}
4345 	return left;
4346 }
4347 
4348 static u64 nhm_limit_period(struct perf_event *event, u64 left)
4349 {
4350 	return max(left, 32ULL);
4351 }
4352 
4353 static u64 spr_limit_period(struct perf_event *event, u64 left)
4354 {
4355 	if (event->attr.precise_ip == 3)
4356 		return max(left, 128ULL);
4357 
4358 	return left;
4359 }
4360 
4361 PMU_FORMAT_ATTR(event,	"config:0-7"	);
4362 PMU_FORMAT_ATTR(umask,	"config:8-15"	);
4363 PMU_FORMAT_ATTR(edge,	"config:18"	);
4364 PMU_FORMAT_ATTR(pc,	"config:19"	);
4365 PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
4366 PMU_FORMAT_ATTR(inv,	"config:23"	);
4367 PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
4368 PMU_FORMAT_ATTR(in_tx,  "config:32");
4369 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
4370 
4371 static struct attribute *intel_arch_formats_attr[] = {
4372 	&format_attr_event.attr,
4373 	&format_attr_umask.attr,
4374 	&format_attr_edge.attr,
4375 	&format_attr_pc.attr,
4376 	&format_attr_inv.attr,
4377 	&format_attr_cmask.attr,
4378 	NULL,
4379 };
4380 
4381 ssize_t intel_event_sysfs_show(char *page, u64 config)
4382 {
4383 	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
4384 
4385 	return x86_event_sysfs_show(page, config, event);
4386 }
4387 
4388 static struct intel_shared_regs *allocate_shared_regs(int cpu)
4389 {
4390 	struct intel_shared_regs *regs;
4391 	int i;
4392 
4393 	regs = kzalloc_node(sizeof(struct intel_shared_regs),
4394 			    GFP_KERNEL, cpu_to_node(cpu));
4395 	if (regs) {
4396 		/*
4397 		 * initialize the locks to keep lockdep happy
4398 		 */
4399 		for (i = 0; i < EXTRA_REG_MAX; i++)
4400 			raw_spin_lock_init(&regs->regs[i].lock);
4401 
4402 		regs->core_id = -1;
4403 	}
4404 	return regs;
4405 }
4406 
4407 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
4408 {
4409 	struct intel_excl_cntrs *c;
4410 
4411 	c = kzalloc_node(sizeof(struct intel_excl_cntrs),
4412 			 GFP_KERNEL, cpu_to_node(cpu));
4413 	if (c) {
4414 		raw_spin_lock_init(&c->lock);
4415 		c->core_id = -1;
4416 	}
4417 	return c;
4418 }
4419 
4420 
4421 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
4422 {
4423 	cpuc->pebs_record_size = x86_pmu.pebs_record_size;
4424 
4425 	if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
4426 		cpuc->shared_regs = allocate_shared_regs(cpu);
4427 		if (!cpuc->shared_regs)
4428 			goto err;
4429 	}
4430 
4431 	if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
4432 		size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
4433 
4434 		cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
4435 		if (!cpuc->constraint_list)
4436 			goto err_shared_regs;
4437 	}
4438 
4439 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4440 		cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
4441 		if (!cpuc->excl_cntrs)
4442 			goto err_constraint_list;
4443 
4444 		cpuc->excl_thread_id = 0;
4445 	}
4446 
4447 	return 0;
4448 
4449 err_constraint_list:
4450 	kfree(cpuc->constraint_list);
4451 	cpuc->constraint_list = NULL;
4452 
4453 err_shared_regs:
4454 	kfree(cpuc->shared_regs);
4455 	cpuc->shared_regs = NULL;
4456 
4457 err:
4458 	return -ENOMEM;
4459 }
4460 
4461 static int intel_pmu_cpu_prepare(int cpu)
4462 {
4463 	return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
4464 }
4465 
4466 static void flip_smm_bit(void *data)
4467 {
4468 	unsigned long set = *(unsigned long *)data;
4469 
4470 	if (set > 0) {
4471 		msr_set_bit(MSR_IA32_DEBUGCTLMSR,
4472 			    DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4473 	} else {
4474 		msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
4475 			      DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4476 	}
4477 }
4478 
4479 static bool init_hybrid_pmu(int cpu)
4480 {
4481 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4482 	u8 cpu_type = get_this_hybrid_cpu_type();
4483 	struct x86_hybrid_pmu *pmu = NULL;
4484 	int i;
4485 
4486 	if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
4487 		cpu_type = x86_pmu.get_hybrid_cpu_type();
4488 
4489 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
4490 		if (x86_pmu.hybrid_pmu[i].cpu_type == cpu_type) {
4491 			pmu = &x86_pmu.hybrid_pmu[i];
4492 			break;
4493 		}
4494 	}
4495 	if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) {
4496 		cpuc->pmu = NULL;
4497 		return false;
4498 	}
4499 
4500 	/* Only check and dump the PMU information for the first CPU */
4501 	if (!cpumask_empty(&pmu->supported_cpus))
4502 		goto end;
4503 
4504 	if (!check_hw_exists(&pmu->pmu, pmu->num_counters, pmu->num_counters_fixed))
4505 		return false;
4506 
4507 	pr_info("%s PMU driver: ", pmu->name);
4508 
4509 	if (pmu->intel_cap.pebs_output_pt_available)
4510 		pr_cont("PEBS-via-PT ");
4511 
4512 	pr_cont("\n");
4513 
4514 	x86_pmu_show_pmu_cap(pmu->num_counters, pmu->num_counters_fixed,
4515 			     pmu->intel_ctrl);
4516 
4517 end:
4518 	cpumask_set_cpu(cpu, &pmu->supported_cpus);
4519 	cpuc->pmu = &pmu->pmu;
4520 
4521 	x86_pmu_update_cpu_context(&pmu->pmu, cpu);
4522 
4523 	return true;
4524 }
4525 
4526 static void intel_pmu_cpu_starting(int cpu)
4527 {
4528 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4529 	int core_id = topology_core_id(cpu);
4530 	int i;
4531 
4532 	if (is_hybrid() && !init_hybrid_pmu(cpu))
4533 		return;
4534 
4535 	init_debug_store_on_cpu(cpu);
4536 	/*
4537 	 * Deal with CPUs that don't clear their LBRs on power-up.
4538 	 */
4539 	intel_pmu_lbr_reset();
4540 
4541 	cpuc->lbr_sel = NULL;
4542 
4543 	if (x86_pmu.flags & PMU_FL_TFA) {
4544 		WARN_ON_ONCE(cpuc->tfa_shadow);
4545 		cpuc->tfa_shadow = ~0ULL;
4546 		intel_set_tfa(cpuc, false);
4547 	}
4548 
4549 	if (x86_pmu.version > 1)
4550 		flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
4551 
4552 	/*
4553 	 * Disable perf metrics if any added CPU doesn't support it.
4554 	 *
4555 	 * Turn off the check for a hybrid architecture, because the
4556 	 * architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate
4557 	 * the architecture features. The perf metrics is a model-specific
4558 	 * feature for now. The corresponding bit should always be 0 on
4559 	 * a hybrid platform, e.g., Alder Lake.
4560 	 */
4561 	if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) {
4562 		union perf_capabilities perf_cap;
4563 
4564 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
4565 		if (!perf_cap.perf_metrics) {
4566 			x86_pmu.intel_cap.perf_metrics = 0;
4567 			x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
4568 		}
4569 	}
4570 
4571 	if (!cpuc->shared_regs)
4572 		return;
4573 
4574 	if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
4575 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4576 			struct intel_shared_regs *pc;
4577 
4578 			pc = per_cpu(cpu_hw_events, i).shared_regs;
4579 			if (pc && pc->core_id == core_id) {
4580 				cpuc->kfree_on_online[0] = cpuc->shared_regs;
4581 				cpuc->shared_regs = pc;
4582 				break;
4583 			}
4584 		}
4585 		cpuc->shared_regs->core_id = core_id;
4586 		cpuc->shared_regs->refcnt++;
4587 	}
4588 
4589 	if (x86_pmu.lbr_sel_map)
4590 		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
4591 
4592 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4593 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4594 			struct cpu_hw_events *sibling;
4595 			struct intel_excl_cntrs *c;
4596 
4597 			sibling = &per_cpu(cpu_hw_events, i);
4598 			c = sibling->excl_cntrs;
4599 			if (c && c->core_id == core_id) {
4600 				cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
4601 				cpuc->excl_cntrs = c;
4602 				if (!sibling->excl_thread_id)
4603 					cpuc->excl_thread_id = 1;
4604 				break;
4605 			}
4606 		}
4607 		cpuc->excl_cntrs->core_id = core_id;
4608 		cpuc->excl_cntrs->refcnt++;
4609 	}
4610 }
4611 
4612 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
4613 {
4614 	struct intel_excl_cntrs *c;
4615 
4616 	c = cpuc->excl_cntrs;
4617 	if (c) {
4618 		if (c->core_id == -1 || --c->refcnt == 0)
4619 			kfree(c);
4620 		cpuc->excl_cntrs = NULL;
4621 	}
4622 
4623 	kfree(cpuc->constraint_list);
4624 	cpuc->constraint_list = NULL;
4625 }
4626 
4627 static void intel_pmu_cpu_dying(int cpu)
4628 {
4629 	fini_debug_store_on_cpu(cpu);
4630 }
4631 
4632 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
4633 {
4634 	struct intel_shared_regs *pc;
4635 
4636 	pc = cpuc->shared_regs;
4637 	if (pc) {
4638 		if (pc->core_id == -1 || --pc->refcnt == 0)
4639 			kfree(pc);
4640 		cpuc->shared_regs = NULL;
4641 	}
4642 
4643 	free_excl_cntrs(cpuc);
4644 }
4645 
4646 static void intel_pmu_cpu_dead(int cpu)
4647 {
4648 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4649 
4650 	intel_cpuc_finish(cpuc);
4651 
4652 	if (is_hybrid() && cpuc->pmu)
4653 		cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus);
4654 }
4655 
4656 static void intel_pmu_sched_task(struct perf_event_context *ctx,
4657 				 bool sched_in)
4658 {
4659 	intel_pmu_pebs_sched_task(ctx, sched_in);
4660 	intel_pmu_lbr_sched_task(ctx, sched_in);
4661 }
4662 
4663 static void intel_pmu_swap_task_ctx(struct perf_event_context *prev,
4664 				    struct perf_event_context *next)
4665 {
4666 	intel_pmu_lbr_swap_task_ctx(prev, next);
4667 }
4668 
4669 static int intel_pmu_check_period(struct perf_event *event, u64 value)
4670 {
4671 	return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
4672 }
4673 
4674 static void intel_aux_output_init(void)
4675 {
4676 	/* Refer also intel_pmu_aux_output_match() */
4677 	if (x86_pmu.intel_cap.pebs_output_pt_available)
4678 		x86_pmu.assign = intel_pmu_assign_event;
4679 }
4680 
4681 static int intel_pmu_aux_output_match(struct perf_event *event)
4682 {
4683 	/* intel_pmu_assign_event() is needed, refer intel_aux_output_init() */
4684 	if (!x86_pmu.intel_cap.pebs_output_pt_available)
4685 		return 0;
4686 
4687 	return is_intel_pt_event(event);
4688 }
4689 
4690 static int intel_pmu_filter_match(struct perf_event *event)
4691 {
4692 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4693 	unsigned int cpu = smp_processor_id();
4694 
4695 	return cpumask_test_cpu(cpu, &pmu->supported_cpus);
4696 }
4697 
4698 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
4699 
4700 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
4701 
4702 PMU_FORMAT_ATTR(frontend, "config1:0-23");
4703 
4704 static struct attribute *intel_arch3_formats_attr[] = {
4705 	&format_attr_event.attr,
4706 	&format_attr_umask.attr,
4707 	&format_attr_edge.attr,
4708 	&format_attr_pc.attr,
4709 	&format_attr_any.attr,
4710 	&format_attr_inv.attr,
4711 	&format_attr_cmask.attr,
4712 	NULL,
4713 };
4714 
4715 static struct attribute *hsw_format_attr[] = {
4716 	&format_attr_in_tx.attr,
4717 	&format_attr_in_tx_cp.attr,
4718 	&format_attr_offcore_rsp.attr,
4719 	&format_attr_ldlat.attr,
4720 	NULL
4721 };
4722 
4723 static struct attribute *nhm_format_attr[] = {
4724 	&format_attr_offcore_rsp.attr,
4725 	&format_attr_ldlat.attr,
4726 	NULL
4727 };
4728 
4729 static struct attribute *slm_format_attr[] = {
4730 	&format_attr_offcore_rsp.attr,
4731 	NULL
4732 };
4733 
4734 static struct attribute *skl_format_attr[] = {
4735 	&format_attr_frontend.attr,
4736 	NULL,
4737 };
4738 
4739 static __initconst const struct x86_pmu core_pmu = {
4740 	.name			= "core",
4741 	.handle_irq		= x86_pmu_handle_irq,
4742 	.disable_all		= x86_pmu_disable_all,
4743 	.enable_all		= core_pmu_enable_all,
4744 	.enable			= core_pmu_enable_event,
4745 	.disable		= x86_pmu_disable_event,
4746 	.hw_config		= core_pmu_hw_config,
4747 	.schedule_events	= x86_schedule_events,
4748 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
4749 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
4750 	.event_map		= intel_pmu_event_map,
4751 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
4752 	.apic			= 1,
4753 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
4754 
4755 	/*
4756 	 * Intel PMCs cannot be accessed sanely above 32-bit width,
4757 	 * so we install an artificial 1<<31 period regardless of
4758 	 * the generic event period:
4759 	 */
4760 	.max_period		= (1ULL<<31) - 1,
4761 	.get_event_constraints	= intel_get_event_constraints,
4762 	.put_event_constraints	= intel_put_event_constraints,
4763 	.event_constraints	= intel_core_event_constraints,
4764 	.guest_get_msrs		= core_guest_get_msrs,
4765 	.format_attrs		= intel_arch_formats_attr,
4766 	.events_sysfs_show	= intel_event_sysfs_show,
4767 
4768 	/*
4769 	 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
4770 	 * together with PMU version 1 and thus be using core_pmu with
4771 	 * shared_regs. We need following callbacks here to allocate
4772 	 * it properly.
4773 	 */
4774 	.cpu_prepare		= intel_pmu_cpu_prepare,
4775 	.cpu_starting		= intel_pmu_cpu_starting,
4776 	.cpu_dying		= intel_pmu_cpu_dying,
4777 	.cpu_dead		= intel_pmu_cpu_dead,
4778 
4779 	.check_period		= intel_pmu_check_period,
4780 
4781 	.lbr_reset		= intel_pmu_lbr_reset_64,
4782 	.lbr_read		= intel_pmu_lbr_read_64,
4783 	.lbr_save		= intel_pmu_lbr_save,
4784 	.lbr_restore		= intel_pmu_lbr_restore,
4785 };
4786 
4787 static __initconst const struct x86_pmu intel_pmu = {
4788 	.name			= "Intel",
4789 	.handle_irq		= intel_pmu_handle_irq,
4790 	.disable_all		= intel_pmu_disable_all,
4791 	.enable_all		= intel_pmu_enable_all,
4792 	.enable			= intel_pmu_enable_event,
4793 	.disable		= intel_pmu_disable_event,
4794 	.add			= intel_pmu_add_event,
4795 	.del			= intel_pmu_del_event,
4796 	.read			= intel_pmu_read_event,
4797 	.hw_config		= intel_pmu_hw_config,
4798 	.schedule_events	= x86_schedule_events,
4799 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
4800 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
4801 	.event_map		= intel_pmu_event_map,
4802 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
4803 	.apic			= 1,
4804 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
4805 	/*
4806 	 * Intel PMCs cannot be accessed sanely above 32 bit width,
4807 	 * so we install an artificial 1<<31 period regardless of
4808 	 * the generic event period:
4809 	 */
4810 	.max_period		= (1ULL << 31) - 1,
4811 	.get_event_constraints	= intel_get_event_constraints,
4812 	.put_event_constraints	= intel_put_event_constraints,
4813 	.pebs_aliases		= intel_pebs_aliases_core2,
4814 
4815 	.format_attrs		= intel_arch3_formats_attr,
4816 	.events_sysfs_show	= intel_event_sysfs_show,
4817 
4818 	.cpu_prepare		= intel_pmu_cpu_prepare,
4819 	.cpu_starting		= intel_pmu_cpu_starting,
4820 	.cpu_dying		= intel_pmu_cpu_dying,
4821 	.cpu_dead		= intel_pmu_cpu_dead,
4822 
4823 	.guest_get_msrs		= intel_guest_get_msrs,
4824 	.sched_task		= intel_pmu_sched_task,
4825 	.swap_task_ctx		= intel_pmu_swap_task_ctx,
4826 
4827 	.check_period		= intel_pmu_check_period,
4828 
4829 	.aux_output_match	= intel_pmu_aux_output_match,
4830 
4831 	.lbr_reset		= intel_pmu_lbr_reset_64,
4832 	.lbr_read		= intel_pmu_lbr_read_64,
4833 	.lbr_save		= intel_pmu_lbr_save,
4834 	.lbr_restore		= intel_pmu_lbr_restore,
4835 
4836 	/*
4837 	 * SMM has access to all 4 rings and while traditionally SMM code only
4838 	 * ran in CPL0, 2021-era firmware is starting to make use of CPL3 in SMM.
4839 	 *
4840 	 * Since the EVENTSEL.{USR,OS} CPL filtering makes no distinction
4841 	 * between SMM or not, this results in what should be pure userspace
4842 	 * counters including SMM data.
4843 	 *
4844 	 * This is a clear privilege issue, therefore globally disable
4845 	 * counting SMM by default.
4846 	 */
4847 	.attr_freeze_on_smi	= 1,
4848 };
4849 
4850 static __init void intel_clovertown_quirk(void)
4851 {
4852 	/*
4853 	 * PEBS is unreliable due to:
4854 	 *
4855 	 *   AJ67  - PEBS may experience CPL leaks
4856 	 *   AJ68  - PEBS PMI may be delayed by one event
4857 	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
4858 	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
4859 	 *
4860 	 * AJ67 could be worked around by restricting the OS/USR flags.
4861 	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
4862 	 *
4863 	 * AJ106 could possibly be worked around by not allowing LBR
4864 	 *       usage from PEBS, including the fixup.
4865 	 * AJ68  could possibly be worked around by always programming
4866 	 *	 a pebs_event_reset[0] value and coping with the lost events.
4867 	 *
4868 	 * But taken together it might just make sense to not enable PEBS on
4869 	 * these chips.
4870 	 */
4871 	pr_warn("PEBS disabled due to CPU errata\n");
4872 	x86_pmu.pebs = 0;
4873 	x86_pmu.pebs_constraints = NULL;
4874 }
4875 
4876 static const struct x86_cpu_desc isolation_ucodes[] = {
4877 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL,		 3, 0x0000001f),
4878 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L,		 1, 0x0000001e),
4879 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G,		 1, 0x00000015),
4880 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 2, 0x00000037),
4881 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 4, 0x0000000a),
4882 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL,		 4, 0x00000023),
4883 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G,		 1, 0x00000014),
4884 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 2, 0x00000010),
4885 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 3, 0x07000009),
4886 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 4, 0x0f000009),
4887 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 5, 0x0e000002),
4888 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,		 1, 0x0b000014),
4889 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 3, 0x00000021),
4890 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 4, 0x00000000),
4891 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 5, 0x00000000),
4892 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 6, 0x00000000),
4893 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 7, 0x00000000),
4894 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L,		 3, 0x0000007c),
4895 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE,		 3, 0x0000007c),
4896 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		 9, 0x0000004e),
4897 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		 9, 0x0000004e),
4898 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		10, 0x0000004e),
4899 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		11, 0x0000004e),
4900 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		12, 0x0000004e),
4901 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		10, 0x0000004e),
4902 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		11, 0x0000004e),
4903 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		12, 0x0000004e),
4904 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		13, 0x0000004e),
4905 	{}
4906 };
4907 
4908 static void intel_check_pebs_isolation(void)
4909 {
4910 	x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
4911 }
4912 
4913 static __init void intel_pebs_isolation_quirk(void)
4914 {
4915 	WARN_ON_ONCE(x86_pmu.check_microcode);
4916 	x86_pmu.check_microcode = intel_check_pebs_isolation;
4917 	intel_check_pebs_isolation();
4918 }
4919 
4920 static const struct x86_cpu_desc pebs_ucodes[] = {
4921 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,		7, 0x00000028),
4922 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	6, 0x00000618),
4923 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	7, 0x0000070c),
4924 	{}
4925 };
4926 
4927 static bool intel_snb_pebs_broken(void)
4928 {
4929 	return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
4930 }
4931 
4932 static void intel_snb_check_microcode(void)
4933 {
4934 	if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
4935 		return;
4936 
4937 	/*
4938 	 * Serialized by the microcode lock..
4939 	 */
4940 	if (x86_pmu.pebs_broken) {
4941 		pr_info("PEBS enabled due to microcode update\n");
4942 		x86_pmu.pebs_broken = 0;
4943 	} else {
4944 		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
4945 		x86_pmu.pebs_broken = 1;
4946 	}
4947 }
4948 
4949 static bool is_lbr_from(unsigned long msr)
4950 {
4951 	unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
4952 
4953 	return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
4954 }
4955 
4956 /*
4957  * Under certain circumstances, access certain MSR may cause #GP.
4958  * The function tests if the input MSR can be safely accessed.
4959  */
4960 static bool check_msr(unsigned long msr, u64 mask)
4961 {
4962 	u64 val_old, val_new, val_tmp;
4963 
4964 	/*
4965 	 * Disable the check for real HW, so we don't
4966 	 * mess with potentially enabled registers:
4967 	 */
4968 	if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
4969 		return true;
4970 
4971 	/*
4972 	 * Read the current value, change it and read it back to see if it
4973 	 * matches, this is needed to detect certain hardware emulators
4974 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4975 	 */
4976 	if (rdmsrl_safe(msr, &val_old))
4977 		return false;
4978 
4979 	/*
4980 	 * Only change the bits which can be updated by wrmsrl.
4981 	 */
4982 	val_tmp = val_old ^ mask;
4983 
4984 	if (is_lbr_from(msr))
4985 		val_tmp = lbr_from_signext_quirk_wr(val_tmp);
4986 
4987 	if (wrmsrl_safe(msr, val_tmp) ||
4988 	    rdmsrl_safe(msr, &val_new))
4989 		return false;
4990 
4991 	/*
4992 	 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
4993 	 * should equal rdmsrl()'s even with the quirk.
4994 	 */
4995 	if (val_new != val_tmp)
4996 		return false;
4997 
4998 	if (is_lbr_from(msr))
4999 		val_old = lbr_from_signext_quirk_wr(val_old);
5000 
5001 	/* Here it's sure that the MSR can be safely accessed.
5002 	 * Restore the old value and return.
5003 	 */
5004 	wrmsrl(msr, val_old);
5005 
5006 	return true;
5007 }
5008 
5009 static __init void intel_sandybridge_quirk(void)
5010 {
5011 	x86_pmu.check_microcode = intel_snb_check_microcode;
5012 	cpus_read_lock();
5013 	intel_snb_check_microcode();
5014 	cpus_read_unlock();
5015 }
5016 
5017 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
5018 	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
5019 	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
5020 	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
5021 	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
5022 	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
5023 	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
5024 	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
5025 };
5026 
5027 static __init void intel_arch_events_quirk(void)
5028 {
5029 	int bit;
5030 
5031 	/* disable event that reported as not present by cpuid */
5032 	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
5033 		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
5034 		pr_warn("CPUID marked event: \'%s\' unavailable\n",
5035 			intel_arch_events_map[bit].name);
5036 	}
5037 }
5038 
5039 static __init void intel_nehalem_quirk(void)
5040 {
5041 	union cpuid10_ebx ebx;
5042 
5043 	ebx.full = x86_pmu.events_maskl;
5044 	if (ebx.split.no_branch_misses_retired) {
5045 		/*
5046 		 * Erratum AAJ80 detected, we work it around by using
5047 		 * the BR_MISP_EXEC.ANY event. This will over-count
5048 		 * branch-misses, but it's still much better than the
5049 		 * architectural event which is often completely bogus:
5050 		 */
5051 		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
5052 		ebx.split.no_branch_misses_retired = 0;
5053 		x86_pmu.events_maskl = ebx.full;
5054 		pr_info("CPU erratum AAJ80 worked around\n");
5055 	}
5056 }
5057 
5058 /*
5059  * enable software workaround for errata:
5060  * SNB: BJ122
5061  * IVB: BV98
5062  * HSW: HSD29
5063  *
5064  * Only needed when HT is enabled. However detecting
5065  * if HT is enabled is difficult (model specific). So instead,
5066  * we enable the workaround in the early boot, and verify if
5067  * it is needed in a later initcall phase once we have valid
5068  * topology information to check if HT is actually enabled
5069  */
5070 static __init void intel_ht_bug(void)
5071 {
5072 	x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
5073 
5074 	x86_pmu.start_scheduling = intel_start_scheduling;
5075 	x86_pmu.commit_scheduling = intel_commit_scheduling;
5076 	x86_pmu.stop_scheduling = intel_stop_scheduling;
5077 }
5078 
5079 EVENT_ATTR_STR(mem-loads,	mem_ld_hsw,	"event=0xcd,umask=0x1,ldlat=3");
5080 EVENT_ATTR_STR(mem-stores,	mem_st_hsw,	"event=0xd0,umask=0x82")
5081 
5082 /* Haswell special events */
5083 EVENT_ATTR_STR(tx-start,	tx_start,	"event=0xc9,umask=0x1");
5084 EVENT_ATTR_STR(tx-commit,	tx_commit,	"event=0xc9,umask=0x2");
5085 EVENT_ATTR_STR(tx-abort,	tx_abort,	"event=0xc9,umask=0x4");
5086 EVENT_ATTR_STR(tx-capacity,	tx_capacity,	"event=0x54,umask=0x2");
5087 EVENT_ATTR_STR(tx-conflict,	tx_conflict,	"event=0x54,umask=0x1");
5088 EVENT_ATTR_STR(el-start,	el_start,	"event=0xc8,umask=0x1");
5089 EVENT_ATTR_STR(el-commit,	el_commit,	"event=0xc8,umask=0x2");
5090 EVENT_ATTR_STR(el-abort,	el_abort,	"event=0xc8,umask=0x4");
5091 EVENT_ATTR_STR(el-capacity,	el_capacity,	"event=0x54,umask=0x2");
5092 EVENT_ATTR_STR(el-conflict,	el_conflict,	"event=0x54,umask=0x1");
5093 EVENT_ATTR_STR(cycles-t,	cycles_t,	"event=0x3c,in_tx=1");
5094 EVENT_ATTR_STR(cycles-ct,	cycles_ct,	"event=0x3c,in_tx=1,in_tx_cp=1");
5095 
5096 static struct attribute *hsw_events_attrs[] = {
5097 	EVENT_PTR(td_slots_issued),
5098 	EVENT_PTR(td_slots_retired),
5099 	EVENT_PTR(td_fetch_bubbles),
5100 	EVENT_PTR(td_total_slots),
5101 	EVENT_PTR(td_total_slots_scale),
5102 	EVENT_PTR(td_recovery_bubbles),
5103 	EVENT_PTR(td_recovery_bubbles_scale),
5104 	NULL
5105 };
5106 
5107 static struct attribute *hsw_mem_events_attrs[] = {
5108 	EVENT_PTR(mem_ld_hsw),
5109 	EVENT_PTR(mem_st_hsw),
5110 	NULL,
5111 };
5112 
5113 static struct attribute *hsw_tsx_events_attrs[] = {
5114 	EVENT_PTR(tx_start),
5115 	EVENT_PTR(tx_commit),
5116 	EVENT_PTR(tx_abort),
5117 	EVENT_PTR(tx_capacity),
5118 	EVENT_PTR(tx_conflict),
5119 	EVENT_PTR(el_start),
5120 	EVENT_PTR(el_commit),
5121 	EVENT_PTR(el_abort),
5122 	EVENT_PTR(el_capacity),
5123 	EVENT_PTR(el_conflict),
5124 	EVENT_PTR(cycles_t),
5125 	EVENT_PTR(cycles_ct),
5126 	NULL
5127 };
5128 
5129 EVENT_ATTR_STR(tx-capacity-read,  tx_capacity_read,  "event=0x54,umask=0x80");
5130 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
5131 EVENT_ATTR_STR(el-capacity-read,  el_capacity_read,  "event=0x54,umask=0x80");
5132 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
5133 
5134 static struct attribute *icl_events_attrs[] = {
5135 	EVENT_PTR(mem_ld_hsw),
5136 	EVENT_PTR(mem_st_hsw),
5137 	NULL,
5138 };
5139 
5140 static struct attribute *icl_td_events_attrs[] = {
5141 	EVENT_PTR(slots),
5142 	EVENT_PTR(td_retiring),
5143 	EVENT_PTR(td_bad_spec),
5144 	EVENT_PTR(td_fe_bound),
5145 	EVENT_PTR(td_be_bound),
5146 	NULL,
5147 };
5148 
5149 static struct attribute *icl_tsx_events_attrs[] = {
5150 	EVENT_PTR(tx_start),
5151 	EVENT_PTR(tx_abort),
5152 	EVENT_PTR(tx_commit),
5153 	EVENT_PTR(tx_capacity_read),
5154 	EVENT_PTR(tx_capacity_write),
5155 	EVENT_PTR(tx_conflict),
5156 	EVENT_PTR(el_start),
5157 	EVENT_PTR(el_abort),
5158 	EVENT_PTR(el_commit),
5159 	EVENT_PTR(el_capacity_read),
5160 	EVENT_PTR(el_capacity_write),
5161 	EVENT_PTR(el_conflict),
5162 	EVENT_PTR(cycles_t),
5163 	EVENT_PTR(cycles_ct),
5164 	NULL,
5165 };
5166 
5167 
5168 EVENT_ATTR_STR(mem-stores,	mem_st_spr,	"event=0xcd,umask=0x2");
5169 EVENT_ATTR_STR(mem-loads-aux,	mem_ld_aux,	"event=0x03,umask=0x82");
5170 
5171 static struct attribute *spr_events_attrs[] = {
5172 	EVENT_PTR(mem_ld_hsw),
5173 	EVENT_PTR(mem_st_spr),
5174 	EVENT_PTR(mem_ld_aux),
5175 	NULL,
5176 };
5177 
5178 static struct attribute *spr_td_events_attrs[] = {
5179 	EVENT_PTR(slots),
5180 	EVENT_PTR(td_retiring),
5181 	EVENT_PTR(td_bad_spec),
5182 	EVENT_PTR(td_fe_bound),
5183 	EVENT_PTR(td_be_bound),
5184 	EVENT_PTR(td_heavy_ops),
5185 	EVENT_PTR(td_br_mispredict),
5186 	EVENT_PTR(td_fetch_lat),
5187 	EVENT_PTR(td_mem_bound),
5188 	NULL,
5189 };
5190 
5191 static struct attribute *spr_tsx_events_attrs[] = {
5192 	EVENT_PTR(tx_start),
5193 	EVENT_PTR(tx_abort),
5194 	EVENT_PTR(tx_commit),
5195 	EVENT_PTR(tx_capacity_read),
5196 	EVENT_PTR(tx_capacity_write),
5197 	EVENT_PTR(tx_conflict),
5198 	EVENT_PTR(cycles_t),
5199 	EVENT_PTR(cycles_ct),
5200 	NULL,
5201 };
5202 
5203 static ssize_t freeze_on_smi_show(struct device *cdev,
5204 				  struct device_attribute *attr,
5205 				  char *buf)
5206 {
5207 	return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
5208 }
5209 
5210 static DEFINE_MUTEX(freeze_on_smi_mutex);
5211 
5212 static ssize_t freeze_on_smi_store(struct device *cdev,
5213 				   struct device_attribute *attr,
5214 				   const char *buf, size_t count)
5215 {
5216 	unsigned long val;
5217 	ssize_t ret;
5218 
5219 	ret = kstrtoul(buf, 0, &val);
5220 	if (ret)
5221 		return ret;
5222 
5223 	if (val > 1)
5224 		return -EINVAL;
5225 
5226 	mutex_lock(&freeze_on_smi_mutex);
5227 
5228 	if (x86_pmu.attr_freeze_on_smi == val)
5229 		goto done;
5230 
5231 	x86_pmu.attr_freeze_on_smi = val;
5232 
5233 	cpus_read_lock();
5234 	on_each_cpu(flip_smm_bit, &val, 1);
5235 	cpus_read_unlock();
5236 done:
5237 	mutex_unlock(&freeze_on_smi_mutex);
5238 
5239 	return count;
5240 }
5241 
5242 static void update_tfa_sched(void *ignored)
5243 {
5244 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
5245 
5246 	/*
5247 	 * check if PMC3 is used
5248 	 * and if so force schedule out for all event types all contexts
5249 	 */
5250 	if (test_bit(3, cpuc->active_mask))
5251 		perf_pmu_resched(x86_get_pmu(smp_processor_id()));
5252 }
5253 
5254 static ssize_t show_sysctl_tfa(struct device *cdev,
5255 			      struct device_attribute *attr,
5256 			      char *buf)
5257 {
5258 	return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
5259 }
5260 
5261 static ssize_t set_sysctl_tfa(struct device *cdev,
5262 			      struct device_attribute *attr,
5263 			      const char *buf, size_t count)
5264 {
5265 	bool val;
5266 	ssize_t ret;
5267 
5268 	ret = kstrtobool(buf, &val);
5269 	if (ret)
5270 		return ret;
5271 
5272 	/* no change */
5273 	if (val == allow_tsx_force_abort)
5274 		return count;
5275 
5276 	allow_tsx_force_abort = val;
5277 
5278 	cpus_read_lock();
5279 	on_each_cpu(update_tfa_sched, NULL, 1);
5280 	cpus_read_unlock();
5281 
5282 	return count;
5283 }
5284 
5285 
5286 static DEVICE_ATTR_RW(freeze_on_smi);
5287 
5288 static ssize_t branches_show(struct device *cdev,
5289 			     struct device_attribute *attr,
5290 			     char *buf)
5291 {
5292 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
5293 }
5294 
5295 static DEVICE_ATTR_RO(branches);
5296 
5297 static struct attribute *lbr_attrs[] = {
5298 	&dev_attr_branches.attr,
5299 	NULL
5300 };
5301 
5302 static char pmu_name_str[30];
5303 
5304 static ssize_t pmu_name_show(struct device *cdev,
5305 			     struct device_attribute *attr,
5306 			     char *buf)
5307 {
5308 	return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
5309 }
5310 
5311 static DEVICE_ATTR_RO(pmu_name);
5312 
5313 static struct attribute *intel_pmu_caps_attrs[] = {
5314        &dev_attr_pmu_name.attr,
5315        NULL
5316 };
5317 
5318 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
5319 		   show_sysctl_tfa,
5320 		   set_sysctl_tfa);
5321 
5322 static struct attribute *intel_pmu_attrs[] = {
5323 	&dev_attr_freeze_on_smi.attr,
5324 	&dev_attr_allow_tsx_force_abort.attr,
5325 	NULL,
5326 };
5327 
5328 static umode_t
5329 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5330 {
5331 	return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
5332 }
5333 
5334 static umode_t
5335 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5336 {
5337 	return x86_pmu.pebs ? attr->mode : 0;
5338 }
5339 
5340 static umode_t
5341 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5342 {
5343 	return x86_pmu.lbr_nr ? attr->mode : 0;
5344 }
5345 
5346 static umode_t
5347 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5348 {
5349 	return x86_pmu.version >= 2 ? attr->mode : 0;
5350 }
5351 
5352 static umode_t
5353 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5354 {
5355 	if (attr == &dev_attr_allow_tsx_force_abort.attr)
5356 		return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
5357 
5358 	return attr->mode;
5359 }
5360 
5361 static struct attribute_group group_events_td  = {
5362 	.name = "events",
5363 };
5364 
5365 static struct attribute_group group_events_mem = {
5366 	.name       = "events",
5367 	.is_visible = pebs_is_visible,
5368 };
5369 
5370 static struct attribute_group group_events_tsx = {
5371 	.name       = "events",
5372 	.is_visible = tsx_is_visible,
5373 };
5374 
5375 static struct attribute_group group_caps_gen = {
5376 	.name  = "caps",
5377 	.attrs = intel_pmu_caps_attrs,
5378 };
5379 
5380 static struct attribute_group group_caps_lbr = {
5381 	.name       = "caps",
5382 	.attrs	    = lbr_attrs,
5383 	.is_visible = lbr_is_visible,
5384 };
5385 
5386 static struct attribute_group group_format_extra = {
5387 	.name       = "format",
5388 	.is_visible = exra_is_visible,
5389 };
5390 
5391 static struct attribute_group group_format_extra_skl = {
5392 	.name       = "format",
5393 	.is_visible = exra_is_visible,
5394 };
5395 
5396 static struct attribute_group group_default = {
5397 	.attrs      = intel_pmu_attrs,
5398 	.is_visible = default_is_visible,
5399 };
5400 
5401 static const struct attribute_group *attr_update[] = {
5402 	&group_events_td,
5403 	&group_events_mem,
5404 	&group_events_tsx,
5405 	&group_caps_gen,
5406 	&group_caps_lbr,
5407 	&group_format_extra,
5408 	&group_format_extra_skl,
5409 	&group_default,
5410 	NULL,
5411 };
5412 
5413 EVENT_ATTR_STR_HYBRID(slots,                 slots_adl,        "event=0x00,umask=0x4",                       hybrid_big);
5414 EVENT_ATTR_STR_HYBRID(topdown-retiring,      td_retiring_adl,  "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small);
5415 EVENT_ATTR_STR_HYBRID(topdown-bad-spec,      td_bad_spec_adl,  "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small);
5416 EVENT_ATTR_STR_HYBRID(topdown-fe-bound,      td_fe_bound_adl,  "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small);
5417 EVENT_ATTR_STR_HYBRID(topdown-be-bound,      td_be_bound_adl,  "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small);
5418 EVENT_ATTR_STR_HYBRID(topdown-heavy-ops,     td_heavy_ops_adl, "event=0x00,umask=0x84",                      hybrid_big);
5419 EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl,    "event=0x00,umask=0x85",                      hybrid_big);
5420 EVENT_ATTR_STR_HYBRID(topdown-fetch-lat,     td_fetch_lat_adl, "event=0x00,umask=0x86",                      hybrid_big);
5421 EVENT_ATTR_STR_HYBRID(topdown-mem-bound,     td_mem_bound_adl, "event=0x00,umask=0x87",                      hybrid_big);
5422 
5423 static struct attribute *adl_hybrid_events_attrs[] = {
5424 	EVENT_PTR(slots_adl),
5425 	EVENT_PTR(td_retiring_adl),
5426 	EVENT_PTR(td_bad_spec_adl),
5427 	EVENT_PTR(td_fe_bound_adl),
5428 	EVENT_PTR(td_be_bound_adl),
5429 	EVENT_PTR(td_heavy_ops_adl),
5430 	EVENT_PTR(td_br_mis_adl),
5431 	EVENT_PTR(td_fetch_lat_adl),
5432 	EVENT_PTR(td_mem_bound_adl),
5433 	NULL,
5434 };
5435 
5436 /* Must be in IDX order */
5437 EVENT_ATTR_STR_HYBRID(mem-loads,     mem_ld_adl,     "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small);
5438 EVENT_ATTR_STR_HYBRID(mem-stores,    mem_st_adl,     "event=0xd0,umask=0x6;event=0xcd,umask=0x2",                 hybrid_big_small);
5439 EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82",                                     hybrid_big);
5440 
5441 static struct attribute *adl_hybrid_mem_attrs[] = {
5442 	EVENT_PTR(mem_ld_adl),
5443 	EVENT_PTR(mem_st_adl),
5444 	EVENT_PTR(mem_ld_aux_adl),
5445 	NULL,
5446 };
5447 
5448 EVENT_ATTR_STR_HYBRID(tx-start,          tx_start_adl,          "event=0xc9,umask=0x1",          hybrid_big);
5449 EVENT_ATTR_STR_HYBRID(tx-commit,         tx_commit_adl,         "event=0xc9,umask=0x2",          hybrid_big);
5450 EVENT_ATTR_STR_HYBRID(tx-abort,          tx_abort_adl,          "event=0xc9,umask=0x4",          hybrid_big);
5451 EVENT_ATTR_STR_HYBRID(tx-conflict,       tx_conflict_adl,       "event=0x54,umask=0x1",          hybrid_big);
5452 EVENT_ATTR_STR_HYBRID(cycles-t,          cycles_t_adl,          "event=0x3c,in_tx=1",            hybrid_big);
5453 EVENT_ATTR_STR_HYBRID(cycles-ct,         cycles_ct_adl,         "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big);
5454 EVENT_ATTR_STR_HYBRID(tx-capacity-read,  tx_capacity_read_adl,  "event=0x54,umask=0x80",         hybrid_big);
5455 EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2",          hybrid_big);
5456 
5457 static struct attribute *adl_hybrid_tsx_attrs[] = {
5458 	EVENT_PTR(tx_start_adl),
5459 	EVENT_PTR(tx_abort_adl),
5460 	EVENT_PTR(tx_commit_adl),
5461 	EVENT_PTR(tx_capacity_read_adl),
5462 	EVENT_PTR(tx_capacity_write_adl),
5463 	EVENT_PTR(tx_conflict_adl),
5464 	EVENT_PTR(cycles_t_adl),
5465 	EVENT_PTR(cycles_ct_adl),
5466 	NULL,
5467 };
5468 
5469 FORMAT_ATTR_HYBRID(in_tx,       hybrid_big);
5470 FORMAT_ATTR_HYBRID(in_tx_cp,    hybrid_big);
5471 FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small);
5472 FORMAT_ATTR_HYBRID(ldlat,       hybrid_big_small);
5473 FORMAT_ATTR_HYBRID(frontend,    hybrid_big);
5474 
5475 static struct attribute *adl_hybrid_extra_attr_rtm[] = {
5476 	FORMAT_HYBRID_PTR(in_tx),
5477 	FORMAT_HYBRID_PTR(in_tx_cp),
5478 	FORMAT_HYBRID_PTR(offcore_rsp),
5479 	FORMAT_HYBRID_PTR(ldlat),
5480 	FORMAT_HYBRID_PTR(frontend),
5481 	NULL,
5482 };
5483 
5484 static struct attribute *adl_hybrid_extra_attr[] = {
5485 	FORMAT_HYBRID_PTR(offcore_rsp),
5486 	FORMAT_HYBRID_PTR(ldlat),
5487 	FORMAT_HYBRID_PTR(frontend),
5488 	NULL,
5489 };
5490 
5491 static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr)
5492 {
5493 	struct device *dev = kobj_to_dev(kobj);
5494 	struct x86_hybrid_pmu *pmu =
5495 		container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5496 	struct perf_pmu_events_hybrid_attr *pmu_attr =
5497 		container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr);
5498 
5499 	return pmu->cpu_type & pmu_attr->pmu_type;
5500 }
5501 
5502 static umode_t hybrid_events_is_visible(struct kobject *kobj,
5503 					struct attribute *attr, int i)
5504 {
5505 	return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0;
5506 }
5507 
5508 static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu)
5509 {
5510 	int cpu = cpumask_first(&pmu->supported_cpus);
5511 
5512 	return (cpu >= nr_cpu_ids) ? -1 : cpu;
5513 }
5514 
5515 static umode_t hybrid_tsx_is_visible(struct kobject *kobj,
5516 				     struct attribute *attr, int i)
5517 {
5518 	struct device *dev = kobj_to_dev(kobj);
5519 	struct x86_hybrid_pmu *pmu =
5520 		 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5521 	int cpu = hybrid_find_supported_cpu(pmu);
5522 
5523 	return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0;
5524 }
5525 
5526 static umode_t hybrid_format_is_visible(struct kobject *kobj,
5527 					struct attribute *attr, int i)
5528 {
5529 	struct device *dev = kobj_to_dev(kobj);
5530 	struct x86_hybrid_pmu *pmu =
5531 		container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5532 	struct perf_pmu_format_hybrid_attr *pmu_attr =
5533 		container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr);
5534 	int cpu = hybrid_find_supported_cpu(pmu);
5535 
5536 	return (cpu >= 0) && (pmu->cpu_type & pmu_attr->pmu_type) ? attr->mode : 0;
5537 }
5538 
5539 static struct attribute_group hybrid_group_events_td  = {
5540 	.name		= "events",
5541 	.is_visible	= hybrid_events_is_visible,
5542 };
5543 
5544 static struct attribute_group hybrid_group_events_mem = {
5545 	.name		= "events",
5546 	.is_visible	= hybrid_events_is_visible,
5547 };
5548 
5549 static struct attribute_group hybrid_group_events_tsx = {
5550 	.name		= "events",
5551 	.is_visible	= hybrid_tsx_is_visible,
5552 };
5553 
5554 static struct attribute_group hybrid_group_format_extra = {
5555 	.name		= "format",
5556 	.is_visible	= hybrid_format_is_visible,
5557 };
5558 
5559 static ssize_t intel_hybrid_get_attr_cpus(struct device *dev,
5560 					  struct device_attribute *attr,
5561 					  char *buf)
5562 {
5563 	struct x86_hybrid_pmu *pmu =
5564 		container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5565 
5566 	return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus);
5567 }
5568 
5569 static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL);
5570 static struct attribute *intel_hybrid_cpus_attrs[] = {
5571 	&dev_attr_cpus.attr,
5572 	NULL,
5573 };
5574 
5575 static struct attribute_group hybrid_group_cpus = {
5576 	.attrs		= intel_hybrid_cpus_attrs,
5577 };
5578 
5579 static const struct attribute_group *hybrid_attr_update[] = {
5580 	&hybrid_group_events_td,
5581 	&hybrid_group_events_mem,
5582 	&hybrid_group_events_tsx,
5583 	&group_caps_gen,
5584 	&group_caps_lbr,
5585 	&hybrid_group_format_extra,
5586 	&group_default,
5587 	&hybrid_group_cpus,
5588 	NULL,
5589 };
5590 
5591 static struct attribute *empty_attrs;
5592 
5593 static void intel_pmu_check_num_counters(int *num_counters,
5594 					 int *num_counters_fixed,
5595 					 u64 *intel_ctrl, u64 fixed_mask)
5596 {
5597 	if (*num_counters > INTEL_PMC_MAX_GENERIC) {
5598 		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5599 		     *num_counters, INTEL_PMC_MAX_GENERIC);
5600 		*num_counters = INTEL_PMC_MAX_GENERIC;
5601 	}
5602 	*intel_ctrl = (1ULL << *num_counters) - 1;
5603 
5604 	if (*num_counters_fixed > INTEL_PMC_MAX_FIXED) {
5605 		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5606 		     *num_counters_fixed, INTEL_PMC_MAX_FIXED);
5607 		*num_counters_fixed = INTEL_PMC_MAX_FIXED;
5608 	}
5609 
5610 	*intel_ctrl |= fixed_mask << INTEL_PMC_IDX_FIXED;
5611 }
5612 
5613 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
5614 					      int num_counters,
5615 					      int num_counters_fixed,
5616 					      u64 intel_ctrl)
5617 {
5618 	struct event_constraint *c;
5619 
5620 	if (!event_constraints)
5621 		return;
5622 
5623 	/*
5624 	 * event on fixed counter2 (REF_CYCLES) only works on this
5625 	 * counter, so do not extend mask to generic counters
5626 	 */
5627 	for_each_event_constraint(c, event_constraints) {
5628 		/*
5629 		 * Don't extend the topdown slots and metrics
5630 		 * events to the generic counters.
5631 		 */
5632 		if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
5633 			/*
5634 			 * Disable topdown slots and metrics events,
5635 			 * if slots event is not in CPUID.
5636 			 */
5637 			if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl))
5638 				c->idxmsk64 = 0;
5639 			c->weight = hweight64(c->idxmsk64);
5640 			continue;
5641 		}
5642 
5643 		if (c->cmask == FIXED_EVENT_FLAGS) {
5644 			/* Disabled fixed counters which are not in CPUID */
5645 			c->idxmsk64 &= intel_ctrl;
5646 
5647 			/*
5648 			 * Don't extend the pseudo-encoding to the
5649 			 * generic counters
5650 			 */
5651 			if (!use_fixed_pseudo_encoding(c->code))
5652 				c->idxmsk64 |= (1ULL << num_counters) - 1;
5653 		}
5654 		c->idxmsk64 &=
5655 			~(~0ULL << (INTEL_PMC_IDX_FIXED + num_counters_fixed));
5656 		c->weight = hweight64(c->idxmsk64);
5657 	}
5658 }
5659 
5660 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs)
5661 {
5662 	struct extra_reg *er;
5663 
5664 	/*
5665 	 * Access extra MSR may cause #GP under certain circumstances.
5666 	 * E.g. KVM doesn't support offcore event
5667 	 * Check all extra_regs here.
5668 	 */
5669 	if (!extra_regs)
5670 		return;
5671 
5672 	for (er = extra_regs; er->msr; er++) {
5673 		er->extra_msr_access = check_msr(er->msr, 0x11UL);
5674 		/* Disable LBR select mapping */
5675 		if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
5676 			x86_pmu.lbr_sel_map = NULL;
5677 	}
5678 }
5679 
5680 static void intel_pmu_check_hybrid_pmus(u64 fixed_mask)
5681 {
5682 	struct x86_hybrid_pmu *pmu;
5683 	int i;
5684 
5685 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
5686 		pmu = &x86_pmu.hybrid_pmu[i];
5687 
5688 		intel_pmu_check_num_counters(&pmu->num_counters,
5689 					     &pmu->num_counters_fixed,
5690 					     &pmu->intel_ctrl,
5691 					     fixed_mask);
5692 
5693 		if (pmu->intel_cap.perf_metrics) {
5694 			pmu->intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
5695 			pmu->intel_ctrl |= INTEL_PMC_MSK_FIXED_SLOTS;
5696 		}
5697 
5698 		if (pmu->intel_cap.pebs_output_pt_available)
5699 			pmu->pmu.capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
5700 
5701 		intel_pmu_check_event_constraints(pmu->event_constraints,
5702 						  pmu->num_counters,
5703 						  pmu->num_counters_fixed,
5704 						  pmu->intel_ctrl);
5705 
5706 		intel_pmu_check_extra_regs(pmu->extra_regs);
5707 	}
5708 }
5709 
5710 __init int intel_pmu_init(void)
5711 {
5712 	struct attribute **extra_skl_attr = &empty_attrs;
5713 	struct attribute **extra_attr = &empty_attrs;
5714 	struct attribute **td_attr    = &empty_attrs;
5715 	struct attribute **mem_attr   = &empty_attrs;
5716 	struct attribute **tsx_attr   = &empty_attrs;
5717 	union cpuid10_edx edx;
5718 	union cpuid10_eax eax;
5719 	union cpuid10_ebx ebx;
5720 	unsigned int fixed_mask;
5721 	bool pmem = false;
5722 	int version, i;
5723 	char *name;
5724 	struct x86_hybrid_pmu *pmu;
5725 
5726 	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
5727 		switch (boot_cpu_data.x86) {
5728 		case 0x6:
5729 			return p6_pmu_init();
5730 		case 0xb:
5731 			return knc_pmu_init();
5732 		case 0xf:
5733 			return p4_pmu_init();
5734 		}
5735 		return -ENODEV;
5736 	}
5737 
5738 	/*
5739 	 * Check whether the Architectural PerfMon supports
5740 	 * Branch Misses Retired hw_event or not.
5741 	 */
5742 	cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full);
5743 	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
5744 		return -ENODEV;
5745 
5746 	version = eax.split.version_id;
5747 	if (version < 2)
5748 		x86_pmu = core_pmu;
5749 	else
5750 		x86_pmu = intel_pmu;
5751 
5752 	x86_pmu.version			= version;
5753 	x86_pmu.num_counters		= eax.split.num_counters;
5754 	x86_pmu.cntval_bits		= eax.split.bit_width;
5755 	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
5756 
5757 	x86_pmu.events_maskl		= ebx.full;
5758 	x86_pmu.events_mask_len		= eax.split.mask_length;
5759 
5760 	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
5761 	x86_pmu.pebs_capable		= PEBS_COUNTER_MASK;
5762 
5763 	/*
5764 	 * Quirk: v2 perfmon does not report fixed-purpose events, so
5765 	 * assume at least 3 events, when not running in a hypervisor:
5766 	 */
5767 	if (version > 1 && version < 5) {
5768 		int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
5769 
5770 		x86_pmu.num_counters_fixed =
5771 			max((int)edx.split.num_counters_fixed, assume);
5772 
5773 		fixed_mask = (1L << x86_pmu.num_counters_fixed) - 1;
5774 	} else if (version >= 5)
5775 		x86_pmu.num_counters_fixed = fls(fixed_mask);
5776 
5777 	if (boot_cpu_has(X86_FEATURE_PDCM)) {
5778 		u64 capabilities;
5779 
5780 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
5781 		x86_pmu.intel_cap.capabilities = capabilities;
5782 	}
5783 
5784 	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
5785 		x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
5786 		x86_pmu.lbr_read = intel_pmu_lbr_read_32;
5787 	}
5788 
5789 	if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
5790 		intel_pmu_arch_lbr_init();
5791 
5792 	intel_ds_init();
5793 
5794 	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
5795 
5796 	if (version >= 5) {
5797 		x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
5798 		if (x86_pmu.intel_cap.anythread_deprecated)
5799 			pr_cont(" AnyThread deprecated, ");
5800 	}
5801 
5802 	/*
5803 	 * Install the hw-cache-events table:
5804 	 */
5805 	switch (boot_cpu_data.x86_model) {
5806 	case INTEL_FAM6_CORE_YONAH:
5807 		pr_cont("Core events, ");
5808 		name = "core";
5809 		break;
5810 
5811 	case INTEL_FAM6_CORE2_MEROM:
5812 		x86_add_quirk(intel_clovertown_quirk);
5813 		fallthrough;
5814 
5815 	case INTEL_FAM6_CORE2_MEROM_L:
5816 	case INTEL_FAM6_CORE2_PENRYN:
5817 	case INTEL_FAM6_CORE2_DUNNINGTON:
5818 		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
5819 		       sizeof(hw_cache_event_ids));
5820 
5821 		intel_pmu_lbr_init_core();
5822 
5823 		x86_pmu.event_constraints = intel_core2_event_constraints;
5824 		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
5825 		pr_cont("Core2 events, ");
5826 		name = "core2";
5827 		break;
5828 
5829 	case INTEL_FAM6_NEHALEM:
5830 	case INTEL_FAM6_NEHALEM_EP:
5831 	case INTEL_FAM6_NEHALEM_EX:
5832 		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
5833 		       sizeof(hw_cache_event_ids));
5834 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5835 		       sizeof(hw_cache_extra_regs));
5836 
5837 		intel_pmu_lbr_init_nhm();
5838 
5839 		x86_pmu.event_constraints = intel_nehalem_event_constraints;
5840 		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
5841 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5842 		x86_pmu.extra_regs = intel_nehalem_extra_regs;
5843 		x86_pmu.limit_period = nhm_limit_period;
5844 
5845 		mem_attr = nhm_mem_events_attrs;
5846 
5847 		/* UOPS_ISSUED.STALLED_CYCLES */
5848 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5849 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5850 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5851 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5852 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5853 
5854 		intel_pmu_pebs_data_source_nhm();
5855 		x86_add_quirk(intel_nehalem_quirk);
5856 		x86_pmu.pebs_no_tlb = 1;
5857 		extra_attr = nhm_format_attr;
5858 
5859 		pr_cont("Nehalem events, ");
5860 		name = "nehalem";
5861 		break;
5862 
5863 	case INTEL_FAM6_ATOM_BONNELL:
5864 	case INTEL_FAM6_ATOM_BONNELL_MID:
5865 	case INTEL_FAM6_ATOM_SALTWELL:
5866 	case INTEL_FAM6_ATOM_SALTWELL_MID:
5867 	case INTEL_FAM6_ATOM_SALTWELL_TABLET:
5868 		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
5869 		       sizeof(hw_cache_event_ids));
5870 
5871 		intel_pmu_lbr_init_atom();
5872 
5873 		x86_pmu.event_constraints = intel_gen_event_constraints;
5874 		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
5875 		x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
5876 		pr_cont("Atom events, ");
5877 		name = "bonnell";
5878 		break;
5879 
5880 	case INTEL_FAM6_ATOM_SILVERMONT:
5881 	case INTEL_FAM6_ATOM_SILVERMONT_D:
5882 	case INTEL_FAM6_ATOM_SILVERMONT_MID:
5883 	case INTEL_FAM6_ATOM_AIRMONT:
5884 	case INTEL_FAM6_ATOM_AIRMONT_MID:
5885 		memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
5886 			sizeof(hw_cache_event_ids));
5887 		memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
5888 		       sizeof(hw_cache_extra_regs));
5889 
5890 		intel_pmu_lbr_init_slm();
5891 
5892 		x86_pmu.event_constraints = intel_slm_event_constraints;
5893 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
5894 		x86_pmu.extra_regs = intel_slm_extra_regs;
5895 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5896 		td_attr = slm_events_attrs;
5897 		extra_attr = slm_format_attr;
5898 		pr_cont("Silvermont events, ");
5899 		name = "silvermont";
5900 		break;
5901 
5902 	case INTEL_FAM6_ATOM_GOLDMONT:
5903 	case INTEL_FAM6_ATOM_GOLDMONT_D:
5904 		memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
5905 		       sizeof(hw_cache_event_ids));
5906 		memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
5907 		       sizeof(hw_cache_extra_regs));
5908 
5909 		intel_pmu_lbr_init_skl();
5910 
5911 		x86_pmu.event_constraints = intel_slm_event_constraints;
5912 		x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
5913 		x86_pmu.extra_regs = intel_glm_extra_regs;
5914 		/*
5915 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5916 		 * for precise cycles.
5917 		 * :pp is identical to :ppp
5918 		 */
5919 		x86_pmu.pebs_aliases = NULL;
5920 		x86_pmu.pebs_prec_dist = true;
5921 		x86_pmu.lbr_pt_coexist = true;
5922 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5923 		td_attr = glm_events_attrs;
5924 		extra_attr = slm_format_attr;
5925 		pr_cont("Goldmont events, ");
5926 		name = "goldmont";
5927 		break;
5928 
5929 	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
5930 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5931 		       sizeof(hw_cache_event_ids));
5932 		memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
5933 		       sizeof(hw_cache_extra_regs));
5934 
5935 		intel_pmu_lbr_init_skl();
5936 
5937 		x86_pmu.event_constraints = intel_slm_event_constraints;
5938 		x86_pmu.extra_regs = intel_glm_extra_regs;
5939 		/*
5940 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5941 		 * for precise cycles.
5942 		 */
5943 		x86_pmu.pebs_aliases = NULL;
5944 		x86_pmu.pebs_prec_dist = true;
5945 		x86_pmu.lbr_pt_coexist = true;
5946 		x86_pmu.pebs_capable = ~0ULL;
5947 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5948 		x86_pmu.flags |= PMU_FL_PEBS_ALL;
5949 		x86_pmu.get_event_constraints = glp_get_event_constraints;
5950 		td_attr = glm_events_attrs;
5951 		/* Goldmont Plus has 4-wide pipeline */
5952 		event_attr_td_total_slots_scale_glm.event_str = "4";
5953 		extra_attr = slm_format_attr;
5954 		pr_cont("Goldmont plus events, ");
5955 		name = "goldmont_plus";
5956 		break;
5957 
5958 	case INTEL_FAM6_ATOM_TREMONT_D:
5959 	case INTEL_FAM6_ATOM_TREMONT:
5960 	case INTEL_FAM6_ATOM_TREMONT_L:
5961 		x86_pmu.late_ack = true;
5962 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5963 		       sizeof(hw_cache_event_ids));
5964 		memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
5965 		       sizeof(hw_cache_extra_regs));
5966 		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
5967 
5968 		intel_pmu_lbr_init_skl();
5969 
5970 		x86_pmu.event_constraints = intel_slm_event_constraints;
5971 		x86_pmu.extra_regs = intel_tnt_extra_regs;
5972 		/*
5973 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5974 		 * for precise cycles.
5975 		 */
5976 		x86_pmu.pebs_aliases = NULL;
5977 		x86_pmu.pebs_prec_dist = true;
5978 		x86_pmu.lbr_pt_coexist = true;
5979 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5980 		x86_pmu.get_event_constraints = tnt_get_event_constraints;
5981 		td_attr = tnt_events_attrs;
5982 		extra_attr = slm_format_attr;
5983 		pr_cont("Tremont events, ");
5984 		name = "Tremont";
5985 		break;
5986 
5987 	case INTEL_FAM6_ALDERLAKE_N:
5988 		x86_pmu.mid_ack = true;
5989 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5990 		       sizeof(hw_cache_event_ids));
5991 		memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
5992 		       sizeof(hw_cache_extra_regs));
5993 		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
5994 
5995 		x86_pmu.event_constraints = intel_slm_event_constraints;
5996 		x86_pmu.pebs_constraints = intel_grt_pebs_event_constraints;
5997 		x86_pmu.extra_regs = intel_grt_extra_regs;
5998 
5999 		x86_pmu.pebs_aliases = NULL;
6000 		x86_pmu.pebs_prec_dist = true;
6001 		x86_pmu.pebs_block = true;
6002 		x86_pmu.lbr_pt_coexist = true;
6003 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6004 		x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6005 
6006 		intel_pmu_pebs_data_source_grt();
6007 		x86_pmu.pebs_latency_data = adl_latency_data_small;
6008 		x86_pmu.get_event_constraints = tnt_get_event_constraints;
6009 		x86_pmu.limit_period = spr_limit_period;
6010 		td_attr = tnt_events_attrs;
6011 		mem_attr = grt_mem_attrs;
6012 		extra_attr = nhm_format_attr;
6013 		pr_cont("Gracemont events, ");
6014 		name = "gracemont";
6015 		break;
6016 
6017 	case INTEL_FAM6_WESTMERE:
6018 	case INTEL_FAM6_WESTMERE_EP:
6019 	case INTEL_FAM6_WESTMERE_EX:
6020 		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
6021 		       sizeof(hw_cache_event_ids));
6022 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
6023 		       sizeof(hw_cache_extra_regs));
6024 
6025 		intel_pmu_lbr_init_nhm();
6026 
6027 		x86_pmu.event_constraints = intel_westmere_event_constraints;
6028 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
6029 		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
6030 		x86_pmu.extra_regs = intel_westmere_extra_regs;
6031 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6032 
6033 		mem_attr = nhm_mem_events_attrs;
6034 
6035 		/* UOPS_ISSUED.STALLED_CYCLES */
6036 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6037 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6038 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
6039 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6040 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
6041 
6042 		intel_pmu_pebs_data_source_nhm();
6043 		extra_attr = nhm_format_attr;
6044 		pr_cont("Westmere events, ");
6045 		name = "westmere";
6046 		break;
6047 
6048 	case INTEL_FAM6_SANDYBRIDGE:
6049 	case INTEL_FAM6_SANDYBRIDGE_X:
6050 		x86_add_quirk(intel_sandybridge_quirk);
6051 		x86_add_quirk(intel_ht_bug);
6052 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
6053 		       sizeof(hw_cache_event_ids));
6054 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
6055 		       sizeof(hw_cache_extra_regs));
6056 
6057 		intel_pmu_lbr_init_snb();
6058 
6059 		x86_pmu.event_constraints = intel_snb_event_constraints;
6060 		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
6061 		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
6062 		if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
6063 			x86_pmu.extra_regs = intel_snbep_extra_regs;
6064 		else
6065 			x86_pmu.extra_regs = intel_snb_extra_regs;
6066 
6067 
6068 		/* all extra regs are per-cpu when HT is on */
6069 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6070 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6071 
6072 		td_attr  = snb_events_attrs;
6073 		mem_attr = snb_mem_events_attrs;
6074 
6075 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
6076 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6077 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6078 		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
6079 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6080 			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
6081 
6082 		extra_attr = nhm_format_attr;
6083 
6084 		pr_cont("SandyBridge events, ");
6085 		name = "sandybridge";
6086 		break;
6087 
6088 	case INTEL_FAM6_IVYBRIDGE:
6089 	case INTEL_FAM6_IVYBRIDGE_X:
6090 		x86_add_quirk(intel_ht_bug);
6091 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
6092 		       sizeof(hw_cache_event_ids));
6093 		/* dTLB-load-misses on IVB is different than SNB */
6094 		hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
6095 
6096 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
6097 		       sizeof(hw_cache_extra_regs));
6098 
6099 		intel_pmu_lbr_init_snb();
6100 
6101 		x86_pmu.event_constraints = intel_ivb_event_constraints;
6102 		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
6103 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6104 		x86_pmu.pebs_prec_dist = true;
6105 		if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
6106 			x86_pmu.extra_regs = intel_snbep_extra_regs;
6107 		else
6108 			x86_pmu.extra_regs = intel_snb_extra_regs;
6109 		/* all extra regs are per-cpu when HT is on */
6110 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6111 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6112 
6113 		td_attr  = snb_events_attrs;
6114 		mem_attr = snb_mem_events_attrs;
6115 
6116 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
6117 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6118 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6119 
6120 		extra_attr = nhm_format_attr;
6121 
6122 		pr_cont("IvyBridge events, ");
6123 		name = "ivybridge";
6124 		break;
6125 
6126 
6127 	case INTEL_FAM6_HASWELL:
6128 	case INTEL_FAM6_HASWELL_X:
6129 	case INTEL_FAM6_HASWELL_L:
6130 	case INTEL_FAM6_HASWELL_G:
6131 		x86_add_quirk(intel_ht_bug);
6132 		x86_add_quirk(intel_pebs_isolation_quirk);
6133 		x86_pmu.late_ack = true;
6134 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6135 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6136 
6137 		intel_pmu_lbr_init_hsw();
6138 
6139 		x86_pmu.event_constraints = intel_hsw_event_constraints;
6140 		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
6141 		x86_pmu.extra_regs = intel_snbep_extra_regs;
6142 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6143 		x86_pmu.pebs_prec_dist = true;
6144 		/* all extra regs are per-cpu when HT is on */
6145 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6146 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6147 
6148 		x86_pmu.hw_config = hsw_hw_config;
6149 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
6150 		x86_pmu.lbr_double_abort = true;
6151 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6152 			hsw_format_attr : nhm_format_attr;
6153 		td_attr  = hsw_events_attrs;
6154 		mem_attr = hsw_mem_events_attrs;
6155 		tsx_attr = hsw_tsx_events_attrs;
6156 		pr_cont("Haswell events, ");
6157 		name = "haswell";
6158 		break;
6159 
6160 	case INTEL_FAM6_BROADWELL:
6161 	case INTEL_FAM6_BROADWELL_D:
6162 	case INTEL_FAM6_BROADWELL_G:
6163 	case INTEL_FAM6_BROADWELL_X:
6164 		x86_add_quirk(intel_pebs_isolation_quirk);
6165 		x86_pmu.late_ack = true;
6166 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6167 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6168 
6169 		/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
6170 		hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
6171 									 BDW_L3_MISS|HSW_SNOOP_DRAM;
6172 		hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
6173 									  HSW_SNOOP_DRAM;
6174 		hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
6175 									     BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
6176 		hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
6177 									      BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
6178 
6179 		intel_pmu_lbr_init_hsw();
6180 
6181 		x86_pmu.event_constraints = intel_bdw_event_constraints;
6182 		x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
6183 		x86_pmu.extra_regs = intel_snbep_extra_regs;
6184 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6185 		x86_pmu.pebs_prec_dist = true;
6186 		/* all extra regs are per-cpu when HT is on */
6187 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6188 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6189 
6190 		x86_pmu.hw_config = hsw_hw_config;
6191 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
6192 		x86_pmu.limit_period = bdw_limit_period;
6193 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6194 			hsw_format_attr : nhm_format_attr;
6195 		td_attr  = hsw_events_attrs;
6196 		mem_attr = hsw_mem_events_attrs;
6197 		tsx_attr = hsw_tsx_events_attrs;
6198 		pr_cont("Broadwell events, ");
6199 		name = "broadwell";
6200 		break;
6201 
6202 	case INTEL_FAM6_XEON_PHI_KNL:
6203 	case INTEL_FAM6_XEON_PHI_KNM:
6204 		memcpy(hw_cache_event_ids,
6205 		       slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6206 		memcpy(hw_cache_extra_regs,
6207 		       knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6208 		intel_pmu_lbr_init_knl();
6209 
6210 		x86_pmu.event_constraints = intel_slm_event_constraints;
6211 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
6212 		x86_pmu.extra_regs = intel_knl_extra_regs;
6213 
6214 		/* all extra regs are per-cpu when HT is on */
6215 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6216 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6217 		extra_attr = slm_format_attr;
6218 		pr_cont("Knights Landing/Mill events, ");
6219 		name = "knights-landing";
6220 		break;
6221 
6222 	case INTEL_FAM6_SKYLAKE_X:
6223 		pmem = true;
6224 		fallthrough;
6225 	case INTEL_FAM6_SKYLAKE_L:
6226 	case INTEL_FAM6_SKYLAKE:
6227 	case INTEL_FAM6_KABYLAKE_L:
6228 	case INTEL_FAM6_KABYLAKE:
6229 	case INTEL_FAM6_COMETLAKE_L:
6230 	case INTEL_FAM6_COMETLAKE:
6231 		x86_add_quirk(intel_pebs_isolation_quirk);
6232 		x86_pmu.late_ack = true;
6233 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6234 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6235 		intel_pmu_lbr_init_skl();
6236 
6237 		/* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
6238 		event_attr_td_recovery_bubbles.event_str_noht =
6239 			"event=0xd,umask=0x1,cmask=1";
6240 		event_attr_td_recovery_bubbles.event_str_ht =
6241 			"event=0xd,umask=0x1,cmask=1,any=1";
6242 
6243 		x86_pmu.event_constraints = intel_skl_event_constraints;
6244 		x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
6245 		x86_pmu.extra_regs = intel_skl_extra_regs;
6246 		x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
6247 		x86_pmu.pebs_prec_dist = true;
6248 		/* all extra regs are per-cpu when HT is on */
6249 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6250 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6251 
6252 		x86_pmu.hw_config = hsw_hw_config;
6253 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
6254 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6255 			hsw_format_attr : nhm_format_attr;
6256 		extra_skl_attr = skl_format_attr;
6257 		td_attr  = hsw_events_attrs;
6258 		mem_attr = hsw_mem_events_attrs;
6259 		tsx_attr = hsw_tsx_events_attrs;
6260 		intel_pmu_pebs_data_source_skl(pmem);
6261 
6262 		/*
6263 		 * Processors with CPUID.RTM_ALWAYS_ABORT have TSX deprecated by default.
6264 		 * TSX force abort hooks are not required on these systems. Only deploy
6265 		 * workaround when microcode has not enabled X86_FEATURE_RTM_ALWAYS_ABORT.
6266 		 */
6267 		if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT) &&
6268 		   !boot_cpu_has(X86_FEATURE_RTM_ALWAYS_ABORT)) {
6269 			x86_pmu.flags |= PMU_FL_TFA;
6270 			x86_pmu.get_event_constraints = tfa_get_event_constraints;
6271 			x86_pmu.enable_all = intel_tfa_pmu_enable_all;
6272 			x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
6273 		}
6274 
6275 		pr_cont("Skylake events, ");
6276 		name = "skylake";
6277 		break;
6278 
6279 	case INTEL_FAM6_ICELAKE_X:
6280 	case INTEL_FAM6_ICELAKE_D:
6281 		x86_pmu.pebs_ept = 1;
6282 		pmem = true;
6283 		fallthrough;
6284 	case INTEL_FAM6_ICELAKE_L:
6285 	case INTEL_FAM6_ICELAKE:
6286 	case INTEL_FAM6_TIGERLAKE_L:
6287 	case INTEL_FAM6_TIGERLAKE:
6288 	case INTEL_FAM6_ROCKETLAKE:
6289 		x86_pmu.late_ack = true;
6290 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6291 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6292 		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6293 		intel_pmu_lbr_init_skl();
6294 
6295 		x86_pmu.event_constraints = intel_icl_event_constraints;
6296 		x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
6297 		x86_pmu.extra_regs = intel_icl_extra_regs;
6298 		x86_pmu.pebs_aliases = NULL;
6299 		x86_pmu.pebs_prec_dist = true;
6300 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6301 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6302 
6303 		x86_pmu.hw_config = hsw_hw_config;
6304 		x86_pmu.get_event_constraints = icl_get_event_constraints;
6305 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6306 			hsw_format_attr : nhm_format_attr;
6307 		extra_skl_attr = skl_format_attr;
6308 		mem_attr = icl_events_attrs;
6309 		td_attr = icl_td_events_attrs;
6310 		tsx_attr = icl_tsx_events_attrs;
6311 		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6312 		x86_pmu.lbr_pt_coexist = true;
6313 		intel_pmu_pebs_data_source_skl(pmem);
6314 		x86_pmu.num_topdown_events = 4;
6315 		x86_pmu.update_topdown_event = icl_update_topdown_event;
6316 		x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
6317 		pr_cont("Icelake events, ");
6318 		name = "icelake";
6319 		break;
6320 
6321 	case INTEL_FAM6_SAPPHIRERAPIDS_X:
6322 		pmem = true;
6323 		x86_pmu.late_ack = true;
6324 		memcpy(hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6325 		memcpy(hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6326 
6327 		x86_pmu.event_constraints = intel_spr_event_constraints;
6328 		x86_pmu.pebs_constraints = intel_spr_pebs_event_constraints;
6329 		x86_pmu.extra_regs = intel_spr_extra_regs;
6330 		x86_pmu.limit_period = spr_limit_period;
6331 		x86_pmu.pebs_aliases = NULL;
6332 		x86_pmu.pebs_prec_dist = true;
6333 		x86_pmu.pebs_block = true;
6334 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6335 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6336 		x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6337 		x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6338 
6339 		x86_pmu.hw_config = hsw_hw_config;
6340 		x86_pmu.get_event_constraints = spr_get_event_constraints;
6341 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6342 			hsw_format_attr : nhm_format_attr;
6343 		extra_skl_attr = skl_format_attr;
6344 		mem_attr = spr_events_attrs;
6345 		td_attr = spr_td_events_attrs;
6346 		tsx_attr = spr_tsx_events_attrs;
6347 		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6348 		x86_pmu.lbr_pt_coexist = true;
6349 		intel_pmu_pebs_data_source_skl(pmem);
6350 		x86_pmu.num_topdown_events = 8;
6351 		x86_pmu.update_topdown_event = icl_update_topdown_event;
6352 		x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
6353 		pr_cont("Sapphire Rapids events, ");
6354 		name = "sapphire_rapids";
6355 		break;
6356 
6357 	case INTEL_FAM6_ALDERLAKE:
6358 	case INTEL_FAM6_ALDERLAKE_L:
6359 	case INTEL_FAM6_RAPTORLAKE:
6360 	case INTEL_FAM6_RAPTORLAKE_P:
6361 		/*
6362 		 * Alder Lake has 2 types of CPU, core and atom.
6363 		 *
6364 		 * Initialize the common PerfMon capabilities here.
6365 		 */
6366 		x86_pmu.hybrid_pmu = kcalloc(X86_HYBRID_NUM_PMUS,
6367 					     sizeof(struct x86_hybrid_pmu),
6368 					     GFP_KERNEL);
6369 		if (!x86_pmu.hybrid_pmu)
6370 			return -ENOMEM;
6371 		static_branch_enable(&perf_is_hybrid);
6372 		x86_pmu.num_hybrid_pmus = X86_HYBRID_NUM_PMUS;
6373 
6374 		x86_pmu.pebs_aliases = NULL;
6375 		x86_pmu.pebs_prec_dist = true;
6376 		x86_pmu.pebs_block = true;
6377 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6378 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6379 		x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6380 		x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6381 		x86_pmu.lbr_pt_coexist = true;
6382 		intel_pmu_pebs_data_source_adl();
6383 		x86_pmu.pebs_latency_data = adl_latency_data_small;
6384 		x86_pmu.num_topdown_events = 8;
6385 		x86_pmu.update_topdown_event = adl_update_topdown_event;
6386 		x86_pmu.set_topdown_event_period = adl_set_topdown_event_period;
6387 
6388 		x86_pmu.filter_match = intel_pmu_filter_match;
6389 		x86_pmu.get_event_constraints = adl_get_event_constraints;
6390 		x86_pmu.hw_config = adl_hw_config;
6391 		x86_pmu.limit_period = spr_limit_period;
6392 		x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type;
6393 		/*
6394 		 * The rtm_abort_event is used to check whether to enable GPRs
6395 		 * for the RTM abort event. Atom doesn't have the RTM abort
6396 		 * event. There is no harmful to set it in the common
6397 		 * x86_pmu.rtm_abort_event.
6398 		 */
6399 		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6400 
6401 		td_attr = adl_hybrid_events_attrs;
6402 		mem_attr = adl_hybrid_mem_attrs;
6403 		tsx_attr = adl_hybrid_tsx_attrs;
6404 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6405 			adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr;
6406 
6407 		/* Initialize big core specific PerfMon capabilities.*/
6408 		pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
6409 		pmu->name = "cpu_core";
6410 		pmu->cpu_type = hybrid_big;
6411 		pmu->late_ack = true;
6412 		if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) {
6413 			pmu->num_counters = x86_pmu.num_counters + 2;
6414 			pmu->num_counters_fixed = x86_pmu.num_counters_fixed + 1;
6415 		} else {
6416 			pmu->num_counters = x86_pmu.num_counters;
6417 			pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6418 		}
6419 
6420 		/*
6421 		 * Quirk: For some Alder Lake machine, when all E-cores are disabled in
6422 		 * a BIOS, the leaf 0xA will enumerate all counters of P-cores. However,
6423 		 * the X86_FEATURE_HYBRID_CPU is still set. The above codes will
6424 		 * mistakenly add extra counters for P-cores. Correct the number of
6425 		 * counters here.
6426 		 */
6427 		if ((pmu->num_counters > 8) || (pmu->num_counters_fixed > 4)) {
6428 			pmu->num_counters = x86_pmu.num_counters;
6429 			pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6430 		}
6431 
6432 		pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
6433 		pmu->unconstrained = (struct event_constraint)
6434 					__EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6435 							   0, pmu->num_counters, 0, 0);
6436 		pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6437 		pmu->intel_cap.perf_metrics = 1;
6438 		pmu->intel_cap.pebs_output_pt_available = 0;
6439 
6440 		memcpy(pmu->hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6441 		memcpy(pmu->hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6442 		pmu->event_constraints = intel_spr_event_constraints;
6443 		pmu->pebs_constraints = intel_spr_pebs_event_constraints;
6444 		pmu->extra_regs = intel_spr_extra_regs;
6445 
6446 		/* Initialize Atom core specific PerfMon capabilities.*/
6447 		pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
6448 		pmu->name = "cpu_atom";
6449 		pmu->cpu_type = hybrid_small;
6450 		pmu->mid_ack = true;
6451 		pmu->num_counters = x86_pmu.num_counters;
6452 		pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6453 		pmu->max_pebs_events = x86_pmu.max_pebs_events;
6454 		pmu->unconstrained = (struct event_constraint)
6455 					__EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6456 							   0, pmu->num_counters, 0, 0);
6457 		pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6458 		pmu->intel_cap.perf_metrics = 0;
6459 		pmu->intel_cap.pebs_output_pt_available = 1;
6460 
6461 		memcpy(pmu->hw_cache_event_ids, glp_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6462 		memcpy(pmu->hw_cache_extra_regs, tnt_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6463 		pmu->hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6464 		pmu->event_constraints = intel_slm_event_constraints;
6465 		pmu->pebs_constraints = intel_grt_pebs_event_constraints;
6466 		pmu->extra_regs = intel_grt_extra_regs;
6467 		pr_cont("Alderlake Hybrid events, ");
6468 		name = "alderlake_hybrid";
6469 		break;
6470 
6471 	default:
6472 		switch (x86_pmu.version) {
6473 		case 1:
6474 			x86_pmu.event_constraints = intel_v1_event_constraints;
6475 			pr_cont("generic architected perfmon v1, ");
6476 			name = "generic_arch_v1";
6477 			break;
6478 		case 2:
6479 		case 3:
6480 		case 4:
6481 			/*
6482 			 * default constraints for v2 and up
6483 			 */
6484 			x86_pmu.event_constraints = intel_gen_event_constraints;
6485 			pr_cont("generic architected perfmon, ");
6486 			name = "generic_arch_v2+";
6487 			break;
6488 		default:
6489 			/*
6490 			 * The default constraints for v5 and up can support up to
6491 			 * 16 fixed counters. For the fixed counters 4 and later,
6492 			 * the pseudo-encoding is applied.
6493 			 * The constraints may be cut according to the CPUID enumeration
6494 			 * by inserting the EVENT_CONSTRAINT_END.
6495 			 */
6496 			if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED)
6497 				x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
6498 			intel_v5_gen_event_constraints[x86_pmu.num_counters_fixed].weight = -1;
6499 			x86_pmu.event_constraints = intel_v5_gen_event_constraints;
6500 			pr_cont("generic architected perfmon, ");
6501 			name = "generic_arch_v5+";
6502 			break;
6503 		}
6504 	}
6505 
6506 	snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
6507 
6508 	if (!is_hybrid()) {
6509 		group_events_td.attrs  = td_attr;
6510 		group_events_mem.attrs = mem_attr;
6511 		group_events_tsx.attrs = tsx_attr;
6512 		group_format_extra.attrs = extra_attr;
6513 		group_format_extra_skl.attrs = extra_skl_attr;
6514 
6515 		x86_pmu.attr_update = attr_update;
6516 	} else {
6517 		hybrid_group_events_td.attrs  = td_attr;
6518 		hybrid_group_events_mem.attrs = mem_attr;
6519 		hybrid_group_events_tsx.attrs = tsx_attr;
6520 		hybrid_group_format_extra.attrs = extra_attr;
6521 
6522 		x86_pmu.attr_update = hybrid_attr_update;
6523 	}
6524 
6525 	intel_pmu_check_num_counters(&x86_pmu.num_counters,
6526 				     &x86_pmu.num_counters_fixed,
6527 				     &x86_pmu.intel_ctrl,
6528 				     (u64)fixed_mask);
6529 
6530 	/* AnyThread may be deprecated on arch perfmon v5 or later */
6531 	if (x86_pmu.intel_cap.anythread_deprecated)
6532 		x86_pmu.format_attrs = intel_arch_formats_attr;
6533 
6534 	intel_pmu_check_event_constraints(x86_pmu.event_constraints,
6535 					  x86_pmu.num_counters,
6536 					  x86_pmu.num_counters_fixed,
6537 					  x86_pmu.intel_ctrl);
6538 	/*
6539 	 * Access LBR MSR may cause #GP under certain circumstances.
6540 	 * Check all LBR MSR here.
6541 	 * Disable LBR access if any LBR MSRs can not be accessed.
6542 	 */
6543 	if (x86_pmu.lbr_tos && !check_msr(x86_pmu.lbr_tos, 0x3UL))
6544 		x86_pmu.lbr_nr = 0;
6545 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
6546 		if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
6547 		      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
6548 			x86_pmu.lbr_nr = 0;
6549 	}
6550 
6551 	if (x86_pmu.lbr_nr) {
6552 		intel_pmu_lbr_init();
6553 
6554 		pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
6555 
6556 		/* only support branch_stack snapshot for perfmon >= v2 */
6557 		if (x86_pmu.disable_all == intel_pmu_disable_all) {
6558 			if (boot_cpu_has(X86_FEATURE_ARCH_LBR)) {
6559 				static_call_update(perf_snapshot_branch_stack,
6560 						   intel_pmu_snapshot_arch_branch_stack);
6561 			} else {
6562 				static_call_update(perf_snapshot_branch_stack,
6563 						   intel_pmu_snapshot_branch_stack);
6564 			}
6565 		}
6566 	}
6567 
6568 	intel_pmu_check_extra_regs(x86_pmu.extra_regs);
6569 
6570 	/* Support full width counters using alternative MSR range */
6571 	if (x86_pmu.intel_cap.full_width_write) {
6572 		x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
6573 		x86_pmu.perfctr = MSR_IA32_PMC0;
6574 		pr_cont("full-width counters, ");
6575 	}
6576 
6577 	if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics)
6578 		x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
6579 
6580 	if (is_hybrid())
6581 		intel_pmu_check_hybrid_pmus((u64)fixed_mask);
6582 
6583 	intel_aux_output_init();
6584 
6585 	return 0;
6586 }
6587 
6588 /*
6589  * HT bug: phase 2 init
6590  * Called once we have valid topology information to check
6591  * whether or not HT is enabled
6592  * If HT is off, then we disable the workaround
6593  */
6594 static __init int fixup_ht_bug(void)
6595 {
6596 	int c;
6597 	/*
6598 	 * problem not present on this CPU model, nothing to do
6599 	 */
6600 	if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
6601 		return 0;
6602 
6603 	if (topology_max_smt_threads() > 1) {
6604 		pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
6605 		return 0;
6606 	}
6607 
6608 	cpus_read_lock();
6609 
6610 	hardlockup_detector_perf_stop();
6611 
6612 	x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
6613 
6614 	x86_pmu.start_scheduling = NULL;
6615 	x86_pmu.commit_scheduling = NULL;
6616 	x86_pmu.stop_scheduling = NULL;
6617 
6618 	hardlockup_detector_perf_restart();
6619 
6620 	for_each_online_cpu(c)
6621 		free_excl_cntrs(&per_cpu(cpu_hw_events, c));
6622 
6623 	cpus_read_unlock();
6624 	pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
6625 	return 0;
6626 }
6627 subsys_initcall(fixup_ht_bug)
6628