1 /* 2 * Per core/cpu state 3 * 4 * Used to coordinate shared registers between HT threads or 5 * among events on a single PMU. 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/stddef.h> 11 #include <linux/types.h> 12 #include <linux/init.h> 13 #include <linux/slab.h> 14 #include <linux/export.h> 15 #include <linux/nmi.h> 16 17 #include <asm/cpufeature.h> 18 #include <asm/hardirq.h> 19 #include <asm/intel-family.h> 20 #include <asm/apic.h> 21 22 #include "../perf_event.h" 23 24 /* 25 * Intel PerfMon, used on Core and later. 26 */ 27 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly = 28 { 29 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c, 30 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0, 31 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e, 32 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e, 33 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4, 34 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5, 35 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c, 36 [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */ 37 }; 38 39 static struct event_constraint intel_core_event_constraints[] __read_mostly = 40 { 41 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */ 42 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */ 43 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */ 44 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */ 45 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */ 46 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */ 47 EVENT_CONSTRAINT_END 48 }; 49 50 static struct event_constraint intel_core2_event_constraints[] __read_mostly = 51 { 52 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 53 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 54 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 55 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */ 56 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */ 57 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */ 58 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */ 59 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */ 60 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */ 61 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */ 62 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */ 63 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */ 64 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */ 65 EVENT_CONSTRAINT_END 66 }; 67 68 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly = 69 { 70 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 71 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 72 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 73 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */ 74 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */ 75 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */ 76 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */ 77 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */ 78 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */ 79 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */ 80 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */ 81 EVENT_CONSTRAINT_END 82 }; 83 84 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly = 85 { 86 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 87 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0), 88 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b), 89 EVENT_EXTRA_END 90 }; 91 92 static struct event_constraint intel_westmere_event_constraints[] __read_mostly = 93 { 94 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 95 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 96 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 97 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */ 98 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */ 99 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */ 100 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */ 101 EVENT_CONSTRAINT_END 102 }; 103 104 static struct event_constraint intel_snb_event_constraints[] __read_mostly = 105 { 106 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 107 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 108 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 109 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */ 110 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */ 111 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ 112 INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */ 113 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */ 114 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */ 115 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */ 116 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */ 117 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ 118 119 /* 120 * When HT is off these events can only run on the bottom 4 counters 121 * When HT is on, they are impacted by the HT bug and require EXCL access 122 */ 123 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */ 124 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 125 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 126 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 127 128 EVENT_CONSTRAINT_END 129 }; 130 131 static struct event_constraint intel_ivb_event_constraints[] __read_mostly = 132 { 133 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 134 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 135 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 136 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */ 137 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */ 138 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */ 139 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */ 140 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */ 141 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */ 142 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */ 143 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ 144 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */ 145 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */ 146 147 /* 148 * When HT is off these events can only run on the bottom 4 counters 149 * When HT is on, they are impacted by the HT bug and require EXCL access 150 */ 151 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */ 152 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 153 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 154 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 155 156 EVENT_CONSTRAINT_END 157 }; 158 159 static struct extra_reg intel_westmere_extra_regs[] __read_mostly = 160 { 161 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 162 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0), 163 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1), 164 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b), 165 EVENT_EXTRA_END 166 }; 167 168 static struct event_constraint intel_v1_event_constraints[] __read_mostly = 169 { 170 EVENT_CONSTRAINT_END 171 }; 172 173 static struct event_constraint intel_gen_event_constraints[] __read_mostly = 174 { 175 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 176 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 177 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 178 EVENT_CONSTRAINT_END 179 }; 180 181 static struct event_constraint intel_slm_event_constraints[] __read_mostly = 182 { 183 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 184 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 185 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */ 186 EVENT_CONSTRAINT_END 187 }; 188 189 static struct event_constraint intel_skl_event_constraints[] = { 190 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 191 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 192 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 193 INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */ 194 195 /* 196 * when HT is off, these can only run on the bottom 4 counters 197 */ 198 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */ 199 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */ 200 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */ 201 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */ 202 INTEL_EVENT_CONSTRAINT(0xc6, 0xf), /* FRONTEND_RETIRED.* */ 203 204 EVENT_CONSTRAINT_END 205 }; 206 207 static struct extra_reg intel_knl_extra_regs[] __read_mostly = { 208 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0), 209 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1), 210 EVENT_EXTRA_END 211 }; 212 213 static struct extra_reg intel_snb_extra_regs[] __read_mostly = { 214 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 215 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0), 216 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1), 217 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), 218 EVENT_EXTRA_END 219 }; 220 221 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = { 222 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 223 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0), 224 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1), 225 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), 226 EVENT_EXTRA_END 227 }; 228 229 static struct extra_reg intel_skl_extra_regs[] __read_mostly = { 230 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0), 231 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1), 232 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), 233 /* 234 * Note the low 8 bits eventsel code is not a continuous field, containing 235 * some #GPing bits. These are masked out. 236 */ 237 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE), 238 EVENT_EXTRA_END 239 }; 240 241 EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3"); 242 EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3"); 243 EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2"); 244 245 static struct attribute *nhm_events_attrs[] = { 246 EVENT_PTR(mem_ld_nhm), 247 NULL, 248 }; 249 250 /* 251 * topdown events for Intel Core CPUs. 252 * 253 * The events are all in slots, which is a free slot in a 4 wide 254 * pipeline. Some events are already reported in slots, for cycle 255 * events we multiply by the pipeline width (4). 256 * 257 * With Hyper Threading on, topdown metrics are either summed or averaged 258 * between the threads of a core: (count_t0 + count_t1). 259 * 260 * For the average case the metric is always scaled to pipeline width, 261 * so we use factor 2 ((count_t0 + count_t1) / 2 * 4) 262 */ 263 264 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots, 265 "event=0x3c,umask=0x0", /* cpu_clk_unhalted.thread */ 266 "event=0x3c,umask=0x0,any=1"); /* cpu_clk_unhalted.thread_any */ 267 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2"); 268 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued, 269 "event=0xe,umask=0x1"); /* uops_issued.any */ 270 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired, 271 "event=0xc2,umask=0x2"); /* uops_retired.retire_slots */ 272 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles, 273 "event=0x9c,umask=0x1"); /* idq_uops_not_delivered_core */ 274 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles, 275 "event=0xd,umask=0x3,cmask=1", /* int_misc.recovery_cycles */ 276 "event=0xd,umask=0x3,cmask=1,any=1"); /* int_misc.recovery_cycles_any */ 277 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale, 278 "4", "2"); 279 280 static struct attribute *snb_events_attrs[] = { 281 EVENT_PTR(mem_ld_snb), 282 EVENT_PTR(mem_st_snb), 283 EVENT_PTR(td_slots_issued), 284 EVENT_PTR(td_slots_retired), 285 EVENT_PTR(td_fetch_bubbles), 286 EVENT_PTR(td_total_slots), 287 EVENT_PTR(td_total_slots_scale), 288 EVENT_PTR(td_recovery_bubbles), 289 EVENT_PTR(td_recovery_bubbles_scale), 290 NULL, 291 }; 292 293 static struct event_constraint intel_hsw_event_constraints[] = { 294 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 295 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 296 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 297 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */ 298 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */ 299 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */ 300 /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ 301 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), 302 /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */ 303 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), 304 /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */ 305 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), 306 307 /* 308 * When HT is off these events can only run on the bottom 4 counters 309 * When HT is on, they are impacted by the HT bug and require EXCL access 310 */ 311 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */ 312 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 313 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 314 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 315 316 EVENT_CONSTRAINT_END 317 }; 318 319 static struct event_constraint intel_bdw_event_constraints[] = { 320 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 321 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 322 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 323 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */ 324 INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */ 325 /* 326 * when HT is off, these can only run on the bottom 4 counters 327 */ 328 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */ 329 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */ 330 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */ 331 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */ 332 EVENT_CONSTRAINT_END 333 }; 334 335 static u64 intel_pmu_event_map(int hw_event) 336 { 337 return intel_perfmon_event_map[hw_event]; 338 } 339 340 /* 341 * Notes on the events: 342 * - data reads do not include code reads (comparable to earlier tables) 343 * - data counts include speculative execution (except L1 write, dtlb, bpu) 344 * - remote node access includes remote memory, remote cache, remote mmio. 345 * - prefetches are not included in the counts. 346 * - icache miss does not include decoded icache 347 */ 348 349 #define SKL_DEMAND_DATA_RD BIT_ULL(0) 350 #define SKL_DEMAND_RFO BIT_ULL(1) 351 #define SKL_ANY_RESPONSE BIT_ULL(16) 352 #define SKL_SUPPLIER_NONE BIT_ULL(17) 353 #define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26) 354 #define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27) 355 #define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28) 356 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29) 357 #define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \ 358 SKL_L3_MISS_REMOTE_HOP0_DRAM| \ 359 SKL_L3_MISS_REMOTE_HOP1_DRAM| \ 360 SKL_L3_MISS_REMOTE_HOP2P_DRAM) 361 #define SKL_SPL_HIT BIT_ULL(30) 362 #define SKL_SNOOP_NONE BIT_ULL(31) 363 #define SKL_SNOOP_NOT_NEEDED BIT_ULL(32) 364 #define SKL_SNOOP_MISS BIT_ULL(33) 365 #define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34) 366 #define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35) 367 #define SKL_SNOOP_HITM BIT_ULL(36) 368 #define SKL_SNOOP_NON_DRAM BIT_ULL(37) 369 #define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \ 370 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \ 371 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \ 372 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM) 373 #define SKL_DEMAND_READ SKL_DEMAND_DATA_RD 374 #define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \ 375 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \ 376 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \ 377 SKL_SNOOP_HITM|SKL_SPL_HIT) 378 #define SKL_DEMAND_WRITE SKL_DEMAND_RFO 379 #define SKL_LLC_ACCESS SKL_ANY_RESPONSE 380 #define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \ 381 SKL_L3_MISS_REMOTE_HOP1_DRAM| \ 382 SKL_L3_MISS_REMOTE_HOP2P_DRAM) 383 384 static __initconst const u64 skl_hw_cache_event_ids 385 [PERF_COUNT_HW_CACHE_MAX] 386 [PERF_COUNT_HW_CACHE_OP_MAX] 387 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 388 { 389 [ C(L1D ) ] = { 390 [ C(OP_READ) ] = { 391 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */ 392 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */ 393 }, 394 [ C(OP_WRITE) ] = { 395 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */ 396 [ C(RESULT_MISS) ] = 0x0, 397 }, 398 [ C(OP_PREFETCH) ] = { 399 [ C(RESULT_ACCESS) ] = 0x0, 400 [ C(RESULT_MISS) ] = 0x0, 401 }, 402 }, 403 [ C(L1I ) ] = { 404 [ C(OP_READ) ] = { 405 [ C(RESULT_ACCESS) ] = 0x0, 406 [ C(RESULT_MISS) ] = 0x283, /* ICACHE_64B.MISS */ 407 }, 408 [ C(OP_WRITE) ] = { 409 [ C(RESULT_ACCESS) ] = -1, 410 [ C(RESULT_MISS) ] = -1, 411 }, 412 [ C(OP_PREFETCH) ] = { 413 [ C(RESULT_ACCESS) ] = 0x0, 414 [ C(RESULT_MISS) ] = 0x0, 415 }, 416 }, 417 [ C(LL ) ] = { 418 [ C(OP_READ) ] = { 419 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 420 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 421 }, 422 [ C(OP_WRITE) ] = { 423 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 424 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 425 }, 426 [ C(OP_PREFETCH) ] = { 427 [ C(RESULT_ACCESS) ] = 0x0, 428 [ C(RESULT_MISS) ] = 0x0, 429 }, 430 }, 431 [ C(DTLB) ] = { 432 [ C(OP_READ) ] = { 433 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */ 434 [ C(RESULT_MISS) ] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */ 435 }, 436 [ C(OP_WRITE) ] = { 437 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */ 438 [ C(RESULT_MISS) ] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */ 439 }, 440 [ C(OP_PREFETCH) ] = { 441 [ C(RESULT_ACCESS) ] = 0x0, 442 [ C(RESULT_MISS) ] = 0x0, 443 }, 444 }, 445 [ C(ITLB) ] = { 446 [ C(OP_READ) ] = { 447 [ C(RESULT_ACCESS) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */ 448 [ C(RESULT_MISS) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */ 449 }, 450 [ C(OP_WRITE) ] = { 451 [ C(RESULT_ACCESS) ] = -1, 452 [ C(RESULT_MISS) ] = -1, 453 }, 454 [ C(OP_PREFETCH) ] = { 455 [ C(RESULT_ACCESS) ] = -1, 456 [ C(RESULT_MISS) ] = -1, 457 }, 458 }, 459 [ C(BPU ) ] = { 460 [ C(OP_READ) ] = { 461 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */ 462 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */ 463 }, 464 [ C(OP_WRITE) ] = { 465 [ C(RESULT_ACCESS) ] = -1, 466 [ C(RESULT_MISS) ] = -1, 467 }, 468 [ C(OP_PREFETCH) ] = { 469 [ C(RESULT_ACCESS) ] = -1, 470 [ C(RESULT_MISS) ] = -1, 471 }, 472 }, 473 [ C(NODE) ] = { 474 [ C(OP_READ) ] = { 475 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 476 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 477 }, 478 [ C(OP_WRITE) ] = { 479 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 480 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 481 }, 482 [ C(OP_PREFETCH) ] = { 483 [ C(RESULT_ACCESS) ] = 0x0, 484 [ C(RESULT_MISS) ] = 0x0, 485 }, 486 }, 487 }; 488 489 static __initconst const u64 skl_hw_cache_extra_regs 490 [PERF_COUNT_HW_CACHE_MAX] 491 [PERF_COUNT_HW_CACHE_OP_MAX] 492 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 493 { 494 [ C(LL ) ] = { 495 [ C(OP_READ) ] = { 496 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ| 497 SKL_LLC_ACCESS|SKL_ANY_SNOOP, 498 [ C(RESULT_MISS) ] = SKL_DEMAND_READ| 499 SKL_L3_MISS|SKL_ANY_SNOOP| 500 SKL_SUPPLIER_NONE, 501 }, 502 [ C(OP_WRITE) ] = { 503 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE| 504 SKL_LLC_ACCESS|SKL_ANY_SNOOP, 505 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE| 506 SKL_L3_MISS|SKL_ANY_SNOOP| 507 SKL_SUPPLIER_NONE, 508 }, 509 [ C(OP_PREFETCH) ] = { 510 [ C(RESULT_ACCESS) ] = 0x0, 511 [ C(RESULT_MISS) ] = 0x0, 512 }, 513 }, 514 [ C(NODE) ] = { 515 [ C(OP_READ) ] = { 516 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ| 517 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM, 518 [ C(RESULT_MISS) ] = SKL_DEMAND_READ| 519 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM, 520 }, 521 [ C(OP_WRITE) ] = { 522 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE| 523 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM, 524 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE| 525 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM, 526 }, 527 [ C(OP_PREFETCH) ] = { 528 [ C(RESULT_ACCESS) ] = 0x0, 529 [ C(RESULT_MISS) ] = 0x0, 530 }, 531 }, 532 }; 533 534 #define SNB_DMND_DATA_RD (1ULL << 0) 535 #define SNB_DMND_RFO (1ULL << 1) 536 #define SNB_DMND_IFETCH (1ULL << 2) 537 #define SNB_DMND_WB (1ULL << 3) 538 #define SNB_PF_DATA_RD (1ULL << 4) 539 #define SNB_PF_RFO (1ULL << 5) 540 #define SNB_PF_IFETCH (1ULL << 6) 541 #define SNB_LLC_DATA_RD (1ULL << 7) 542 #define SNB_LLC_RFO (1ULL << 8) 543 #define SNB_LLC_IFETCH (1ULL << 9) 544 #define SNB_BUS_LOCKS (1ULL << 10) 545 #define SNB_STRM_ST (1ULL << 11) 546 #define SNB_OTHER (1ULL << 15) 547 #define SNB_RESP_ANY (1ULL << 16) 548 #define SNB_NO_SUPP (1ULL << 17) 549 #define SNB_LLC_HITM (1ULL << 18) 550 #define SNB_LLC_HITE (1ULL << 19) 551 #define SNB_LLC_HITS (1ULL << 20) 552 #define SNB_LLC_HITF (1ULL << 21) 553 #define SNB_LOCAL (1ULL << 22) 554 #define SNB_REMOTE (0xffULL << 23) 555 #define SNB_SNP_NONE (1ULL << 31) 556 #define SNB_SNP_NOT_NEEDED (1ULL << 32) 557 #define SNB_SNP_MISS (1ULL << 33) 558 #define SNB_NO_FWD (1ULL << 34) 559 #define SNB_SNP_FWD (1ULL << 35) 560 #define SNB_HITM (1ULL << 36) 561 #define SNB_NON_DRAM (1ULL << 37) 562 563 #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD) 564 #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO) 565 #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO) 566 567 #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \ 568 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \ 569 SNB_HITM) 570 571 #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY) 572 #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY) 573 574 #define SNB_L3_ACCESS SNB_RESP_ANY 575 #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM) 576 577 static __initconst const u64 snb_hw_cache_extra_regs 578 [PERF_COUNT_HW_CACHE_MAX] 579 [PERF_COUNT_HW_CACHE_OP_MAX] 580 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 581 { 582 [ C(LL ) ] = { 583 [ C(OP_READ) ] = { 584 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS, 585 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS, 586 }, 587 [ C(OP_WRITE) ] = { 588 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS, 589 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS, 590 }, 591 [ C(OP_PREFETCH) ] = { 592 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS, 593 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS, 594 }, 595 }, 596 [ C(NODE) ] = { 597 [ C(OP_READ) ] = { 598 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY, 599 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE, 600 }, 601 [ C(OP_WRITE) ] = { 602 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY, 603 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE, 604 }, 605 [ C(OP_PREFETCH) ] = { 606 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY, 607 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE, 608 }, 609 }, 610 }; 611 612 static __initconst const u64 snb_hw_cache_event_ids 613 [PERF_COUNT_HW_CACHE_MAX] 614 [PERF_COUNT_HW_CACHE_OP_MAX] 615 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 616 { 617 [ C(L1D) ] = { 618 [ C(OP_READ) ] = { 619 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */ 620 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */ 621 }, 622 [ C(OP_WRITE) ] = { 623 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */ 624 [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */ 625 }, 626 [ C(OP_PREFETCH) ] = { 627 [ C(RESULT_ACCESS) ] = 0x0, 628 [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */ 629 }, 630 }, 631 [ C(L1I ) ] = { 632 [ C(OP_READ) ] = { 633 [ C(RESULT_ACCESS) ] = 0x0, 634 [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */ 635 }, 636 [ C(OP_WRITE) ] = { 637 [ C(RESULT_ACCESS) ] = -1, 638 [ C(RESULT_MISS) ] = -1, 639 }, 640 [ C(OP_PREFETCH) ] = { 641 [ C(RESULT_ACCESS) ] = 0x0, 642 [ C(RESULT_MISS) ] = 0x0, 643 }, 644 }, 645 [ C(LL ) ] = { 646 [ C(OP_READ) ] = { 647 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ 648 [ C(RESULT_ACCESS) ] = 0x01b7, 649 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ 650 [ C(RESULT_MISS) ] = 0x01b7, 651 }, 652 [ C(OP_WRITE) ] = { 653 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ 654 [ C(RESULT_ACCESS) ] = 0x01b7, 655 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ 656 [ C(RESULT_MISS) ] = 0x01b7, 657 }, 658 [ C(OP_PREFETCH) ] = { 659 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ 660 [ C(RESULT_ACCESS) ] = 0x01b7, 661 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ 662 [ C(RESULT_MISS) ] = 0x01b7, 663 }, 664 }, 665 [ C(DTLB) ] = { 666 [ C(OP_READ) ] = { 667 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */ 668 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */ 669 }, 670 [ C(OP_WRITE) ] = { 671 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */ 672 [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */ 673 }, 674 [ C(OP_PREFETCH) ] = { 675 [ C(RESULT_ACCESS) ] = 0x0, 676 [ C(RESULT_MISS) ] = 0x0, 677 }, 678 }, 679 [ C(ITLB) ] = { 680 [ C(OP_READ) ] = { 681 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */ 682 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */ 683 }, 684 [ C(OP_WRITE) ] = { 685 [ C(RESULT_ACCESS) ] = -1, 686 [ C(RESULT_MISS) ] = -1, 687 }, 688 [ C(OP_PREFETCH) ] = { 689 [ C(RESULT_ACCESS) ] = -1, 690 [ C(RESULT_MISS) ] = -1, 691 }, 692 }, 693 [ C(BPU ) ] = { 694 [ C(OP_READ) ] = { 695 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ 696 [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */ 697 }, 698 [ C(OP_WRITE) ] = { 699 [ C(RESULT_ACCESS) ] = -1, 700 [ C(RESULT_MISS) ] = -1, 701 }, 702 [ C(OP_PREFETCH) ] = { 703 [ C(RESULT_ACCESS) ] = -1, 704 [ C(RESULT_MISS) ] = -1, 705 }, 706 }, 707 [ C(NODE) ] = { 708 [ C(OP_READ) ] = { 709 [ C(RESULT_ACCESS) ] = 0x01b7, 710 [ C(RESULT_MISS) ] = 0x01b7, 711 }, 712 [ C(OP_WRITE) ] = { 713 [ C(RESULT_ACCESS) ] = 0x01b7, 714 [ C(RESULT_MISS) ] = 0x01b7, 715 }, 716 [ C(OP_PREFETCH) ] = { 717 [ C(RESULT_ACCESS) ] = 0x01b7, 718 [ C(RESULT_MISS) ] = 0x01b7, 719 }, 720 }, 721 722 }; 723 724 /* 725 * Notes on the events: 726 * - data reads do not include code reads (comparable to earlier tables) 727 * - data counts include speculative execution (except L1 write, dtlb, bpu) 728 * - remote node access includes remote memory, remote cache, remote mmio. 729 * - prefetches are not included in the counts because they are not 730 * reliably counted. 731 */ 732 733 #define HSW_DEMAND_DATA_RD BIT_ULL(0) 734 #define HSW_DEMAND_RFO BIT_ULL(1) 735 #define HSW_ANY_RESPONSE BIT_ULL(16) 736 #define HSW_SUPPLIER_NONE BIT_ULL(17) 737 #define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22) 738 #define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27) 739 #define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28) 740 #define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29) 741 #define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \ 742 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \ 743 HSW_L3_MISS_REMOTE_HOP2P) 744 #define HSW_SNOOP_NONE BIT_ULL(31) 745 #define HSW_SNOOP_NOT_NEEDED BIT_ULL(32) 746 #define HSW_SNOOP_MISS BIT_ULL(33) 747 #define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34) 748 #define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35) 749 #define HSW_SNOOP_HITM BIT_ULL(36) 750 #define HSW_SNOOP_NON_DRAM BIT_ULL(37) 751 #define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \ 752 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \ 753 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \ 754 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM) 755 #define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM) 756 #define HSW_DEMAND_READ HSW_DEMAND_DATA_RD 757 #define HSW_DEMAND_WRITE HSW_DEMAND_RFO 758 #define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\ 759 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P) 760 #define HSW_LLC_ACCESS HSW_ANY_RESPONSE 761 762 #define BDW_L3_MISS_LOCAL BIT(26) 763 #define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \ 764 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \ 765 HSW_L3_MISS_REMOTE_HOP2P) 766 767 768 static __initconst const u64 hsw_hw_cache_event_ids 769 [PERF_COUNT_HW_CACHE_MAX] 770 [PERF_COUNT_HW_CACHE_OP_MAX] 771 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 772 { 773 [ C(L1D ) ] = { 774 [ C(OP_READ) ] = { 775 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 776 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */ 777 }, 778 [ C(OP_WRITE) ] = { 779 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 780 [ C(RESULT_MISS) ] = 0x0, 781 }, 782 [ C(OP_PREFETCH) ] = { 783 [ C(RESULT_ACCESS) ] = 0x0, 784 [ C(RESULT_MISS) ] = 0x0, 785 }, 786 }, 787 [ C(L1I ) ] = { 788 [ C(OP_READ) ] = { 789 [ C(RESULT_ACCESS) ] = 0x0, 790 [ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */ 791 }, 792 [ C(OP_WRITE) ] = { 793 [ C(RESULT_ACCESS) ] = -1, 794 [ C(RESULT_MISS) ] = -1, 795 }, 796 [ C(OP_PREFETCH) ] = { 797 [ C(RESULT_ACCESS) ] = 0x0, 798 [ C(RESULT_MISS) ] = 0x0, 799 }, 800 }, 801 [ C(LL ) ] = { 802 [ C(OP_READ) ] = { 803 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 804 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 805 }, 806 [ C(OP_WRITE) ] = { 807 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 808 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 809 }, 810 [ C(OP_PREFETCH) ] = { 811 [ C(RESULT_ACCESS) ] = 0x0, 812 [ C(RESULT_MISS) ] = 0x0, 813 }, 814 }, 815 [ C(DTLB) ] = { 816 [ C(OP_READ) ] = { 817 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 818 [ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */ 819 }, 820 [ C(OP_WRITE) ] = { 821 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 822 [ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */ 823 }, 824 [ C(OP_PREFETCH) ] = { 825 [ C(RESULT_ACCESS) ] = 0x0, 826 [ C(RESULT_MISS) ] = 0x0, 827 }, 828 }, 829 [ C(ITLB) ] = { 830 [ C(OP_READ) ] = { 831 [ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */ 832 [ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */ 833 }, 834 [ C(OP_WRITE) ] = { 835 [ C(RESULT_ACCESS) ] = -1, 836 [ C(RESULT_MISS) ] = -1, 837 }, 838 [ C(OP_PREFETCH) ] = { 839 [ C(RESULT_ACCESS) ] = -1, 840 [ C(RESULT_MISS) ] = -1, 841 }, 842 }, 843 [ C(BPU ) ] = { 844 [ C(OP_READ) ] = { 845 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */ 846 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */ 847 }, 848 [ C(OP_WRITE) ] = { 849 [ C(RESULT_ACCESS) ] = -1, 850 [ C(RESULT_MISS) ] = -1, 851 }, 852 [ C(OP_PREFETCH) ] = { 853 [ C(RESULT_ACCESS) ] = -1, 854 [ C(RESULT_MISS) ] = -1, 855 }, 856 }, 857 [ C(NODE) ] = { 858 [ C(OP_READ) ] = { 859 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 860 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 861 }, 862 [ C(OP_WRITE) ] = { 863 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 864 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 865 }, 866 [ C(OP_PREFETCH) ] = { 867 [ C(RESULT_ACCESS) ] = 0x0, 868 [ C(RESULT_MISS) ] = 0x0, 869 }, 870 }, 871 }; 872 873 static __initconst const u64 hsw_hw_cache_extra_regs 874 [PERF_COUNT_HW_CACHE_MAX] 875 [PERF_COUNT_HW_CACHE_OP_MAX] 876 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 877 { 878 [ C(LL ) ] = { 879 [ C(OP_READ) ] = { 880 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ| 881 HSW_LLC_ACCESS, 882 [ C(RESULT_MISS) ] = HSW_DEMAND_READ| 883 HSW_L3_MISS|HSW_ANY_SNOOP, 884 }, 885 [ C(OP_WRITE) ] = { 886 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE| 887 HSW_LLC_ACCESS, 888 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE| 889 HSW_L3_MISS|HSW_ANY_SNOOP, 890 }, 891 [ C(OP_PREFETCH) ] = { 892 [ C(RESULT_ACCESS) ] = 0x0, 893 [ C(RESULT_MISS) ] = 0x0, 894 }, 895 }, 896 [ C(NODE) ] = { 897 [ C(OP_READ) ] = { 898 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ| 899 HSW_L3_MISS_LOCAL_DRAM| 900 HSW_SNOOP_DRAM, 901 [ C(RESULT_MISS) ] = HSW_DEMAND_READ| 902 HSW_L3_MISS_REMOTE| 903 HSW_SNOOP_DRAM, 904 }, 905 [ C(OP_WRITE) ] = { 906 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE| 907 HSW_L3_MISS_LOCAL_DRAM| 908 HSW_SNOOP_DRAM, 909 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE| 910 HSW_L3_MISS_REMOTE| 911 HSW_SNOOP_DRAM, 912 }, 913 [ C(OP_PREFETCH) ] = { 914 [ C(RESULT_ACCESS) ] = 0x0, 915 [ C(RESULT_MISS) ] = 0x0, 916 }, 917 }, 918 }; 919 920 static __initconst const u64 westmere_hw_cache_event_ids 921 [PERF_COUNT_HW_CACHE_MAX] 922 [PERF_COUNT_HW_CACHE_OP_MAX] 923 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 924 { 925 [ C(L1D) ] = { 926 [ C(OP_READ) ] = { 927 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ 928 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */ 929 }, 930 [ C(OP_WRITE) ] = { 931 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ 932 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */ 933 }, 934 [ C(OP_PREFETCH) ] = { 935 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */ 936 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */ 937 }, 938 }, 939 [ C(L1I ) ] = { 940 [ C(OP_READ) ] = { 941 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ 942 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ 943 }, 944 [ C(OP_WRITE) ] = { 945 [ C(RESULT_ACCESS) ] = -1, 946 [ C(RESULT_MISS) ] = -1, 947 }, 948 [ C(OP_PREFETCH) ] = { 949 [ C(RESULT_ACCESS) ] = 0x0, 950 [ C(RESULT_MISS) ] = 0x0, 951 }, 952 }, 953 [ C(LL ) ] = { 954 [ C(OP_READ) ] = { 955 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ 956 [ C(RESULT_ACCESS) ] = 0x01b7, 957 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ 958 [ C(RESULT_MISS) ] = 0x01b7, 959 }, 960 /* 961 * Use RFO, not WRITEBACK, because a write miss would typically occur 962 * on RFO. 963 */ 964 [ C(OP_WRITE) ] = { 965 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ 966 [ C(RESULT_ACCESS) ] = 0x01b7, 967 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ 968 [ C(RESULT_MISS) ] = 0x01b7, 969 }, 970 [ C(OP_PREFETCH) ] = { 971 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ 972 [ C(RESULT_ACCESS) ] = 0x01b7, 973 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ 974 [ C(RESULT_MISS) ] = 0x01b7, 975 }, 976 }, 977 [ C(DTLB) ] = { 978 [ C(OP_READ) ] = { 979 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ 980 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */ 981 }, 982 [ C(OP_WRITE) ] = { 983 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ 984 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */ 985 }, 986 [ C(OP_PREFETCH) ] = { 987 [ C(RESULT_ACCESS) ] = 0x0, 988 [ C(RESULT_MISS) ] = 0x0, 989 }, 990 }, 991 [ C(ITLB) ] = { 992 [ C(OP_READ) ] = { 993 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */ 994 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */ 995 }, 996 [ C(OP_WRITE) ] = { 997 [ C(RESULT_ACCESS) ] = -1, 998 [ C(RESULT_MISS) ] = -1, 999 }, 1000 [ C(OP_PREFETCH) ] = { 1001 [ C(RESULT_ACCESS) ] = -1, 1002 [ C(RESULT_MISS) ] = -1, 1003 }, 1004 }, 1005 [ C(BPU ) ] = { 1006 [ C(OP_READ) ] = { 1007 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ 1008 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */ 1009 }, 1010 [ C(OP_WRITE) ] = { 1011 [ C(RESULT_ACCESS) ] = -1, 1012 [ C(RESULT_MISS) ] = -1, 1013 }, 1014 [ C(OP_PREFETCH) ] = { 1015 [ C(RESULT_ACCESS) ] = -1, 1016 [ C(RESULT_MISS) ] = -1, 1017 }, 1018 }, 1019 [ C(NODE) ] = { 1020 [ C(OP_READ) ] = { 1021 [ C(RESULT_ACCESS) ] = 0x01b7, 1022 [ C(RESULT_MISS) ] = 0x01b7, 1023 }, 1024 [ C(OP_WRITE) ] = { 1025 [ C(RESULT_ACCESS) ] = 0x01b7, 1026 [ C(RESULT_MISS) ] = 0x01b7, 1027 }, 1028 [ C(OP_PREFETCH) ] = { 1029 [ C(RESULT_ACCESS) ] = 0x01b7, 1030 [ C(RESULT_MISS) ] = 0x01b7, 1031 }, 1032 }, 1033 }; 1034 1035 /* 1036 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits; 1037 * See IA32 SDM Vol 3B 30.6.1.3 1038 */ 1039 1040 #define NHM_DMND_DATA_RD (1 << 0) 1041 #define NHM_DMND_RFO (1 << 1) 1042 #define NHM_DMND_IFETCH (1 << 2) 1043 #define NHM_DMND_WB (1 << 3) 1044 #define NHM_PF_DATA_RD (1 << 4) 1045 #define NHM_PF_DATA_RFO (1 << 5) 1046 #define NHM_PF_IFETCH (1 << 6) 1047 #define NHM_OFFCORE_OTHER (1 << 7) 1048 #define NHM_UNCORE_HIT (1 << 8) 1049 #define NHM_OTHER_CORE_HIT_SNP (1 << 9) 1050 #define NHM_OTHER_CORE_HITM (1 << 10) 1051 /* reserved */ 1052 #define NHM_REMOTE_CACHE_FWD (1 << 12) 1053 #define NHM_REMOTE_DRAM (1 << 13) 1054 #define NHM_LOCAL_DRAM (1 << 14) 1055 #define NHM_NON_DRAM (1 << 15) 1056 1057 #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD) 1058 #define NHM_REMOTE (NHM_REMOTE_DRAM) 1059 1060 #define NHM_DMND_READ (NHM_DMND_DATA_RD) 1061 #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB) 1062 #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO) 1063 1064 #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM) 1065 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD) 1066 #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS) 1067 1068 static __initconst const u64 nehalem_hw_cache_extra_regs 1069 [PERF_COUNT_HW_CACHE_MAX] 1070 [PERF_COUNT_HW_CACHE_OP_MAX] 1071 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1072 { 1073 [ C(LL ) ] = { 1074 [ C(OP_READ) ] = { 1075 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS, 1076 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS, 1077 }, 1078 [ C(OP_WRITE) ] = { 1079 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS, 1080 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS, 1081 }, 1082 [ C(OP_PREFETCH) ] = { 1083 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS, 1084 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS, 1085 }, 1086 }, 1087 [ C(NODE) ] = { 1088 [ C(OP_READ) ] = { 1089 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE, 1090 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE, 1091 }, 1092 [ C(OP_WRITE) ] = { 1093 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE, 1094 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE, 1095 }, 1096 [ C(OP_PREFETCH) ] = { 1097 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE, 1098 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE, 1099 }, 1100 }, 1101 }; 1102 1103 static __initconst const u64 nehalem_hw_cache_event_ids 1104 [PERF_COUNT_HW_CACHE_MAX] 1105 [PERF_COUNT_HW_CACHE_OP_MAX] 1106 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1107 { 1108 [ C(L1D) ] = { 1109 [ C(OP_READ) ] = { 1110 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ 1111 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */ 1112 }, 1113 [ C(OP_WRITE) ] = { 1114 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ 1115 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */ 1116 }, 1117 [ C(OP_PREFETCH) ] = { 1118 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */ 1119 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */ 1120 }, 1121 }, 1122 [ C(L1I ) ] = { 1123 [ C(OP_READ) ] = { 1124 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ 1125 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ 1126 }, 1127 [ C(OP_WRITE) ] = { 1128 [ C(RESULT_ACCESS) ] = -1, 1129 [ C(RESULT_MISS) ] = -1, 1130 }, 1131 [ C(OP_PREFETCH) ] = { 1132 [ C(RESULT_ACCESS) ] = 0x0, 1133 [ C(RESULT_MISS) ] = 0x0, 1134 }, 1135 }, 1136 [ C(LL ) ] = { 1137 [ C(OP_READ) ] = { 1138 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ 1139 [ C(RESULT_ACCESS) ] = 0x01b7, 1140 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ 1141 [ C(RESULT_MISS) ] = 0x01b7, 1142 }, 1143 /* 1144 * Use RFO, not WRITEBACK, because a write miss would typically occur 1145 * on RFO. 1146 */ 1147 [ C(OP_WRITE) ] = { 1148 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ 1149 [ C(RESULT_ACCESS) ] = 0x01b7, 1150 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ 1151 [ C(RESULT_MISS) ] = 0x01b7, 1152 }, 1153 [ C(OP_PREFETCH) ] = { 1154 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ 1155 [ C(RESULT_ACCESS) ] = 0x01b7, 1156 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ 1157 [ C(RESULT_MISS) ] = 0x01b7, 1158 }, 1159 }, 1160 [ C(DTLB) ] = { 1161 [ C(OP_READ) ] = { 1162 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */ 1163 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */ 1164 }, 1165 [ C(OP_WRITE) ] = { 1166 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */ 1167 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */ 1168 }, 1169 [ C(OP_PREFETCH) ] = { 1170 [ C(RESULT_ACCESS) ] = 0x0, 1171 [ C(RESULT_MISS) ] = 0x0, 1172 }, 1173 }, 1174 [ C(ITLB) ] = { 1175 [ C(OP_READ) ] = { 1176 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */ 1177 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */ 1178 }, 1179 [ C(OP_WRITE) ] = { 1180 [ C(RESULT_ACCESS) ] = -1, 1181 [ C(RESULT_MISS) ] = -1, 1182 }, 1183 [ C(OP_PREFETCH) ] = { 1184 [ C(RESULT_ACCESS) ] = -1, 1185 [ C(RESULT_MISS) ] = -1, 1186 }, 1187 }, 1188 [ C(BPU ) ] = { 1189 [ C(OP_READ) ] = { 1190 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ 1191 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */ 1192 }, 1193 [ C(OP_WRITE) ] = { 1194 [ C(RESULT_ACCESS) ] = -1, 1195 [ C(RESULT_MISS) ] = -1, 1196 }, 1197 [ C(OP_PREFETCH) ] = { 1198 [ C(RESULT_ACCESS) ] = -1, 1199 [ C(RESULT_MISS) ] = -1, 1200 }, 1201 }, 1202 [ C(NODE) ] = { 1203 [ C(OP_READ) ] = { 1204 [ C(RESULT_ACCESS) ] = 0x01b7, 1205 [ C(RESULT_MISS) ] = 0x01b7, 1206 }, 1207 [ C(OP_WRITE) ] = { 1208 [ C(RESULT_ACCESS) ] = 0x01b7, 1209 [ C(RESULT_MISS) ] = 0x01b7, 1210 }, 1211 [ C(OP_PREFETCH) ] = { 1212 [ C(RESULT_ACCESS) ] = 0x01b7, 1213 [ C(RESULT_MISS) ] = 0x01b7, 1214 }, 1215 }, 1216 }; 1217 1218 static __initconst const u64 core2_hw_cache_event_ids 1219 [PERF_COUNT_HW_CACHE_MAX] 1220 [PERF_COUNT_HW_CACHE_OP_MAX] 1221 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1222 { 1223 [ C(L1D) ] = { 1224 [ C(OP_READ) ] = { 1225 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */ 1226 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */ 1227 }, 1228 [ C(OP_WRITE) ] = { 1229 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */ 1230 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */ 1231 }, 1232 [ C(OP_PREFETCH) ] = { 1233 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */ 1234 [ C(RESULT_MISS) ] = 0, 1235 }, 1236 }, 1237 [ C(L1I ) ] = { 1238 [ C(OP_READ) ] = { 1239 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */ 1240 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */ 1241 }, 1242 [ C(OP_WRITE) ] = { 1243 [ C(RESULT_ACCESS) ] = -1, 1244 [ C(RESULT_MISS) ] = -1, 1245 }, 1246 [ C(OP_PREFETCH) ] = { 1247 [ C(RESULT_ACCESS) ] = 0, 1248 [ C(RESULT_MISS) ] = 0, 1249 }, 1250 }, 1251 [ C(LL ) ] = { 1252 [ C(OP_READ) ] = { 1253 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */ 1254 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */ 1255 }, 1256 [ C(OP_WRITE) ] = { 1257 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */ 1258 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */ 1259 }, 1260 [ C(OP_PREFETCH) ] = { 1261 [ C(RESULT_ACCESS) ] = 0, 1262 [ C(RESULT_MISS) ] = 0, 1263 }, 1264 }, 1265 [ C(DTLB) ] = { 1266 [ C(OP_READ) ] = { 1267 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */ 1268 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */ 1269 }, 1270 [ C(OP_WRITE) ] = { 1271 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */ 1272 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */ 1273 }, 1274 [ C(OP_PREFETCH) ] = { 1275 [ C(RESULT_ACCESS) ] = 0, 1276 [ C(RESULT_MISS) ] = 0, 1277 }, 1278 }, 1279 [ C(ITLB) ] = { 1280 [ C(OP_READ) ] = { 1281 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ 1282 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */ 1283 }, 1284 [ C(OP_WRITE) ] = { 1285 [ C(RESULT_ACCESS) ] = -1, 1286 [ C(RESULT_MISS) ] = -1, 1287 }, 1288 [ C(OP_PREFETCH) ] = { 1289 [ C(RESULT_ACCESS) ] = -1, 1290 [ C(RESULT_MISS) ] = -1, 1291 }, 1292 }, 1293 [ C(BPU ) ] = { 1294 [ C(OP_READ) ] = { 1295 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ 1296 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ 1297 }, 1298 [ C(OP_WRITE) ] = { 1299 [ C(RESULT_ACCESS) ] = -1, 1300 [ C(RESULT_MISS) ] = -1, 1301 }, 1302 [ C(OP_PREFETCH) ] = { 1303 [ C(RESULT_ACCESS) ] = -1, 1304 [ C(RESULT_MISS) ] = -1, 1305 }, 1306 }, 1307 }; 1308 1309 static __initconst const u64 atom_hw_cache_event_ids 1310 [PERF_COUNT_HW_CACHE_MAX] 1311 [PERF_COUNT_HW_CACHE_OP_MAX] 1312 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1313 { 1314 [ C(L1D) ] = { 1315 [ C(OP_READ) ] = { 1316 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */ 1317 [ C(RESULT_MISS) ] = 0, 1318 }, 1319 [ C(OP_WRITE) ] = { 1320 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */ 1321 [ C(RESULT_MISS) ] = 0, 1322 }, 1323 [ C(OP_PREFETCH) ] = { 1324 [ C(RESULT_ACCESS) ] = 0x0, 1325 [ C(RESULT_MISS) ] = 0, 1326 }, 1327 }, 1328 [ C(L1I ) ] = { 1329 [ C(OP_READ) ] = { 1330 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ 1331 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ 1332 }, 1333 [ C(OP_WRITE) ] = { 1334 [ C(RESULT_ACCESS) ] = -1, 1335 [ C(RESULT_MISS) ] = -1, 1336 }, 1337 [ C(OP_PREFETCH) ] = { 1338 [ C(RESULT_ACCESS) ] = 0, 1339 [ C(RESULT_MISS) ] = 0, 1340 }, 1341 }, 1342 [ C(LL ) ] = { 1343 [ C(OP_READ) ] = { 1344 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */ 1345 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */ 1346 }, 1347 [ C(OP_WRITE) ] = { 1348 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */ 1349 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */ 1350 }, 1351 [ C(OP_PREFETCH) ] = { 1352 [ C(RESULT_ACCESS) ] = 0, 1353 [ C(RESULT_MISS) ] = 0, 1354 }, 1355 }, 1356 [ C(DTLB) ] = { 1357 [ C(OP_READ) ] = { 1358 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */ 1359 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */ 1360 }, 1361 [ C(OP_WRITE) ] = { 1362 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */ 1363 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */ 1364 }, 1365 [ C(OP_PREFETCH) ] = { 1366 [ C(RESULT_ACCESS) ] = 0, 1367 [ C(RESULT_MISS) ] = 0, 1368 }, 1369 }, 1370 [ C(ITLB) ] = { 1371 [ C(OP_READ) ] = { 1372 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ 1373 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */ 1374 }, 1375 [ C(OP_WRITE) ] = { 1376 [ C(RESULT_ACCESS) ] = -1, 1377 [ C(RESULT_MISS) ] = -1, 1378 }, 1379 [ C(OP_PREFETCH) ] = { 1380 [ C(RESULT_ACCESS) ] = -1, 1381 [ C(RESULT_MISS) ] = -1, 1382 }, 1383 }, 1384 [ C(BPU ) ] = { 1385 [ C(OP_READ) ] = { 1386 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ 1387 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ 1388 }, 1389 [ C(OP_WRITE) ] = { 1390 [ C(RESULT_ACCESS) ] = -1, 1391 [ C(RESULT_MISS) ] = -1, 1392 }, 1393 [ C(OP_PREFETCH) ] = { 1394 [ C(RESULT_ACCESS) ] = -1, 1395 [ C(RESULT_MISS) ] = -1, 1396 }, 1397 }, 1398 }; 1399 1400 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c"); 1401 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2"); 1402 /* no_alloc_cycles.not_delivered */ 1403 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm, 1404 "event=0xca,umask=0x50"); 1405 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2"); 1406 /* uops_retired.all */ 1407 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm, 1408 "event=0xc2,umask=0x10"); 1409 /* uops_retired.all */ 1410 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm, 1411 "event=0xc2,umask=0x10"); 1412 1413 static struct attribute *slm_events_attrs[] = { 1414 EVENT_PTR(td_total_slots_slm), 1415 EVENT_PTR(td_total_slots_scale_slm), 1416 EVENT_PTR(td_fetch_bubbles_slm), 1417 EVENT_PTR(td_fetch_bubbles_scale_slm), 1418 EVENT_PTR(td_slots_issued_slm), 1419 EVENT_PTR(td_slots_retired_slm), 1420 NULL 1421 }; 1422 1423 static struct extra_reg intel_slm_extra_regs[] __read_mostly = 1424 { 1425 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 1426 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0), 1427 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1), 1428 EVENT_EXTRA_END 1429 }; 1430 1431 #define SLM_DMND_READ SNB_DMND_DATA_RD 1432 #define SLM_DMND_WRITE SNB_DMND_RFO 1433 #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO) 1434 1435 #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM) 1436 #define SLM_LLC_ACCESS SNB_RESP_ANY 1437 #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM) 1438 1439 static __initconst const u64 slm_hw_cache_extra_regs 1440 [PERF_COUNT_HW_CACHE_MAX] 1441 [PERF_COUNT_HW_CACHE_OP_MAX] 1442 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1443 { 1444 [ C(LL ) ] = { 1445 [ C(OP_READ) ] = { 1446 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS, 1447 [ C(RESULT_MISS) ] = 0, 1448 }, 1449 [ C(OP_WRITE) ] = { 1450 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS, 1451 [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS, 1452 }, 1453 [ C(OP_PREFETCH) ] = { 1454 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS, 1455 [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS, 1456 }, 1457 }, 1458 }; 1459 1460 static __initconst const u64 slm_hw_cache_event_ids 1461 [PERF_COUNT_HW_CACHE_MAX] 1462 [PERF_COUNT_HW_CACHE_OP_MAX] 1463 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1464 { 1465 [ C(L1D) ] = { 1466 [ C(OP_READ) ] = { 1467 [ C(RESULT_ACCESS) ] = 0, 1468 [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */ 1469 }, 1470 [ C(OP_WRITE) ] = { 1471 [ C(RESULT_ACCESS) ] = 0, 1472 [ C(RESULT_MISS) ] = 0, 1473 }, 1474 [ C(OP_PREFETCH) ] = { 1475 [ C(RESULT_ACCESS) ] = 0, 1476 [ C(RESULT_MISS) ] = 0, 1477 }, 1478 }, 1479 [ C(L1I ) ] = { 1480 [ C(OP_READ) ] = { 1481 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */ 1482 [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */ 1483 }, 1484 [ C(OP_WRITE) ] = { 1485 [ C(RESULT_ACCESS) ] = -1, 1486 [ C(RESULT_MISS) ] = -1, 1487 }, 1488 [ C(OP_PREFETCH) ] = { 1489 [ C(RESULT_ACCESS) ] = 0, 1490 [ C(RESULT_MISS) ] = 0, 1491 }, 1492 }, 1493 [ C(LL ) ] = { 1494 [ C(OP_READ) ] = { 1495 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ 1496 [ C(RESULT_ACCESS) ] = 0x01b7, 1497 [ C(RESULT_MISS) ] = 0, 1498 }, 1499 [ C(OP_WRITE) ] = { 1500 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ 1501 [ C(RESULT_ACCESS) ] = 0x01b7, 1502 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ 1503 [ C(RESULT_MISS) ] = 0x01b7, 1504 }, 1505 [ C(OP_PREFETCH) ] = { 1506 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ 1507 [ C(RESULT_ACCESS) ] = 0x01b7, 1508 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ 1509 [ C(RESULT_MISS) ] = 0x01b7, 1510 }, 1511 }, 1512 [ C(DTLB) ] = { 1513 [ C(OP_READ) ] = { 1514 [ C(RESULT_ACCESS) ] = 0, 1515 [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */ 1516 }, 1517 [ C(OP_WRITE) ] = { 1518 [ C(RESULT_ACCESS) ] = 0, 1519 [ C(RESULT_MISS) ] = 0, 1520 }, 1521 [ C(OP_PREFETCH) ] = { 1522 [ C(RESULT_ACCESS) ] = 0, 1523 [ C(RESULT_MISS) ] = 0, 1524 }, 1525 }, 1526 [ C(ITLB) ] = { 1527 [ C(OP_READ) ] = { 1528 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ 1529 [ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */ 1530 }, 1531 [ C(OP_WRITE) ] = { 1532 [ C(RESULT_ACCESS) ] = -1, 1533 [ C(RESULT_MISS) ] = -1, 1534 }, 1535 [ C(OP_PREFETCH) ] = { 1536 [ C(RESULT_ACCESS) ] = -1, 1537 [ C(RESULT_MISS) ] = -1, 1538 }, 1539 }, 1540 [ C(BPU ) ] = { 1541 [ C(OP_READ) ] = { 1542 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ 1543 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ 1544 }, 1545 [ C(OP_WRITE) ] = { 1546 [ C(RESULT_ACCESS) ] = -1, 1547 [ C(RESULT_MISS) ] = -1, 1548 }, 1549 [ C(OP_PREFETCH) ] = { 1550 [ C(RESULT_ACCESS) ] = -1, 1551 [ C(RESULT_MISS) ] = -1, 1552 }, 1553 }, 1554 }; 1555 1556 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c"); 1557 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3"); 1558 /* UOPS_NOT_DELIVERED.ANY */ 1559 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c"); 1560 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */ 1561 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02"); 1562 /* UOPS_RETIRED.ANY */ 1563 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2"); 1564 /* UOPS_ISSUED.ANY */ 1565 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e"); 1566 1567 static struct attribute *glm_events_attrs[] = { 1568 EVENT_PTR(td_total_slots_glm), 1569 EVENT_PTR(td_total_slots_scale_glm), 1570 EVENT_PTR(td_fetch_bubbles_glm), 1571 EVENT_PTR(td_recovery_bubbles_glm), 1572 EVENT_PTR(td_slots_issued_glm), 1573 EVENT_PTR(td_slots_retired_glm), 1574 NULL 1575 }; 1576 1577 static struct extra_reg intel_glm_extra_regs[] __read_mostly = { 1578 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 1579 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0), 1580 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1), 1581 EVENT_EXTRA_END 1582 }; 1583 1584 #define GLM_DEMAND_DATA_RD BIT_ULL(0) 1585 #define GLM_DEMAND_RFO BIT_ULL(1) 1586 #define GLM_ANY_RESPONSE BIT_ULL(16) 1587 #define GLM_SNP_NONE_OR_MISS BIT_ULL(33) 1588 #define GLM_DEMAND_READ GLM_DEMAND_DATA_RD 1589 #define GLM_DEMAND_WRITE GLM_DEMAND_RFO 1590 #define GLM_DEMAND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO) 1591 #define GLM_LLC_ACCESS GLM_ANY_RESPONSE 1592 #define GLM_SNP_ANY (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM) 1593 #define GLM_LLC_MISS (GLM_SNP_ANY|SNB_NON_DRAM) 1594 1595 static __initconst const u64 glm_hw_cache_event_ids 1596 [PERF_COUNT_HW_CACHE_MAX] 1597 [PERF_COUNT_HW_CACHE_OP_MAX] 1598 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1599 [C(L1D)] = { 1600 [C(OP_READ)] = { 1601 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 1602 [C(RESULT_MISS)] = 0x0, 1603 }, 1604 [C(OP_WRITE)] = { 1605 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 1606 [C(RESULT_MISS)] = 0x0, 1607 }, 1608 [C(OP_PREFETCH)] = { 1609 [C(RESULT_ACCESS)] = 0x0, 1610 [C(RESULT_MISS)] = 0x0, 1611 }, 1612 }, 1613 [C(L1I)] = { 1614 [C(OP_READ)] = { 1615 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */ 1616 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */ 1617 }, 1618 [C(OP_WRITE)] = { 1619 [C(RESULT_ACCESS)] = -1, 1620 [C(RESULT_MISS)] = -1, 1621 }, 1622 [C(OP_PREFETCH)] = { 1623 [C(RESULT_ACCESS)] = 0x0, 1624 [C(RESULT_MISS)] = 0x0, 1625 }, 1626 }, 1627 [C(LL)] = { 1628 [C(OP_READ)] = { 1629 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1630 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1631 }, 1632 [C(OP_WRITE)] = { 1633 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1634 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1635 }, 1636 [C(OP_PREFETCH)] = { 1637 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1638 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1639 }, 1640 }, 1641 [C(DTLB)] = { 1642 [C(OP_READ)] = { 1643 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 1644 [C(RESULT_MISS)] = 0x0, 1645 }, 1646 [C(OP_WRITE)] = { 1647 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 1648 [C(RESULT_MISS)] = 0x0, 1649 }, 1650 [C(OP_PREFETCH)] = { 1651 [C(RESULT_ACCESS)] = 0x0, 1652 [C(RESULT_MISS)] = 0x0, 1653 }, 1654 }, 1655 [C(ITLB)] = { 1656 [C(OP_READ)] = { 1657 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */ 1658 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */ 1659 }, 1660 [C(OP_WRITE)] = { 1661 [C(RESULT_ACCESS)] = -1, 1662 [C(RESULT_MISS)] = -1, 1663 }, 1664 [C(OP_PREFETCH)] = { 1665 [C(RESULT_ACCESS)] = -1, 1666 [C(RESULT_MISS)] = -1, 1667 }, 1668 }, 1669 [C(BPU)] = { 1670 [C(OP_READ)] = { 1671 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ 1672 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */ 1673 }, 1674 [C(OP_WRITE)] = { 1675 [C(RESULT_ACCESS)] = -1, 1676 [C(RESULT_MISS)] = -1, 1677 }, 1678 [C(OP_PREFETCH)] = { 1679 [C(RESULT_ACCESS)] = -1, 1680 [C(RESULT_MISS)] = -1, 1681 }, 1682 }, 1683 }; 1684 1685 static __initconst const u64 glm_hw_cache_extra_regs 1686 [PERF_COUNT_HW_CACHE_MAX] 1687 [PERF_COUNT_HW_CACHE_OP_MAX] 1688 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1689 [C(LL)] = { 1690 [C(OP_READ)] = { 1691 [C(RESULT_ACCESS)] = GLM_DEMAND_READ| 1692 GLM_LLC_ACCESS, 1693 [C(RESULT_MISS)] = GLM_DEMAND_READ| 1694 GLM_LLC_MISS, 1695 }, 1696 [C(OP_WRITE)] = { 1697 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE| 1698 GLM_LLC_ACCESS, 1699 [C(RESULT_MISS)] = GLM_DEMAND_WRITE| 1700 GLM_LLC_MISS, 1701 }, 1702 [C(OP_PREFETCH)] = { 1703 [C(RESULT_ACCESS)] = GLM_DEMAND_PREFETCH| 1704 GLM_LLC_ACCESS, 1705 [C(RESULT_MISS)] = GLM_DEMAND_PREFETCH| 1706 GLM_LLC_MISS, 1707 }, 1708 }, 1709 }; 1710 1711 static __initconst const u64 glp_hw_cache_event_ids 1712 [PERF_COUNT_HW_CACHE_MAX] 1713 [PERF_COUNT_HW_CACHE_OP_MAX] 1714 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1715 [C(L1D)] = { 1716 [C(OP_READ)] = { 1717 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 1718 [C(RESULT_MISS)] = 0x0, 1719 }, 1720 [C(OP_WRITE)] = { 1721 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 1722 [C(RESULT_MISS)] = 0x0, 1723 }, 1724 [C(OP_PREFETCH)] = { 1725 [C(RESULT_ACCESS)] = 0x0, 1726 [C(RESULT_MISS)] = 0x0, 1727 }, 1728 }, 1729 [C(L1I)] = { 1730 [C(OP_READ)] = { 1731 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */ 1732 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */ 1733 }, 1734 [C(OP_WRITE)] = { 1735 [C(RESULT_ACCESS)] = -1, 1736 [C(RESULT_MISS)] = -1, 1737 }, 1738 [C(OP_PREFETCH)] = { 1739 [C(RESULT_ACCESS)] = 0x0, 1740 [C(RESULT_MISS)] = 0x0, 1741 }, 1742 }, 1743 [C(LL)] = { 1744 [C(OP_READ)] = { 1745 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1746 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1747 }, 1748 [C(OP_WRITE)] = { 1749 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1750 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1751 }, 1752 [C(OP_PREFETCH)] = { 1753 [C(RESULT_ACCESS)] = 0x0, 1754 [C(RESULT_MISS)] = 0x0, 1755 }, 1756 }, 1757 [C(DTLB)] = { 1758 [C(OP_READ)] = { 1759 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 1760 [C(RESULT_MISS)] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */ 1761 }, 1762 [C(OP_WRITE)] = { 1763 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 1764 [C(RESULT_MISS)] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */ 1765 }, 1766 [C(OP_PREFETCH)] = { 1767 [C(RESULT_ACCESS)] = 0x0, 1768 [C(RESULT_MISS)] = 0x0, 1769 }, 1770 }, 1771 [C(ITLB)] = { 1772 [C(OP_READ)] = { 1773 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */ 1774 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */ 1775 }, 1776 [C(OP_WRITE)] = { 1777 [C(RESULT_ACCESS)] = -1, 1778 [C(RESULT_MISS)] = -1, 1779 }, 1780 [C(OP_PREFETCH)] = { 1781 [C(RESULT_ACCESS)] = -1, 1782 [C(RESULT_MISS)] = -1, 1783 }, 1784 }, 1785 [C(BPU)] = { 1786 [C(OP_READ)] = { 1787 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ 1788 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */ 1789 }, 1790 [C(OP_WRITE)] = { 1791 [C(RESULT_ACCESS)] = -1, 1792 [C(RESULT_MISS)] = -1, 1793 }, 1794 [C(OP_PREFETCH)] = { 1795 [C(RESULT_ACCESS)] = -1, 1796 [C(RESULT_MISS)] = -1, 1797 }, 1798 }, 1799 }; 1800 1801 static __initconst const u64 glp_hw_cache_extra_regs 1802 [PERF_COUNT_HW_CACHE_MAX] 1803 [PERF_COUNT_HW_CACHE_OP_MAX] 1804 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1805 [C(LL)] = { 1806 [C(OP_READ)] = { 1807 [C(RESULT_ACCESS)] = GLM_DEMAND_READ| 1808 GLM_LLC_ACCESS, 1809 [C(RESULT_MISS)] = GLM_DEMAND_READ| 1810 GLM_LLC_MISS, 1811 }, 1812 [C(OP_WRITE)] = { 1813 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE| 1814 GLM_LLC_ACCESS, 1815 [C(RESULT_MISS)] = GLM_DEMAND_WRITE| 1816 GLM_LLC_MISS, 1817 }, 1818 [C(OP_PREFETCH)] = { 1819 [C(RESULT_ACCESS)] = 0x0, 1820 [C(RESULT_MISS)] = 0x0, 1821 }, 1822 }, 1823 }; 1824 1825 #define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */ 1826 #define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */ 1827 #define KNL_MCDRAM_LOCAL BIT_ULL(21) 1828 #define KNL_MCDRAM_FAR BIT_ULL(22) 1829 #define KNL_DDR_LOCAL BIT_ULL(23) 1830 #define KNL_DDR_FAR BIT_ULL(24) 1831 #define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \ 1832 KNL_DDR_LOCAL | KNL_DDR_FAR) 1833 #define KNL_L2_READ SLM_DMND_READ 1834 #define KNL_L2_WRITE SLM_DMND_WRITE 1835 #define KNL_L2_PREFETCH SLM_DMND_PREFETCH 1836 #define KNL_L2_ACCESS SLM_LLC_ACCESS 1837 #define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \ 1838 KNL_DRAM_ANY | SNB_SNP_ANY | \ 1839 SNB_NON_DRAM) 1840 1841 static __initconst const u64 knl_hw_cache_extra_regs 1842 [PERF_COUNT_HW_CACHE_MAX] 1843 [PERF_COUNT_HW_CACHE_OP_MAX] 1844 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1845 [C(LL)] = { 1846 [C(OP_READ)] = { 1847 [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS, 1848 [C(RESULT_MISS)] = 0, 1849 }, 1850 [C(OP_WRITE)] = { 1851 [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS, 1852 [C(RESULT_MISS)] = KNL_L2_WRITE | KNL_L2_MISS, 1853 }, 1854 [C(OP_PREFETCH)] = { 1855 [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS, 1856 [C(RESULT_MISS)] = KNL_L2_PREFETCH | KNL_L2_MISS, 1857 }, 1858 }, 1859 }; 1860 1861 /* 1862 * Used from PMIs where the LBRs are already disabled. 1863 * 1864 * This function could be called consecutively. It is required to remain in 1865 * disabled state if called consecutively. 1866 * 1867 * During consecutive calls, the same disable value will be written to related 1868 * registers, so the PMU state remains unchanged. 1869 * 1870 * intel_bts events don't coexist with intel PMU's BTS events because of 1871 * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them 1872 * disabled around intel PMU's event batching etc, only inside the PMI handler. 1873 */ 1874 static void __intel_pmu_disable_all(void) 1875 { 1876 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1877 1878 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0); 1879 1880 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) 1881 intel_pmu_disable_bts(); 1882 1883 intel_pmu_pebs_disable_all(); 1884 } 1885 1886 static void intel_pmu_disable_all(void) 1887 { 1888 __intel_pmu_disable_all(); 1889 intel_pmu_lbr_disable_all(); 1890 } 1891 1892 static void __intel_pmu_enable_all(int added, bool pmi) 1893 { 1894 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1895 1896 intel_pmu_pebs_enable_all(); 1897 intel_pmu_lbr_enable_all(pmi); 1898 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 1899 x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask); 1900 1901 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) { 1902 struct perf_event *event = 1903 cpuc->events[INTEL_PMC_IDX_FIXED_BTS]; 1904 1905 if (WARN_ON_ONCE(!event)) 1906 return; 1907 1908 intel_pmu_enable_bts(event->hw.config); 1909 } 1910 } 1911 1912 static void intel_pmu_enable_all(int added) 1913 { 1914 __intel_pmu_enable_all(added, false); 1915 } 1916 1917 /* 1918 * Workaround for: 1919 * Intel Errata AAK100 (model 26) 1920 * Intel Errata AAP53 (model 30) 1921 * Intel Errata BD53 (model 44) 1922 * 1923 * The official story: 1924 * These chips need to be 'reset' when adding counters by programming the 1925 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either 1926 * in sequence on the same PMC or on different PMCs. 1927 * 1928 * In practise it appears some of these events do in fact count, and 1929 * we need to programm all 4 events. 1930 */ 1931 static void intel_pmu_nhm_workaround(void) 1932 { 1933 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1934 static const unsigned long nhm_magic[4] = { 1935 0x4300B5, 1936 0x4300D2, 1937 0x4300B1, 1938 0x4300B1 1939 }; 1940 struct perf_event *event; 1941 int i; 1942 1943 /* 1944 * The Errata requires below steps: 1945 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL; 1946 * 2) Configure 4 PERFEVTSELx with the magic events and clear 1947 * the corresponding PMCx; 1948 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL; 1949 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL; 1950 * 5) Clear 4 pairs of ERFEVTSELx and PMCx; 1951 */ 1952 1953 /* 1954 * The real steps we choose are a little different from above. 1955 * A) To reduce MSR operations, we don't run step 1) as they 1956 * are already cleared before this function is called; 1957 * B) Call x86_perf_event_update to save PMCx before configuring 1958 * PERFEVTSELx with magic number; 1959 * C) With step 5), we do clear only when the PERFEVTSELx is 1960 * not used currently. 1961 * D) Call x86_perf_event_set_period to restore PMCx; 1962 */ 1963 1964 /* We always operate 4 pairs of PERF Counters */ 1965 for (i = 0; i < 4; i++) { 1966 event = cpuc->events[i]; 1967 if (event) 1968 x86_perf_event_update(event); 1969 } 1970 1971 for (i = 0; i < 4; i++) { 1972 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]); 1973 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0); 1974 } 1975 1976 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf); 1977 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0); 1978 1979 for (i = 0; i < 4; i++) { 1980 event = cpuc->events[i]; 1981 1982 if (event) { 1983 x86_perf_event_set_period(event); 1984 __x86_pmu_enable_event(&event->hw, 1985 ARCH_PERFMON_EVENTSEL_ENABLE); 1986 } else 1987 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0); 1988 } 1989 } 1990 1991 static void intel_pmu_nhm_enable_all(int added) 1992 { 1993 if (added) 1994 intel_pmu_nhm_workaround(); 1995 intel_pmu_enable_all(added); 1996 } 1997 1998 static inline u64 intel_pmu_get_status(void) 1999 { 2000 u64 status; 2001 2002 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); 2003 2004 return status; 2005 } 2006 2007 static inline void intel_pmu_ack_status(u64 ack) 2008 { 2009 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack); 2010 } 2011 2012 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc) 2013 { 2014 int idx = hwc->idx - INTEL_PMC_IDX_FIXED; 2015 u64 ctrl_val, mask; 2016 2017 mask = 0xfULL << (idx * 4); 2018 2019 rdmsrl(hwc->config_base, ctrl_val); 2020 ctrl_val &= ~mask; 2021 wrmsrl(hwc->config_base, ctrl_val); 2022 } 2023 2024 static inline bool event_is_checkpointed(struct perf_event *event) 2025 { 2026 return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0; 2027 } 2028 2029 static void intel_pmu_disable_event(struct perf_event *event) 2030 { 2031 struct hw_perf_event *hwc = &event->hw; 2032 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2033 2034 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) { 2035 intel_pmu_disable_bts(); 2036 intel_pmu_drain_bts_buffer(); 2037 return; 2038 } 2039 2040 cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx); 2041 cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx); 2042 cpuc->intel_cp_status &= ~(1ull << hwc->idx); 2043 2044 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) { 2045 intel_pmu_disable_fixed(hwc); 2046 return; 2047 } 2048 2049 x86_pmu_disable_event(event); 2050 2051 if (unlikely(event->attr.precise_ip)) 2052 intel_pmu_pebs_disable(event); 2053 } 2054 2055 static void intel_pmu_del_event(struct perf_event *event) 2056 { 2057 if (needs_branch_stack(event)) 2058 intel_pmu_lbr_del(event); 2059 if (event->attr.precise_ip) 2060 intel_pmu_pebs_del(event); 2061 } 2062 2063 static void intel_pmu_read_event(struct perf_event *event) 2064 { 2065 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD) 2066 intel_pmu_auto_reload_read(event); 2067 else 2068 x86_perf_event_update(event); 2069 } 2070 2071 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc) 2072 { 2073 int idx = hwc->idx - INTEL_PMC_IDX_FIXED; 2074 u64 ctrl_val, bits, mask; 2075 2076 /* 2077 * Enable IRQ generation (0x8), 2078 * and enable ring-3 counting (0x2) and ring-0 counting (0x1) 2079 * if requested: 2080 */ 2081 bits = 0x8ULL; 2082 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR) 2083 bits |= 0x2; 2084 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS) 2085 bits |= 0x1; 2086 2087 /* 2088 * ANY bit is supported in v3 and up 2089 */ 2090 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY) 2091 bits |= 0x4; 2092 2093 bits <<= (idx * 4); 2094 mask = 0xfULL << (idx * 4); 2095 2096 rdmsrl(hwc->config_base, ctrl_val); 2097 ctrl_val &= ~mask; 2098 ctrl_val |= bits; 2099 wrmsrl(hwc->config_base, ctrl_val); 2100 } 2101 2102 static void intel_pmu_enable_event(struct perf_event *event) 2103 { 2104 struct hw_perf_event *hwc = &event->hw; 2105 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2106 2107 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) { 2108 if (!__this_cpu_read(cpu_hw_events.enabled)) 2109 return; 2110 2111 intel_pmu_enable_bts(hwc->config); 2112 return; 2113 } 2114 2115 if (event->attr.exclude_host) 2116 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx); 2117 if (event->attr.exclude_guest) 2118 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx); 2119 2120 if (unlikely(event_is_checkpointed(event))) 2121 cpuc->intel_cp_status |= (1ull << hwc->idx); 2122 2123 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) { 2124 intel_pmu_enable_fixed(hwc); 2125 return; 2126 } 2127 2128 if (unlikely(event->attr.precise_ip)) 2129 intel_pmu_pebs_enable(event); 2130 2131 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); 2132 } 2133 2134 static void intel_pmu_add_event(struct perf_event *event) 2135 { 2136 if (event->attr.precise_ip) 2137 intel_pmu_pebs_add(event); 2138 if (needs_branch_stack(event)) 2139 intel_pmu_lbr_add(event); 2140 } 2141 2142 /* 2143 * Save and restart an expired event. Called by NMI contexts, 2144 * so it has to be careful about preempting normal event ops: 2145 */ 2146 int intel_pmu_save_and_restart(struct perf_event *event) 2147 { 2148 x86_perf_event_update(event); 2149 /* 2150 * For a checkpointed counter always reset back to 0. This 2151 * avoids a situation where the counter overflows, aborts the 2152 * transaction and is then set back to shortly before the 2153 * overflow, and overflows and aborts again. 2154 */ 2155 if (unlikely(event_is_checkpointed(event))) { 2156 /* No race with NMIs because the counter should not be armed */ 2157 wrmsrl(event->hw.event_base, 0); 2158 local64_set(&event->hw.prev_count, 0); 2159 } 2160 return x86_perf_event_set_period(event); 2161 } 2162 2163 static void intel_pmu_reset(void) 2164 { 2165 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds); 2166 unsigned long flags; 2167 int idx; 2168 2169 if (!x86_pmu.num_counters) 2170 return; 2171 2172 local_irq_save(flags); 2173 2174 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id()); 2175 2176 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 2177 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull); 2178 wrmsrl_safe(x86_pmu_event_addr(idx), 0ull); 2179 } 2180 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) 2181 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull); 2182 2183 if (ds) 2184 ds->bts_index = ds->bts_buffer_base; 2185 2186 /* Ack all overflows and disable fixed counters */ 2187 if (x86_pmu.version >= 2) { 2188 intel_pmu_ack_status(intel_pmu_get_status()); 2189 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0); 2190 } 2191 2192 /* Reset LBRs and LBR freezing */ 2193 if (x86_pmu.lbr_nr) { 2194 update_debugctlmsr(get_debugctlmsr() & 2195 ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR)); 2196 } 2197 2198 local_irq_restore(flags); 2199 } 2200 2201 /* 2202 * This handler is triggered by the local APIC, so the APIC IRQ handling 2203 * rules apply: 2204 */ 2205 static int intel_pmu_handle_irq(struct pt_regs *regs) 2206 { 2207 struct perf_sample_data data; 2208 struct cpu_hw_events *cpuc; 2209 int bit, loops; 2210 u64 status; 2211 int handled; 2212 int pmu_enabled; 2213 2214 cpuc = this_cpu_ptr(&cpu_hw_events); 2215 2216 /* 2217 * Save the PMU state. 2218 * It needs to be restored when leaving the handler. 2219 */ 2220 pmu_enabled = cpuc->enabled; 2221 /* 2222 * No known reason to not always do late ACK, 2223 * but just in case do it opt-in. 2224 */ 2225 if (!x86_pmu.late_ack) 2226 apic_write(APIC_LVTPC, APIC_DM_NMI); 2227 intel_bts_disable_local(); 2228 cpuc->enabled = 0; 2229 __intel_pmu_disable_all(); 2230 handled = intel_pmu_drain_bts_buffer(); 2231 handled += intel_bts_interrupt(); 2232 status = intel_pmu_get_status(); 2233 if (!status) 2234 goto done; 2235 2236 loops = 0; 2237 again: 2238 intel_pmu_lbr_read(); 2239 intel_pmu_ack_status(status); 2240 if (++loops > 100) { 2241 static bool warned = false; 2242 if (!warned) { 2243 WARN(1, "perfevents: irq loop stuck!\n"); 2244 perf_event_print_debug(); 2245 warned = true; 2246 } 2247 intel_pmu_reset(); 2248 goto done; 2249 } 2250 2251 inc_irq_stat(apic_perf_irqs); 2252 2253 2254 /* 2255 * Ignore a range of extra bits in status that do not indicate 2256 * overflow by themselves. 2257 */ 2258 status &= ~(GLOBAL_STATUS_COND_CHG | 2259 GLOBAL_STATUS_ASIF | 2260 GLOBAL_STATUS_LBRS_FROZEN); 2261 if (!status) 2262 goto done; 2263 /* 2264 * In case multiple PEBS events are sampled at the same time, 2265 * it is possible to have GLOBAL_STATUS bit 62 set indicating 2266 * PEBS buffer overflow and also seeing at most 3 PEBS counters 2267 * having their bits set in the status register. This is a sign 2268 * that there was at least one PEBS record pending at the time 2269 * of the PMU interrupt. PEBS counters must only be processed 2270 * via the drain_pebs() calls and not via the regular sample 2271 * processing loop coming after that the function, otherwise 2272 * phony regular samples may be generated in the sampling buffer 2273 * not marked with the EXACT tag. Another possibility is to have 2274 * one PEBS event and at least one non-PEBS event whic hoverflows 2275 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will 2276 * not be set, yet the overflow status bit for the PEBS counter will 2277 * be on Skylake. 2278 * 2279 * To avoid this problem, we systematically ignore the PEBS-enabled 2280 * counters from the GLOBAL_STATUS mask and we always process PEBS 2281 * events via drain_pebs(). 2282 */ 2283 status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK); 2284 2285 /* 2286 * PEBS overflow sets bit 62 in the global status register 2287 */ 2288 if (__test_and_clear_bit(62, (unsigned long *)&status)) { 2289 handled++; 2290 x86_pmu.drain_pebs(regs); 2291 status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI; 2292 } 2293 2294 /* 2295 * Intel PT 2296 */ 2297 if (__test_and_clear_bit(55, (unsigned long *)&status)) { 2298 handled++; 2299 intel_pt_interrupt(); 2300 } 2301 2302 /* 2303 * Checkpointed counters can lead to 'spurious' PMIs because the 2304 * rollback caused by the PMI will have cleared the overflow status 2305 * bit. Therefore always force probe these counters. 2306 */ 2307 status |= cpuc->intel_cp_status; 2308 2309 for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) { 2310 struct perf_event *event = cpuc->events[bit]; 2311 2312 handled++; 2313 2314 if (!test_bit(bit, cpuc->active_mask)) 2315 continue; 2316 2317 if (!intel_pmu_save_and_restart(event)) 2318 continue; 2319 2320 perf_sample_data_init(&data, 0, event->hw.last_period); 2321 2322 if (has_branch_stack(event)) 2323 data.br_stack = &cpuc->lbr_stack; 2324 2325 if (perf_event_overflow(event, &data, regs)) 2326 x86_pmu_stop(event, 0); 2327 } 2328 2329 /* 2330 * Repeat if there is more work to be done: 2331 */ 2332 status = intel_pmu_get_status(); 2333 if (status) 2334 goto again; 2335 2336 done: 2337 /* Only restore PMU state when it's active. See x86_pmu_disable(). */ 2338 cpuc->enabled = pmu_enabled; 2339 if (pmu_enabled) 2340 __intel_pmu_enable_all(0, true); 2341 intel_bts_enable_local(); 2342 2343 /* 2344 * Only unmask the NMI after the overflow counters 2345 * have been reset. This avoids spurious NMIs on 2346 * Haswell CPUs. 2347 */ 2348 if (x86_pmu.late_ack) 2349 apic_write(APIC_LVTPC, APIC_DM_NMI); 2350 return handled; 2351 } 2352 2353 static struct event_constraint * 2354 intel_bts_constraints(struct perf_event *event) 2355 { 2356 struct hw_perf_event *hwc = &event->hw; 2357 unsigned int hw_event, bts_event; 2358 2359 if (event->attr.freq) 2360 return NULL; 2361 2362 hw_event = hwc->config & INTEL_ARCH_EVENT_MASK; 2363 bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 2364 2365 if (unlikely(hw_event == bts_event && hwc->sample_period == 1)) 2366 return &bts_constraint; 2367 2368 return NULL; 2369 } 2370 2371 static int intel_alt_er(int idx, u64 config) 2372 { 2373 int alt_idx = idx; 2374 2375 if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1)) 2376 return idx; 2377 2378 if (idx == EXTRA_REG_RSP_0) 2379 alt_idx = EXTRA_REG_RSP_1; 2380 2381 if (idx == EXTRA_REG_RSP_1) 2382 alt_idx = EXTRA_REG_RSP_0; 2383 2384 if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask) 2385 return idx; 2386 2387 return alt_idx; 2388 } 2389 2390 static void intel_fixup_er(struct perf_event *event, int idx) 2391 { 2392 event->hw.extra_reg.idx = idx; 2393 2394 if (idx == EXTRA_REG_RSP_0) { 2395 event->hw.config &= ~INTEL_ARCH_EVENT_MASK; 2396 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event; 2397 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0; 2398 } else if (idx == EXTRA_REG_RSP_1) { 2399 event->hw.config &= ~INTEL_ARCH_EVENT_MASK; 2400 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event; 2401 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1; 2402 } 2403 } 2404 2405 /* 2406 * manage allocation of shared extra msr for certain events 2407 * 2408 * sharing can be: 2409 * per-cpu: to be shared between the various events on a single PMU 2410 * per-core: per-cpu + shared by HT threads 2411 */ 2412 static struct event_constraint * 2413 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc, 2414 struct perf_event *event, 2415 struct hw_perf_event_extra *reg) 2416 { 2417 struct event_constraint *c = &emptyconstraint; 2418 struct er_account *era; 2419 unsigned long flags; 2420 int idx = reg->idx; 2421 2422 /* 2423 * reg->alloc can be set due to existing state, so for fake cpuc we 2424 * need to ignore this, otherwise we might fail to allocate proper fake 2425 * state for this extra reg constraint. Also see the comment below. 2426 */ 2427 if (reg->alloc && !cpuc->is_fake) 2428 return NULL; /* call x86_get_event_constraint() */ 2429 2430 again: 2431 era = &cpuc->shared_regs->regs[idx]; 2432 /* 2433 * we use spin_lock_irqsave() to avoid lockdep issues when 2434 * passing a fake cpuc 2435 */ 2436 raw_spin_lock_irqsave(&era->lock, flags); 2437 2438 if (!atomic_read(&era->ref) || era->config == reg->config) { 2439 2440 /* 2441 * If its a fake cpuc -- as per validate_{group,event}() we 2442 * shouldn't touch event state and we can avoid doing so 2443 * since both will only call get_event_constraints() once 2444 * on each event, this avoids the need for reg->alloc. 2445 * 2446 * Not doing the ER fixup will only result in era->reg being 2447 * wrong, but since we won't actually try and program hardware 2448 * this isn't a problem either. 2449 */ 2450 if (!cpuc->is_fake) { 2451 if (idx != reg->idx) 2452 intel_fixup_er(event, idx); 2453 2454 /* 2455 * x86_schedule_events() can call get_event_constraints() 2456 * multiple times on events in the case of incremental 2457 * scheduling(). reg->alloc ensures we only do the ER 2458 * allocation once. 2459 */ 2460 reg->alloc = 1; 2461 } 2462 2463 /* lock in msr value */ 2464 era->config = reg->config; 2465 era->reg = reg->reg; 2466 2467 /* one more user */ 2468 atomic_inc(&era->ref); 2469 2470 /* 2471 * need to call x86_get_event_constraint() 2472 * to check if associated event has constraints 2473 */ 2474 c = NULL; 2475 } else { 2476 idx = intel_alt_er(idx, reg->config); 2477 if (idx != reg->idx) { 2478 raw_spin_unlock_irqrestore(&era->lock, flags); 2479 goto again; 2480 } 2481 } 2482 raw_spin_unlock_irqrestore(&era->lock, flags); 2483 2484 return c; 2485 } 2486 2487 static void 2488 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc, 2489 struct hw_perf_event_extra *reg) 2490 { 2491 struct er_account *era; 2492 2493 /* 2494 * Only put constraint if extra reg was actually allocated. Also takes 2495 * care of event which do not use an extra shared reg. 2496 * 2497 * Also, if this is a fake cpuc we shouldn't touch any event state 2498 * (reg->alloc) and we don't care about leaving inconsistent cpuc state 2499 * either since it'll be thrown out. 2500 */ 2501 if (!reg->alloc || cpuc->is_fake) 2502 return; 2503 2504 era = &cpuc->shared_regs->regs[reg->idx]; 2505 2506 /* one fewer user */ 2507 atomic_dec(&era->ref); 2508 2509 /* allocate again next time */ 2510 reg->alloc = 0; 2511 } 2512 2513 static struct event_constraint * 2514 intel_shared_regs_constraints(struct cpu_hw_events *cpuc, 2515 struct perf_event *event) 2516 { 2517 struct event_constraint *c = NULL, *d; 2518 struct hw_perf_event_extra *xreg, *breg; 2519 2520 xreg = &event->hw.extra_reg; 2521 if (xreg->idx != EXTRA_REG_NONE) { 2522 c = __intel_shared_reg_get_constraints(cpuc, event, xreg); 2523 if (c == &emptyconstraint) 2524 return c; 2525 } 2526 breg = &event->hw.branch_reg; 2527 if (breg->idx != EXTRA_REG_NONE) { 2528 d = __intel_shared_reg_get_constraints(cpuc, event, breg); 2529 if (d == &emptyconstraint) { 2530 __intel_shared_reg_put_constraints(cpuc, xreg); 2531 c = d; 2532 } 2533 } 2534 return c; 2535 } 2536 2537 struct event_constraint * 2538 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 2539 struct perf_event *event) 2540 { 2541 struct event_constraint *c; 2542 2543 if (x86_pmu.event_constraints) { 2544 for_each_event_constraint(c, x86_pmu.event_constraints) { 2545 if ((event->hw.config & c->cmask) == c->code) { 2546 event->hw.flags |= c->flags; 2547 return c; 2548 } 2549 } 2550 } 2551 2552 return &unconstrained; 2553 } 2554 2555 static struct event_constraint * 2556 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 2557 struct perf_event *event) 2558 { 2559 struct event_constraint *c; 2560 2561 c = intel_bts_constraints(event); 2562 if (c) 2563 return c; 2564 2565 c = intel_shared_regs_constraints(cpuc, event); 2566 if (c) 2567 return c; 2568 2569 c = intel_pebs_constraints(event); 2570 if (c) 2571 return c; 2572 2573 return x86_get_event_constraints(cpuc, idx, event); 2574 } 2575 2576 static void 2577 intel_start_scheduling(struct cpu_hw_events *cpuc) 2578 { 2579 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 2580 struct intel_excl_states *xl; 2581 int tid = cpuc->excl_thread_id; 2582 2583 /* 2584 * nothing needed if in group validation mode 2585 */ 2586 if (cpuc->is_fake || !is_ht_workaround_enabled()) 2587 return; 2588 2589 /* 2590 * no exclusion needed 2591 */ 2592 if (WARN_ON_ONCE(!excl_cntrs)) 2593 return; 2594 2595 xl = &excl_cntrs->states[tid]; 2596 2597 xl->sched_started = true; 2598 /* 2599 * lock shared state until we are done scheduling 2600 * in stop_event_scheduling() 2601 * makes scheduling appear as a transaction 2602 */ 2603 raw_spin_lock(&excl_cntrs->lock); 2604 } 2605 2606 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr) 2607 { 2608 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 2609 struct event_constraint *c = cpuc->event_constraint[idx]; 2610 struct intel_excl_states *xl; 2611 int tid = cpuc->excl_thread_id; 2612 2613 if (cpuc->is_fake || !is_ht_workaround_enabled()) 2614 return; 2615 2616 if (WARN_ON_ONCE(!excl_cntrs)) 2617 return; 2618 2619 if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) 2620 return; 2621 2622 xl = &excl_cntrs->states[tid]; 2623 2624 lockdep_assert_held(&excl_cntrs->lock); 2625 2626 if (c->flags & PERF_X86_EVENT_EXCL) 2627 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE; 2628 else 2629 xl->state[cntr] = INTEL_EXCL_SHARED; 2630 } 2631 2632 static void 2633 intel_stop_scheduling(struct cpu_hw_events *cpuc) 2634 { 2635 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 2636 struct intel_excl_states *xl; 2637 int tid = cpuc->excl_thread_id; 2638 2639 /* 2640 * nothing needed if in group validation mode 2641 */ 2642 if (cpuc->is_fake || !is_ht_workaround_enabled()) 2643 return; 2644 /* 2645 * no exclusion needed 2646 */ 2647 if (WARN_ON_ONCE(!excl_cntrs)) 2648 return; 2649 2650 xl = &excl_cntrs->states[tid]; 2651 2652 xl->sched_started = false; 2653 /* 2654 * release shared state lock (acquired in intel_start_scheduling()) 2655 */ 2656 raw_spin_unlock(&excl_cntrs->lock); 2657 } 2658 2659 static struct event_constraint * 2660 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event, 2661 int idx, struct event_constraint *c) 2662 { 2663 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 2664 struct intel_excl_states *xlo; 2665 int tid = cpuc->excl_thread_id; 2666 int is_excl, i; 2667 2668 /* 2669 * validating a group does not require 2670 * enforcing cross-thread exclusion 2671 */ 2672 if (cpuc->is_fake || !is_ht_workaround_enabled()) 2673 return c; 2674 2675 /* 2676 * no exclusion needed 2677 */ 2678 if (WARN_ON_ONCE(!excl_cntrs)) 2679 return c; 2680 2681 /* 2682 * because we modify the constraint, we need 2683 * to make a copy. Static constraints come 2684 * from static const tables. 2685 * 2686 * only needed when constraint has not yet 2687 * been cloned (marked dynamic) 2688 */ 2689 if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) { 2690 struct event_constraint *cx; 2691 2692 /* 2693 * grab pre-allocated constraint entry 2694 */ 2695 cx = &cpuc->constraint_list[idx]; 2696 2697 /* 2698 * initialize dynamic constraint 2699 * with static constraint 2700 */ 2701 *cx = *c; 2702 2703 /* 2704 * mark constraint as dynamic, so we 2705 * can free it later on 2706 */ 2707 cx->flags |= PERF_X86_EVENT_DYNAMIC; 2708 c = cx; 2709 } 2710 2711 /* 2712 * From here on, the constraint is dynamic. 2713 * Either it was just allocated above, or it 2714 * was allocated during a earlier invocation 2715 * of this function 2716 */ 2717 2718 /* 2719 * state of sibling HT 2720 */ 2721 xlo = &excl_cntrs->states[tid ^ 1]; 2722 2723 /* 2724 * event requires exclusive counter access 2725 * across HT threads 2726 */ 2727 is_excl = c->flags & PERF_X86_EVENT_EXCL; 2728 if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) { 2729 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT; 2730 if (!cpuc->n_excl++) 2731 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1); 2732 } 2733 2734 /* 2735 * Modify static constraint with current dynamic 2736 * state of thread 2737 * 2738 * EXCLUSIVE: sibling counter measuring exclusive event 2739 * SHARED : sibling counter measuring non-exclusive event 2740 * UNUSED : sibling counter unused 2741 */ 2742 for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) { 2743 /* 2744 * exclusive event in sibling counter 2745 * our corresponding counter cannot be used 2746 * regardless of our event 2747 */ 2748 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) 2749 __clear_bit(i, c->idxmsk); 2750 /* 2751 * if measuring an exclusive event, sibling 2752 * measuring non-exclusive, then counter cannot 2753 * be used 2754 */ 2755 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) 2756 __clear_bit(i, c->idxmsk); 2757 } 2758 2759 /* 2760 * recompute actual bit weight for scheduling algorithm 2761 */ 2762 c->weight = hweight64(c->idxmsk64); 2763 2764 /* 2765 * if we return an empty mask, then switch 2766 * back to static empty constraint to avoid 2767 * the cost of freeing later on 2768 */ 2769 if (c->weight == 0) 2770 c = &emptyconstraint; 2771 2772 return c; 2773 } 2774 2775 static struct event_constraint * 2776 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 2777 struct perf_event *event) 2778 { 2779 struct event_constraint *c1 = NULL; 2780 struct event_constraint *c2; 2781 2782 if (idx >= 0) /* fake does < 0 */ 2783 c1 = cpuc->event_constraint[idx]; 2784 2785 /* 2786 * first time only 2787 * - static constraint: no change across incremental scheduling calls 2788 * - dynamic constraint: handled by intel_get_excl_constraints() 2789 */ 2790 c2 = __intel_get_event_constraints(cpuc, idx, event); 2791 if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) { 2792 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX); 2793 c1->weight = c2->weight; 2794 c2 = c1; 2795 } 2796 2797 if (cpuc->excl_cntrs) 2798 return intel_get_excl_constraints(cpuc, event, idx, c2); 2799 2800 return c2; 2801 } 2802 2803 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc, 2804 struct perf_event *event) 2805 { 2806 struct hw_perf_event *hwc = &event->hw; 2807 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 2808 int tid = cpuc->excl_thread_id; 2809 struct intel_excl_states *xl; 2810 2811 /* 2812 * nothing needed if in group validation mode 2813 */ 2814 if (cpuc->is_fake) 2815 return; 2816 2817 if (WARN_ON_ONCE(!excl_cntrs)) 2818 return; 2819 2820 if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) { 2821 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT; 2822 if (!--cpuc->n_excl) 2823 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0); 2824 } 2825 2826 /* 2827 * If event was actually assigned, then mark the counter state as 2828 * unused now. 2829 */ 2830 if (hwc->idx >= 0) { 2831 xl = &excl_cntrs->states[tid]; 2832 2833 /* 2834 * put_constraint may be called from x86_schedule_events() 2835 * which already has the lock held so here make locking 2836 * conditional. 2837 */ 2838 if (!xl->sched_started) 2839 raw_spin_lock(&excl_cntrs->lock); 2840 2841 xl->state[hwc->idx] = INTEL_EXCL_UNUSED; 2842 2843 if (!xl->sched_started) 2844 raw_spin_unlock(&excl_cntrs->lock); 2845 } 2846 } 2847 2848 static void 2849 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc, 2850 struct perf_event *event) 2851 { 2852 struct hw_perf_event_extra *reg; 2853 2854 reg = &event->hw.extra_reg; 2855 if (reg->idx != EXTRA_REG_NONE) 2856 __intel_shared_reg_put_constraints(cpuc, reg); 2857 2858 reg = &event->hw.branch_reg; 2859 if (reg->idx != EXTRA_REG_NONE) 2860 __intel_shared_reg_put_constraints(cpuc, reg); 2861 } 2862 2863 static void intel_put_event_constraints(struct cpu_hw_events *cpuc, 2864 struct perf_event *event) 2865 { 2866 intel_put_shared_regs_event_constraints(cpuc, event); 2867 2868 /* 2869 * is PMU has exclusive counter restrictions, then 2870 * all events are subject to and must call the 2871 * put_excl_constraints() routine 2872 */ 2873 if (cpuc->excl_cntrs) 2874 intel_put_excl_constraints(cpuc, event); 2875 } 2876 2877 static void intel_pebs_aliases_core2(struct perf_event *event) 2878 { 2879 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) { 2880 /* 2881 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P 2882 * (0x003c) so that we can use it with PEBS. 2883 * 2884 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't 2885 * PEBS capable. However we can use INST_RETIRED.ANY_P 2886 * (0x00c0), which is a PEBS capable event, to get the same 2887 * count. 2888 * 2889 * INST_RETIRED.ANY_P counts the number of cycles that retires 2890 * CNTMASK instructions. By setting CNTMASK to a value (16) 2891 * larger than the maximum number of instructions that can be 2892 * retired per cycle (4) and then inverting the condition, we 2893 * count all cycles that retire 16 or less instructions, which 2894 * is every cycle. 2895 * 2896 * Thereby we gain a PEBS capable cycle counter. 2897 */ 2898 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16); 2899 2900 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK); 2901 event->hw.config = alt_config; 2902 } 2903 } 2904 2905 static void intel_pebs_aliases_snb(struct perf_event *event) 2906 { 2907 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) { 2908 /* 2909 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P 2910 * (0x003c) so that we can use it with PEBS. 2911 * 2912 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't 2913 * PEBS capable. However we can use UOPS_RETIRED.ALL 2914 * (0x01c2), which is a PEBS capable event, to get the same 2915 * count. 2916 * 2917 * UOPS_RETIRED.ALL counts the number of cycles that retires 2918 * CNTMASK micro-ops. By setting CNTMASK to a value (16) 2919 * larger than the maximum number of micro-ops that can be 2920 * retired per cycle (4) and then inverting the condition, we 2921 * count all cycles that retire 16 or less micro-ops, which 2922 * is every cycle. 2923 * 2924 * Thereby we gain a PEBS capable cycle counter. 2925 */ 2926 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16); 2927 2928 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK); 2929 event->hw.config = alt_config; 2930 } 2931 } 2932 2933 static void intel_pebs_aliases_precdist(struct perf_event *event) 2934 { 2935 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) { 2936 /* 2937 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P 2938 * (0x003c) so that we can use it with PEBS. 2939 * 2940 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't 2941 * PEBS capable. However we can use INST_RETIRED.PREC_DIST 2942 * (0x01c0), which is a PEBS capable event, to get the same 2943 * count. 2944 * 2945 * The PREC_DIST event has special support to minimize sample 2946 * shadowing effects. One drawback is that it can be 2947 * only programmed on counter 1, but that seems like an 2948 * acceptable trade off. 2949 */ 2950 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16); 2951 2952 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK); 2953 event->hw.config = alt_config; 2954 } 2955 } 2956 2957 static void intel_pebs_aliases_ivb(struct perf_event *event) 2958 { 2959 if (event->attr.precise_ip < 3) 2960 return intel_pebs_aliases_snb(event); 2961 return intel_pebs_aliases_precdist(event); 2962 } 2963 2964 static void intel_pebs_aliases_skl(struct perf_event *event) 2965 { 2966 if (event->attr.precise_ip < 3) 2967 return intel_pebs_aliases_core2(event); 2968 return intel_pebs_aliases_precdist(event); 2969 } 2970 2971 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event) 2972 { 2973 unsigned long flags = x86_pmu.large_pebs_flags; 2974 2975 if (event->attr.use_clockid) 2976 flags &= ~PERF_SAMPLE_TIME; 2977 if (!event->attr.exclude_kernel) 2978 flags &= ~PERF_SAMPLE_REGS_USER; 2979 if (event->attr.sample_regs_user & ~PEBS_REGS) 2980 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR); 2981 return flags; 2982 } 2983 2984 static int intel_pmu_hw_config(struct perf_event *event) 2985 { 2986 int ret = x86_pmu_hw_config(event); 2987 2988 if (ret) 2989 return ret; 2990 2991 if (event->attr.precise_ip) { 2992 if (!event->attr.freq) { 2993 event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD; 2994 if (!(event->attr.sample_type & 2995 ~intel_pmu_large_pebs_flags(event))) 2996 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS; 2997 } 2998 if (x86_pmu.pebs_aliases) 2999 x86_pmu.pebs_aliases(event); 3000 3001 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 3002 event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY; 3003 } 3004 3005 if (needs_branch_stack(event)) { 3006 ret = intel_pmu_setup_lbr_filter(event); 3007 if (ret) 3008 return ret; 3009 3010 /* 3011 * BTS is set up earlier in this path, so don't account twice 3012 */ 3013 if (!intel_pmu_has_bts(event)) { 3014 /* disallow lbr if conflicting events are present */ 3015 if (x86_add_exclusive(x86_lbr_exclusive_lbr)) 3016 return -EBUSY; 3017 3018 event->destroy = hw_perf_lbr_event_destroy; 3019 } 3020 } 3021 3022 if (event->attr.type != PERF_TYPE_RAW) 3023 return 0; 3024 3025 if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY)) 3026 return 0; 3027 3028 if (x86_pmu.version < 3) 3029 return -EINVAL; 3030 3031 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3032 return -EACCES; 3033 3034 event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY; 3035 3036 return 0; 3037 } 3038 3039 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr) 3040 { 3041 if (x86_pmu.guest_get_msrs) 3042 return x86_pmu.guest_get_msrs(nr); 3043 *nr = 0; 3044 return NULL; 3045 } 3046 EXPORT_SYMBOL_GPL(perf_guest_get_msrs); 3047 3048 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr) 3049 { 3050 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 3051 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs; 3052 3053 arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL; 3054 arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask; 3055 arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask; 3056 /* 3057 * If PMU counter has PEBS enabled it is not enough to disable counter 3058 * on a guest entry since PEBS memory write can overshoot guest entry 3059 * and corrupt guest memory. Disabling PEBS solves the problem. 3060 */ 3061 arr[1].msr = MSR_IA32_PEBS_ENABLE; 3062 arr[1].host = cpuc->pebs_enabled; 3063 arr[1].guest = 0; 3064 3065 *nr = 2; 3066 return arr; 3067 } 3068 3069 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr) 3070 { 3071 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 3072 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs; 3073 int idx; 3074 3075 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 3076 struct perf_event *event = cpuc->events[idx]; 3077 3078 arr[idx].msr = x86_pmu_config_addr(idx); 3079 arr[idx].host = arr[idx].guest = 0; 3080 3081 if (!test_bit(idx, cpuc->active_mask)) 3082 continue; 3083 3084 arr[idx].host = arr[idx].guest = 3085 event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE; 3086 3087 if (event->attr.exclude_host) 3088 arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE; 3089 else if (event->attr.exclude_guest) 3090 arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE; 3091 } 3092 3093 *nr = x86_pmu.num_counters; 3094 return arr; 3095 } 3096 3097 static void core_pmu_enable_event(struct perf_event *event) 3098 { 3099 if (!event->attr.exclude_host) 3100 x86_pmu_enable_event(event); 3101 } 3102 3103 static void core_pmu_enable_all(int added) 3104 { 3105 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 3106 int idx; 3107 3108 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 3109 struct hw_perf_event *hwc = &cpuc->events[idx]->hw; 3110 3111 if (!test_bit(idx, cpuc->active_mask) || 3112 cpuc->events[idx]->attr.exclude_host) 3113 continue; 3114 3115 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); 3116 } 3117 } 3118 3119 static int hsw_hw_config(struct perf_event *event) 3120 { 3121 int ret = intel_pmu_hw_config(event); 3122 3123 if (ret) 3124 return ret; 3125 if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE)) 3126 return 0; 3127 event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED); 3128 3129 /* 3130 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with 3131 * PEBS or in ANY thread mode. Since the results are non-sensical forbid 3132 * this combination. 3133 */ 3134 if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) && 3135 ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) || 3136 event->attr.precise_ip > 0)) 3137 return -EOPNOTSUPP; 3138 3139 if (event_is_checkpointed(event)) { 3140 /* 3141 * Sampling of checkpointed events can cause situations where 3142 * the CPU constantly aborts because of a overflow, which is 3143 * then checkpointed back and ignored. Forbid checkpointing 3144 * for sampling. 3145 * 3146 * But still allow a long sampling period, so that perf stat 3147 * from KVM works. 3148 */ 3149 if (event->attr.sample_period > 0 && 3150 event->attr.sample_period < 0x7fffffff) 3151 return -EOPNOTSUPP; 3152 } 3153 return 0; 3154 } 3155 3156 static struct event_constraint counter0_constraint = 3157 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1); 3158 3159 static struct event_constraint counter2_constraint = 3160 EVENT_CONSTRAINT(0, 0x4, 0); 3161 3162 static struct event_constraint * 3163 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 3164 struct perf_event *event) 3165 { 3166 struct event_constraint *c; 3167 3168 c = intel_get_event_constraints(cpuc, idx, event); 3169 3170 /* Handle special quirk on in_tx_checkpointed only in counter 2 */ 3171 if (event->hw.config & HSW_IN_TX_CHECKPOINTED) { 3172 if (c->idxmsk64 & (1U << 2)) 3173 return &counter2_constraint; 3174 return &emptyconstraint; 3175 } 3176 3177 return c; 3178 } 3179 3180 static struct event_constraint * 3181 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 3182 struct perf_event *event) 3183 { 3184 struct event_constraint *c; 3185 3186 /* :ppp means to do reduced skid PEBS which is PMC0 only. */ 3187 if (event->attr.precise_ip == 3) 3188 return &counter0_constraint; 3189 3190 c = intel_get_event_constraints(cpuc, idx, event); 3191 3192 return c; 3193 } 3194 3195 /* 3196 * Broadwell: 3197 * 3198 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared 3199 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine 3200 * the two to enforce a minimum period of 128 (the smallest value that has bits 3201 * 0-5 cleared and >= 100). 3202 * 3203 * Because of how the code in x86_perf_event_set_period() works, the truncation 3204 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period 3205 * to make up for the 'lost' events due to carrying the 'error' in period_left. 3206 * 3207 * Therefore the effective (average) period matches the requested period, 3208 * despite coarser hardware granularity. 3209 */ 3210 static u64 bdw_limit_period(struct perf_event *event, u64 left) 3211 { 3212 if ((event->hw.config & INTEL_ARCH_EVENT_MASK) == 3213 X86_CONFIG(.event=0xc0, .umask=0x01)) { 3214 if (left < 128) 3215 left = 128; 3216 left &= ~0x3fULL; 3217 } 3218 return left; 3219 } 3220 3221 PMU_FORMAT_ATTR(event, "config:0-7" ); 3222 PMU_FORMAT_ATTR(umask, "config:8-15" ); 3223 PMU_FORMAT_ATTR(edge, "config:18" ); 3224 PMU_FORMAT_ATTR(pc, "config:19" ); 3225 PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */ 3226 PMU_FORMAT_ATTR(inv, "config:23" ); 3227 PMU_FORMAT_ATTR(cmask, "config:24-31" ); 3228 PMU_FORMAT_ATTR(in_tx, "config:32"); 3229 PMU_FORMAT_ATTR(in_tx_cp, "config:33"); 3230 3231 static struct attribute *intel_arch_formats_attr[] = { 3232 &format_attr_event.attr, 3233 &format_attr_umask.attr, 3234 &format_attr_edge.attr, 3235 &format_attr_pc.attr, 3236 &format_attr_inv.attr, 3237 &format_attr_cmask.attr, 3238 NULL, 3239 }; 3240 3241 ssize_t intel_event_sysfs_show(char *page, u64 config) 3242 { 3243 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT); 3244 3245 return x86_event_sysfs_show(page, config, event); 3246 } 3247 3248 struct intel_shared_regs *allocate_shared_regs(int cpu) 3249 { 3250 struct intel_shared_regs *regs; 3251 int i; 3252 3253 regs = kzalloc_node(sizeof(struct intel_shared_regs), 3254 GFP_KERNEL, cpu_to_node(cpu)); 3255 if (regs) { 3256 /* 3257 * initialize the locks to keep lockdep happy 3258 */ 3259 for (i = 0; i < EXTRA_REG_MAX; i++) 3260 raw_spin_lock_init(®s->regs[i].lock); 3261 3262 regs->core_id = -1; 3263 } 3264 return regs; 3265 } 3266 3267 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu) 3268 { 3269 struct intel_excl_cntrs *c; 3270 3271 c = kzalloc_node(sizeof(struct intel_excl_cntrs), 3272 GFP_KERNEL, cpu_to_node(cpu)); 3273 if (c) { 3274 raw_spin_lock_init(&c->lock); 3275 c->core_id = -1; 3276 } 3277 return c; 3278 } 3279 3280 static int intel_pmu_cpu_prepare(int cpu) 3281 { 3282 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 3283 3284 if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) { 3285 cpuc->shared_regs = allocate_shared_regs(cpu); 3286 if (!cpuc->shared_regs) 3287 goto err; 3288 } 3289 3290 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) { 3291 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint); 3292 3293 cpuc->constraint_list = kzalloc(sz, GFP_KERNEL); 3294 if (!cpuc->constraint_list) 3295 goto err_shared_regs; 3296 3297 cpuc->excl_cntrs = allocate_excl_cntrs(cpu); 3298 if (!cpuc->excl_cntrs) 3299 goto err_constraint_list; 3300 3301 cpuc->excl_thread_id = 0; 3302 } 3303 3304 return 0; 3305 3306 err_constraint_list: 3307 kfree(cpuc->constraint_list); 3308 cpuc->constraint_list = NULL; 3309 3310 err_shared_regs: 3311 kfree(cpuc->shared_regs); 3312 cpuc->shared_regs = NULL; 3313 3314 err: 3315 return -ENOMEM; 3316 } 3317 3318 static void flip_smm_bit(void *data) 3319 { 3320 unsigned long set = *(unsigned long *)data; 3321 3322 if (set > 0) { 3323 msr_set_bit(MSR_IA32_DEBUGCTLMSR, 3324 DEBUGCTLMSR_FREEZE_IN_SMM_BIT); 3325 } else { 3326 msr_clear_bit(MSR_IA32_DEBUGCTLMSR, 3327 DEBUGCTLMSR_FREEZE_IN_SMM_BIT); 3328 } 3329 } 3330 3331 static void intel_pmu_cpu_starting(int cpu) 3332 { 3333 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 3334 int core_id = topology_core_id(cpu); 3335 int i; 3336 3337 init_debug_store_on_cpu(cpu); 3338 /* 3339 * Deal with CPUs that don't clear their LBRs on power-up. 3340 */ 3341 intel_pmu_lbr_reset(); 3342 3343 cpuc->lbr_sel = NULL; 3344 3345 if (x86_pmu.version > 1) 3346 flip_smm_bit(&x86_pmu.attr_freeze_on_smi); 3347 3348 if (!cpuc->shared_regs) 3349 return; 3350 3351 if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) { 3352 for_each_cpu(i, topology_sibling_cpumask(cpu)) { 3353 struct intel_shared_regs *pc; 3354 3355 pc = per_cpu(cpu_hw_events, i).shared_regs; 3356 if (pc && pc->core_id == core_id) { 3357 cpuc->kfree_on_online[0] = cpuc->shared_regs; 3358 cpuc->shared_regs = pc; 3359 break; 3360 } 3361 } 3362 cpuc->shared_regs->core_id = core_id; 3363 cpuc->shared_regs->refcnt++; 3364 } 3365 3366 if (x86_pmu.lbr_sel_map) 3367 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR]; 3368 3369 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) { 3370 for_each_cpu(i, topology_sibling_cpumask(cpu)) { 3371 struct cpu_hw_events *sibling; 3372 struct intel_excl_cntrs *c; 3373 3374 sibling = &per_cpu(cpu_hw_events, i); 3375 c = sibling->excl_cntrs; 3376 if (c && c->core_id == core_id) { 3377 cpuc->kfree_on_online[1] = cpuc->excl_cntrs; 3378 cpuc->excl_cntrs = c; 3379 if (!sibling->excl_thread_id) 3380 cpuc->excl_thread_id = 1; 3381 break; 3382 } 3383 } 3384 cpuc->excl_cntrs->core_id = core_id; 3385 cpuc->excl_cntrs->refcnt++; 3386 } 3387 } 3388 3389 static void free_excl_cntrs(int cpu) 3390 { 3391 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 3392 struct intel_excl_cntrs *c; 3393 3394 c = cpuc->excl_cntrs; 3395 if (c) { 3396 if (c->core_id == -1 || --c->refcnt == 0) 3397 kfree(c); 3398 cpuc->excl_cntrs = NULL; 3399 kfree(cpuc->constraint_list); 3400 cpuc->constraint_list = NULL; 3401 } 3402 } 3403 3404 static void intel_pmu_cpu_dying(int cpu) 3405 { 3406 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 3407 struct intel_shared_regs *pc; 3408 3409 pc = cpuc->shared_regs; 3410 if (pc) { 3411 if (pc->core_id == -1 || --pc->refcnt == 0) 3412 kfree(pc); 3413 cpuc->shared_regs = NULL; 3414 } 3415 3416 free_excl_cntrs(cpu); 3417 3418 fini_debug_store_on_cpu(cpu); 3419 } 3420 3421 static void intel_pmu_sched_task(struct perf_event_context *ctx, 3422 bool sched_in) 3423 { 3424 intel_pmu_pebs_sched_task(ctx, sched_in); 3425 intel_pmu_lbr_sched_task(ctx, sched_in); 3426 } 3427 3428 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63"); 3429 3430 PMU_FORMAT_ATTR(ldlat, "config1:0-15"); 3431 3432 PMU_FORMAT_ATTR(frontend, "config1:0-23"); 3433 3434 static struct attribute *intel_arch3_formats_attr[] = { 3435 &format_attr_event.attr, 3436 &format_attr_umask.attr, 3437 &format_attr_edge.attr, 3438 &format_attr_pc.attr, 3439 &format_attr_any.attr, 3440 &format_attr_inv.attr, 3441 &format_attr_cmask.attr, 3442 NULL, 3443 }; 3444 3445 static struct attribute *hsw_format_attr[] = { 3446 &format_attr_in_tx.attr, 3447 &format_attr_in_tx_cp.attr, 3448 &format_attr_offcore_rsp.attr, 3449 &format_attr_ldlat.attr, 3450 NULL 3451 }; 3452 3453 static struct attribute *nhm_format_attr[] = { 3454 &format_attr_offcore_rsp.attr, 3455 &format_attr_ldlat.attr, 3456 NULL 3457 }; 3458 3459 static struct attribute *slm_format_attr[] = { 3460 &format_attr_offcore_rsp.attr, 3461 NULL 3462 }; 3463 3464 static struct attribute *skl_format_attr[] = { 3465 &format_attr_frontend.attr, 3466 NULL, 3467 }; 3468 3469 static __initconst const struct x86_pmu core_pmu = { 3470 .name = "core", 3471 .handle_irq = x86_pmu_handle_irq, 3472 .disable_all = x86_pmu_disable_all, 3473 .enable_all = core_pmu_enable_all, 3474 .enable = core_pmu_enable_event, 3475 .disable = x86_pmu_disable_event, 3476 .hw_config = x86_pmu_hw_config, 3477 .schedule_events = x86_schedule_events, 3478 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0, 3479 .perfctr = MSR_ARCH_PERFMON_PERFCTR0, 3480 .event_map = intel_pmu_event_map, 3481 .max_events = ARRAY_SIZE(intel_perfmon_event_map), 3482 .apic = 1, 3483 .large_pebs_flags = LARGE_PEBS_FLAGS, 3484 3485 /* 3486 * Intel PMCs cannot be accessed sanely above 32-bit width, 3487 * so we install an artificial 1<<31 period regardless of 3488 * the generic event period: 3489 */ 3490 .max_period = (1ULL<<31) - 1, 3491 .get_event_constraints = intel_get_event_constraints, 3492 .put_event_constraints = intel_put_event_constraints, 3493 .event_constraints = intel_core_event_constraints, 3494 .guest_get_msrs = core_guest_get_msrs, 3495 .format_attrs = intel_arch_formats_attr, 3496 .events_sysfs_show = intel_event_sysfs_show, 3497 3498 /* 3499 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs 3500 * together with PMU version 1 and thus be using core_pmu with 3501 * shared_regs. We need following callbacks here to allocate 3502 * it properly. 3503 */ 3504 .cpu_prepare = intel_pmu_cpu_prepare, 3505 .cpu_starting = intel_pmu_cpu_starting, 3506 .cpu_dying = intel_pmu_cpu_dying, 3507 }; 3508 3509 static struct attribute *intel_pmu_attrs[]; 3510 3511 static __initconst const struct x86_pmu intel_pmu = { 3512 .name = "Intel", 3513 .handle_irq = intel_pmu_handle_irq, 3514 .disable_all = intel_pmu_disable_all, 3515 .enable_all = intel_pmu_enable_all, 3516 .enable = intel_pmu_enable_event, 3517 .disable = intel_pmu_disable_event, 3518 .add = intel_pmu_add_event, 3519 .del = intel_pmu_del_event, 3520 .read = intel_pmu_read_event, 3521 .hw_config = intel_pmu_hw_config, 3522 .schedule_events = x86_schedule_events, 3523 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0, 3524 .perfctr = MSR_ARCH_PERFMON_PERFCTR0, 3525 .event_map = intel_pmu_event_map, 3526 .max_events = ARRAY_SIZE(intel_perfmon_event_map), 3527 .apic = 1, 3528 .large_pebs_flags = LARGE_PEBS_FLAGS, 3529 /* 3530 * Intel PMCs cannot be accessed sanely above 32 bit width, 3531 * so we install an artificial 1<<31 period regardless of 3532 * the generic event period: 3533 */ 3534 .max_period = (1ULL << 31) - 1, 3535 .get_event_constraints = intel_get_event_constraints, 3536 .put_event_constraints = intel_put_event_constraints, 3537 .pebs_aliases = intel_pebs_aliases_core2, 3538 3539 .format_attrs = intel_arch3_formats_attr, 3540 .events_sysfs_show = intel_event_sysfs_show, 3541 3542 .attrs = intel_pmu_attrs, 3543 3544 .cpu_prepare = intel_pmu_cpu_prepare, 3545 .cpu_starting = intel_pmu_cpu_starting, 3546 .cpu_dying = intel_pmu_cpu_dying, 3547 .guest_get_msrs = intel_guest_get_msrs, 3548 .sched_task = intel_pmu_sched_task, 3549 }; 3550 3551 static __init void intel_clovertown_quirk(void) 3552 { 3553 /* 3554 * PEBS is unreliable due to: 3555 * 3556 * AJ67 - PEBS may experience CPL leaks 3557 * AJ68 - PEBS PMI may be delayed by one event 3558 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12] 3559 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS 3560 * 3561 * AJ67 could be worked around by restricting the OS/USR flags. 3562 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI. 3563 * 3564 * AJ106 could possibly be worked around by not allowing LBR 3565 * usage from PEBS, including the fixup. 3566 * AJ68 could possibly be worked around by always programming 3567 * a pebs_event_reset[0] value and coping with the lost events. 3568 * 3569 * But taken together it might just make sense to not enable PEBS on 3570 * these chips. 3571 */ 3572 pr_warn("PEBS disabled due to CPU errata\n"); 3573 x86_pmu.pebs = 0; 3574 x86_pmu.pebs_constraints = NULL; 3575 } 3576 3577 static int intel_snb_pebs_broken(int cpu) 3578 { 3579 u32 rev = UINT_MAX; /* default to broken for unknown models */ 3580 3581 switch (cpu_data(cpu).x86_model) { 3582 case INTEL_FAM6_SANDYBRIDGE: 3583 rev = 0x28; 3584 break; 3585 3586 case INTEL_FAM6_SANDYBRIDGE_X: 3587 switch (cpu_data(cpu).x86_stepping) { 3588 case 6: rev = 0x618; break; 3589 case 7: rev = 0x70c; break; 3590 } 3591 } 3592 3593 return (cpu_data(cpu).microcode < rev); 3594 } 3595 3596 static void intel_snb_check_microcode(void) 3597 { 3598 int pebs_broken = 0; 3599 int cpu; 3600 3601 for_each_online_cpu(cpu) { 3602 if ((pebs_broken = intel_snb_pebs_broken(cpu))) 3603 break; 3604 } 3605 3606 if (pebs_broken == x86_pmu.pebs_broken) 3607 return; 3608 3609 /* 3610 * Serialized by the microcode lock.. 3611 */ 3612 if (x86_pmu.pebs_broken) { 3613 pr_info("PEBS enabled due to microcode update\n"); 3614 x86_pmu.pebs_broken = 0; 3615 } else { 3616 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n"); 3617 x86_pmu.pebs_broken = 1; 3618 } 3619 } 3620 3621 static bool is_lbr_from(unsigned long msr) 3622 { 3623 unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr; 3624 3625 return x86_pmu.lbr_from <= msr && msr < lbr_from_nr; 3626 } 3627 3628 /* 3629 * Under certain circumstances, access certain MSR may cause #GP. 3630 * The function tests if the input MSR can be safely accessed. 3631 */ 3632 static bool check_msr(unsigned long msr, u64 mask) 3633 { 3634 u64 val_old, val_new, val_tmp; 3635 3636 /* 3637 * Read the current value, change it and read it back to see if it 3638 * matches, this is needed to detect certain hardware emulators 3639 * (qemu/kvm) that don't trap on the MSR access and always return 0s. 3640 */ 3641 if (rdmsrl_safe(msr, &val_old)) 3642 return false; 3643 3644 /* 3645 * Only change the bits which can be updated by wrmsrl. 3646 */ 3647 val_tmp = val_old ^ mask; 3648 3649 if (is_lbr_from(msr)) 3650 val_tmp = lbr_from_signext_quirk_wr(val_tmp); 3651 3652 if (wrmsrl_safe(msr, val_tmp) || 3653 rdmsrl_safe(msr, &val_new)) 3654 return false; 3655 3656 /* 3657 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value 3658 * should equal rdmsrl()'s even with the quirk. 3659 */ 3660 if (val_new != val_tmp) 3661 return false; 3662 3663 if (is_lbr_from(msr)) 3664 val_old = lbr_from_signext_quirk_wr(val_old); 3665 3666 /* Here it's sure that the MSR can be safely accessed. 3667 * Restore the old value and return. 3668 */ 3669 wrmsrl(msr, val_old); 3670 3671 return true; 3672 } 3673 3674 static __init void intel_sandybridge_quirk(void) 3675 { 3676 x86_pmu.check_microcode = intel_snb_check_microcode; 3677 cpus_read_lock(); 3678 intel_snb_check_microcode(); 3679 cpus_read_unlock(); 3680 } 3681 3682 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = { 3683 { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" }, 3684 { PERF_COUNT_HW_INSTRUCTIONS, "instructions" }, 3685 { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" }, 3686 { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" }, 3687 { PERF_COUNT_HW_CACHE_MISSES, "cache misses" }, 3688 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" }, 3689 { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" }, 3690 }; 3691 3692 static __init void intel_arch_events_quirk(void) 3693 { 3694 int bit; 3695 3696 /* disable event that reported as not presend by cpuid */ 3697 for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) { 3698 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0; 3699 pr_warn("CPUID marked event: \'%s\' unavailable\n", 3700 intel_arch_events_map[bit].name); 3701 } 3702 } 3703 3704 static __init void intel_nehalem_quirk(void) 3705 { 3706 union cpuid10_ebx ebx; 3707 3708 ebx.full = x86_pmu.events_maskl; 3709 if (ebx.split.no_branch_misses_retired) { 3710 /* 3711 * Erratum AAJ80 detected, we work it around by using 3712 * the BR_MISP_EXEC.ANY event. This will over-count 3713 * branch-misses, but it's still much better than the 3714 * architectural event which is often completely bogus: 3715 */ 3716 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89; 3717 ebx.split.no_branch_misses_retired = 0; 3718 x86_pmu.events_maskl = ebx.full; 3719 pr_info("CPU erratum AAJ80 worked around\n"); 3720 } 3721 } 3722 3723 /* 3724 * enable software workaround for errata: 3725 * SNB: BJ122 3726 * IVB: BV98 3727 * HSW: HSD29 3728 * 3729 * Only needed when HT is enabled. However detecting 3730 * if HT is enabled is difficult (model specific). So instead, 3731 * we enable the workaround in the early boot, and verify if 3732 * it is needed in a later initcall phase once we have valid 3733 * topology information to check if HT is actually enabled 3734 */ 3735 static __init void intel_ht_bug(void) 3736 { 3737 x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED; 3738 3739 x86_pmu.start_scheduling = intel_start_scheduling; 3740 x86_pmu.commit_scheduling = intel_commit_scheduling; 3741 x86_pmu.stop_scheduling = intel_stop_scheduling; 3742 } 3743 3744 EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3"); 3745 EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82") 3746 3747 /* Haswell special events */ 3748 EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1"); 3749 EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2"); 3750 EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4"); 3751 EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2"); 3752 EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1"); 3753 EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1"); 3754 EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2"); 3755 EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4"); 3756 EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2"); 3757 EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1"); 3758 EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1"); 3759 EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1"); 3760 3761 static struct attribute *hsw_events_attrs[] = { 3762 EVENT_PTR(mem_ld_hsw), 3763 EVENT_PTR(mem_st_hsw), 3764 EVENT_PTR(td_slots_issued), 3765 EVENT_PTR(td_slots_retired), 3766 EVENT_PTR(td_fetch_bubbles), 3767 EVENT_PTR(td_total_slots), 3768 EVENT_PTR(td_total_slots_scale), 3769 EVENT_PTR(td_recovery_bubbles), 3770 EVENT_PTR(td_recovery_bubbles_scale), 3771 NULL 3772 }; 3773 3774 static struct attribute *hsw_tsx_events_attrs[] = { 3775 EVENT_PTR(tx_start), 3776 EVENT_PTR(tx_commit), 3777 EVENT_PTR(tx_abort), 3778 EVENT_PTR(tx_capacity), 3779 EVENT_PTR(tx_conflict), 3780 EVENT_PTR(el_start), 3781 EVENT_PTR(el_commit), 3782 EVENT_PTR(el_abort), 3783 EVENT_PTR(el_capacity), 3784 EVENT_PTR(el_conflict), 3785 EVENT_PTR(cycles_t), 3786 EVENT_PTR(cycles_ct), 3787 NULL 3788 }; 3789 3790 static __init struct attribute **get_hsw_events_attrs(void) 3791 { 3792 return boot_cpu_has(X86_FEATURE_RTM) ? 3793 merge_attr(hsw_events_attrs, hsw_tsx_events_attrs) : 3794 hsw_events_attrs; 3795 } 3796 3797 static ssize_t freeze_on_smi_show(struct device *cdev, 3798 struct device_attribute *attr, 3799 char *buf) 3800 { 3801 return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi); 3802 } 3803 3804 static DEFINE_MUTEX(freeze_on_smi_mutex); 3805 3806 static ssize_t freeze_on_smi_store(struct device *cdev, 3807 struct device_attribute *attr, 3808 const char *buf, size_t count) 3809 { 3810 unsigned long val; 3811 ssize_t ret; 3812 3813 ret = kstrtoul(buf, 0, &val); 3814 if (ret) 3815 return ret; 3816 3817 if (val > 1) 3818 return -EINVAL; 3819 3820 mutex_lock(&freeze_on_smi_mutex); 3821 3822 if (x86_pmu.attr_freeze_on_smi == val) 3823 goto done; 3824 3825 x86_pmu.attr_freeze_on_smi = val; 3826 3827 get_online_cpus(); 3828 on_each_cpu(flip_smm_bit, &val, 1); 3829 put_online_cpus(); 3830 done: 3831 mutex_unlock(&freeze_on_smi_mutex); 3832 3833 return count; 3834 } 3835 3836 static DEVICE_ATTR_RW(freeze_on_smi); 3837 3838 static ssize_t branches_show(struct device *cdev, 3839 struct device_attribute *attr, 3840 char *buf) 3841 { 3842 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr); 3843 } 3844 3845 static DEVICE_ATTR_RO(branches); 3846 3847 static struct attribute *lbr_attrs[] = { 3848 &dev_attr_branches.attr, 3849 NULL 3850 }; 3851 3852 static char pmu_name_str[30]; 3853 3854 static ssize_t pmu_name_show(struct device *cdev, 3855 struct device_attribute *attr, 3856 char *buf) 3857 { 3858 return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str); 3859 } 3860 3861 static DEVICE_ATTR_RO(pmu_name); 3862 3863 static struct attribute *intel_pmu_caps_attrs[] = { 3864 &dev_attr_pmu_name.attr, 3865 NULL 3866 }; 3867 3868 static struct attribute *intel_pmu_attrs[] = { 3869 &dev_attr_freeze_on_smi.attr, 3870 NULL, 3871 }; 3872 3873 __init int intel_pmu_init(void) 3874 { 3875 struct attribute **extra_attr = NULL; 3876 struct attribute **to_free = NULL; 3877 union cpuid10_edx edx; 3878 union cpuid10_eax eax; 3879 union cpuid10_ebx ebx; 3880 struct event_constraint *c; 3881 unsigned int unused; 3882 struct extra_reg *er; 3883 int version, i; 3884 char *name; 3885 3886 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) { 3887 switch (boot_cpu_data.x86) { 3888 case 0x6: 3889 return p6_pmu_init(); 3890 case 0xb: 3891 return knc_pmu_init(); 3892 case 0xf: 3893 return p4_pmu_init(); 3894 } 3895 return -ENODEV; 3896 } 3897 3898 /* 3899 * Check whether the Architectural PerfMon supports 3900 * Branch Misses Retired hw_event or not. 3901 */ 3902 cpuid(10, &eax.full, &ebx.full, &unused, &edx.full); 3903 if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT) 3904 return -ENODEV; 3905 3906 version = eax.split.version_id; 3907 if (version < 2) 3908 x86_pmu = core_pmu; 3909 else 3910 x86_pmu = intel_pmu; 3911 3912 x86_pmu.version = version; 3913 x86_pmu.num_counters = eax.split.num_counters; 3914 x86_pmu.cntval_bits = eax.split.bit_width; 3915 x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1; 3916 3917 x86_pmu.events_maskl = ebx.full; 3918 x86_pmu.events_mask_len = eax.split.mask_length; 3919 3920 x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters); 3921 3922 /* 3923 * Quirk: v2 perfmon does not report fixed-purpose events, so 3924 * assume at least 3 events, when not running in a hypervisor: 3925 */ 3926 if (version > 1) { 3927 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR); 3928 3929 x86_pmu.num_counters_fixed = 3930 max((int)edx.split.num_counters_fixed, assume); 3931 } 3932 3933 if (boot_cpu_has(X86_FEATURE_PDCM)) { 3934 u64 capabilities; 3935 3936 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities); 3937 x86_pmu.intel_cap.capabilities = capabilities; 3938 } 3939 3940 intel_ds_init(); 3941 3942 x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */ 3943 3944 /* 3945 * Install the hw-cache-events table: 3946 */ 3947 switch (boot_cpu_data.x86_model) { 3948 case INTEL_FAM6_CORE_YONAH: 3949 pr_cont("Core events, "); 3950 name = "core"; 3951 break; 3952 3953 case INTEL_FAM6_CORE2_MEROM: 3954 x86_add_quirk(intel_clovertown_quirk); 3955 case INTEL_FAM6_CORE2_MEROM_L: 3956 case INTEL_FAM6_CORE2_PENRYN: 3957 case INTEL_FAM6_CORE2_DUNNINGTON: 3958 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids, 3959 sizeof(hw_cache_event_ids)); 3960 3961 intel_pmu_lbr_init_core(); 3962 3963 x86_pmu.event_constraints = intel_core2_event_constraints; 3964 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints; 3965 pr_cont("Core2 events, "); 3966 name = "core2"; 3967 break; 3968 3969 case INTEL_FAM6_NEHALEM: 3970 case INTEL_FAM6_NEHALEM_EP: 3971 case INTEL_FAM6_NEHALEM_EX: 3972 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids, 3973 sizeof(hw_cache_event_ids)); 3974 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs, 3975 sizeof(hw_cache_extra_regs)); 3976 3977 intel_pmu_lbr_init_nhm(); 3978 3979 x86_pmu.event_constraints = intel_nehalem_event_constraints; 3980 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints; 3981 x86_pmu.enable_all = intel_pmu_nhm_enable_all; 3982 x86_pmu.extra_regs = intel_nehalem_extra_regs; 3983 3984 x86_pmu.cpu_events = nhm_events_attrs; 3985 3986 /* UOPS_ISSUED.STALLED_CYCLES */ 3987 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 3988 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); 3989 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */ 3990 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 3991 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1); 3992 3993 intel_pmu_pebs_data_source_nhm(); 3994 x86_add_quirk(intel_nehalem_quirk); 3995 x86_pmu.pebs_no_tlb = 1; 3996 extra_attr = nhm_format_attr; 3997 3998 pr_cont("Nehalem events, "); 3999 name = "nehalem"; 4000 break; 4001 4002 case INTEL_FAM6_ATOM_PINEVIEW: 4003 case INTEL_FAM6_ATOM_LINCROFT: 4004 case INTEL_FAM6_ATOM_PENWELL: 4005 case INTEL_FAM6_ATOM_CLOVERVIEW: 4006 case INTEL_FAM6_ATOM_CEDARVIEW: 4007 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids, 4008 sizeof(hw_cache_event_ids)); 4009 4010 intel_pmu_lbr_init_atom(); 4011 4012 x86_pmu.event_constraints = intel_gen_event_constraints; 4013 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints; 4014 x86_pmu.pebs_aliases = intel_pebs_aliases_core2; 4015 pr_cont("Atom events, "); 4016 name = "bonnell"; 4017 break; 4018 4019 case INTEL_FAM6_ATOM_SILVERMONT1: 4020 case INTEL_FAM6_ATOM_SILVERMONT2: 4021 case INTEL_FAM6_ATOM_AIRMONT: 4022 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids, 4023 sizeof(hw_cache_event_ids)); 4024 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs, 4025 sizeof(hw_cache_extra_regs)); 4026 4027 intel_pmu_lbr_init_slm(); 4028 4029 x86_pmu.event_constraints = intel_slm_event_constraints; 4030 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints; 4031 x86_pmu.extra_regs = intel_slm_extra_regs; 4032 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4033 x86_pmu.cpu_events = slm_events_attrs; 4034 extra_attr = slm_format_attr; 4035 pr_cont("Silvermont events, "); 4036 name = "silvermont"; 4037 break; 4038 4039 case INTEL_FAM6_ATOM_GOLDMONT: 4040 case INTEL_FAM6_ATOM_DENVERTON: 4041 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids, 4042 sizeof(hw_cache_event_ids)); 4043 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs, 4044 sizeof(hw_cache_extra_regs)); 4045 4046 intel_pmu_lbr_init_skl(); 4047 4048 x86_pmu.event_constraints = intel_slm_event_constraints; 4049 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints; 4050 x86_pmu.extra_regs = intel_glm_extra_regs; 4051 /* 4052 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS 4053 * for precise cycles. 4054 * :pp is identical to :ppp 4055 */ 4056 x86_pmu.pebs_aliases = NULL; 4057 x86_pmu.pebs_prec_dist = true; 4058 x86_pmu.lbr_pt_coexist = true; 4059 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4060 x86_pmu.cpu_events = glm_events_attrs; 4061 extra_attr = slm_format_attr; 4062 pr_cont("Goldmont events, "); 4063 name = "goldmont"; 4064 break; 4065 4066 case INTEL_FAM6_ATOM_GEMINI_LAKE: 4067 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids, 4068 sizeof(hw_cache_event_ids)); 4069 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs, 4070 sizeof(hw_cache_extra_regs)); 4071 4072 intel_pmu_lbr_init_skl(); 4073 4074 x86_pmu.event_constraints = intel_slm_event_constraints; 4075 x86_pmu.pebs_constraints = intel_glp_pebs_event_constraints; 4076 x86_pmu.extra_regs = intel_glm_extra_regs; 4077 /* 4078 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS 4079 * for precise cycles. 4080 */ 4081 x86_pmu.pebs_aliases = NULL; 4082 x86_pmu.pebs_prec_dist = true; 4083 x86_pmu.lbr_pt_coexist = true; 4084 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4085 x86_pmu.get_event_constraints = glp_get_event_constraints; 4086 x86_pmu.cpu_events = glm_events_attrs; 4087 /* Goldmont Plus has 4-wide pipeline */ 4088 event_attr_td_total_slots_scale_glm.event_str = "4"; 4089 extra_attr = slm_format_attr; 4090 pr_cont("Goldmont plus events, "); 4091 name = "goldmont_plus"; 4092 break; 4093 4094 case INTEL_FAM6_WESTMERE: 4095 case INTEL_FAM6_WESTMERE_EP: 4096 case INTEL_FAM6_WESTMERE_EX: 4097 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids, 4098 sizeof(hw_cache_event_ids)); 4099 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs, 4100 sizeof(hw_cache_extra_regs)); 4101 4102 intel_pmu_lbr_init_nhm(); 4103 4104 x86_pmu.event_constraints = intel_westmere_event_constraints; 4105 x86_pmu.enable_all = intel_pmu_nhm_enable_all; 4106 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints; 4107 x86_pmu.extra_regs = intel_westmere_extra_regs; 4108 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4109 4110 x86_pmu.cpu_events = nhm_events_attrs; 4111 4112 /* UOPS_ISSUED.STALLED_CYCLES */ 4113 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 4114 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); 4115 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */ 4116 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 4117 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1); 4118 4119 intel_pmu_pebs_data_source_nhm(); 4120 extra_attr = nhm_format_attr; 4121 pr_cont("Westmere events, "); 4122 name = "westmere"; 4123 break; 4124 4125 case INTEL_FAM6_SANDYBRIDGE: 4126 case INTEL_FAM6_SANDYBRIDGE_X: 4127 x86_add_quirk(intel_sandybridge_quirk); 4128 x86_add_quirk(intel_ht_bug); 4129 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids, 4130 sizeof(hw_cache_event_ids)); 4131 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs, 4132 sizeof(hw_cache_extra_regs)); 4133 4134 intel_pmu_lbr_init_snb(); 4135 4136 x86_pmu.event_constraints = intel_snb_event_constraints; 4137 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints; 4138 x86_pmu.pebs_aliases = intel_pebs_aliases_snb; 4139 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X) 4140 x86_pmu.extra_regs = intel_snbep_extra_regs; 4141 else 4142 x86_pmu.extra_regs = intel_snb_extra_regs; 4143 4144 4145 /* all extra regs are per-cpu when HT is on */ 4146 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4147 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 4148 4149 x86_pmu.cpu_events = snb_events_attrs; 4150 4151 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */ 4152 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 4153 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); 4154 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/ 4155 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 4156 X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1); 4157 4158 extra_attr = nhm_format_attr; 4159 4160 pr_cont("SandyBridge events, "); 4161 name = "sandybridge"; 4162 break; 4163 4164 case INTEL_FAM6_IVYBRIDGE: 4165 case INTEL_FAM6_IVYBRIDGE_X: 4166 x86_add_quirk(intel_ht_bug); 4167 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids, 4168 sizeof(hw_cache_event_ids)); 4169 /* dTLB-load-misses on IVB is different than SNB */ 4170 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */ 4171 4172 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs, 4173 sizeof(hw_cache_extra_regs)); 4174 4175 intel_pmu_lbr_init_snb(); 4176 4177 x86_pmu.event_constraints = intel_ivb_event_constraints; 4178 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints; 4179 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb; 4180 x86_pmu.pebs_prec_dist = true; 4181 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X) 4182 x86_pmu.extra_regs = intel_snbep_extra_regs; 4183 else 4184 x86_pmu.extra_regs = intel_snb_extra_regs; 4185 /* all extra regs are per-cpu when HT is on */ 4186 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4187 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 4188 4189 x86_pmu.cpu_events = snb_events_attrs; 4190 4191 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */ 4192 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 4193 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); 4194 4195 extra_attr = nhm_format_attr; 4196 4197 pr_cont("IvyBridge events, "); 4198 name = "ivybridge"; 4199 break; 4200 4201 4202 case INTEL_FAM6_HASWELL_CORE: 4203 case INTEL_FAM6_HASWELL_X: 4204 case INTEL_FAM6_HASWELL_ULT: 4205 case INTEL_FAM6_HASWELL_GT3E: 4206 x86_add_quirk(intel_ht_bug); 4207 x86_pmu.late_ack = true; 4208 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 4209 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); 4210 4211 intel_pmu_lbr_init_hsw(); 4212 4213 x86_pmu.event_constraints = intel_hsw_event_constraints; 4214 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints; 4215 x86_pmu.extra_regs = intel_snbep_extra_regs; 4216 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb; 4217 x86_pmu.pebs_prec_dist = true; 4218 /* all extra regs are per-cpu when HT is on */ 4219 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4220 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 4221 4222 x86_pmu.hw_config = hsw_hw_config; 4223 x86_pmu.get_event_constraints = hsw_get_event_constraints; 4224 x86_pmu.cpu_events = get_hsw_events_attrs(); 4225 x86_pmu.lbr_double_abort = true; 4226 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? 4227 hsw_format_attr : nhm_format_attr; 4228 pr_cont("Haswell events, "); 4229 name = "haswell"; 4230 break; 4231 4232 case INTEL_FAM6_BROADWELL_CORE: 4233 case INTEL_FAM6_BROADWELL_XEON_D: 4234 case INTEL_FAM6_BROADWELL_GT3E: 4235 case INTEL_FAM6_BROADWELL_X: 4236 x86_pmu.late_ack = true; 4237 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 4238 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); 4239 4240 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */ 4241 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ | 4242 BDW_L3_MISS|HSW_SNOOP_DRAM; 4243 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS| 4244 HSW_SNOOP_DRAM; 4245 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ| 4246 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM; 4247 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE| 4248 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM; 4249 4250 intel_pmu_lbr_init_hsw(); 4251 4252 x86_pmu.event_constraints = intel_bdw_event_constraints; 4253 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints; 4254 x86_pmu.extra_regs = intel_snbep_extra_regs; 4255 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb; 4256 x86_pmu.pebs_prec_dist = true; 4257 /* all extra regs are per-cpu when HT is on */ 4258 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4259 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 4260 4261 x86_pmu.hw_config = hsw_hw_config; 4262 x86_pmu.get_event_constraints = hsw_get_event_constraints; 4263 x86_pmu.cpu_events = get_hsw_events_attrs(); 4264 x86_pmu.limit_period = bdw_limit_period; 4265 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? 4266 hsw_format_attr : nhm_format_attr; 4267 pr_cont("Broadwell events, "); 4268 name = "broadwell"; 4269 break; 4270 4271 case INTEL_FAM6_XEON_PHI_KNL: 4272 case INTEL_FAM6_XEON_PHI_KNM: 4273 memcpy(hw_cache_event_ids, 4274 slm_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 4275 memcpy(hw_cache_extra_regs, 4276 knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); 4277 intel_pmu_lbr_init_knl(); 4278 4279 x86_pmu.event_constraints = intel_slm_event_constraints; 4280 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints; 4281 x86_pmu.extra_regs = intel_knl_extra_regs; 4282 4283 /* all extra regs are per-cpu when HT is on */ 4284 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4285 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 4286 extra_attr = slm_format_attr; 4287 pr_cont("Knights Landing/Mill events, "); 4288 name = "knights-landing"; 4289 break; 4290 4291 case INTEL_FAM6_SKYLAKE_MOBILE: 4292 case INTEL_FAM6_SKYLAKE_DESKTOP: 4293 case INTEL_FAM6_SKYLAKE_X: 4294 case INTEL_FAM6_KABYLAKE_MOBILE: 4295 case INTEL_FAM6_KABYLAKE_DESKTOP: 4296 x86_pmu.late_ack = true; 4297 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 4298 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); 4299 intel_pmu_lbr_init_skl(); 4300 4301 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */ 4302 event_attr_td_recovery_bubbles.event_str_noht = 4303 "event=0xd,umask=0x1,cmask=1"; 4304 event_attr_td_recovery_bubbles.event_str_ht = 4305 "event=0xd,umask=0x1,cmask=1,any=1"; 4306 4307 x86_pmu.event_constraints = intel_skl_event_constraints; 4308 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints; 4309 x86_pmu.extra_regs = intel_skl_extra_regs; 4310 x86_pmu.pebs_aliases = intel_pebs_aliases_skl; 4311 x86_pmu.pebs_prec_dist = true; 4312 /* all extra regs are per-cpu when HT is on */ 4313 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4314 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 4315 4316 x86_pmu.hw_config = hsw_hw_config; 4317 x86_pmu.get_event_constraints = hsw_get_event_constraints; 4318 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? 4319 hsw_format_attr : nhm_format_attr; 4320 extra_attr = merge_attr(extra_attr, skl_format_attr); 4321 to_free = extra_attr; 4322 x86_pmu.cpu_events = get_hsw_events_attrs(); 4323 intel_pmu_pebs_data_source_skl( 4324 boot_cpu_data.x86_model == INTEL_FAM6_SKYLAKE_X); 4325 pr_cont("Skylake events, "); 4326 name = "skylake"; 4327 break; 4328 4329 default: 4330 switch (x86_pmu.version) { 4331 case 1: 4332 x86_pmu.event_constraints = intel_v1_event_constraints; 4333 pr_cont("generic architected perfmon v1, "); 4334 name = "generic_arch_v1"; 4335 break; 4336 default: 4337 /* 4338 * default constraints for v2 and up 4339 */ 4340 x86_pmu.event_constraints = intel_gen_event_constraints; 4341 pr_cont("generic architected perfmon, "); 4342 name = "generic_arch_v2+"; 4343 break; 4344 } 4345 } 4346 4347 snprintf(pmu_name_str, sizeof pmu_name_str, "%s", name); 4348 4349 if (version >= 2 && extra_attr) { 4350 x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr, 4351 extra_attr); 4352 WARN_ON(!x86_pmu.format_attrs); 4353 } 4354 4355 if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) { 4356 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!", 4357 x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC); 4358 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC; 4359 } 4360 x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1; 4361 4362 if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) { 4363 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!", 4364 x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED); 4365 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED; 4366 } 4367 4368 x86_pmu.intel_ctrl |= 4369 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED; 4370 4371 if (x86_pmu.event_constraints) { 4372 /* 4373 * event on fixed counter2 (REF_CYCLES) only works on this 4374 * counter, so do not extend mask to generic counters 4375 */ 4376 for_each_event_constraint(c, x86_pmu.event_constraints) { 4377 if (c->cmask == FIXED_EVENT_FLAGS 4378 && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) { 4379 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1; 4380 } 4381 c->idxmsk64 &= 4382 ~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed)); 4383 c->weight = hweight64(c->idxmsk64); 4384 } 4385 } 4386 4387 /* 4388 * Access LBR MSR may cause #GP under certain circumstances. 4389 * E.g. KVM doesn't support LBR MSR 4390 * Check all LBT MSR here. 4391 * Disable LBR access if any LBR MSRs can not be accessed. 4392 */ 4393 if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL)) 4394 x86_pmu.lbr_nr = 0; 4395 for (i = 0; i < x86_pmu.lbr_nr; i++) { 4396 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) && 4397 check_msr(x86_pmu.lbr_to + i, 0xffffUL))) 4398 x86_pmu.lbr_nr = 0; 4399 } 4400 4401 x86_pmu.caps_attrs = intel_pmu_caps_attrs; 4402 4403 if (x86_pmu.lbr_nr) { 4404 x86_pmu.caps_attrs = merge_attr(x86_pmu.caps_attrs, lbr_attrs); 4405 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr); 4406 } 4407 4408 /* 4409 * Access extra MSR may cause #GP under certain circumstances. 4410 * E.g. KVM doesn't support offcore event 4411 * Check all extra_regs here. 4412 */ 4413 if (x86_pmu.extra_regs) { 4414 for (er = x86_pmu.extra_regs; er->msr; er++) { 4415 er->extra_msr_access = check_msr(er->msr, 0x11UL); 4416 /* Disable LBR select mapping */ 4417 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access) 4418 x86_pmu.lbr_sel_map = NULL; 4419 } 4420 } 4421 4422 /* Support full width counters using alternative MSR range */ 4423 if (x86_pmu.intel_cap.full_width_write) { 4424 x86_pmu.max_period = x86_pmu.cntval_mask >> 1; 4425 x86_pmu.perfctr = MSR_IA32_PMC0; 4426 pr_cont("full-width counters, "); 4427 } 4428 4429 kfree(to_free); 4430 return 0; 4431 } 4432 4433 /* 4434 * HT bug: phase 2 init 4435 * Called once we have valid topology information to check 4436 * whether or not HT is enabled 4437 * If HT is off, then we disable the workaround 4438 */ 4439 static __init int fixup_ht_bug(void) 4440 { 4441 int c; 4442 /* 4443 * problem not present on this CPU model, nothing to do 4444 */ 4445 if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED)) 4446 return 0; 4447 4448 if (topology_max_smt_threads() > 1) { 4449 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n"); 4450 return 0; 4451 } 4452 4453 cpus_read_lock(); 4454 4455 hardlockup_detector_perf_stop(); 4456 4457 x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED); 4458 4459 x86_pmu.start_scheduling = NULL; 4460 x86_pmu.commit_scheduling = NULL; 4461 x86_pmu.stop_scheduling = NULL; 4462 4463 hardlockup_detector_perf_restart(); 4464 4465 for_each_online_cpu(c) 4466 free_excl_cntrs(c); 4467 4468 cpus_read_unlock(); 4469 pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n"); 4470 return 0; 4471 } 4472 subsys_initcall(fixup_ht_bug) 4473