xref: /openbmc/linux/arch/x86/events/intel/core.c (revision f79e4d5f92a129a1159c973735007d4ddc8541f3)
1 /*
2  * Per core/cpu state
3  *
4  * Used to coordinate shared registers between HT threads or
5  * among events on a single PMU.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/nmi.h>
16 
17 #include <asm/cpufeature.h>
18 #include <asm/hardirq.h>
19 #include <asm/intel-family.h>
20 #include <asm/apic.h>
21 
22 #include "../perf_event.h"
23 
24 /*
25  * Intel PerfMon, used on Core and later.
26  */
27 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
28 {
29 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
30 	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
31 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
32 	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
33 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
34 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
35 	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
36 	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
37 };
38 
39 static struct event_constraint intel_core_event_constraints[] __read_mostly =
40 {
41 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
42 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
43 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
44 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
45 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
46 	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
47 	EVENT_CONSTRAINT_END
48 };
49 
50 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
51 {
52 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
53 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
54 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
55 	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
56 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
57 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
58 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
59 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
60 	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
61 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
62 	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
63 	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
64 	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
65 	EVENT_CONSTRAINT_END
66 };
67 
68 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
69 {
70 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
71 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
72 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
73 	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
74 	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
75 	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
76 	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
77 	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
78 	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
79 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
80 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
81 	EVENT_CONSTRAINT_END
82 };
83 
84 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
85 {
86 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
87 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
88 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
89 	EVENT_EXTRA_END
90 };
91 
92 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
93 {
94 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
95 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
96 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
97 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
98 	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
99 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
100 	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
101 	EVENT_CONSTRAINT_END
102 };
103 
104 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
105 {
106 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
107 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
108 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
109 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
110 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
111 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
112 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
113 	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
114 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
115 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
116 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
117 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
118 
119 	/*
120 	 * When HT is off these events can only run on the bottom 4 counters
121 	 * When HT is on, they are impacted by the HT bug and require EXCL access
122 	 */
123 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
124 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
125 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
126 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
127 
128 	EVENT_CONSTRAINT_END
129 };
130 
131 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
132 {
133 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
134 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
135 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
136 	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
137 	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
138 	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
139 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
140 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
141 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
142 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
143 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
144 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
145 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
146 
147 	/*
148 	 * When HT is off these events can only run on the bottom 4 counters
149 	 * When HT is on, they are impacted by the HT bug and require EXCL access
150 	 */
151 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
152 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
153 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
154 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
155 
156 	EVENT_CONSTRAINT_END
157 };
158 
159 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
160 {
161 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
162 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
163 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
164 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
165 	EVENT_EXTRA_END
166 };
167 
168 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
169 {
170 	EVENT_CONSTRAINT_END
171 };
172 
173 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
174 {
175 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
176 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
177 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
178 	EVENT_CONSTRAINT_END
179 };
180 
181 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
182 {
183 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
184 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
185 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
186 	EVENT_CONSTRAINT_END
187 };
188 
189 static struct event_constraint intel_skl_event_constraints[] = {
190 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
191 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
192 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
193 	INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
194 
195 	/*
196 	 * when HT is off, these can only run on the bottom 4 counters
197 	 */
198 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
199 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
200 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
201 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
202 	INTEL_EVENT_CONSTRAINT(0xc6, 0xf),	/* FRONTEND_RETIRED.* */
203 
204 	EVENT_CONSTRAINT_END
205 };
206 
207 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
208 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
209 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
210 	EVENT_EXTRA_END
211 };
212 
213 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
214 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
215 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
216 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
217 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
218 	EVENT_EXTRA_END
219 };
220 
221 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
222 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
223 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
224 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
225 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
226 	EVENT_EXTRA_END
227 };
228 
229 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
230 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
231 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
232 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
233 	/*
234 	 * Note the low 8 bits eventsel code is not a continuous field, containing
235 	 * some #GPing bits. These are masked out.
236 	 */
237 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
238 	EVENT_EXTRA_END
239 };
240 
241 EVENT_ATTR_STR(mem-loads,	mem_ld_nhm,	"event=0x0b,umask=0x10,ldlat=3");
242 EVENT_ATTR_STR(mem-loads,	mem_ld_snb,	"event=0xcd,umask=0x1,ldlat=3");
243 EVENT_ATTR_STR(mem-stores,	mem_st_snb,	"event=0xcd,umask=0x2");
244 
245 static struct attribute *nhm_events_attrs[] = {
246 	EVENT_PTR(mem_ld_nhm),
247 	NULL,
248 };
249 
250 /*
251  * topdown events for Intel Core CPUs.
252  *
253  * The events are all in slots, which is a free slot in a 4 wide
254  * pipeline. Some events are already reported in slots, for cycle
255  * events we multiply by the pipeline width (4).
256  *
257  * With Hyper Threading on, topdown metrics are either summed or averaged
258  * between the threads of a core: (count_t0 + count_t1).
259  *
260  * For the average case the metric is always scaled to pipeline width,
261  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
262  */
263 
264 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
265 	"event=0x3c,umask=0x0",			/* cpu_clk_unhalted.thread */
266 	"event=0x3c,umask=0x0,any=1");		/* cpu_clk_unhalted.thread_any */
267 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
268 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
269 	"event=0xe,umask=0x1");			/* uops_issued.any */
270 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
271 	"event=0xc2,umask=0x2");		/* uops_retired.retire_slots */
272 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
273 	"event=0x9c,umask=0x1");		/* idq_uops_not_delivered_core */
274 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
275 	"event=0xd,umask=0x3,cmask=1",		/* int_misc.recovery_cycles */
276 	"event=0xd,umask=0x3,cmask=1,any=1");	/* int_misc.recovery_cycles_any */
277 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
278 	"4", "2");
279 
280 static struct attribute *snb_events_attrs[] = {
281 	EVENT_PTR(mem_ld_snb),
282 	EVENT_PTR(mem_st_snb),
283 	EVENT_PTR(td_slots_issued),
284 	EVENT_PTR(td_slots_retired),
285 	EVENT_PTR(td_fetch_bubbles),
286 	EVENT_PTR(td_total_slots),
287 	EVENT_PTR(td_total_slots_scale),
288 	EVENT_PTR(td_recovery_bubbles),
289 	EVENT_PTR(td_recovery_bubbles_scale),
290 	NULL,
291 };
292 
293 static struct event_constraint intel_hsw_event_constraints[] = {
294 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
295 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
296 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
297 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
298 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
299 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
300 	/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
301 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
302 	/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
303 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
304 	/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
305 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
306 
307 	/*
308 	 * When HT is off these events can only run on the bottom 4 counters
309 	 * When HT is on, they are impacted by the HT bug and require EXCL access
310 	 */
311 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
312 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
313 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
314 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
315 
316 	EVENT_CONSTRAINT_END
317 };
318 
319 static struct event_constraint intel_bdw_event_constraints[] = {
320 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
321 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
322 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
323 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
324 	INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),	/* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
325 	/*
326 	 * when HT is off, these can only run on the bottom 4 counters
327 	 */
328 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
329 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
330 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
331 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
332 	EVENT_CONSTRAINT_END
333 };
334 
335 static u64 intel_pmu_event_map(int hw_event)
336 {
337 	return intel_perfmon_event_map[hw_event];
338 }
339 
340 /*
341  * Notes on the events:
342  * - data reads do not include code reads (comparable to earlier tables)
343  * - data counts include speculative execution (except L1 write, dtlb, bpu)
344  * - remote node access includes remote memory, remote cache, remote mmio.
345  * - prefetches are not included in the counts.
346  * - icache miss does not include decoded icache
347  */
348 
349 #define SKL_DEMAND_DATA_RD		BIT_ULL(0)
350 #define SKL_DEMAND_RFO			BIT_ULL(1)
351 #define SKL_ANY_RESPONSE		BIT_ULL(16)
352 #define SKL_SUPPLIER_NONE		BIT_ULL(17)
353 #define SKL_L3_MISS_LOCAL_DRAM		BIT_ULL(26)
354 #define SKL_L3_MISS_REMOTE_HOP0_DRAM	BIT_ULL(27)
355 #define SKL_L3_MISS_REMOTE_HOP1_DRAM	BIT_ULL(28)
356 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM	BIT_ULL(29)
357 #define SKL_L3_MISS			(SKL_L3_MISS_LOCAL_DRAM| \
358 					 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
359 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
360 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
361 #define SKL_SPL_HIT			BIT_ULL(30)
362 #define SKL_SNOOP_NONE			BIT_ULL(31)
363 #define SKL_SNOOP_NOT_NEEDED		BIT_ULL(32)
364 #define SKL_SNOOP_MISS			BIT_ULL(33)
365 #define SKL_SNOOP_HIT_NO_FWD		BIT_ULL(34)
366 #define SKL_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
367 #define SKL_SNOOP_HITM			BIT_ULL(36)
368 #define SKL_SNOOP_NON_DRAM		BIT_ULL(37)
369 #define SKL_ANY_SNOOP			(SKL_SPL_HIT|SKL_SNOOP_NONE| \
370 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
371 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
372 					 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
373 #define SKL_DEMAND_READ			SKL_DEMAND_DATA_RD
374 #define SKL_SNOOP_DRAM			(SKL_SNOOP_NONE| \
375 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
376 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
377 					 SKL_SNOOP_HITM|SKL_SPL_HIT)
378 #define SKL_DEMAND_WRITE		SKL_DEMAND_RFO
379 #define SKL_LLC_ACCESS			SKL_ANY_RESPONSE
380 #define SKL_L3_MISS_REMOTE		(SKL_L3_MISS_REMOTE_HOP0_DRAM| \
381 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
382 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
383 
384 static __initconst const u64 skl_hw_cache_event_ids
385 				[PERF_COUNT_HW_CACHE_MAX]
386 				[PERF_COUNT_HW_CACHE_OP_MAX]
387 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
388 {
389  [ C(L1D ) ] = {
390 	[ C(OP_READ) ] = {
391 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
392 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
393 	},
394 	[ C(OP_WRITE) ] = {
395 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
396 		[ C(RESULT_MISS)   ] = 0x0,
397 	},
398 	[ C(OP_PREFETCH) ] = {
399 		[ C(RESULT_ACCESS) ] = 0x0,
400 		[ C(RESULT_MISS)   ] = 0x0,
401 	},
402  },
403  [ C(L1I ) ] = {
404 	[ C(OP_READ) ] = {
405 		[ C(RESULT_ACCESS) ] = 0x0,
406 		[ C(RESULT_MISS)   ] = 0x283,	/* ICACHE_64B.MISS */
407 	},
408 	[ C(OP_WRITE) ] = {
409 		[ C(RESULT_ACCESS) ] = -1,
410 		[ C(RESULT_MISS)   ] = -1,
411 	},
412 	[ C(OP_PREFETCH) ] = {
413 		[ C(RESULT_ACCESS) ] = 0x0,
414 		[ C(RESULT_MISS)   ] = 0x0,
415 	},
416  },
417  [ C(LL  ) ] = {
418 	[ C(OP_READ) ] = {
419 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
420 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
421 	},
422 	[ C(OP_WRITE) ] = {
423 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
424 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
425 	},
426 	[ C(OP_PREFETCH) ] = {
427 		[ C(RESULT_ACCESS) ] = 0x0,
428 		[ C(RESULT_MISS)   ] = 0x0,
429 	},
430  },
431  [ C(DTLB) ] = {
432 	[ C(OP_READ) ] = {
433 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
434 		[ C(RESULT_MISS)   ] = 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
435 	},
436 	[ C(OP_WRITE) ] = {
437 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
438 		[ C(RESULT_MISS)   ] = 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
439 	},
440 	[ C(OP_PREFETCH) ] = {
441 		[ C(RESULT_ACCESS) ] = 0x0,
442 		[ C(RESULT_MISS)   ] = 0x0,
443 	},
444  },
445  [ C(ITLB) ] = {
446 	[ C(OP_READ) ] = {
447 		[ C(RESULT_ACCESS) ] = 0x2085,	/* ITLB_MISSES.STLB_HIT */
448 		[ C(RESULT_MISS)   ] = 0xe85,	/* ITLB_MISSES.WALK_COMPLETED */
449 	},
450 	[ C(OP_WRITE) ] = {
451 		[ C(RESULT_ACCESS) ] = -1,
452 		[ C(RESULT_MISS)   ] = -1,
453 	},
454 	[ C(OP_PREFETCH) ] = {
455 		[ C(RESULT_ACCESS) ] = -1,
456 		[ C(RESULT_MISS)   ] = -1,
457 	},
458  },
459  [ C(BPU ) ] = {
460 	[ C(OP_READ) ] = {
461 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
462 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
463 	},
464 	[ C(OP_WRITE) ] = {
465 		[ C(RESULT_ACCESS) ] = -1,
466 		[ C(RESULT_MISS)   ] = -1,
467 	},
468 	[ C(OP_PREFETCH) ] = {
469 		[ C(RESULT_ACCESS) ] = -1,
470 		[ C(RESULT_MISS)   ] = -1,
471 	},
472  },
473  [ C(NODE) ] = {
474 	[ C(OP_READ) ] = {
475 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
476 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
477 	},
478 	[ C(OP_WRITE) ] = {
479 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
480 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
481 	},
482 	[ C(OP_PREFETCH) ] = {
483 		[ C(RESULT_ACCESS) ] = 0x0,
484 		[ C(RESULT_MISS)   ] = 0x0,
485 	},
486  },
487 };
488 
489 static __initconst const u64 skl_hw_cache_extra_regs
490 				[PERF_COUNT_HW_CACHE_MAX]
491 				[PERF_COUNT_HW_CACHE_OP_MAX]
492 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
493 {
494  [ C(LL  ) ] = {
495 	[ C(OP_READ) ] = {
496 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
497 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
498 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
499 				       SKL_L3_MISS|SKL_ANY_SNOOP|
500 				       SKL_SUPPLIER_NONE,
501 	},
502 	[ C(OP_WRITE) ] = {
503 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
504 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
505 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
506 				       SKL_L3_MISS|SKL_ANY_SNOOP|
507 				       SKL_SUPPLIER_NONE,
508 	},
509 	[ C(OP_PREFETCH) ] = {
510 		[ C(RESULT_ACCESS) ] = 0x0,
511 		[ C(RESULT_MISS)   ] = 0x0,
512 	},
513  },
514  [ C(NODE) ] = {
515 	[ C(OP_READ) ] = {
516 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
517 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
518 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
519 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
520 	},
521 	[ C(OP_WRITE) ] = {
522 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
523 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
524 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
525 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
526 	},
527 	[ C(OP_PREFETCH) ] = {
528 		[ C(RESULT_ACCESS) ] = 0x0,
529 		[ C(RESULT_MISS)   ] = 0x0,
530 	},
531  },
532 };
533 
534 #define SNB_DMND_DATA_RD	(1ULL << 0)
535 #define SNB_DMND_RFO		(1ULL << 1)
536 #define SNB_DMND_IFETCH		(1ULL << 2)
537 #define SNB_DMND_WB		(1ULL << 3)
538 #define SNB_PF_DATA_RD		(1ULL << 4)
539 #define SNB_PF_RFO		(1ULL << 5)
540 #define SNB_PF_IFETCH		(1ULL << 6)
541 #define SNB_LLC_DATA_RD		(1ULL << 7)
542 #define SNB_LLC_RFO		(1ULL << 8)
543 #define SNB_LLC_IFETCH		(1ULL << 9)
544 #define SNB_BUS_LOCKS		(1ULL << 10)
545 #define SNB_STRM_ST		(1ULL << 11)
546 #define SNB_OTHER		(1ULL << 15)
547 #define SNB_RESP_ANY		(1ULL << 16)
548 #define SNB_NO_SUPP		(1ULL << 17)
549 #define SNB_LLC_HITM		(1ULL << 18)
550 #define SNB_LLC_HITE		(1ULL << 19)
551 #define SNB_LLC_HITS		(1ULL << 20)
552 #define SNB_LLC_HITF		(1ULL << 21)
553 #define SNB_LOCAL		(1ULL << 22)
554 #define SNB_REMOTE		(0xffULL << 23)
555 #define SNB_SNP_NONE		(1ULL << 31)
556 #define SNB_SNP_NOT_NEEDED	(1ULL << 32)
557 #define SNB_SNP_MISS		(1ULL << 33)
558 #define SNB_NO_FWD		(1ULL << 34)
559 #define SNB_SNP_FWD		(1ULL << 35)
560 #define SNB_HITM		(1ULL << 36)
561 #define SNB_NON_DRAM		(1ULL << 37)
562 
563 #define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
564 #define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
565 #define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
566 
567 #define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
568 				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
569 				 SNB_HITM)
570 
571 #define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
572 #define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)
573 
574 #define SNB_L3_ACCESS		SNB_RESP_ANY
575 #define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)
576 
577 static __initconst const u64 snb_hw_cache_extra_regs
578 				[PERF_COUNT_HW_CACHE_MAX]
579 				[PERF_COUNT_HW_CACHE_OP_MAX]
580 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
581 {
582  [ C(LL  ) ] = {
583 	[ C(OP_READ) ] = {
584 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
585 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
586 	},
587 	[ C(OP_WRITE) ] = {
588 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
589 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
590 	},
591 	[ C(OP_PREFETCH) ] = {
592 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
593 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
594 	},
595  },
596  [ C(NODE) ] = {
597 	[ C(OP_READ) ] = {
598 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
599 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
600 	},
601 	[ C(OP_WRITE) ] = {
602 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
603 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
604 	},
605 	[ C(OP_PREFETCH) ] = {
606 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
607 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
608 	},
609  },
610 };
611 
612 static __initconst const u64 snb_hw_cache_event_ids
613 				[PERF_COUNT_HW_CACHE_MAX]
614 				[PERF_COUNT_HW_CACHE_OP_MAX]
615 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
616 {
617  [ C(L1D) ] = {
618 	[ C(OP_READ) ] = {
619 		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
620 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
621 	},
622 	[ C(OP_WRITE) ] = {
623 		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
624 		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
625 	},
626 	[ C(OP_PREFETCH) ] = {
627 		[ C(RESULT_ACCESS) ] = 0x0,
628 		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
629 	},
630  },
631  [ C(L1I ) ] = {
632 	[ C(OP_READ) ] = {
633 		[ C(RESULT_ACCESS) ] = 0x0,
634 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
635 	},
636 	[ C(OP_WRITE) ] = {
637 		[ C(RESULT_ACCESS) ] = -1,
638 		[ C(RESULT_MISS)   ] = -1,
639 	},
640 	[ C(OP_PREFETCH) ] = {
641 		[ C(RESULT_ACCESS) ] = 0x0,
642 		[ C(RESULT_MISS)   ] = 0x0,
643 	},
644  },
645  [ C(LL  ) ] = {
646 	[ C(OP_READ) ] = {
647 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
648 		[ C(RESULT_ACCESS) ] = 0x01b7,
649 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
650 		[ C(RESULT_MISS)   ] = 0x01b7,
651 	},
652 	[ C(OP_WRITE) ] = {
653 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
654 		[ C(RESULT_ACCESS) ] = 0x01b7,
655 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
656 		[ C(RESULT_MISS)   ] = 0x01b7,
657 	},
658 	[ C(OP_PREFETCH) ] = {
659 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
660 		[ C(RESULT_ACCESS) ] = 0x01b7,
661 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
662 		[ C(RESULT_MISS)   ] = 0x01b7,
663 	},
664  },
665  [ C(DTLB) ] = {
666 	[ C(OP_READ) ] = {
667 		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
668 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
669 	},
670 	[ C(OP_WRITE) ] = {
671 		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
672 		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
673 	},
674 	[ C(OP_PREFETCH) ] = {
675 		[ C(RESULT_ACCESS) ] = 0x0,
676 		[ C(RESULT_MISS)   ] = 0x0,
677 	},
678  },
679  [ C(ITLB) ] = {
680 	[ C(OP_READ) ] = {
681 		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
682 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
683 	},
684 	[ C(OP_WRITE) ] = {
685 		[ C(RESULT_ACCESS) ] = -1,
686 		[ C(RESULT_MISS)   ] = -1,
687 	},
688 	[ C(OP_PREFETCH) ] = {
689 		[ C(RESULT_ACCESS) ] = -1,
690 		[ C(RESULT_MISS)   ] = -1,
691 	},
692  },
693  [ C(BPU ) ] = {
694 	[ C(OP_READ) ] = {
695 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
696 		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
697 	},
698 	[ C(OP_WRITE) ] = {
699 		[ C(RESULT_ACCESS) ] = -1,
700 		[ C(RESULT_MISS)   ] = -1,
701 	},
702 	[ C(OP_PREFETCH) ] = {
703 		[ C(RESULT_ACCESS) ] = -1,
704 		[ C(RESULT_MISS)   ] = -1,
705 	},
706  },
707  [ C(NODE) ] = {
708 	[ C(OP_READ) ] = {
709 		[ C(RESULT_ACCESS) ] = 0x01b7,
710 		[ C(RESULT_MISS)   ] = 0x01b7,
711 	},
712 	[ C(OP_WRITE) ] = {
713 		[ C(RESULT_ACCESS) ] = 0x01b7,
714 		[ C(RESULT_MISS)   ] = 0x01b7,
715 	},
716 	[ C(OP_PREFETCH) ] = {
717 		[ C(RESULT_ACCESS) ] = 0x01b7,
718 		[ C(RESULT_MISS)   ] = 0x01b7,
719 	},
720  },
721 
722 };
723 
724 /*
725  * Notes on the events:
726  * - data reads do not include code reads (comparable to earlier tables)
727  * - data counts include speculative execution (except L1 write, dtlb, bpu)
728  * - remote node access includes remote memory, remote cache, remote mmio.
729  * - prefetches are not included in the counts because they are not
730  *   reliably counted.
731  */
732 
733 #define HSW_DEMAND_DATA_RD		BIT_ULL(0)
734 #define HSW_DEMAND_RFO			BIT_ULL(1)
735 #define HSW_ANY_RESPONSE		BIT_ULL(16)
736 #define HSW_SUPPLIER_NONE		BIT_ULL(17)
737 #define HSW_L3_MISS_LOCAL_DRAM		BIT_ULL(22)
738 #define HSW_L3_MISS_REMOTE_HOP0		BIT_ULL(27)
739 #define HSW_L3_MISS_REMOTE_HOP1		BIT_ULL(28)
740 #define HSW_L3_MISS_REMOTE_HOP2P	BIT_ULL(29)
741 #define HSW_L3_MISS			(HSW_L3_MISS_LOCAL_DRAM| \
742 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
743 					 HSW_L3_MISS_REMOTE_HOP2P)
744 #define HSW_SNOOP_NONE			BIT_ULL(31)
745 #define HSW_SNOOP_NOT_NEEDED		BIT_ULL(32)
746 #define HSW_SNOOP_MISS			BIT_ULL(33)
747 #define HSW_SNOOP_HIT_NO_FWD		BIT_ULL(34)
748 #define HSW_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
749 #define HSW_SNOOP_HITM			BIT_ULL(36)
750 #define HSW_SNOOP_NON_DRAM		BIT_ULL(37)
751 #define HSW_ANY_SNOOP			(HSW_SNOOP_NONE| \
752 					 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
753 					 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
754 					 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
755 #define HSW_SNOOP_DRAM			(HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
756 #define HSW_DEMAND_READ			HSW_DEMAND_DATA_RD
757 #define HSW_DEMAND_WRITE		HSW_DEMAND_RFO
758 #define HSW_L3_MISS_REMOTE		(HSW_L3_MISS_REMOTE_HOP0|\
759 					 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
760 #define HSW_LLC_ACCESS			HSW_ANY_RESPONSE
761 
762 #define BDW_L3_MISS_LOCAL		BIT(26)
763 #define BDW_L3_MISS			(BDW_L3_MISS_LOCAL| \
764 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
765 					 HSW_L3_MISS_REMOTE_HOP2P)
766 
767 
768 static __initconst const u64 hsw_hw_cache_event_ids
769 				[PERF_COUNT_HW_CACHE_MAX]
770 				[PERF_COUNT_HW_CACHE_OP_MAX]
771 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
772 {
773  [ C(L1D ) ] = {
774 	[ C(OP_READ) ] = {
775 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
776 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
777 	},
778 	[ C(OP_WRITE) ] = {
779 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
780 		[ C(RESULT_MISS)   ] = 0x0,
781 	},
782 	[ C(OP_PREFETCH) ] = {
783 		[ C(RESULT_ACCESS) ] = 0x0,
784 		[ C(RESULT_MISS)   ] = 0x0,
785 	},
786  },
787  [ C(L1I ) ] = {
788 	[ C(OP_READ) ] = {
789 		[ C(RESULT_ACCESS) ] = 0x0,
790 		[ C(RESULT_MISS)   ] = 0x280,	/* ICACHE.MISSES */
791 	},
792 	[ C(OP_WRITE) ] = {
793 		[ C(RESULT_ACCESS) ] = -1,
794 		[ C(RESULT_MISS)   ] = -1,
795 	},
796 	[ C(OP_PREFETCH) ] = {
797 		[ C(RESULT_ACCESS) ] = 0x0,
798 		[ C(RESULT_MISS)   ] = 0x0,
799 	},
800  },
801  [ C(LL  ) ] = {
802 	[ C(OP_READ) ] = {
803 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
804 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
805 	},
806 	[ C(OP_WRITE) ] = {
807 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
808 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
809 	},
810 	[ C(OP_PREFETCH) ] = {
811 		[ C(RESULT_ACCESS) ] = 0x0,
812 		[ C(RESULT_MISS)   ] = 0x0,
813 	},
814  },
815  [ C(DTLB) ] = {
816 	[ C(OP_READ) ] = {
817 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
818 		[ C(RESULT_MISS)   ] = 0x108,	/* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
819 	},
820 	[ C(OP_WRITE) ] = {
821 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
822 		[ C(RESULT_MISS)   ] = 0x149,	/* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
823 	},
824 	[ C(OP_PREFETCH) ] = {
825 		[ C(RESULT_ACCESS) ] = 0x0,
826 		[ C(RESULT_MISS)   ] = 0x0,
827 	},
828  },
829  [ C(ITLB) ] = {
830 	[ C(OP_READ) ] = {
831 		[ C(RESULT_ACCESS) ] = 0x6085,	/* ITLB_MISSES.STLB_HIT */
832 		[ C(RESULT_MISS)   ] = 0x185,	/* ITLB_MISSES.MISS_CAUSES_A_WALK */
833 	},
834 	[ C(OP_WRITE) ] = {
835 		[ C(RESULT_ACCESS) ] = -1,
836 		[ C(RESULT_MISS)   ] = -1,
837 	},
838 	[ C(OP_PREFETCH) ] = {
839 		[ C(RESULT_ACCESS) ] = -1,
840 		[ C(RESULT_MISS)   ] = -1,
841 	},
842  },
843  [ C(BPU ) ] = {
844 	[ C(OP_READ) ] = {
845 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
846 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
847 	},
848 	[ C(OP_WRITE) ] = {
849 		[ C(RESULT_ACCESS) ] = -1,
850 		[ C(RESULT_MISS)   ] = -1,
851 	},
852 	[ C(OP_PREFETCH) ] = {
853 		[ C(RESULT_ACCESS) ] = -1,
854 		[ C(RESULT_MISS)   ] = -1,
855 	},
856  },
857  [ C(NODE) ] = {
858 	[ C(OP_READ) ] = {
859 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
860 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
861 	},
862 	[ C(OP_WRITE) ] = {
863 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
864 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
865 	},
866 	[ C(OP_PREFETCH) ] = {
867 		[ C(RESULT_ACCESS) ] = 0x0,
868 		[ C(RESULT_MISS)   ] = 0x0,
869 	},
870  },
871 };
872 
873 static __initconst const u64 hsw_hw_cache_extra_regs
874 				[PERF_COUNT_HW_CACHE_MAX]
875 				[PERF_COUNT_HW_CACHE_OP_MAX]
876 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
877 {
878  [ C(LL  ) ] = {
879 	[ C(OP_READ) ] = {
880 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
881 				       HSW_LLC_ACCESS,
882 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
883 				       HSW_L3_MISS|HSW_ANY_SNOOP,
884 	},
885 	[ C(OP_WRITE) ] = {
886 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
887 				       HSW_LLC_ACCESS,
888 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
889 				       HSW_L3_MISS|HSW_ANY_SNOOP,
890 	},
891 	[ C(OP_PREFETCH) ] = {
892 		[ C(RESULT_ACCESS) ] = 0x0,
893 		[ C(RESULT_MISS)   ] = 0x0,
894 	},
895  },
896  [ C(NODE) ] = {
897 	[ C(OP_READ) ] = {
898 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
899 				       HSW_L3_MISS_LOCAL_DRAM|
900 				       HSW_SNOOP_DRAM,
901 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
902 				       HSW_L3_MISS_REMOTE|
903 				       HSW_SNOOP_DRAM,
904 	},
905 	[ C(OP_WRITE) ] = {
906 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
907 				       HSW_L3_MISS_LOCAL_DRAM|
908 				       HSW_SNOOP_DRAM,
909 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
910 				       HSW_L3_MISS_REMOTE|
911 				       HSW_SNOOP_DRAM,
912 	},
913 	[ C(OP_PREFETCH) ] = {
914 		[ C(RESULT_ACCESS) ] = 0x0,
915 		[ C(RESULT_MISS)   ] = 0x0,
916 	},
917  },
918 };
919 
920 static __initconst const u64 westmere_hw_cache_event_ids
921 				[PERF_COUNT_HW_CACHE_MAX]
922 				[PERF_COUNT_HW_CACHE_OP_MAX]
923 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
924 {
925  [ C(L1D) ] = {
926 	[ C(OP_READ) ] = {
927 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
928 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
929 	},
930 	[ C(OP_WRITE) ] = {
931 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
932 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
933 	},
934 	[ C(OP_PREFETCH) ] = {
935 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
936 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
937 	},
938  },
939  [ C(L1I ) ] = {
940 	[ C(OP_READ) ] = {
941 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
942 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
943 	},
944 	[ C(OP_WRITE) ] = {
945 		[ C(RESULT_ACCESS) ] = -1,
946 		[ C(RESULT_MISS)   ] = -1,
947 	},
948 	[ C(OP_PREFETCH) ] = {
949 		[ C(RESULT_ACCESS) ] = 0x0,
950 		[ C(RESULT_MISS)   ] = 0x0,
951 	},
952  },
953  [ C(LL  ) ] = {
954 	[ C(OP_READ) ] = {
955 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
956 		[ C(RESULT_ACCESS) ] = 0x01b7,
957 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
958 		[ C(RESULT_MISS)   ] = 0x01b7,
959 	},
960 	/*
961 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
962 	 * on RFO.
963 	 */
964 	[ C(OP_WRITE) ] = {
965 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
966 		[ C(RESULT_ACCESS) ] = 0x01b7,
967 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
968 		[ C(RESULT_MISS)   ] = 0x01b7,
969 	},
970 	[ C(OP_PREFETCH) ] = {
971 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
972 		[ C(RESULT_ACCESS) ] = 0x01b7,
973 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
974 		[ C(RESULT_MISS)   ] = 0x01b7,
975 	},
976  },
977  [ C(DTLB) ] = {
978 	[ C(OP_READ) ] = {
979 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
980 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
981 	},
982 	[ C(OP_WRITE) ] = {
983 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
984 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
985 	},
986 	[ C(OP_PREFETCH) ] = {
987 		[ C(RESULT_ACCESS) ] = 0x0,
988 		[ C(RESULT_MISS)   ] = 0x0,
989 	},
990  },
991  [ C(ITLB) ] = {
992 	[ C(OP_READ) ] = {
993 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
994 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
995 	},
996 	[ C(OP_WRITE) ] = {
997 		[ C(RESULT_ACCESS) ] = -1,
998 		[ C(RESULT_MISS)   ] = -1,
999 	},
1000 	[ C(OP_PREFETCH) ] = {
1001 		[ C(RESULT_ACCESS) ] = -1,
1002 		[ C(RESULT_MISS)   ] = -1,
1003 	},
1004  },
1005  [ C(BPU ) ] = {
1006 	[ C(OP_READ) ] = {
1007 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1008 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1009 	},
1010 	[ C(OP_WRITE) ] = {
1011 		[ C(RESULT_ACCESS) ] = -1,
1012 		[ C(RESULT_MISS)   ] = -1,
1013 	},
1014 	[ C(OP_PREFETCH) ] = {
1015 		[ C(RESULT_ACCESS) ] = -1,
1016 		[ C(RESULT_MISS)   ] = -1,
1017 	},
1018  },
1019  [ C(NODE) ] = {
1020 	[ C(OP_READ) ] = {
1021 		[ C(RESULT_ACCESS) ] = 0x01b7,
1022 		[ C(RESULT_MISS)   ] = 0x01b7,
1023 	},
1024 	[ C(OP_WRITE) ] = {
1025 		[ C(RESULT_ACCESS) ] = 0x01b7,
1026 		[ C(RESULT_MISS)   ] = 0x01b7,
1027 	},
1028 	[ C(OP_PREFETCH) ] = {
1029 		[ C(RESULT_ACCESS) ] = 0x01b7,
1030 		[ C(RESULT_MISS)   ] = 0x01b7,
1031 	},
1032  },
1033 };
1034 
1035 /*
1036  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1037  * See IA32 SDM Vol 3B 30.6.1.3
1038  */
1039 
1040 #define NHM_DMND_DATA_RD	(1 << 0)
1041 #define NHM_DMND_RFO		(1 << 1)
1042 #define NHM_DMND_IFETCH		(1 << 2)
1043 #define NHM_DMND_WB		(1 << 3)
1044 #define NHM_PF_DATA_RD		(1 << 4)
1045 #define NHM_PF_DATA_RFO		(1 << 5)
1046 #define NHM_PF_IFETCH		(1 << 6)
1047 #define NHM_OFFCORE_OTHER	(1 << 7)
1048 #define NHM_UNCORE_HIT		(1 << 8)
1049 #define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
1050 #define NHM_OTHER_CORE_HITM	(1 << 10)
1051         			/* reserved */
1052 #define NHM_REMOTE_CACHE_FWD	(1 << 12)
1053 #define NHM_REMOTE_DRAM		(1 << 13)
1054 #define NHM_LOCAL_DRAM		(1 << 14)
1055 #define NHM_NON_DRAM		(1 << 15)
1056 
1057 #define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1058 #define NHM_REMOTE		(NHM_REMOTE_DRAM)
1059 
1060 #define NHM_DMND_READ		(NHM_DMND_DATA_RD)
1061 #define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
1062 #define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1063 
1064 #define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1065 #define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1066 #define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
1067 
1068 static __initconst const u64 nehalem_hw_cache_extra_regs
1069 				[PERF_COUNT_HW_CACHE_MAX]
1070 				[PERF_COUNT_HW_CACHE_OP_MAX]
1071 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1072 {
1073  [ C(LL  ) ] = {
1074 	[ C(OP_READ) ] = {
1075 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1076 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1077 	},
1078 	[ C(OP_WRITE) ] = {
1079 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1080 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1081 	},
1082 	[ C(OP_PREFETCH) ] = {
1083 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1084 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1085 	},
1086  },
1087  [ C(NODE) ] = {
1088 	[ C(OP_READ) ] = {
1089 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1090 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1091 	},
1092 	[ C(OP_WRITE) ] = {
1093 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1094 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1095 	},
1096 	[ C(OP_PREFETCH) ] = {
1097 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1098 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1099 	},
1100  },
1101 };
1102 
1103 static __initconst const u64 nehalem_hw_cache_event_ids
1104 				[PERF_COUNT_HW_CACHE_MAX]
1105 				[PERF_COUNT_HW_CACHE_OP_MAX]
1106 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1107 {
1108  [ C(L1D) ] = {
1109 	[ C(OP_READ) ] = {
1110 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1111 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1112 	},
1113 	[ C(OP_WRITE) ] = {
1114 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1115 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1116 	},
1117 	[ C(OP_PREFETCH) ] = {
1118 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1119 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1120 	},
1121  },
1122  [ C(L1I ) ] = {
1123 	[ C(OP_READ) ] = {
1124 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1125 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1126 	},
1127 	[ C(OP_WRITE) ] = {
1128 		[ C(RESULT_ACCESS) ] = -1,
1129 		[ C(RESULT_MISS)   ] = -1,
1130 	},
1131 	[ C(OP_PREFETCH) ] = {
1132 		[ C(RESULT_ACCESS) ] = 0x0,
1133 		[ C(RESULT_MISS)   ] = 0x0,
1134 	},
1135  },
1136  [ C(LL  ) ] = {
1137 	[ C(OP_READ) ] = {
1138 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1139 		[ C(RESULT_ACCESS) ] = 0x01b7,
1140 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1141 		[ C(RESULT_MISS)   ] = 0x01b7,
1142 	},
1143 	/*
1144 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1145 	 * on RFO.
1146 	 */
1147 	[ C(OP_WRITE) ] = {
1148 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1149 		[ C(RESULT_ACCESS) ] = 0x01b7,
1150 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1151 		[ C(RESULT_MISS)   ] = 0x01b7,
1152 	},
1153 	[ C(OP_PREFETCH) ] = {
1154 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1155 		[ C(RESULT_ACCESS) ] = 0x01b7,
1156 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1157 		[ C(RESULT_MISS)   ] = 0x01b7,
1158 	},
1159  },
1160  [ C(DTLB) ] = {
1161 	[ C(OP_READ) ] = {
1162 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1163 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1164 	},
1165 	[ C(OP_WRITE) ] = {
1166 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1167 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1168 	},
1169 	[ C(OP_PREFETCH) ] = {
1170 		[ C(RESULT_ACCESS) ] = 0x0,
1171 		[ C(RESULT_MISS)   ] = 0x0,
1172 	},
1173  },
1174  [ C(ITLB) ] = {
1175 	[ C(OP_READ) ] = {
1176 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1177 		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1178 	},
1179 	[ C(OP_WRITE) ] = {
1180 		[ C(RESULT_ACCESS) ] = -1,
1181 		[ C(RESULT_MISS)   ] = -1,
1182 	},
1183 	[ C(OP_PREFETCH) ] = {
1184 		[ C(RESULT_ACCESS) ] = -1,
1185 		[ C(RESULT_MISS)   ] = -1,
1186 	},
1187  },
1188  [ C(BPU ) ] = {
1189 	[ C(OP_READ) ] = {
1190 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1191 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1192 	},
1193 	[ C(OP_WRITE) ] = {
1194 		[ C(RESULT_ACCESS) ] = -1,
1195 		[ C(RESULT_MISS)   ] = -1,
1196 	},
1197 	[ C(OP_PREFETCH) ] = {
1198 		[ C(RESULT_ACCESS) ] = -1,
1199 		[ C(RESULT_MISS)   ] = -1,
1200 	},
1201  },
1202  [ C(NODE) ] = {
1203 	[ C(OP_READ) ] = {
1204 		[ C(RESULT_ACCESS) ] = 0x01b7,
1205 		[ C(RESULT_MISS)   ] = 0x01b7,
1206 	},
1207 	[ C(OP_WRITE) ] = {
1208 		[ C(RESULT_ACCESS) ] = 0x01b7,
1209 		[ C(RESULT_MISS)   ] = 0x01b7,
1210 	},
1211 	[ C(OP_PREFETCH) ] = {
1212 		[ C(RESULT_ACCESS) ] = 0x01b7,
1213 		[ C(RESULT_MISS)   ] = 0x01b7,
1214 	},
1215  },
1216 };
1217 
1218 static __initconst const u64 core2_hw_cache_event_ids
1219 				[PERF_COUNT_HW_CACHE_MAX]
1220 				[PERF_COUNT_HW_CACHE_OP_MAX]
1221 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1222 {
1223  [ C(L1D) ] = {
1224 	[ C(OP_READ) ] = {
1225 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1226 		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1227 	},
1228 	[ C(OP_WRITE) ] = {
1229 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1230 		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1231 	},
1232 	[ C(OP_PREFETCH) ] = {
1233 		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1234 		[ C(RESULT_MISS)   ] = 0,
1235 	},
1236  },
1237  [ C(L1I ) ] = {
1238 	[ C(OP_READ) ] = {
1239 		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1240 		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1241 	},
1242 	[ C(OP_WRITE) ] = {
1243 		[ C(RESULT_ACCESS) ] = -1,
1244 		[ C(RESULT_MISS)   ] = -1,
1245 	},
1246 	[ C(OP_PREFETCH) ] = {
1247 		[ C(RESULT_ACCESS) ] = 0,
1248 		[ C(RESULT_MISS)   ] = 0,
1249 	},
1250  },
1251  [ C(LL  ) ] = {
1252 	[ C(OP_READ) ] = {
1253 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1254 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1255 	},
1256 	[ C(OP_WRITE) ] = {
1257 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1258 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1259 	},
1260 	[ C(OP_PREFETCH) ] = {
1261 		[ C(RESULT_ACCESS) ] = 0,
1262 		[ C(RESULT_MISS)   ] = 0,
1263 	},
1264  },
1265  [ C(DTLB) ] = {
1266 	[ C(OP_READ) ] = {
1267 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1268 		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1269 	},
1270 	[ C(OP_WRITE) ] = {
1271 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1272 		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1273 	},
1274 	[ C(OP_PREFETCH) ] = {
1275 		[ C(RESULT_ACCESS) ] = 0,
1276 		[ C(RESULT_MISS)   ] = 0,
1277 	},
1278  },
1279  [ C(ITLB) ] = {
1280 	[ C(OP_READ) ] = {
1281 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1282 		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1283 	},
1284 	[ C(OP_WRITE) ] = {
1285 		[ C(RESULT_ACCESS) ] = -1,
1286 		[ C(RESULT_MISS)   ] = -1,
1287 	},
1288 	[ C(OP_PREFETCH) ] = {
1289 		[ C(RESULT_ACCESS) ] = -1,
1290 		[ C(RESULT_MISS)   ] = -1,
1291 	},
1292  },
1293  [ C(BPU ) ] = {
1294 	[ C(OP_READ) ] = {
1295 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1296 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1297 	},
1298 	[ C(OP_WRITE) ] = {
1299 		[ C(RESULT_ACCESS) ] = -1,
1300 		[ C(RESULT_MISS)   ] = -1,
1301 	},
1302 	[ C(OP_PREFETCH) ] = {
1303 		[ C(RESULT_ACCESS) ] = -1,
1304 		[ C(RESULT_MISS)   ] = -1,
1305 	},
1306  },
1307 };
1308 
1309 static __initconst const u64 atom_hw_cache_event_ids
1310 				[PERF_COUNT_HW_CACHE_MAX]
1311 				[PERF_COUNT_HW_CACHE_OP_MAX]
1312 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1313 {
1314  [ C(L1D) ] = {
1315 	[ C(OP_READ) ] = {
1316 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1317 		[ C(RESULT_MISS)   ] = 0,
1318 	},
1319 	[ C(OP_WRITE) ] = {
1320 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1321 		[ C(RESULT_MISS)   ] = 0,
1322 	},
1323 	[ C(OP_PREFETCH) ] = {
1324 		[ C(RESULT_ACCESS) ] = 0x0,
1325 		[ C(RESULT_MISS)   ] = 0,
1326 	},
1327  },
1328  [ C(L1I ) ] = {
1329 	[ C(OP_READ) ] = {
1330 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1331 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1332 	},
1333 	[ C(OP_WRITE) ] = {
1334 		[ C(RESULT_ACCESS) ] = -1,
1335 		[ C(RESULT_MISS)   ] = -1,
1336 	},
1337 	[ C(OP_PREFETCH) ] = {
1338 		[ C(RESULT_ACCESS) ] = 0,
1339 		[ C(RESULT_MISS)   ] = 0,
1340 	},
1341  },
1342  [ C(LL  ) ] = {
1343 	[ C(OP_READ) ] = {
1344 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1345 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1346 	},
1347 	[ C(OP_WRITE) ] = {
1348 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1349 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1350 	},
1351 	[ C(OP_PREFETCH) ] = {
1352 		[ C(RESULT_ACCESS) ] = 0,
1353 		[ C(RESULT_MISS)   ] = 0,
1354 	},
1355  },
1356  [ C(DTLB) ] = {
1357 	[ C(OP_READ) ] = {
1358 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1359 		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1360 	},
1361 	[ C(OP_WRITE) ] = {
1362 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1363 		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1364 	},
1365 	[ C(OP_PREFETCH) ] = {
1366 		[ C(RESULT_ACCESS) ] = 0,
1367 		[ C(RESULT_MISS)   ] = 0,
1368 	},
1369  },
1370  [ C(ITLB) ] = {
1371 	[ C(OP_READ) ] = {
1372 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1373 		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1374 	},
1375 	[ C(OP_WRITE) ] = {
1376 		[ C(RESULT_ACCESS) ] = -1,
1377 		[ C(RESULT_MISS)   ] = -1,
1378 	},
1379 	[ C(OP_PREFETCH) ] = {
1380 		[ C(RESULT_ACCESS) ] = -1,
1381 		[ C(RESULT_MISS)   ] = -1,
1382 	},
1383  },
1384  [ C(BPU ) ] = {
1385 	[ C(OP_READ) ] = {
1386 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1387 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1388 	},
1389 	[ C(OP_WRITE) ] = {
1390 		[ C(RESULT_ACCESS) ] = -1,
1391 		[ C(RESULT_MISS)   ] = -1,
1392 	},
1393 	[ C(OP_PREFETCH) ] = {
1394 		[ C(RESULT_ACCESS) ] = -1,
1395 		[ C(RESULT_MISS)   ] = -1,
1396 	},
1397  },
1398 };
1399 
1400 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1401 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1402 /* no_alloc_cycles.not_delivered */
1403 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1404 	       "event=0xca,umask=0x50");
1405 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1406 /* uops_retired.all */
1407 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1408 	       "event=0xc2,umask=0x10");
1409 /* uops_retired.all */
1410 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1411 	       "event=0xc2,umask=0x10");
1412 
1413 static struct attribute *slm_events_attrs[] = {
1414 	EVENT_PTR(td_total_slots_slm),
1415 	EVENT_PTR(td_total_slots_scale_slm),
1416 	EVENT_PTR(td_fetch_bubbles_slm),
1417 	EVENT_PTR(td_fetch_bubbles_scale_slm),
1418 	EVENT_PTR(td_slots_issued_slm),
1419 	EVENT_PTR(td_slots_retired_slm),
1420 	NULL
1421 };
1422 
1423 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1424 {
1425 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1426 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1427 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1428 	EVENT_EXTRA_END
1429 };
1430 
1431 #define SLM_DMND_READ		SNB_DMND_DATA_RD
1432 #define SLM_DMND_WRITE		SNB_DMND_RFO
1433 #define SLM_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
1434 
1435 #define SLM_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1436 #define SLM_LLC_ACCESS		SNB_RESP_ANY
1437 #define SLM_LLC_MISS		(SLM_SNP_ANY|SNB_NON_DRAM)
1438 
1439 static __initconst const u64 slm_hw_cache_extra_regs
1440 				[PERF_COUNT_HW_CACHE_MAX]
1441 				[PERF_COUNT_HW_CACHE_OP_MAX]
1442 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1443 {
1444  [ C(LL  ) ] = {
1445 	[ C(OP_READ) ] = {
1446 		[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1447 		[ C(RESULT_MISS)   ] = 0,
1448 	},
1449 	[ C(OP_WRITE) ] = {
1450 		[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1451 		[ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1452 	},
1453 	[ C(OP_PREFETCH) ] = {
1454 		[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1455 		[ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1456 	},
1457  },
1458 };
1459 
1460 static __initconst const u64 slm_hw_cache_event_ids
1461 				[PERF_COUNT_HW_CACHE_MAX]
1462 				[PERF_COUNT_HW_CACHE_OP_MAX]
1463 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1464 {
1465  [ C(L1D) ] = {
1466 	[ C(OP_READ) ] = {
1467 		[ C(RESULT_ACCESS) ] = 0,
1468 		[ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1469 	},
1470 	[ C(OP_WRITE) ] = {
1471 		[ C(RESULT_ACCESS) ] = 0,
1472 		[ C(RESULT_MISS)   ] = 0,
1473 	},
1474 	[ C(OP_PREFETCH) ] = {
1475 		[ C(RESULT_ACCESS) ] = 0,
1476 		[ C(RESULT_MISS)   ] = 0,
1477 	},
1478  },
1479  [ C(L1I ) ] = {
1480 	[ C(OP_READ) ] = {
1481 		[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1482 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1483 	},
1484 	[ C(OP_WRITE) ] = {
1485 		[ C(RESULT_ACCESS) ] = -1,
1486 		[ C(RESULT_MISS)   ] = -1,
1487 	},
1488 	[ C(OP_PREFETCH) ] = {
1489 		[ C(RESULT_ACCESS) ] = 0,
1490 		[ C(RESULT_MISS)   ] = 0,
1491 	},
1492  },
1493  [ C(LL  ) ] = {
1494 	[ C(OP_READ) ] = {
1495 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1496 		[ C(RESULT_ACCESS) ] = 0x01b7,
1497 		[ C(RESULT_MISS)   ] = 0,
1498 	},
1499 	[ C(OP_WRITE) ] = {
1500 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1501 		[ C(RESULT_ACCESS) ] = 0x01b7,
1502 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1503 		[ C(RESULT_MISS)   ] = 0x01b7,
1504 	},
1505 	[ C(OP_PREFETCH) ] = {
1506 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1507 		[ C(RESULT_ACCESS) ] = 0x01b7,
1508 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1509 		[ C(RESULT_MISS)   ] = 0x01b7,
1510 	},
1511  },
1512  [ C(DTLB) ] = {
1513 	[ C(OP_READ) ] = {
1514 		[ C(RESULT_ACCESS) ] = 0,
1515 		[ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1516 	},
1517 	[ C(OP_WRITE) ] = {
1518 		[ C(RESULT_ACCESS) ] = 0,
1519 		[ C(RESULT_MISS)   ] = 0,
1520 	},
1521 	[ C(OP_PREFETCH) ] = {
1522 		[ C(RESULT_ACCESS) ] = 0,
1523 		[ C(RESULT_MISS)   ] = 0,
1524 	},
1525  },
1526  [ C(ITLB) ] = {
1527 	[ C(OP_READ) ] = {
1528 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1529 		[ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1530 	},
1531 	[ C(OP_WRITE) ] = {
1532 		[ C(RESULT_ACCESS) ] = -1,
1533 		[ C(RESULT_MISS)   ] = -1,
1534 	},
1535 	[ C(OP_PREFETCH) ] = {
1536 		[ C(RESULT_ACCESS) ] = -1,
1537 		[ C(RESULT_MISS)   ] = -1,
1538 	},
1539  },
1540  [ C(BPU ) ] = {
1541 	[ C(OP_READ) ] = {
1542 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1543 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1544 	},
1545 	[ C(OP_WRITE) ] = {
1546 		[ C(RESULT_ACCESS) ] = -1,
1547 		[ C(RESULT_MISS)   ] = -1,
1548 	},
1549 	[ C(OP_PREFETCH) ] = {
1550 		[ C(RESULT_ACCESS) ] = -1,
1551 		[ C(RESULT_MISS)   ] = -1,
1552 	},
1553  },
1554 };
1555 
1556 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1557 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1558 /* UOPS_NOT_DELIVERED.ANY */
1559 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1560 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1561 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1562 /* UOPS_RETIRED.ANY */
1563 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1564 /* UOPS_ISSUED.ANY */
1565 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1566 
1567 static struct attribute *glm_events_attrs[] = {
1568 	EVENT_PTR(td_total_slots_glm),
1569 	EVENT_PTR(td_total_slots_scale_glm),
1570 	EVENT_PTR(td_fetch_bubbles_glm),
1571 	EVENT_PTR(td_recovery_bubbles_glm),
1572 	EVENT_PTR(td_slots_issued_glm),
1573 	EVENT_PTR(td_slots_retired_glm),
1574 	NULL
1575 };
1576 
1577 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1578 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1579 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1580 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1581 	EVENT_EXTRA_END
1582 };
1583 
1584 #define GLM_DEMAND_DATA_RD		BIT_ULL(0)
1585 #define GLM_DEMAND_RFO			BIT_ULL(1)
1586 #define GLM_ANY_RESPONSE		BIT_ULL(16)
1587 #define GLM_SNP_NONE_OR_MISS		BIT_ULL(33)
1588 #define GLM_DEMAND_READ			GLM_DEMAND_DATA_RD
1589 #define GLM_DEMAND_WRITE		GLM_DEMAND_RFO
1590 #define GLM_DEMAND_PREFETCH		(SNB_PF_DATA_RD|SNB_PF_RFO)
1591 #define GLM_LLC_ACCESS			GLM_ANY_RESPONSE
1592 #define GLM_SNP_ANY			(GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1593 #define GLM_LLC_MISS			(GLM_SNP_ANY|SNB_NON_DRAM)
1594 
1595 static __initconst const u64 glm_hw_cache_event_ids
1596 				[PERF_COUNT_HW_CACHE_MAX]
1597 				[PERF_COUNT_HW_CACHE_OP_MAX]
1598 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1599 	[C(L1D)] = {
1600 		[C(OP_READ)] = {
1601 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1602 			[C(RESULT_MISS)]	= 0x0,
1603 		},
1604 		[C(OP_WRITE)] = {
1605 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1606 			[C(RESULT_MISS)]	= 0x0,
1607 		},
1608 		[C(OP_PREFETCH)] = {
1609 			[C(RESULT_ACCESS)]	= 0x0,
1610 			[C(RESULT_MISS)]	= 0x0,
1611 		},
1612 	},
1613 	[C(L1I)] = {
1614 		[C(OP_READ)] = {
1615 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1616 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1617 		},
1618 		[C(OP_WRITE)] = {
1619 			[C(RESULT_ACCESS)]	= -1,
1620 			[C(RESULT_MISS)]	= -1,
1621 		},
1622 		[C(OP_PREFETCH)] = {
1623 			[C(RESULT_ACCESS)]	= 0x0,
1624 			[C(RESULT_MISS)]	= 0x0,
1625 		},
1626 	},
1627 	[C(LL)] = {
1628 		[C(OP_READ)] = {
1629 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1630 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1631 		},
1632 		[C(OP_WRITE)] = {
1633 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1634 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1635 		},
1636 		[C(OP_PREFETCH)] = {
1637 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1638 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1639 		},
1640 	},
1641 	[C(DTLB)] = {
1642 		[C(OP_READ)] = {
1643 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1644 			[C(RESULT_MISS)]	= 0x0,
1645 		},
1646 		[C(OP_WRITE)] = {
1647 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1648 			[C(RESULT_MISS)]	= 0x0,
1649 		},
1650 		[C(OP_PREFETCH)] = {
1651 			[C(RESULT_ACCESS)]	= 0x0,
1652 			[C(RESULT_MISS)]	= 0x0,
1653 		},
1654 	},
1655 	[C(ITLB)] = {
1656 		[C(OP_READ)] = {
1657 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1658 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1659 		},
1660 		[C(OP_WRITE)] = {
1661 			[C(RESULT_ACCESS)]	= -1,
1662 			[C(RESULT_MISS)]	= -1,
1663 		},
1664 		[C(OP_PREFETCH)] = {
1665 			[C(RESULT_ACCESS)]	= -1,
1666 			[C(RESULT_MISS)]	= -1,
1667 		},
1668 	},
1669 	[C(BPU)] = {
1670 		[C(OP_READ)] = {
1671 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1672 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1673 		},
1674 		[C(OP_WRITE)] = {
1675 			[C(RESULT_ACCESS)]	= -1,
1676 			[C(RESULT_MISS)]	= -1,
1677 		},
1678 		[C(OP_PREFETCH)] = {
1679 			[C(RESULT_ACCESS)]	= -1,
1680 			[C(RESULT_MISS)]	= -1,
1681 		},
1682 	},
1683 };
1684 
1685 static __initconst const u64 glm_hw_cache_extra_regs
1686 				[PERF_COUNT_HW_CACHE_MAX]
1687 				[PERF_COUNT_HW_CACHE_OP_MAX]
1688 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1689 	[C(LL)] = {
1690 		[C(OP_READ)] = {
1691 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
1692 						  GLM_LLC_ACCESS,
1693 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
1694 						  GLM_LLC_MISS,
1695 		},
1696 		[C(OP_WRITE)] = {
1697 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
1698 						  GLM_LLC_ACCESS,
1699 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
1700 						  GLM_LLC_MISS,
1701 		},
1702 		[C(OP_PREFETCH)] = {
1703 			[C(RESULT_ACCESS)]	= GLM_DEMAND_PREFETCH|
1704 						  GLM_LLC_ACCESS,
1705 			[C(RESULT_MISS)]	= GLM_DEMAND_PREFETCH|
1706 						  GLM_LLC_MISS,
1707 		},
1708 	},
1709 };
1710 
1711 static __initconst const u64 glp_hw_cache_event_ids
1712 				[PERF_COUNT_HW_CACHE_MAX]
1713 				[PERF_COUNT_HW_CACHE_OP_MAX]
1714 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1715 	[C(L1D)] = {
1716 		[C(OP_READ)] = {
1717 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1718 			[C(RESULT_MISS)]	= 0x0,
1719 		},
1720 		[C(OP_WRITE)] = {
1721 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1722 			[C(RESULT_MISS)]	= 0x0,
1723 		},
1724 		[C(OP_PREFETCH)] = {
1725 			[C(RESULT_ACCESS)]	= 0x0,
1726 			[C(RESULT_MISS)]	= 0x0,
1727 		},
1728 	},
1729 	[C(L1I)] = {
1730 		[C(OP_READ)] = {
1731 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1732 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1733 		},
1734 		[C(OP_WRITE)] = {
1735 			[C(RESULT_ACCESS)]	= -1,
1736 			[C(RESULT_MISS)]	= -1,
1737 		},
1738 		[C(OP_PREFETCH)] = {
1739 			[C(RESULT_ACCESS)]	= 0x0,
1740 			[C(RESULT_MISS)]	= 0x0,
1741 		},
1742 	},
1743 	[C(LL)] = {
1744 		[C(OP_READ)] = {
1745 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1746 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1747 		},
1748 		[C(OP_WRITE)] = {
1749 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1750 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1751 		},
1752 		[C(OP_PREFETCH)] = {
1753 			[C(RESULT_ACCESS)]	= 0x0,
1754 			[C(RESULT_MISS)]	= 0x0,
1755 		},
1756 	},
1757 	[C(DTLB)] = {
1758 		[C(OP_READ)] = {
1759 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1760 			[C(RESULT_MISS)]	= 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
1761 		},
1762 		[C(OP_WRITE)] = {
1763 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1764 			[C(RESULT_MISS)]	= 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
1765 		},
1766 		[C(OP_PREFETCH)] = {
1767 			[C(RESULT_ACCESS)]	= 0x0,
1768 			[C(RESULT_MISS)]	= 0x0,
1769 		},
1770 	},
1771 	[C(ITLB)] = {
1772 		[C(OP_READ)] = {
1773 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1774 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1775 		},
1776 		[C(OP_WRITE)] = {
1777 			[C(RESULT_ACCESS)]	= -1,
1778 			[C(RESULT_MISS)]	= -1,
1779 		},
1780 		[C(OP_PREFETCH)] = {
1781 			[C(RESULT_ACCESS)]	= -1,
1782 			[C(RESULT_MISS)]	= -1,
1783 		},
1784 	},
1785 	[C(BPU)] = {
1786 		[C(OP_READ)] = {
1787 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1788 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1789 		},
1790 		[C(OP_WRITE)] = {
1791 			[C(RESULT_ACCESS)]	= -1,
1792 			[C(RESULT_MISS)]	= -1,
1793 		},
1794 		[C(OP_PREFETCH)] = {
1795 			[C(RESULT_ACCESS)]	= -1,
1796 			[C(RESULT_MISS)]	= -1,
1797 		},
1798 	},
1799 };
1800 
1801 static __initconst const u64 glp_hw_cache_extra_regs
1802 				[PERF_COUNT_HW_CACHE_MAX]
1803 				[PERF_COUNT_HW_CACHE_OP_MAX]
1804 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1805 	[C(LL)] = {
1806 		[C(OP_READ)] = {
1807 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
1808 						  GLM_LLC_ACCESS,
1809 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
1810 						  GLM_LLC_MISS,
1811 		},
1812 		[C(OP_WRITE)] = {
1813 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
1814 						  GLM_LLC_ACCESS,
1815 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
1816 						  GLM_LLC_MISS,
1817 		},
1818 		[C(OP_PREFETCH)] = {
1819 			[C(RESULT_ACCESS)]	= 0x0,
1820 			[C(RESULT_MISS)]	= 0x0,
1821 		},
1822 	},
1823 };
1824 
1825 #define KNL_OT_L2_HITE		BIT_ULL(19) /* Other Tile L2 Hit */
1826 #define KNL_OT_L2_HITF		BIT_ULL(20) /* Other Tile L2 Hit */
1827 #define KNL_MCDRAM_LOCAL	BIT_ULL(21)
1828 #define KNL_MCDRAM_FAR		BIT_ULL(22)
1829 #define KNL_DDR_LOCAL		BIT_ULL(23)
1830 #define KNL_DDR_FAR		BIT_ULL(24)
1831 #define KNL_DRAM_ANY		(KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1832 				    KNL_DDR_LOCAL | KNL_DDR_FAR)
1833 #define KNL_L2_READ		SLM_DMND_READ
1834 #define KNL_L2_WRITE		SLM_DMND_WRITE
1835 #define KNL_L2_PREFETCH		SLM_DMND_PREFETCH
1836 #define KNL_L2_ACCESS		SLM_LLC_ACCESS
1837 #define KNL_L2_MISS		(KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1838 				   KNL_DRAM_ANY | SNB_SNP_ANY | \
1839 						  SNB_NON_DRAM)
1840 
1841 static __initconst const u64 knl_hw_cache_extra_regs
1842 				[PERF_COUNT_HW_CACHE_MAX]
1843 				[PERF_COUNT_HW_CACHE_OP_MAX]
1844 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1845 	[C(LL)] = {
1846 		[C(OP_READ)] = {
1847 			[C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1848 			[C(RESULT_MISS)]   = 0,
1849 		},
1850 		[C(OP_WRITE)] = {
1851 			[C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1852 			[C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
1853 		},
1854 		[C(OP_PREFETCH)] = {
1855 			[C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1856 			[C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
1857 		},
1858 	},
1859 };
1860 
1861 /*
1862  * Used from PMIs where the LBRs are already disabled.
1863  *
1864  * This function could be called consecutively. It is required to remain in
1865  * disabled state if called consecutively.
1866  *
1867  * During consecutive calls, the same disable value will be written to related
1868  * registers, so the PMU state remains unchanged.
1869  *
1870  * intel_bts events don't coexist with intel PMU's BTS events because of
1871  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
1872  * disabled around intel PMU's event batching etc, only inside the PMI handler.
1873  */
1874 static void __intel_pmu_disable_all(void)
1875 {
1876 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1877 
1878 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1879 
1880 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1881 		intel_pmu_disable_bts();
1882 
1883 	intel_pmu_pebs_disable_all();
1884 }
1885 
1886 static void intel_pmu_disable_all(void)
1887 {
1888 	__intel_pmu_disable_all();
1889 	intel_pmu_lbr_disable_all();
1890 }
1891 
1892 static void __intel_pmu_enable_all(int added, bool pmi)
1893 {
1894 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1895 
1896 	intel_pmu_pebs_enable_all();
1897 	intel_pmu_lbr_enable_all(pmi);
1898 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1899 			x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1900 
1901 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1902 		struct perf_event *event =
1903 			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1904 
1905 		if (WARN_ON_ONCE(!event))
1906 			return;
1907 
1908 		intel_pmu_enable_bts(event->hw.config);
1909 	}
1910 }
1911 
1912 static void intel_pmu_enable_all(int added)
1913 {
1914 	__intel_pmu_enable_all(added, false);
1915 }
1916 
1917 /*
1918  * Workaround for:
1919  *   Intel Errata AAK100 (model 26)
1920  *   Intel Errata AAP53  (model 30)
1921  *   Intel Errata BD53   (model 44)
1922  *
1923  * The official story:
1924  *   These chips need to be 'reset' when adding counters by programming the
1925  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1926  *   in sequence on the same PMC or on different PMCs.
1927  *
1928  * In practise it appears some of these events do in fact count, and
1929  * we need to programm all 4 events.
1930  */
1931 static void intel_pmu_nhm_workaround(void)
1932 {
1933 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1934 	static const unsigned long nhm_magic[4] = {
1935 		0x4300B5,
1936 		0x4300D2,
1937 		0x4300B1,
1938 		0x4300B1
1939 	};
1940 	struct perf_event *event;
1941 	int i;
1942 
1943 	/*
1944 	 * The Errata requires below steps:
1945 	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1946 	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
1947 	 *    the corresponding PMCx;
1948 	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1949 	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1950 	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1951 	 */
1952 
1953 	/*
1954 	 * The real steps we choose are a little different from above.
1955 	 * A) To reduce MSR operations, we don't run step 1) as they
1956 	 *    are already cleared before this function is called;
1957 	 * B) Call x86_perf_event_update to save PMCx before configuring
1958 	 *    PERFEVTSELx with magic number;
1959 	 * C) With step 5), we do clear only when the PERFEVTSELx is
1960 	 *    not used currently.
1961 	 * D) Call x86_perf_event_set_period to restore PMCx;
1962 	 */
1963 
1964 	/* We always operate 4 pairs of PERF Counters */
1965 	for (i = 0; i < 4; i++) {
1966 		event = cpuc->events[i];
1967 		if (event)
1968 			x86_perf_event_update(event);
1969 	}
1970 
1971 	for (i = 0; i < 4; i++) {
1972 		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1973 		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1974 	}
1975 
1976 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1977 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1978 
1979 	for (i = 0; i < 4; i++) {
1980 		event = cpuc->events[i];
1981 
1982 		if (event) {
1983 			x86_perf_event_set_period(event);
1984 			__x86_pmu_enable_event(&event->hw,
1985 					ARCH_PERFMON_EVENTSEL_ENABLE);
1986 		} else
1987 			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1988 	}
1989 }
1990 
1991 static void intel_pmu_nhm_enable_all(int added)
1992 {
1993 	if (added)
1994 		intel_pmu_nhm_workaround();
1995 	intel_pmu_enable_all(added);
1996 }
1997 
1998 static inline u64 intel_pmu_get_status(void)
1999 {
2000 	u64 status;
2001 
2002 	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2003 
2004 	return status;
2005 }
2006 
2007 static inline void intel_pmu_ack_status(u64 ack)
2008 {
2009 	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2010 }
2011 
2012 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
2013 {
2014 	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2015 	u64 ctrl_val, mask;
2016 
2017 	mask = 0xfULL << (idx * 4);
2018 
2019 	rdmsrl(hwc->config_base, ctrl_val);
2020 	ctrl_val &= ~mask;
2021 	wrmsrl(hwc->config_base, ctrl_val);
2022 }
2023 
2024 static inline bool event_is_checkpointed(struct perf_event *event)
2025 {
2026 	return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2027 }
2028 
2029 static void intel_pmu_disable_event(struct perf_event *event)
2030 {
2031 	struct hw_perf_event *hwc = &event->hw;
2032 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2033 
2034 	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2035 		intel_pmu_disable_bts();
2036 		intel_pmu_drain_bts_buffer();
2037 		return;
2038 	}
2039 
2040 	cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
2041 	cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
2042 	cpuc->intel_cp_status &= ~(1ull << hwc->idx);
2043 
2044 	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2045 		intel_pmu_disable_fixed(hwc);
2046 		return;
2047 	}
2048 
2049 	x86_pmu_disable_event(event);
2050 
2051 	if (unlikely(event->attr.precise_ip))
2052 		intel_pmu_pebs_disable(event);
2053 }
2054 
2055 static void intel_pmu_del_event(struct perf_event *event)
2056 {
2057 	if (needs_branch_stack(event))
2058 		intel_pmu_lbr_del(event);
2059 	if (event->attr.precise_ip)
2060 		intel_pmu_pebs_del(event);
2061 }
2062 
2063 static void intel_pmu_read_event(struct perf_event *event)
2064 {
2065 	if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2066 		intel_pmu_auto_reload_read(event);
2067 	else
2068 		x86_perf_event_update(event);
2069 }
2070 
2071 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
2072 {
2073 	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2074 	u64 ctrl_val, bits, mask;
2075 
2076 	/*
2077 	 * Enable IRQ generation (0x8),
2078 	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2079 	 * if requested:
2080 	 */
2081 	bits = 0x8ULL;
2082 	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2083 		bits |= 0x2;
2084 	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2085 		bits |= 0x1;
2086 
2087 	/*
2088 	 * ANY bit is supported in v3 and up
2089 	 */
2090 	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2091 		bits |= 0x4;
2092 
2093 	bits <<= (idx * 4);
2094 	mask = 0xfULL << (idx * 4);
2095 
2096 	rdmsrl(hwc->config_base, ctrl_val);
2097 	ctrl_val &= ~mask;
2098 	ctrl_val |= bits;
2099 	wrmsrl(hwc->config_base, ctrl_val);
2100 }
2101 
2102 static void intel_pmu_enable_event(struct perf_event *event)
2103 {
2104 	struct hw_perf_event *hwc = &event->hw;
2105 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2106 
2107 	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2108 		if (!__this_cpu_read(cpu_hw_events.enabled))
2109 			return;
2110 
2111 		intel_pmu_enable_bts(hwc->config);
2112 		return;
2113 	}
2114 
2115 	if (event->attr.exclude_host)
2116 		cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
2117 	if (event->attr.exclude_guest)
2118 		cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
2119 
2120 	if (unlikely(event_is_checkpointed(event)))
2121 		cpuc->intel_cp_status |= (1ull << hwc->idx);
2122 
2123 	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2124 		intel_pmu_enable_fixed(hwc);
2125 		return;
2126 	}
2127 
2128 	if (unlikely(event->attr.precise_ip))
2129 		intel_pmu_pebs_enable(event);
2130 
2131 	__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2132 }
2133 
2134 static void intel_pmu_add_event(struct perf_event *event)
2135 {
2136 	if (event->attr.precise_ip)
2137 		intel_pmu_pebs_add(event);
2138 	if (needs_branch_stack(event))
2139 		intel_pmu_lbr_add(event);
2140 }
2141 
2142 /*
2143  * Save and restart an expired event. Called by NMI contexts,
2144  * so it has to be careful about preempting normal event ops:
2145  */
2146 int intel_pmu_save_and_restart(struct perf_event *event)
2147 {
2148 	x86_perf_event_update(event);
2149 	/*
2150 	 * For a checkpointed counter always reset back to 0.  This
2151 	 * avoids a situation where the counter overflows, aborts the
2152 	 * transaction and is then set back to shortly before the
2153 	 * overflow, and overflows and aborts again.
2154 	 */
2155 	if (unlikely(event_is_checkpointed(event))) {
2156 		/* No race with NMIs because the counter should not be armed */
2157 		wrmsrl(event->hw.event_base, 0);
2158 		local64_set(&event->hw.prev_count, 0);
2159 	}
2160 	return x86_perf_event_set_period(event);
2161 }
2162 
2163 static void intel_pmu_reset(void)
2164 {
2165 	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2166 	unsigned long flags;
2167 	int idx;
2168 
2169 	if (!x86_pmu.num_counters)
2170 		return;
2171 
2172 	local_irq_save(flags);
2173 
2174 	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2175 
2176 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2177 		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2178 		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2179 	}
2180 	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
2181 		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2182 
2183 	if (ds)
2184 		ds->bts_index = ds->bts_buffer_base;
2185 
2186 	/* Ack all overflows and disable fixed counters */
2187 	if (x86_pmu.version >= 2) {
2188 		intel_pmu_ack_status(intel_pmu_get_status());
2189 		wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2190 	}
2191 
2192 	/* Reset LBRs and LBR freezing */
2193 	if (x86_pmu.lbr_nr) {
2194 		update_debugctlmsr(get_debugctlmsr() &
2195 			~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2196 	}
2197 
2198 	local_irq_restore(flags);
2199 }
2200 
2201 /*
2202  * This handler is triggered by the local APIC, so the APIC IRQ handling
2203  * rules apply:
2204  */
2205 static int intel_pmu_handle_irq(struct pt_regs *regs)
2206 {
2207 	struct perf_sample_data data;
2208 	struct cpu_hw_events *cpuc;
2209 	int bit, loops;
2210 	u64 status;
2211 	int handled;
2212 	int pmu_enabled;
2213 
2214 	cpuc = this_cpu_ptr(&cpu_hw_events);
2215 
2216 	/*
2217 	 * Save the PMU state.
2218 	 * It needs to be restored when leaving the handler.
2219 	 */
2220 	pmu_enabled = cpuc->enabled;
2221 	/*
2222 	 * No known reason to not always do late ACK,
2223 	 * but just in case do it opt-in.
2224 	 */
2225 	if (!x86_pmu.late_ack)
2226 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2227 	intel_bts_disable_local();
2228 	cpuc->enabled = 0;
2229 	__intel_pmu_disable_all();
2230 	handled = intel_pmu_drain_bts_buffer();
2231 	handled += intel_bts_interrupt();
2232 	status = intel_pmu_get_status();
2233 	if (!status)
2234 		goto done;
2235 
2236 	loops = 0;
2237 again:
2238 	intel_pmu_lbr_read();
2239 	intel_pmu_ack_status(status);
2240 	if (++loops > 100) {
2241 		static bool warned = false;
2242 		if (!warned) {
2243 			WARN(1, "perfevents: irq loop stuck!\n");
2244 			perf_event_print_debug();
2245 			warned = true;
2246 		}
2247 		intel_pmu_reset();
2248 		goto done;
2249 	}
2250 
2251 	inc_irq_stat(apic_perf_irqs);
2252 
2253 
2254 	/*
2255 	 * Ignore a range of extra bits in status that do not indicate
2256 	 * overflow by themselves.
2257 	 */
2258 	status &= ~(GLOBAL_STATUS_COND_CHG |
2259 		    GLOBAL_STATUS_ASIF |
2260 		    GLOBAL_STATUS_LBRS_FROZEN);
2261 	if (!status)
2262 		goto done;
2263 	/*
2264 	 * In case multiple PEBS events are sampled at the same time,
2265 	 * it is possible to have GLOBAL_STATUS bit 62 set indicating
2266 	 * PEBS buffer overflow and also seeing at most 3 PEBS counters
2267 	 * having their bits set in the status register. This is a sign
2268 	 * that there was at least one PEBS record pending at the time
2269 	 * of the PMU interrupt. PEBS counters must only be processed
2270 	 * via the drain_pebs() calls and not via the regular sample
2271 	 * processing loop coming after that the function, otherwise
2272 	 * phony regular samples may be generated in the sampling buffer
2273 	 * not marked with the EXACT tag. Another possibility is to have
2274 	 * one PEBS event and at least one non-PEBS event whic hoverflows
2275 	 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2276 	 * not be set, yet the overflow status bit for the PEBS counter will
2277 	 * be on Skylake.
2278 	 *
2279 	 * To avoid this problem, we systematically ignore the PEBS-enabled
2280 	 * counters from the GLOBAL_STATUS mask and we always process PEBS
2281 	 * events via drain_pebs().
2282 	 */
2283 	status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2284 
2285 	/*
2286 	 * PEBS overflow sets bit 62 in the global status register
2287 	 */
2288 	if (__test_and_clear_bit(62, (unsigned long *)&status)) {
2289 		handled++;
2290 		x86_pmu.drain_pebs(regs);
2291 		status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2292 	}
2293 
2294 	/*
2295 	 * Intel PT
2296 	 */
2297 	if (__test_and_clear_bit(55, (unsigned long *)&status)) {
2298 		handled++;
2299 		intel_pt_interrupt();
2300 	}
2301 
2302 	/*
2303 	 * Checkpointed counters can lead to 'spurious' PMIs because the
2304 	 * rollback caused by the PMI will have cleared the overflow status
2305 	 * bit. Therefore always force probe these counters.
2306 	 */
2307 	status |= cpuc->intel_cp_status;
2308 
2309 	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2310 		struct perf_event *event = cpuc->events[bit];
2311 
2312 		handled++;
2313 
2314 		if (!test_bit(bit, cpuc->active_mask))
2315 			continue;
2316 
2317 		if (!intel_pmu_save_and_restart(event))
2318 			continue;
2319 
2320 		perf_sample_data_init(&data, 0, event->hw.last_period);
2321 
2322 		if (has_branch_stack(event))
2323 			data.br_stack = &cpuc->lbr_stack;
2324 
2325 		if (perf_event_overflow(event, &data, regs))
2326 			x86_pmu_stop(event, 0);
2327 	}
2328 
2329 	/*
2330 	 * Repeat if there is more work to be done:
2331 	 */
2332 	status = intel_pmu_get_status();
2333 	if (status)
2334 		goto again;
2335 
2336 done:
2337 	/* Only restore PMU state when it's active. See x86_pmu_disable(). */
2338 	cpuc->enabled = pmu_enabled;
2339 	if (pmu_enabled)
2340 		__intel_pmu_enable_all(0, true);
2341 	intel_bts_enable_local();
2342 
2343 	/*
2344 	 * Only unmask the NMI after the overflow counters
2345 	 * have been reset. This avoids spurious NMIs on
2346 	 * Haswell CPUs.
2347 	 */
2348 	if (x86_pmu.late_ack)
2349 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2350 	return handled;
2351 }
2352 
2353 static struct event_constraint *
2354 intel_bts_constraints(struct perf_event *event)
2355 {
2356 	struct hw_perf_event *hwc = &event->hw;
2357 	unsigned int hw_event, bts_event;
2358 
2359 	if (event->attr.freq)
2360 		return NULL;
2361 
2362 	hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
2363 	bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
2364 
2365 	if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
2366 		return &bts_constraint;
2367 
2368 	return NULL;
2369 }
2370 
2371 static int intel_alt_er(int idx, u64 config)
2372 {
2373 	int alt_idx = idx;
2374 
2375 	if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2376 		return idx;
2377 
2378 	if (idx == EXTRA_REG_RSP_0)
2379 		alt_idx = EXTRA_REG_RSP_1;
2380 
2381 	if (idx == EXTRA_REG_RSP_1)
2382 		alt_idx = EXTRA_REG_RSP_0;
2383 
2384 	if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2385 		return idx;
2386 
2387 	return alt_idx;
2388 }
2389 
2390 static void intel_fixup_er(struct perf_event *event, int idx)
2391 {
2392 	event->hw.extra_reg.idx = idx;
2393 
2394 	if (idx == EXTRA_REG_RSP_0) {
2395 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2396 		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2397 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2398 	} else if (idx == EXTRA_REG_RSP_1) {
2399 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2400 		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2401 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2402 	}
2403 }
2404 
2405 /*
2406  * manage allocation of shared extra msr for certain events
2407  *
2408  * sharing can be:
2409  * per-cpu: to be shared between the various events on a single PMU
2410  * per-core: per-cpu + shared by HT threads
2411  */
2412 static struct event_constraint *
2413 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2414 				   struct perf_event *event,
2415 				   struct hw_perf_event_extra *reg)
2416 {
2417 	struct event_constraint *c = &emptyconstraint;
2418 	struct er_account *era;
2419 	unsigned long flags;
2420 	int idx = reg->idx;
2421 
2422 	/*
2423 	 * reg->alloc can be set due to existing state, so for fake cpuc we
2424 	 * need to ignore this, otherwise we might fail to allocate proper fake
2425 	 * state for this extra reg constraint. Also see the comment below.
2426 	 */
2427 	if (reg->alloc && !cpuc->is_fake)
2428 		return NULL; /* call x86_get_event_constraint() */
2429 
2430 again:
2431 	era = &cpuc->shared_regs->regs[idx];
2432 	/*
2433 	 * we use spin_lock_irqsave() to avoid lockdep issues when
2434 	 * passing a fake cpuc
2435 	 */
2436 	raw_spin_lock_irqsave(&era->lock, flags);
2437 
2438 	if (!atomic_read(&era->ref) || era->config == reg->config) {
2439 
2440 		/*
2441 		 * If its a fake cpuc -- as per validate_{group,event}() we
2442 		 * shouldn't touch event state and we can avoid doing so
2443 		 * since both will only call get_event_constraints() once
2444 		 * on each event, this avoids the need for reg->alloc.
2445 		 *
2446 		 * Not doing the ER fixup will only result in era->reg being
2447 		 * wrong, but since we won't actually try and program hardware
2448 		 * this isn't a problem either.
2449 		 */
2450 		if (!cpuc->is_fake) {
2451 			if (idx != reg->idx)
2452 				intel_fixup_er(event, idx);
2453 
2454 			/*
2455 			 * x86_schedule_events() can call get_event_constraints()
2456 			 * multiple times on events in the case of incremental
2457 			 * scheduling(). reg->alloc ensures we only do the ER
2458 			 * allocation once.
2459 			 */
2460 			reg->alloc = 1;
2461 		}
2462 
2463 		/* lock in msr value */
2464 		era->config = reg->config;
2465 		era->reg = reg->reg;
2466 
2467 		/* one more user */
2468 		atomic_inc(&era->ref);
2469 
2470 		/*
2471 		 * need to call x86_get_event_constraint()
2472 		 * to check if associated event has constraints
2473 		 */
2474 		c = NULL;
2475 	} else {
2476 		idx = intel_alt_er(idx, reg->config);
2477 		if (idx != reg->idx) {
2478 			raw_spin_unlock_irqrestore(&era->lock, flags);
2479 			goto again;
2480 		}
2481 	}
2482 	raw_spin_unlock_irqrestore(&era->lock, flags);
2483 
2484 	return c;
2485 }
2486 
2487 static void
2488 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2489 				   struct hw_perf_event_extra *reg)
2490 {
2491 	struct er_account *era;
2492 
2493 	/*
2494 	 * Only put constraint if extra reg was actually allocated. Also takes
2495 	 * care of event which do not use an extra shared reg.
2496 	 *
2497 	 * Also, if this is a fake cpuc we shouldn't touch any event state
2498 	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2499 	 * either since it'll be thrown out.
2500 	 */
2501 	if (!reg->alloc || cpuc->is_fake)
2502 		return;
2503 
2504 	era = &cpuc->shared_regs->regs[reg->idx];
2505 
2506 	/* one fewer user */
2507 	atomic_dec(&era->ref);
2508 
2509 	/* allocate again next time */
2510 	reg->alloc = 0;
2511 }
2512 
2513 static struct event_constraint *
2514 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2515 			      struct perf_event *event)
2516 {
2517 	struct event_constraint *c = NULL, *d;
2518 	struct hw_perf_event_extra *xreg, *breg;
2519 
2520 	xreg = &event->hw.extra_reg;
2521 	if (xreg->idx != EXTRA_REG_NONE) {
2522 		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2523 		if (c == &emptyconstraint)
2524 			return c;
2525 	}
2526 	breg = &event->hw.branch_reg;
2527 	if (breg->idx != EXTRA_REG_NONE) {
2528 		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2529 		if (d == &emptyconstraint) {
2530 			__intel_shared_reg_put_constraints(cpuc, xreg);
2531 			c = d;
2532 		}
2533 	}
2534 	return c;
2535 }
2536 
2537 struct event_constraint *
2538 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2539 			  struct perf_event *event)
2540 {
2541 	struct event_constraint *c;
2542 
2543 	if (x86_pmu.event_constraints) {
2544 		for_each_event_constraint(c, x86_pmu.event_constraints) {
2545 			if ((event->hw.config & c->cmask) == c->code) {
2546 				event->hw.flags |= c->flags;
2547 				return c;
2548 			}
2549 		}
2550 	}
2551 
2552 	return &unconstrained;
2553 }
2554 
2555 static struct event_constraint *
2556 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2557 			    struct perf_event *event)
2558 {
2559 	struct event_constraint *c;
2560 
2561 	c = intel_bts_constraints(event);
2562 	if (c)
2563 		return c;
2564 
2565 	c = intel_shared_regs_constraints(cpuc, event);
2566 	if (c)
2567 		return c;
2568 
2569 	c = intel_pebs_constraints(event);
2570 	if (c)
2571 		return c;
2572 
2573 	return x86_get_event_constraints(cpuc, idx, event);
2574 }
2575 
2576 static void
2577 intel_start_scheduling(struct cpu_hw_events *cpuc)
2578 {
2579 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2580 	struct intel_excl_states *xl;
2581 	int tid = cpuc->excl_thread_id;
2582 
2583 	/*
2584 	 * nothing needed if in group validation mode
2585 	 */
2586 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2587 		return;
2588 
2589 	/*
2590 	 * no exclusion needed
2591 	 */
2592 	if (WARN_ON_ONCE(!excl_cntrs))
2593 		return;
2594 
2595 	xl = &excl_cntrs->states[tid];
2596 
2597 	xl->sched_started = true;
2598 	/*
2599 	 * lock shared state until we are done scheduling
2600 	 * in stop_event_scheduling()
2601 	 * makes scheduling appear as a transaction
2602 	 */
2603 	raw_spin_lock(&excl_cntrs->lock);
2604 }
2605 
2606 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2607 {
2608 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2609 	struct event_constraint *c = cpuc->event_constraint[idx];
2610 	struct intel_excl_states *xl;
2611 	int tid = cpuc->excl_thread_id;
2612 
2613 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2614 		return;
2615 
2616 	if (WARN_ON_ONCE(!excl_cntrs))
2617 		return;
2618 
2619 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2620 		return;
2621 
2622 	xl = &excl_cntrs->states[tid];
2623 
2624 	lockdep_assert_held(&excl_cntrs->lock);
2625 
2626 	if (c->flags & PERF_X86_EVENT_EXCL)
2627 		xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2628 	else
2629 		xl->state[cntr] = INTEL_EXCL_SHARED;
2630 }
2631 
2632 static void
2633 intel_stop_scheduling(struct cpu_hw_events *cpuc)
2634 {
2635 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2636 	struct intel_excl_states *xl;
2637 	int tid = cpuc->excl_thread_id;
2638 
2639 	/*
2640 	 * nothing needed if in group validation mode
2641 	 */
2642 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2643 		return;
2644 	/*
2645 	 * no exclusion needed
2646 	 */
2647 	if (WARN_ON_ONCE(!excl_cntrs))
2648 		return;
2649 
2650 	xl = &excl_cntrs->states[tid];
2651 
2652 	xl->sched_started = false;
2653 	/*
2654 	 * release shared state lock (acquired in intel_start_scheduling())
2655 	 */
2656 	raw_spin_unlock(&excl_cntrs->lock);
2657 }
2658 
2659 static struct event_constraint *
2660 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2661 			   int idx, struct event_constraint *c)
2662 {
2663 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2664 	struct intel_excl_states *xlo;
2665 	int tid = cpuc->excl_thread_id;
2666 	int is_excl, i;
2667 
2668 	/*
2669 	 * validating a group does not require
2670 	 * enforcing cross-thread  exclusion
2671 	 */
2672 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2673 		return c;
2674 
2675 	/*
2676 	 * no exclusion needed
2677 	 */
2678 	if (WARN_ON_ONCE(!excl_cntrs))
2679 		return c;
2680 
2681 	/*
2682 	 * because we modify the constraint, we need
2683 	 * to make a copy. Static constraints come
2684 	 * from static const tables.
2685 	 *
2686 	 * only needed when constraint has not yet
2687 	 * been cloned (marked dynamic)
2688 	 */
2689 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2690 		struct event_constraint *cx;
2691 
2692 		/*
2693 		 * grab pre-allocated constraint entry
2694 		 */
2695 		cx = &cpuc->constraint_list[idx];
2696 
2697 		/*
2698 		 * initialize dynamic constraint
2699 		 * with static constraint
2700 		 */
2701 		*cx = *c;
2702 
2703 		/*
2704 		 * mark constraint as dynamic, so we
2705 		 * can free it later on
2706 		 */
2707 		cx->flags |= PERF_X86_EVENT_DYNAMIC;
2708 		c = cx;
2709 	}
2710 
2711 	/*
2712 	 * From here on, the constraint is dynamic.
2713 	 * Either it was just allocated above, or it
2714 	 * was allocated during a earlier invocation
2715 	 * of this function
2716 	 */
2717 
2718 	/*
2719 	 * state of sibling HT
2720 	 */
2721 	xlo = &excl_cntrs->states[tid ^ 1];
2722 
2723 	/*
2724 	 * event requires exclusive counter access
2725 	 * across HT threads
2726 	 */
2727 	is_excl = c->flags & PERF_X86_EVENT_EXCL;
2728 	if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2729 		event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2730 		if (!cpuc->n_excl++)
2731 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2732 	}
2733 
2734 	/*
2735 	 * Modify static constraint with current dynamic
2736 	 * state of thread
2737 	 *
2738 	 * EXCLUSIVE: sibling counter measuring exclusive event
2739 	 * SHARED   : sibling counter measuring non-exclusive event
2740 	 * UNUSED   : sibling counter unused
2741 	 */
2742 	for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2743 		/*
2744 		 * exclusive event in sibling counter
2745 		 * our corresponding counter cannot be used
2746 		 * regardless of our event
2747 		 */
2748 		if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
2749 			__clear_bit(i, c->idxmsk);
2750 		/*
2751 		 * if measuring an exclusive event, sibling
2752 		 * measuring non-exclusive, then counter cannot
2753 		 * be used
2754 		 */
2755 		if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
2756 			__clear_bit(i, c->idxmsk);
2757 	}
2758 
2759 	/*
2760 	 * recompute actual bit weight for scheduling algorithm
2761 	 */
2762 	c->weight = hweight64(c->idxmsk64);
2763 
2764 	/*
2765 	 * if we return an empty mask, then switch
2766 	 * back to static empty constraint to avoid
2767 	 * the cost of freeing later on
2768 	 */
2769 	if (c->weight == 0)
2770 		c = &emptyconstraint;
2771 
2772 	return c;
2773 }
2774 
2775 static struct event_constraint *
2776 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2777 			    struct perf_event *event)
2778 {
2779 	struct event_constraint *c1 = NULL;
2780 	struct event_constraint *c2;
2781 
2782 	if (idx >= 0) /* fake does < 0 */
2783 		c1 = cpuc->event_constraint[idx];
2784 
2785 	/*
2786 	 * first time only
2787 	 * - static constraint: no change across incremental scheduling calls
2788 	 * - dynamic constraint: handled by intel_get_excl_constraints()
2789 	 */
2790 	c2 = __intel_get_event_constraints(cpuc, idx, event);
2791 	if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2792 		bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2793 		c1->weight = c2->weight;
2794 		c2 = c1;
2795 	}
2796 
2797 	if (cpuc->excl_cntrs)
2798 		return intel_get_excl_constraints(cpuc, event, idx, c2);
2799 
2800 	return c2;
2801 }
2802 
2803 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2804 		struct perf_event *event)
2805 {
2806 	struct hw_perf_event *hwc = &event->hw;
2807 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2808 	int tid = cpuc->excl_thread_id;
2809 	struct intel_excl_states *xl;
2810 
2811 	/*
2812 	 * nothing needed if in group validation mode
2813 	 */
2814 	if (cpuc->is_fake)
2815 		return;
2816 
2817 	if (WARN_ON_ONCE(!excl_cntrs))
2818 		return;
2819 
2820 	if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
2821 		hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
2822 		if (!--cpuc->n_excl)
2823 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
2824 	}
2825 
2826 	/*
2827 	 * If event was actually assigned, then mark the counter state as
2828 	 * unused now.
2829 	 */
2830 	if (hwc->idx >= 0) {
2831 		xl = &excl_cntrs->states[tid];
2832 
2833 		/*
2834 		 * put_constraint may be called from x86_schedule_events()
2835 		 * which already has the lock held so here make locking
2836 		 * conditional.
2837 		 */
2838 		if (!xl->sched_started)
2839 			raw_spin_lock(&excl_cntrs->lock);
2840 
2841 		xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
2842 
2843 		if (!xl->sched_started)
2844 			raw_spin_unlock(&excl_cntrs->lock);
2845 	}
2846 }
2847 
2848 static void
2849 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
2850 					struct perf_event *event)
2851 {
2852 	struct hw_perf_event_extra *reg;
2853 
2854 	reg = &event->hw.extra_reg;
2855 	if (reg->idx != EXTRA_REG_NONE)
2856 		__intel_shared_reg_put_constraints(cpuc, reg);
2857 
2858 	reg = &event->hw.branch_reg;
2859 	if (reg->idx != EXTRA_REG_NONE)
2860 		__intel_shared_reg_put_constraints(cpuc, reg);
2861 }
2862 
2863 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
2864 					struct perf_event *event)
2865 {
2866 	intel_put_shared_regs_event_constraints(cpuc, event);
2867 
2868 	/*
2869 	 * is PMU has exclusive counter restrictions, then
2870 	 * all events are subject to and must call the
2871 	 * put_excl_constraints() routine
2872 	 */
2873 	if (cpuc->excl_cntrs)
2874 		intel_put_excl_constraints(cpuc, event);
2875 }
2876 
2877 static void intel_pebs_aliases_core2(struct perf_event *event)
2878 {
2879 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2880 		/*
2881 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2882 		 * (0x003c) so that we can use it with PEBS.
2883 		 *
2884 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2885 		 * PEBS capable. However we can use INST_RETIRED.ANY_P
2886 		 * (0x00c0), which is a PEBS capable event, to get the same
2887 		 * count.
2888 		 *
2889 		 * INST_RETIRED.ANY_P counts the number of cycles that retires
2890 		 * CNTMASK instructions. By setting CNTMASK to a value (16)
2891 		 * larger than the maximum number of instructions that can be
2892 		 * retired per cycle (4) and then inverting the condition, we
2893 		 * count all cycles that retire 16 or less instructions, which
2894 		 * is every cycle.
2895 		 *
2896 		 * Thereby we gain a PEBS capable cycle counter.
2897 		 */
2898 		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
2899 
2900 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2901 		event->hw.config = alt_config;
2902 	}
2903 }
2904 
2905 static void intel_pebs_aliases_snb(struct perf_event *event)
2906 {
2907 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2908 		/*
2909 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2910 		 * (0x003c) so that we can use it with PEBS.
2911 		 *
2912 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2913 		 * PEBS capable. However we can use UOPS_RETIRED.ALL
2914 		 * (0x01c2), which is a PEBS capable event, to get the same
2915 		 * count.
2916 		 *
2917 		 * UOPS_RETIRED.ALL counts the number of cycles that retires
2918 		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
2919 		 * larger than the maximum number of micro-ops that can be
2920 		 * retired per cycle (4) and then inverting the condition, we
2921 		 * count all cycles that retire 16 or less micro-ops, which
2922 		 * is every cycle.
2923 		 *
2924 		 * Thereby we gain a PEBS capable cycle counter.
2925 		 */
2926 		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
2927 
2928 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2929 		event->hw.config = alt_config;
2930 	}
2931 }
2932 
2933 static void intel_pebs_aliases_precdist(struct perf_event *event)
2934 {
2935 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2936 		/*
2937 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2938 		 * (0x003c) so that we can use it with PEBS.
2939 		 *
2940 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2941 		 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
2942 		 * (0x01c0), which is a PEBS capable event, to get the same
2943 		 * count.
2944 		 *
2945 		 * The PREC_DIST event has special support to minimize sample
2946 		 * shadowing effects. One drawback is that it can be
2947 		 * only programmed on counter 1, but that seems like an
2948 		 * acceptable trade off.
2949 		 */
2950 		u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
2951 
2952 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2953 		event->hw.config = alt_config;
2954 	}
2955 }
2956 
2957 static void intel_pebs_aliases_ivb(struct perf_event *event)
2958 {
2959 	if (event->attr.precise_ip < 3)
2960 		return intel_pebs_aliases_snb(event);
2961 	return intel_pebs_aliases_precdist(event);
2962 }
2963 
2964 static void intel_pebs_aliases_skl(struct perf_event *event)
2965 {
2966 	if (event->attr.precise_ip < 3)
2967 		return intel_pebs_aliases_core2(event);
2968 	return intel_pebs_aliases_precdist(event);
2969 }
2970 
2971 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
2972 {
2973 	unsigned long flags = x86_pmu.large_pebs_flags;
2974 
2975 	if (event->attr.use_clockid)
2976 		flags &= ~PERF_SAMPLE_TIME;
2977 	if (!event->attr.exclude_kernel)
2978 		flags &= ~PERF_SAMPLE_REGS_USER;
2979 	if (event->attr.sample_regs_user & ~PEBS_REGS)
2980 		flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
2981 	return flags;
2982 }
2983 
2984 static int intel_pmu_hw_config(struct perf_event *event)
2985 {
2986 	int ret = x86_pmu_hw_config(event);
2987 
2988 	if (ret)
2989 		return ret;
2990 
2991 	if (event->attr.precise_ip) {
2992 		if (!event->attr.freq) {
2993 			event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
2994 			if (!(event->attr.sample_type &
2995 			      ~intel_pmu_large_pebs_flags(event)))
2996 				event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
2997 		}
2998 		if (x86_pmu.pebs_aliases)
2999 			x86_pmu.pebs_aliases(event);
3000 
3001 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3002 			event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3003 	}
3004 
3005 	if (needs_branch_stack(event)) {
3006 		ret = intel_pmu_setup_lbr_filter(event);
3007 		if (ret)
3008 			return ret;
3009 
3010 		/*
3011 		 * BTS is set up earlier in this path, so don't account twice
3012 		 */
3013 		if (!intel_pmu_has_bts(event)) {
3014 			/* disallow lbr if conflicting events are present */
3015 			if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3016 				return -EBUSY;
3017 
3018 			event->destroy = hw_perf_lbr_event_destroy;
3019 		}
3020 	}
3021 
3022 	if (event->attr.type != PERF_TYPE_RAW)
3023 		return 0;
3024 
3025 	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3026 		return 0;
3027 
3028 	if (x86_pmu.version < 3)
3029 		return -EINVAL;
3030 
3031 	if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3032 		return -EACCES;
3033 
3034 	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3035 
3036 	return 0;
3037 }
3038 
3039 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
3040 {
3041 	if (x86_pmu.guest_get_msrs)
3042 		return x86_pmu.guest_get_msrs(nr);
3043 	*nr = 0;
3044 	return NULL;
3045 }
3046 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
3047 
3048 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3049 {
3050 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3051 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3052 
3053 	arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3054 	arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3055 	arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3056 	/*
3057 	 * If PMU counter has PEBS enabled it is not enough to disable counter
3058 	 * on a guest entry since PEBS memory write can overshoot guest entry
3059 	 * and corrupt guest memory. Disabling PEBS solves the problem.
3060 	 */
3061 	arr[1].msr = MSR_IA32_PEBS_ENABLE;
3062 	arr[1].host = cpuc->pebs_enabled;
3063 	arr[1].guest = 0;
3064 
3065 	*nr = 2;
3066 	return arr;
3067 }
3068 
3069 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3070 {
3071 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3072 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3073 	int idx;
3074 
3075 	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
3076 		struct perf_event *event = cpuc->events[idx];
3077 
3078 		arr[idx].msr = x86_pmu_config_addr(idx);
3079 		arr[idx].host = arr[idx].guest = 0;
3080 
3081 		if (!test_bit(idx, cpuc->active_mask))
3082 			continue;
3083 
3084 		arr[idx].host = arr[idx].guest =
3085 			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3086 
3087 		if (event->attr.exclude_host)
3088 			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3089 		else if (event->attr.exclude_guest)
3090 			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3091 	}
3092 
3093 	*nr = x86_pmu.num_counters;
3094 	return arr;
3095 }
3096 
3097 static void core_pmu_enable_event(struct perf_event *event)
3098 {
3099 	if (!event->attr.exclude_host)
3100 		x86_pmu_enable_event(event);
3101 }
3102 
3103 static void core_pmu_enable_all(int added)
3104 {
3105 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3106 	int idx;
3107 
3108 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3109 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
3110 
3111 		if (!test_bit(idx, cpuc->active_mask) ||
3112 				cpuc->events[idx]->attr.exclude_host)
3113 			continue;
3114 
3115 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
3116 	}
3117 }
3118 
3119 static int hsw_hw_config(struct perf_event *event)
3120 {
3121 	int ret = intel_pmu_hw_config(event);
3122 
3123 	if (ret)
3124 		return ret;
3125 	if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
3126 		return 0;
3127 	event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
3128 
3129 	/*
3130 	 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3131 	 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3132 	 * this combination.
3133 	 */
3134 	if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
3135 	     ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
3136 	      event->attr.precise_ip > 0))
3137 		return -EOPNOTSUPP;
3138 
3139 	if (event_is_checkpointed(event)) {
3140 		/*
3141 		 * Sampling of checkpointed events can cause situations where
3142 		 * the CPU constantly aborts because of a overflow, which is
3143 		 * then checkpointed back and ignored. Forbid checkpointing
3144 		 * for sampling.
3145 		 *
3146 		 * But still allow a long sampling period, so that perf stat
3147 		 * from KVM works.
3148 		 */
3149 		if (event->attr.sample_period > 0 &&
3150 		    event->attr.sample_period < 0x7fffffff)
3151 			return -EOPNOTSUPP;
3152 	}
3153 	return 0;
3154 }
3155 
3156 static struct event_constraint counter0_constraint =
3157 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3158 
3159 static struct event_constraint counter2_constraint =
3160 			EVENT_CONSTRAINT(0, 0x4, 0);
3161 
3162 static struct event_constraint *
3163 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3164 			  struct perf_event *event)
3165 {
3166 	struct event_constraint *c;
3167 
3168 	c = intel_get_event_constraints(cpuc, idx, event);
3169 
3170 	/* Handle special quirk on in_tx_checkpointed only in counter 2 */
3171 	if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
3172 		if (c->idxmsk64 & (1U << 2))
3173 			return &counter2_constraint;
3174 		return &emptyconstraint;
3175 	}
3176 
3177 	return c;
3178 }
3179 
3180 static struct event_constraint *
3181 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3182 			  struct perf_event *event)
3183 {
3184 	struct event_constraint *c;
3185 
3186 	/* :ppp means to do reduced skid PEBS which is PMC0 only. */
3187 	if (event->attr.precise_ip == 3)
3188 		return &counter0_constraint;
3189 
3190 	c = intel_get_event_constraints(cpuc, idx, event);
3191 
3192 	return c;
3193 }
3194 
3195 /*
3196  * Broadwell:
3197  *
3198  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
3199  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
3200  * the two to enforce a minimum period of 128 (the smallest value that has bits
3201  * 0-5 cleared and >= 100).
3202  *
3203  * Because of how the code in x86_perf_event_set_period() works, the truncation
3204  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
3205  * to make up for the 'lost' events due to carrying the 'error' in period_left.
3206  *
3207  * Therefore the effective (average) period matches the requested period,
3208  * despite coarser hardware granularity.
3209  */
3210 static u64 bdw_limit_period(struct perf_event *event, u64 left)
3211 {
3212 	if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
3213 			X86_CONFIG(.event=0xc0, .umask=0x01)) {
3214 		if (left < 128)
3215 			left = 128;
3216 		left &= ~0x3fULL;
3217 	}
3218 	return left;
3219 }
3220 
3221 PMU_FORMAT_ATTR(event,	"config:0-7"	);
3222 PMU_FORMAT_ATTR(umask,	"config:8-15"	);
3223 PMU_FORMAT_ATTR(edge,	"config:18"	);
3224 PMU_FORMAT_ATTR(pc,	"config:19"	);
3225 PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
3226 PMU_FORMAT_ATTR(inv,	"config:23"	);
3227 PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
3228 PMU_FORMAT_ATTR(in_tx,  "config:32");
3229 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
3230 
3231 static struct attribute *intel_arch_formats_attr[] = {
3232 	&format_attr_event.attr,
3233 	&format_attr_umask.attr,
3234 	&format_attr_edge.attr,
3235 	&format_attr_pc.attr,
3236 	&format_attr_inv.attr,
3237 	&format_attr_cmask.attr,
3238 	NULL,
3239 };
3240 
3241 ssize_t intel_event_sysfs_show(char *page, u64 config)
3242 {
3243 	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
3244 
3245 	return x86_event_sysfs_show(page, config, event);
3246 }
3247 
3248 struct intel_shared_regs *allocate_shared_regs(int cpu)
3249 {
3250 	struct intel_shared_regs *regs;
3251 	int i;
3252 
3253 	regs = kzalloc_node(sizeof(struct intel_shared_regs),
3254 			    GFP_KERNEL, cpu_to_node(cpu));
3255 	if (regs) {
3256 		/*
3257 		 * initialize the locks to keep lockdep happy
3258 		 */
3259 		for (i = 0; i < EXTRA_REG_MAX; i++)
3260 			raw_spin_lock_init(&regs->regs[i].lock);
3261 
3262 		regs->core_id = -1;
3263 	}
3264 	return regs;
3265 }
3266 
3267 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
3268 {
3269 	struct intel_excl_cntrs *c;
3270 
3271 	c = kzalloc_node(sizeof(struct intel_excl_cntrs),
3272 			 GFP_KERNEL, cpu_to_node(cpu));
3273 	if (c) {
3274 		raw_spin_lock_init(&c->lock);
3275 		c->core_id = -1;
3276 	}
3277 	return c;
3278 }
3279 
3280 static int intel_pmu_cpu_prepare(int cpu)
3281 {
3282 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3283 
3284 	if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
3285 		cpuc->shared_regs = allocate_shared_regs(cpu);
3286 		if (!cpuc->shared_regs)
3287 			goto err;
3288 	}
3289 
3290 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3291 		size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
3292 
3293 		cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
3294 		if (!cpuc->constraint_list)
3295 			goto err_shared_regs;
3296 
3297 		cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
3298 		if (!cpuc->excl_cntrs)
3299 			goto err_constraint_list;
3300 
3301 		cpuc->excl_thread_id = 0;
3302 	}
3303 
3304 	return 0;
3305 
3306 err_constraint_list:
3307 	kfree(cpuc->constraint_list);
3308 	cpuc->constraint_list = NULL;
3309 
3310 err_shared_regs:
3311 	kfree(cpuc->shared_regs);
3312 	cpuc->shared_regs = NULL;
3313 
3314 err:
3315 	return -ENOMEM;
3316 }
3317 
3318 static void flip_smm_bit(void *data)
3319 {
3320 	unsigned long set = *(unsigned long *)data;
3321 
3322 	if (set > 0) {
3323 		msr_set_bit(MSR_IA32_DEBUGCTLMSR,
3324 			    DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3325 	} else {
3326 		msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
3327 			      DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3328 	}
3329 }
3330 
3331 static void intel_pmu_cpu_starting(int cpu)
3332 {
3333 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3334 	int core_id = topology_core_id(cpu);
3335 	int i;
3336 
3337 	init_debug_store_on_cpu(cpu);
3338 	/*
3339 	 * Deal with CPUs that don't clear their LBRs on power-up.
3340 	 */
3341 	intel_pmu_lbr_reset();
3342 
3343 	cpuc->lbr_sel = NULL;
3344 
3345 	if (x86_pmu.version > 1)
3346 		flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
3347 
3348 	if (!cpuc->shared_regs)
3349 		return;
3350 
3351 	if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
3352 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3353 			struct intel_shared_regs *pc;
3354 
3355 			pc = per_cpu(cpu_hw_events, i).shared_regs;
3356 			if (pc && pc->core_id == core_id) {
3357 				cpuc->kfree_on_online[0] = cpuc->shared_regs;
3358 				cpuc->shared_regs = pc;
3359 				break;
3360 			}
3361 		}
3362 		cpuc->shared_regs->core_id = core_id;
3363 		cpuc->shared_regs->refcnt++;
3364 	}
3365 
3366 	if (x86_pmu.lbr_sel_map)
3367 		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
3368 
3369 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3370 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3371 			struct cpu_hw_events *sibling;
3372 			struct intel_excl_cntrs *c;
3373 
3374 			sibling = &per_cpu(cpu_hw_events, i);
3375 			c = sibling->excl_cntrs;
3376 			if (c && c->core_id == core_id) {
3377 				cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
3378 				cpuc->excl_cntrs = c;
3379 				if (!sibling->excl_thread_id)
3380 					cpuc->excl_thread_id = 1;
3381 				break;
3382 			}
3383 		}
3384 		cpuc->excl_cntrs->core_id = core_id;
3385 		cpuc->excl_cntrs->refcnt++;
3386 	}
3387 }
3388 
3389 static void free_excl_cntrs(int cpu)
3390 {
3391 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3392 	struct intel_excl_cntrs *c;
3393 
3394 	c = cpuc->excl_cntrs;
3395 	if (c) {
3396 		if (c->core_id == -1 || --c->refcnt == 0)
3397 			kfree(c);
3398 		cpuc->excl_cntrs = NULL;
3399 		kfree(cpuc->constraint_list);
3400 		cpuc->constraint_list = NULL;
3401 	}
3402 }
3403 
3404 static void intel_pmu_cpu_dying(int cpu)
3405 {
3406 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3407 	struct intel_shared_regs *pc;
3408 
3409 	pc = cpuc->shared_regs;
3410 	if (pc) {
3411 		if (pc->core_id == -1 || --pc->refcnt == 0)
3412 			kfree(pc);
3413 		cpuc->shared_regs = NULL;
3414 	}
3415 
3416 	free_excl_cntrs(cpu);
3417 
3418 	fini_debug_store_on_cpu(cpu);
3419 }
3420 
3421 static void intel_pmu_sched_task(struct perf_event_context *ctx,
3422 				 bool sched_in)
3423 {
3424 	intel_pmu_pebs_sched_task(ctx, sched_in);
3425 	intel_pmu_lbr_sched_task(ctx, sched_in);
3426 }
3427 
3428 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
3429 
3430 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
3431 
3432 PMU_FORMAT_ATTR(frontend, "config1:0-23");
3433 
3434 static struct attribute *intel_arch3_formats_attr[] = {
3435 	&format_attr_event.attr,
3436 	&format_attr_umask.attr,
3437 	&format_attr_edge.attr,
3438 	&format_attr_pc.attr,
3439 	&format_attr_any.attr,
3440 	&format_attr_inv.attr,
3441 	&format_attr_cmask.attr,
3442 	NULL,
3443 };
3444 
3445 static struct attribute *hsw_format_attr[] = {
3446 	&format_attr_in_tx.attr,
3447 	&format_attr_in_tx_cp.attr,
3448 	&format_attr_offcore_rsp.attr,
3449 	&format_attr_ldlat.attr,
3450 	NULL
3451 };
3452 
3453 static struct attribute *nhm_format_attr[] = {
3454 	&format_attr_offcore_rsp.attr,
3455 	&format_attr_ldlat.attr,
3456 	NULL
3457 };
3458 
3459 static struct attribute *slm_format_attr[] = {
3460 	&format_attr_offcore_rsp.attr,
3461 	NULL
3462 };
3463 
3464 static struct attribute *skl_format_attr[] = {
3465 	&format_attr_frontend.attr,
3466 	NULL,
3467 };
3468 
3469 static __initconst const struct x86_pmu core_pmu = {
3470 	.name			= "core",
3471 	.handle_irq		= x86_pmu_handle_irq,
3472 	.disable_all		= x86_pmu_disable_all,
3473 	.enable_all		= core_pmu_enable_all,
3474 	.enable			= core_pmu_enable_event,
3475 	.disable		= x86_pmu_disable_event,
3476 	.hw_config		= x86_pmu_hw_config,
3477 	.schedule_events	= x86_schedule_events,
3478 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
3479 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
3480 	.event_map		= intel_pmu_event_map,
3481 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
3482 	.apic			= 1,
3483 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
3484 
3485 	/*
3486 	 * Intel PMCs cannot be accessed sanely above 32-bit width,
3487 	 * so we install an artificial 1<<31 period regardless of
3488 	 * the generic event period:
3489 	 */
3490 	.max_period		= (1ULL<<31) - 1,
3491 	.get_event_constraints	= intel_get_event_constraints,
3492 	.put_event_constraints	= intel_put_event_constraints,
3493 	.event_constraints	= intel_core_event_constraints,
3494 	.guest_get_msrs		= core_guest_get_msrs,
3495 	.format_attrs		= intel_arch_formats_attr,
3496 	.events_sysfs_show	= intel_event_sysfs_show,
3497 
3498 	/*
3499 	 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
3500 	 * together with PMU version 1 and thus be using core_pmu with
3501 	 * shared_regs. We need following callbacks here to allocate
3502 	 * it properly.
3503 	 */
3504 	.cpu_prepare		= intel_pmu_cpu_prepare,
3505 	.cpu_starting		= intel_pmu_cpu_starting,
3506 	.cpu_dying		= intel_pmu_cpu_dying,
3507 };
3508 
3509 static struct attribute *intel_pmu_attrs[];
3510 
3511 static __initconst const struct x86_pmu intel_pmu = {
3512 	.name			= "Intel",
3513 	.handle_irq		= intel_pmu_handle_irq,
3514 	.disable_all		= intel_pmu_disable_all,
3515 	.enable_all		= intel_pmu_enable_all,
3516 	.enable			= intel_pmu_enable_event,
3517 	.disable		= intel_pmu_disable_event,
3518 	.add			= intel_pmu_add_event,
3519 	.del			= intel_pmu_del_event,
3520 	.read			= intel_pmu_read_event,
3521 	.hw_config		= intel_pmu_hw_config,
3522 	.schedule_events	= x86_schedule_events,
3523 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
3524 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
3525 	.event_map		= intel_pmu_event_map,
3526 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
3527 	.apic			= 1,
3528 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
3529 	/*
3530 	 * Intel PMCs cannot be accessed sanely above 32 bit width,
3531 	 * so we install an artificial 1<<31 period regardless of
3532 	 * the generic event period:
3533 	 */
3534 	.max_period		= (1ULL << 31) - 1,
3535 	.get_event_constraints	= intel_get_event_constraints,
3536 	.put_event_constraints	= intel_put_event_constraints,
3537 	.pebs_aliases		= intel_pebs_aliases_core2,
3538 
3539 	.format_attrs		= intel_arch3_formats_attr,
3540 	.events_sysfs_show	= intel_event_sysfs_show,
3541 
3542 	.attrs			= intel_pmu_attrs,
3543 
3544 	.cpu_prepare		= intel_pmu_cpu_prepare,
3545 	.cpu_starting		= intel_pmu_cpu_starting,
3546 	.cpu_dying		= intel_pmu_cpu_dying,
3547 	.guest_get_msrs		= intel_guest_get_msrs,
3548 	.sched_task		= intel_pmu_sched_task,
3549 };
3550 
3551 static __init void intel_clovertown_quirk(void)
3552 {
3553 	/*
3554 	 * PEBS is unreliable due to:
3555 	 *
3556 	 *   AJ67  - PEBS may experience CPL leaks
3557 	 *   AJ68  - PEBS PMI may be delayed by one event
3558 	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
3559 	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
3560 	 *
3561 	 * AJ67 could be worked around by restricting the OS/USR flags.
3562 	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
3563 	 *
3564 	 * AJ106 could possibly be worked around by not allowing LBR
3565 	 *       usage from PEBS, including the fixup.
3566 	 * AJ68  could possibly be worked around by always programming
3567 	 *	 a pebs_event_reset[0] value and coping with the lost events.
3568 	 *
3569 	 * But taken together it might just make sense to not enable PEBS on
3570 	 * these chips.
3571 	 */
3572 	pr_warn("PEBS disabled due to CPU errata\n");
3573 	x86_pmu.pebs = 0;
3574 	x86_pmu.pebs_constraints = NULL;
3575 }
3576 
3577 static int intel_snb_pebs_broken(int cpu)
3578 {
3579 	u32 rev = UINT_MAX; /* default to broken for unknown models */
3580 
3581 	switch (cpu_data(cpu).x86_model) {
3582 	case INTEL_FAM6_SANDYBRIDGE:
3583 		rev = 0x28;
3584 		break;
3585 
3586 	case INTEL_FAM6_SANDYBRIDGE_X:
3587 		switch (cpu_data(cpu).x86_stepping) {
3588 		case 6: rev = 0x618; break;
3589 		case 7: rev = 0x70c; break;
3590 		}
3591 	}
3592 
3593 	return (cpu_data(cpu).microcode < rev);
3594 }
3595 
3596 static void intel_snb_check_microcode(void)
3597 {
3598 	int pebs_broken = 0;
3599 	int cpu;
3600 
3601 	for_each_online_cpu(cpu) {
3602 		if ((pebs_broken = intel_snb_pebs_broken(cpu)))
3603 			break;
3604 	}
3605 
3606 	if (pebs_broken == x86_pmu.pebs_broken)
3607 		return;
3608 
3609 	/*
3610 	 * Serialized by the microcode lock..
3611 	 */
3612 	if (x86_pmu.pebs_broken) {
3613 		pr_info("PEBS enabled due to microcode update\n");
3614 		x86_pmu.pebs_broken = 0;
3615 	} else {
3616 		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
3617 		x86_pmu.pebs_broken = 1;
3618 	}
3619 }
3620 
3621 static bool is_lbr_from(unsigned long msr)
3622 {
3623 	unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
3624 
3625 	return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
3626 }
3627 
3628 /*
3629  * Under certain circumstances, access certain MSR may cause #GP.
3630  * The function tests if the input MSR can be safely accessed.
3631  */
3632 static bool check_msr(unsigned long msr, u64 mask)
3633 {
3634 	u64 val_old, val_new, val_tmp;
3635 
3636 	/*
3637 	 * Read the current value, change it and read it back to see if it
3638 	 * matches, this is needed to detect certain hardware emulators
3639 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
3640 	 */
3641 	if (rdmsrl_safe(msr, &val_old))
3642 		return false;
3643 
3644 	/*
3645 	 * Only change the bits which can be updated by wrmsrl.
3646 	 */
3647 	val_tmp = val_old ^ mask;
3648 
3649 	if (is_lbr_from(msr))
3650 		val_tmp = lbr_from_signext_quirk_wr(val_tmp);
3651 
3652 	if (wrmsrl_safe(msr, val_tmp) ||
3653 	    rdmsrl_safe(msr, &val_new))
3654 		return false;
3655 
3656 	/*
3657 	 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
3658 	 * should equal rdmsrl()'s even with the quirk.
3659 	 */
3660 	if (val_new != val_tmp)
3661 		return false;
3662 
3663 	if (is_lbr_from(msr))
3664 		val_old = lbr_from_signext_quirk_wr(val_old);
3665 
3666 	/* Here it's sure that the MSR can be safely accessed.
3667 	 * Restore the old value and return.
3668 	 */
3669 	wrmsrl(msr, val_old);
3670 
3671 	return true;
3672 }
3673 
3674 static __init void intel_sandybridge_quirk(void)
3675 {
3676 	x86_pmu.check_microcode = intel_snb_check_microcode;
3677 	cpus_read_lock();
3678 	intel_snb_check_microcode();
3679 	cpus_read_unlock();
3680 }
3681 
3682 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
3683 	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
3684 	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
3685 	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
3686 	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
3687 	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
3688 	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
3689 	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
3690 };
3691 
3692 static __init void intel_arch_events_quirk(void)
3693 {
3694 	int bit;
3695 
3696 	/* disable event that reported as not presend by cpuid */
3697 	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
3698 		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
3699 		pr_warn("CPUID marked event: \'%s\' unavailable\n",
3700 			intel_arch_events_map[bit].name);
3701 	}
3702 }
3703 
3704 static __init void intel_nehalem_quirk(void)
3705 {
3706 	union cpuid10_ebx ebx;
3707 
3708 	ebx.full = x86_pmu.events_maskl;
3709 	if (ebx.split.no_branch_misses_retired) {
3710 		/*
3711 		 * Erratum AAJ80 detected, we work it around by using
3712 		 * the BR_MISP_EXEC.ANY event. This will over-count
3713 		 * branch-misses, but it's still much better than the
3714 		 * architectural event which is often completely bogus:
3715 		 */
3716 		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
3717 		ebx.split.no_branch_misses_retired = 0;
3718 		x86_pmu.events_maskl = ebx.full;
3719 		pr_info("CPU erratum AAJ80 worked around\n");
3720 	}
3721 }
3722 
3723 /*
3724  * enable software workaround for errata:
3725  * SNB: BJ122
3726  * IVB: BV98
3727  * HSW: HSD29
3728  *
3729  * Only needed when HT is enabled. However detecting
3730  * if HT is enabled is difficult (model specific). So instead,
3731  * we enable the workaround in the early boot, and verify if
3732  * it is needed in a later initcall phase once we have valid
3733  * topology information to check if HT is actually enabled
3734  */
3735 static __init void intel_ht_bug(void)
3736 {
3737 	x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
3738 
3739 	x86_pmu.start_scheduling = intel_start_scheduling;
3740 	x86_pmu.commit_scheduling = intel_commit_scheduling;
3741 	x86_pmu.stop_scheduling = intel_stop_scheduling;
3742 }
3743 
3744 EVENT_ATTR_STR(mem-loads,	mem_ld_hsw,	"event=0xcd,umask=0x1,ldlat=3");
3745 EVENT_ATTR_STR(mem-stores,	mem_st_hsw,	"event=0xd0,umask=0x82")
3746 
3747 /* Haswell special events */
3748 EVENT_ATTR_STR(tx-start,	tx_start,	"event=0xc9,umask=0x1");
3749 EVENT_ATTR_STR(tx-commit,	tx_commit,	"event=0xc9,umask=0x2");
3750 EVENT_ATTR_STR(tx-abort,	tx_abort,	"event=0xc9,umask=0x4");
3751 EVENT_ATTR_STR(tx-capacity,	tx_capacity,	"event=0x54,umask=0x2");
3752 EVENT_ATTR_STR(tx-conflict,	tx_conflict,	"event=0x54,umask=0x1");
3753 EVENT_ATTR_STR(el-start,	el_start,	"event=0xc8,umask=0x1");
3754 EVENT_ATTR_STR(el-commit,	el_commit,	"event=0xc8,umask=0x2");
3755 EVENT_ATTR_STR(el-abort,	el_abort,	"event=0xc8,umask=0x4");
3756 EVENT_ATTR_STR(el-capacity,	el_capacity,	"event=0x54,umask=0x2");
3757 EVENT_ATTR_STR(el-conflict,	el_conflict,	"event=0x54,umask=0x1");
3758 EVENT_ATTR_STR(cycles-t,	cycles_t,	"event=0x3c,in_tx=1");
3759 EVENT_ATTR_STR(cycles-ct,	cycles_ct,	"event=0x3c,in_tx=1,in_tx_cp=1");
3760 
3761 static struct attribute *hsw_events_attrs[] = {
3762 	EVENT_PTR(mem_ld_hsw),
3763 	EVENT_PTR(mem_st_hsw),
3764 	EVENT_PTR(td_slots_issued),
3765 	EVENT_PTR(td_slots_retired),
3766 	EVENT_PTR(td_fetch_bubbles),
3767 	EVENT_PTR(td_total_slots),
3768 	EVENT_PTR(td_total_slots_scale),
3769 	EVENT_PTR(td_recovery_bubbles),
3770 	EVENT_PTR(td_recovery_bubbles_scale),
3771 	NULL
3772 };
3773 
3774 static struct attribute *hsw_tsx_events_attrs[] = {
3775 	EVENT_PTR(tx_start),
3776 	EVENT_PTR(tx_commit),
3777 	EVENT_PTR(tx_abort),
3778 	EVENT_PTR(tx_capacity),
3779 	EVENT_PTR(tx_conflict),
3780 	EVENT_PTR(el_start),
3781 	EVENT_PTR(el_commit),
3782 	EVENT_PTR(el_abort),
3783 	EVENT_PTR(el_capacity),
3784 	EVENT_PTR(el_conflict),
3785 	EVENT_PTR(cycles_t),
3786 	EVENT_PTR(cycles_ct),
3787 	NULL
3788 };
3789 
3790 static __init struct attribute **get_hsw_events_attrs(void)
3791 {
3792 	return boot_cpu_has(X86_FEATURE_RTM) ?
3793 		merge_attr(hsw_events_attrs, hsw_tsx_events_attrs) :
3794 		hsw_events_attrs;
3795 }
3796 
3797 static ssize_t freeze_on_smi_show(struct device *cdev,
3798 				  struct device_attribute *attr,
3799 				  char *buf)
3800 {
3801 	return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
3802 }
3803 
3804 static DEFINE_MUTEX(freeze_on_smi_mutex);
3805 
3806 static ssize_t freeze_on_smi_store(struct device *cdev,
3807 				   struct device_attribute *attr,
3808 				   const char *buf, size_t count)
3809 {
3810 	unsigned long val;
3811 	ssize_t ret;
3812 
3813 	ret = kstrtoul(buf, 0, &val);
3814 	if (ret)
3815 		return ret;
3816 
3817 	if (val > 1)
3818 		return -EINVAL;
3819 
3820 	mutex_lock(&freeze_on_smi_mutex);
3821 
3822 	if (x86_pmu.attr_freeze_on_smi == val)
3823 		goto done;
3824 
3825 	x86_pmu.attr_freeze_on_smi = val;
3826 
3827 	get_online_cpus();
3828 	on_each_cpu(flip_smm_bit, &val, 1);
3829 	put_online_cpus();
3830 done:
3831 	mutex_unlock(&freeze_on_smi_mutex);
3832 
3833 	return count;
3834 }
3835 
3836 static DEVICE_ATTR_RW(freeze_on_smi);
3837 
3838 static ssize_t branches_show(struct device *cdev,
3839 			     struct device_attribute *attr,
3840 			     char *buf)
3841 {
3842 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
3843 }
3844 
3845 static DEVICE_ATTR_RO(branches);
3846 
3847 static struct attribute *lbr_attrs[] = {
3848 	&dev_attr_branches.attr,
3849 	NULL
3850 };
3851 
3852 static char pmu_name_str[30];
3853 
3854 static ssize_t pmu_name_show(struct device *cdev,
3855 			     struct device_attribute *attr,
3856 			     char *buf)
3857 {
3858 	return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
3859 }
3860 
3861 static DEVICE_ATTR_RO(pmu_name);
3862 
3863 static struct attribute *intel_pmu_caps_attrs[] = {
3864        &dev_attr_pmu_name.attr,
3865        NULL
3866 };
3867 
3868 static struct attribute *intel_pmu_attrs[] = {
3869 	&dev_attr_freeze_on_smi.attr,
3870 	NULL,
3871 };
3872 
3873 __init int intel_pmu_init(void)
3874 {
3875 	struct attribute **extra_attr = NULL;
3876 	struct attribute **to_free = NULL;
3877 	union cpuid10_edx edx;
3878 	union cpuid10_eax eax;
3879 	union cpuid10_ebx ebx;
3880 	struct event_constraint *c;
3881 	unsigned int unused;
3882 	struct extra_reg *er;
3883 	int version, i;
3884 	char *name;
3885 
3886 	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
3887 		switch (boot_cpu_data.x86) {
3888 		case 0x6:
3889 			return p6_pmu_init();
3890 		case 0xb:
3891 			return knc_pmu_init();
3892 		case 0xf:
3893 			return p4_pmu_init();
3894 		}
3895 		return -ENODEV;
3896 	}
3897 
3898 	/*
3899 	 * Check whether the Architectural PerfMon supports
3900 	 * Branch Misses Retired hw_event or not.
3901 	 */
3902 	cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
3903 	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
3904 		return -ENODEV;
3905 
3906 	version = eax.split.version_id;
3907 	if (version < 2)
3908 		x86_pmu = core_pmu;
3909 	else
3910 		x86_pmu = intel_pmu;
3911 
3912 	x86_pmu.version			= version;
3913 	x86_pmu.num_counters		= eax.split.num_counters;
3914 	x86_pmu.cntval_bits		= eax.split.bit_width;
3915 	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
3916 
3917 	x86_pmu.events_maskl		= ebx.full;
3918 	x86_pmu.events_mask_len		= eax.split.mask_length;
3919 
3920 	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
3921 
3922 	/*
3923 	 * Quirk: v2 perfmon does not report fixed-purpose events, so
3924 	 * assume at least 3 events, when not running in a hypervisor:
3925 	 */
3926 	if (version > 1) {
3927 		int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
3928 
3929 		x86_pmu.num_counters_fixed =
3930 			max((int)edx.split.num_counters_fixed, assume);
3931 	}
3932 
3933 	if (boot_cpu_has(X86_FEATURE_PDCM)) {
3934 		u64 capabilities;
3935 
3936 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
3937 		x86_pmu.intel_cap.capabilities = capabilities;
3938 	}
3939 
3940 	intel_ds_init();
3941 
3942 	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
3943 
3944 	/*
3945 	 * Install the hw-cache-events table:
3946 	 */
3947 	switch (boot_cpu_data.x86_model) {
3948 	case INTEL_FAM6_CORE_YONAH:
3949 		pr_cont("Core events, ");
3950 		name = "core";
3951 		break;
3952 
3953 	case INTEL_FAM6_CORE2_MEROM:
3954 		x86_add_quirk(intel_clovertown_quirk);
3955 	case INTEL_FAM6_CORE2_MEROM_L:
3956 	case INTEL_FAM6_CORE2_PENRYN:
3957 	case INTEL_FAM6_CORE2_DUNNINGTON:
3958 		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
3959 		       sizeof(hw_cache_event_ids));
3960 
3961 		intel_pmu_lbr_init_core();
3962 
3963 		x86_pmu.event_constraints = intel_core2_event_constraints;
3964 		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
3965 		pr_cont("Core2 events, ");
3966 		name = "core2";
3967 		break;
3968 
3969 	case INTEL_FAM6_NEHALEM:
3970 	case INTEL_FAM6_NEHALEM_EP:
3971 	case INTEL_FAM6_NEHALEM_EX:
3972 		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
3973 		       sizeof(hw_cache_event_ids));
3974 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3975 		       sizeof(hw_cache_extra_regs));
3976 
3977 		intel_pmu_lbr_init_nhm();
3978 
3979 		x86_pmu.event_constraints = intel_nehalem_event_constraints;
3980 		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
3981 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3982 		x86_pmu.extra_regs = intel_nehalem_extra_regs;
3983 
3984 		x86_pmu.cpu_events = nhm_events_attrs;
3985 
3986 		/* UOPS_ISSUED.STALLED_CYCLES */
3987 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3988 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3989 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3990 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3991 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3992 
3993 		intel_pmu_pebs_data_source_nhm();
3994 		x86_add_quirk(intel_nehalem_quirk);
3995 		x86_pmu.pebs_no_tlb = 1;
3996 		extra_attr = nhm_format_attr;
3997 
3998 		pr_cont("Nehalem events, ");
3999 		name = "nehalem";
4000 		break;
4001 
4002 	case INTEL_FAM6_ATOM_PINEVIEW:
4003 	case INTEL_FAM6_ATOM_LINCROFT:
4004 	case INTEL_FAM6_ATOM_PENWELL:
4005 	case INTEL_FAM6_ATOM_CLOVERVIEW:
4006 	case INTEL_FAM6_ATOM_CEDARVIEW:
4007 		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
4008 		       sizeof(hw_cache_event_ids));
4009 
4010 		intel_pmu_lbr_init_atom();
4011 
4012 		x86_pmu.event_constraints = intel_gen_event_constraints;
4013 		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
4014 		x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
4015 		pr_cont("Atom events, ");
4016 		name = "bonnell";
4017 		break;
4018 
4019 	case INTEL_FAM6_ATOM_SILVERMONT1:
4020 	case INTEL_FAM6_ATOM_SILVERMONT2:
4021 	case INTEL_FAM6_ATOM_AIRMONT:
4022 		memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
4023 			sizeof(hw_cache_event_ids));
4024 		memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
4025 		       sizeof(hw_cache_extra_regs));
4026 
4027 		intel_pmu_lbr_init_slm();
4028 
4029 		x86_pmu.event_constraints = intel_slm_event_constraints;
4030 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4031 		x86_pmu.extra_regs = intel_slm_extra_regs;
4032 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4033 		x86_pmu.cpu_events = slm_events_attrs;
4034 		extra_attr = slm_format_attr;
4035 		pr_cont("Silvermont events, ");
4036 		name = "silvermont";
4037 		break;
4038 
4039 	case INTEL_FAM6_ATOM_GOLDMONT:
4040 	case INTEL_FAM6_ATOM_DENVERTON:
4041 		memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
4042 		       sizeof(hw_cache_event_ids));
4043 		memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
4044 		       sizeof(hw_cache_extra_regs));
4045 
4046 		intel_pmu_lbr_init_skl();
4047 
4048 		x86_pmu.event_constraints = intel_slm_event_constraints;
4049 		x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
4050 		x86_pmu.extra_regs = intel_glm_extra_regs;
4051 		/*
4052 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4053 		 * for precise cycles.
4054 		 * :pp is identical to :ppp
4055 		 */
4056 		x86_pmu.pebs_aliases = NULL;
4057 		x86_pmu.pebs_prec_dist = true;
4058 		x86_pmu.lbr_pt_coexist = true;
4059 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4060 		x86_pmu.cpu_events = glm_events_attrs;
4061 		extra_attr = slm_format_attr;
4062 		pr_cont("Goldmont events, ");
4063 		name = "goldmont";
4064 		break;
4065 
4066 	case INTEL_FAM6_ATOM_GEMINI_LAKE:
4067 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
4068 		       sizeof(hw_cache_event_ids));
4069 		memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
4070 		       sizeof(hw_cache_extra_regs));
4071 
4072 		intel_pmu_lbr_init_skl();
4073 
4074 		x86_pmu.event_constraints = intel_slm_event_constraints;
4075 		x86_pmu.pebs_constraints = intel_glp_pebs_event_constraints;
4076 		x86_pmu.extra_regs = intel_glm_extra_regs;
4077 		/*
4078 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4079 		 * for precise cycles.
4080 		 */
4081 		x86_pmu.pebs_aliases = NULL;
4082 		x86_pmu.pebs_prec_dist = true;
4083 		x86_pmu.lbr_pt_coexist = true;
4084 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4085 		x86_pmu.get_event_constraints = glp_get_event_constraints;
4086 		x86_pmu.cpu_events = glm_events_attrs;
4087 		/* Goldmont Plus has 4-wide pipeline */
4088 		event_attr_td_total_slots_scale_glm.event_str = "4";
4089 		extra_attr = slm_format_attr;
4090 		pr_cont("Goldmont plus events, ");
4091 		name = "goldmont_plus";
4092 		break;
4093 
4094 	case INTEL_FAM6_WESTMERE:
4095 	case INTEL_FAM6_WESTMERE_EP:
4096 	case INTEL_FAM6_WESTMERE_EX:
4097 		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
4098 		       sizeof(hw_cache_event_ids));
4099 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
4100 		       sizeof(hw_cache_extra_regs));
4101 
4102 		intel_pmu_lbr_init_nhm();
4103 
4104 		x86_pmu.event_constraints = intel_westmere_event_constraints;
4105 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
4106 		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
4107 		x86_pmu.extra_regs = intel_westmere_extra_regs;
4108 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4109 
4110 		x86_pmu.cpu_events = nhm_events_attrs;
4111 
4112 		/* UOPS_ISSUED.STALLED_CYCLES */
4113 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4114 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4115 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4116 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4117 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
4118 
4119 		intel_pmu_pebs_data_source_nhm();
4120 		extra_attr = nhm_format_attr;
4121 		pr_cont("Westmere events, ");
4122 		name = "westmere";
4123 		break;
4124 
4125 	case INTEL_FAM6_SANDYBRIDGE:
4126 	case INTEL_FAM6_SANDYBRIDGE_X:
4127 		x86_add_quirk(intel_sandybridge_quirk);
4128 		x86_add_quirk(intel_ht_bug);
4129 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4130 		       sizeof(hw_cache_event_ids));
4131 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4132 		       sizeof(hw_cache_extra_regs));
4133 
4134 		intel_pmu_lbr_init_snb();
4135 
4136 		x86_pmu.event_constraints = intel_snb_event_constraints;
4137 		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
4138 		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
4139 		if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
4140 			x86_pmu.extra_regs = intel_snbep_extra_regs;
4141 		else
4142 			x86_pmu.extra_regs = intel_snb_extra_regs;
4143 
4144 
4145 		/* all extra regs are per-cpu when HT is on */
4146 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4147 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4148 
4149 		x86_pmu.cpu_events = snb_events_attrs;
4150 
4151 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4152 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4153 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4154 		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
4155 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4156 			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
4157 
4158 		extra_attr = nhm_format_attr;
4159 
4160 		pr_cont("SandyBridge events, ");
4161 		name = "sandybridge";
4162 		break;
4163 
4164 	case INTEL_FAM6_IVYBRIDGE:
4165 	case INTEL_FAM6_IVYBRIDGE_X:
4166 		x86_add_quirk(intel_ht_bug);
4167 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4168 		       sizeof(hw_cache_event_ids));
4169 		/* dTLB-load-misses on IVB is different than SNB */
4170 		hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
4171 
4172 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4173 		       sizeof(hw_cache_extra_regs));
4174 
4175 		intel_pmu_lbr_init_snb();
4176 
4177 		x86_pmu.event_constraints = intel_ivb_event_constraints;
4178 		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
4179 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4180 		x86_pmu.pebs_prec_dist = true;
4181 		if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
4182 			x86_pmu.extra_regs = intel_snbep_extra_regs;
4183 		else
4184 			x86_pmu.extra_regs = intel_snb_extra_regs;
4185 		/* all extra regs are per-cpu when HT is on */
4186 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4187 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4188 
4189 		x86_pmu.cpu_events = snb_events_attrs;
4190 
4191 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4192 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4193 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4194 
4195 		extra_attr = nhm_format_attr;
4196 
4197 		pr_cont("IvyBridge events, ");
4198 		name = "ivybridge";
4199 		break;
4200 
4201 
4202 	case INTEL_FAM6_HASWELL_CORE:
4203 	case INTEL_FAM6_HASWELL_X:
4204 	case INTEL_FAM6_HASWELL_ULT:
4205 	case INTEL_FAM6_HASWELL_GT3E:
4206 		x86_add_quirk(intel_ht_bug);
4207 		x86_pmu.late_ack = true;
4208 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4209 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4210 
4211 		intel_pmu_lbr_init_hsw();
4212 
4213 		x86_pmu.event_constraints = intel_hsw_event_constraints;
4214 		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
4215 		x86_pmu.extra_regs = intel_snbep_extra_regs;
4216 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4217 		x86_pmu.pebs_prec_dist = true;
4218 		/* all extra regs are per-cpu when HT is on */
4219 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4220 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4221 
4222 		x86_pmu.hw_config = hsw_hw_config;
4223 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
4224 		x86_pmu.cpu_events = get_hsw_events_attrs();
4225 		x86_pmu.lbr_double_abort = true;
4226 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4227 			hsw_format_attr : nhm_format_attr;
4228 		pr_cont("Haswell events, ");
4229 		name = "haswell";
4230 		break;
4231 
4232 	case INTEL_FAM6_BROADWELL_CORE:
4233 	case INTEL_FAM6_BROADWELL_XEON_D:
4234 	case INTEL_FAM6_BROADWELL_GT3E:
4235 	case INTEL_FAM6_BROADWELL_X:
4236 		x86_pmu.late_ack = true;
4237 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4238 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4239 
4240 		/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
4241 		hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
4242 									 BDW_L3_MISS|HSW_SNOOP_DRAM;
4243 		hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
4244 									  HSW_SNOOP_DRAM;
4245 		hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
4246 									     BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
4247 		hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
4248 									      BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
4249 
4250 		intel_pmu_lbr_init_hsw();
4251 
4252 		x86_pmu.event_constraints = intel_bdw_event_constraints;
4253 		x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
4254 		x86_pmu.extra_regs = intel_snbep_extra_regs;
4255 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4256 		x86_pmu.pebs_prec_dist = true;
4257 		/* all extra regs are per-cpu when HT is on */
4258 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4259 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4260 
4261 		x86_pmu.hw_config = hsw_hw_config;
4262 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
4263 		x86_pmu.cpu_events = get_hsw_events_attrs();
4264 		x86_pmu.limit_period = bdw_limit_period;
4265 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4266 			hsw_format_attr : nhm_format_attr;
4267 		pr_cont("Broadwell events, ");
4268 		name = "broadwell";
4269 		break;
4270 
4271 	case INTEL_FAM6_XEON_PHI_KNL:
4272 	case INTEL_FAM6_XEON_PHI_KNM:
4273 		memcpy(hw_cache_event_ids,
4274 		       slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4275 		memcpy(hw_cache_extra_regs,
4276 		       knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4277 		intel_pmu_lbr_init_knl();
4278 
4279 		x86_pmu.event_constraints = intel_slm_event_constraints;
4280 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4281 		x86_pmu.extra_regs = intel_knl_extra_regs;
4282 
4283 		/* all extra regs are per-cpu when HT is on */
4284 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4285 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4286 		extra_attr = slm_format_attr;
4287 		pr_cont("Knights Landing/Mill events, ");
4288 		name = "knights-landing";
4289 		break;
4290 
4291 	case INTEL_FAM6_SKYLAKE_MOBILE:
4292 	case INTEL_FAM6_SKYLAKE_DESKTOP:
4293 	case INTEL_FAM6_SKYLAKE_X:
4294 	case INTEL_FAM6_KABYLAKE_MOBILE:
4295 	case INTEL_FAM6_KABYLAKE_DESKTOP:
4296 		x86_pmu.late_ack = true;
4297 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4298 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4299 		intel_pmu_lbr_init_skl();
4300 
4301 		/* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
4302 		event_attr_td_recovery_bubbles.event_str_noht =
4303 			"event=0xd,umask=0x1,cmask=1";
4304 		event_attr_td_recovery_bubbles.event_str_ht =
4305 			"event=0xd,umask=0x1,cmask=1,any=1";
4306 
4307 		x86_pmu.event_constraints = intel_skl_event_constraints;
4308 		x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
4309 		x86_pmu.extra_regs = intel_skl_extra_regs;
4310 		x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
4311 		x86_pmu.pebs_prec_dist = true;
4312 		/* all extra regs are per-cpu when HT is on */
4313 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4314 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4315 
4316 		x86_pmu.hw_config = hsw_hw_config;
4317 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
4318 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4319 			hsw_format_attr : nhm_format_attr;
4320 		extra_attr = merge_attr(extra_attr, skl_format_attr);
4321 		to_free = extra_attr;
4322 		x86_pmu.cpu_events = get_hsw_events_attrs();
4323 		intel_pmu_pebs_data_source_skl(
4324 			boot_cpu_data.x86_model == INTEL_FAM6_SKYLAKE_X);
4325 		pr_cont("Skylake events, ");
4326 		name = "skylake";
4327 		break;
4328 
4329 	default:
4330 		switch (x86_pmu.version) {
4331 		case 1:
4332 			x86_pmu.event_constraints = intel_v1_event_constraints;
4333 			pr_cont("generic architected perfmon v1, ");
4334 			name = "generic_arch_v1";
4335 			break;
4336 		default:
4337 			/*
4338 			 * default constraints for v2 and up
4339 			 */
4340 			x86_pmu.event_constraints = intel_gen_event_constraints;
4341 			pr_cont("generic architected perfmon, ");
4342 			name = "generic_arch_v2+";
4343 			break;
4344 		}
4345 	}
4346 
4347 	snprintf(pmu_name_str, sizeof pmu_name_str, "%s", name);
4348 
4349 	if (version >= 2 && extra_attr) {
4350 		x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr,
4351 						  extra_attr);
4352 		WARN_ON(!x86_pmu.format_attrs);
4353 	}
4354 
4355 	if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
4356 		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
4357 		     x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
4358 		x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
4359 	}
4360 	x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1;
4361 
4362 	if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
4363 		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
4364 		     x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
4365 		x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
4366 	}
4367 
4368 	x86_pmu.intel_ctrl |=
4369 		((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
4370 
4371 	if (x86_pmu.event_constraints) {
4372 		/*
4373 		 * event on fixed counter2 (REF_CYCLES) only works on this
4374 		 * counter, so do not extend mask to generic counters
4375 		 */
4376 		for_each_event_constraint(c, x86_pmu.event_constraints) {
4377 			if (c->cmask == FIXED_EVENT_FLAGS
4378 			    && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
4379 				c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
4380 			}
4381 			c->idxmsk64 &=
4382 				~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
4383 			c->weight = hweight64(c->idxmsk64);
4384 		}
4385 	}
4386 
4387 	/*
4388 	 * Access LBR MSR may cause #GP under certain circumstances.
4389 	 * E.g. KVM doesn't support LBR MSR
4390 	 * Check all LBT MSR here.
4391 	 * Disable LBR access if any LBR MSRs can not be accessed.
4392 	 */
4393 	if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
4394 		x86_pmu.lbr_nr = 0;
4395 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
4396 		if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
4397 		      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
4398 			x86_pmu.lbr_nr = 0;
4399 	}
4400 
4401 	x86_pmu.caps_attrs = intel_pmu_caps_attrs;
4402 
4403 	if (x86_pmu.lbr_nr) {
4404 		x86_pmu.caps_attrs = merge_attr(x86_pmu.caps_attrs, lbr_attrs);
4405 		pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
4406 	}
4407 
4408 	/*
4409 	 * Access extra MSR may cause #GP under certain circumstances.
4410 	 * E.g. KVM doesn't support offcore event
4411 	 * Check all extra_regs here.
4412 	 */
4413 	if (x86_pmu.extra_regs) {
4414 		for (er = x86_pmu.extra_regs; er->msr; er++) {
4415 			er->extra_msr_access = check_msr(er->msr, 0x11UL);
4416 			/* Disable LBR select mapping */
4417 			if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
4418 				x86_pmu.lbr_sel_map = NULL;
4419 		}
4420 	}
4421 
4422 	/* Support full width counters using alternative MSR range */
4423 	if (x86_pmu.intel_cap.full_width_write) {
4424 		x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
4425 		x86_pmu.perfctr = MSR_IA32_PMC0;
4426 		pr_cont("full-width counters, ");
4427 	}
4428 
4429 	kfree(to_free);
4430 	return 0;
4431 }
4432 
4433 /*
4434  * HT bug: phase 2 init
4435  * Called once we have valid topology information to check
4436  * whether or not HT is enabled
4437  * If HT is off, then we disable the workaround
4438  */
4439 static __init int fixup_ht_bug(void)
4440 {
4441 	int c;
4442 	/*
4443 	 * problem not present on this CPU model, nothing to do
4444 	 */
4445 	if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
4446 		return 0;
4447 
4448 	if (topology_max_smt_threads() > 1) {
4449 		pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
4450 		return 0;
4451 	}
4452 
4453 	cpus_read_lock();
4454 
4455 	hardlockup_detector_perf_stop();
4456 
4457 	x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
4458 
4459 	x86_pmu.start_scheduling = NULL;
4460 	x86_pmu.commit_scheduling = NULL;
4461 	x86_pmu.stop_scheduling = NULL;
4462 
4463 	hardlockup_detector_perf_restart();
4464 
4465 	for_each_online_cpu(c)
4466 		free_excl_cntrs(c);
4467 
4468 	cpus_read_unlock();
4469 	pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
4470 	return 0;
4471 }
4472 subsys_initcall(fixup_ht_bug)
4473