xref: /openbmc/linux/arch/x86/events/intel/core.c (revision f519cd13)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Per core/cpu state
4  *
5  * Used to coordinate shared registers between HT threads or
6  * among events on a single PMU.
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
17 
18 #include <asm/cpufeature.h>
19 #include <asm/hardirq.h>
20 #include <asm/intel-family.h>
21 #include <asm/intel_pt.h>
22 #include <asm/apic.h>
23 #include <asm/cpu_device_id.h>
24 
25 #include "../perf_event.h"
26 
27 /*
28  * Intel PerfMon, used on Core and later.
29  */
30 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
31 {
32 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
33 	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
34 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
35 	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
36 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
37 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
38 	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
39 	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
40 };
41 
42 static struct event_constraint intel_core_event_constraints[] __read_mostly =
43 {
44 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
45 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
46 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
47 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
48 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
49 	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
50 	EVENT_CONSTRAINT_END
51 };
52 
53 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
54 {
55 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
56 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
57 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
58 	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
59 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
60 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
61 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
62 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
63 	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
64 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
65 	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
66 	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
67 	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
68 	EVENT_CONSTRAINT_END
69 };
70 
71 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
72 {
73 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
74 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
75 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
76 	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
77 	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
78 	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
79 	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
80 	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
81 	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
82 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
83 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
84 	EVENT_CONSTRAINT_END
85 };
86 
87 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
88 {
89 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
90 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
91 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
92 	EVENT_EXTRA_END
93 };
94 
95 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
96 {
97 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
98 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
99 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
100 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
101 	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
102 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
103 	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
104 	EVENT_CONSTRAINT_END
105 };
106 
107 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
108 {
109 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
110 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
111 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
112 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
113 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
114 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
115 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
116 	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
117 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
118 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
119 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
120 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
121 
122 	/*
123 	 * When HT is off these events can only run on the bottom 4 counters
124 	 * When HT is on, they are impacted by the HT bug and require EXCL access
125 	 */
126 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
127 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
128 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
129 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
130 
131 	EVENT_CONSTRAINT_END
132 };
133 
134 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
135 {
136 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
137 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
138 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
139 	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
140 	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
141 	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
142 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
143 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
144 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
145 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
146 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
147 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
148 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
149 
150 	/*
151 	 * When HT is off these events can only run on the bottom 4 counters
152 	 * When HT is on, they are impacted by the HT bug and require EXCL access
153 	 */
154 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
155 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
156 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
157 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
158 
159 	EVENT_CONSTRAINT_END
160 };
161 
162 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
163 {
164 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
165 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
166 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
167 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
168 	EVENT_EXTRA_END
169 };
170 
171 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
172 {
173 	EVENT_CONSTRAINT_END
174 };
175 
176 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
177 {
178 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
179 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
180 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
181 	EVENT_CONSTRAINT_END
182 };
183 
184 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
185 {
186 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
187 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
188 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
189 	EVENT_CONSTRAINT_END
190 };
191 
192 static struct event_constraint intel_skl_event_constraints[] = {
193 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
194 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
195 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
196 	INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
197 
198 	/*
199 	 * when HT is off, these can only run on the bottom 4 counters
200 	 */
201 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
202 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
203 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
204 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
205 	INTEL_EVENT_CONSTRAINT(0xc6, 0xf),	/* FRONTEND_RETIRED.* */
206 
207 	EVENT_CONSTRAINT_END
208 };
209 
210 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
211 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
212 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
213 	EVENT_EXTRA_END
214 };
215 
216 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
217 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
218 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
219 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
220 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
221 	EVENT_EXTRA_END
222 };
223 
224 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
225 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
226 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
227 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
228 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
229 	EVENT_EXTRA_END
230 };
231 
232 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
233 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
234 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
235 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
236 	/*
237 	 * Note the low 8 bits eventsel code is not a continuous field, containing
238 	 * some #GPing bits. These are masked out.
239 	 */
240 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
241 	EVENT_EXTRA_END
242 };
243 
244 static struct event_constraint intel_icl_event_constraints[] = {
245 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
246 	INTEL_UEVENT_CONSTRAINT(0x1c0, 0),	/* INST_RETIRED.PREC_DIST */
247 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
248 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
249 	FIXED_EVENT_CONSTRAINT(0x0400, 3),	/* SLOTS */
250 	INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
251 	INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
252 	INTEL_EVENT_CONSTRAINT(0x32, 0xf),	/* SW_PREFETCH_ACCESS.* */
253 	INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x54, 0xf),
254 	INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
255 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_TOTAL */
256 	INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
257 	INTEL_EVENT_CONSTRAINT(0xa3, 0xf),      /* CYCLE_ACTIVITY.* */
258 	INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
259 	INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
260 	INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
261 	INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
262 	EVENT_CONSTRAINT_END
263 };
264 
265 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
266 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
267 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
268 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
269 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
270 	EVENT_EXTRA_END
271 };
272 
273 EVENT_ATTR_STR(mem-loads,	mem_ld_nhm,	"event=0x0b,umask=0x10,ldlat=3");
274 EVENT_ATTR_STR(mem-loads,	mem_ld_snb,	"event=0xcd,umask=0x1,ldlat=3");
275 EVENT_ATTR_STR(mem-stores,	mem_st_snb,	"event=0xcd,umask=0x2");
276 
277 static struct attribute *nhm_mem_events_attrs[] = {
278 	EVENT_PTR(mem_ld_nhm),
279 	NULL,
280 };
281 
282 /*
283  * topdown events for Intel Core CPUs.
284  *
285  * The events are all in slots, which is a free slot in a 4 wide
286  * pipeline. Some events are already reported in slots, for cycle
287  * events we multiply by the pipeline width (4).
288  *
289  * With Hyper Threading on, topdown metrics are either summed or averaged
290  * between the threads of a core: (count_t0 + count_t1).
291  *
292  * For the average case the metric is always scaled to pipeline width,
293  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
294  */
295 
296 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
297 	"event=0x3c,umask=0x0",			/* cpu_clk_unhalted.thread */
298 	"event=0x3c,umask=0x0,any=1");		/* cpu_clk_unhalted.thread_any */
299 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
300 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
301 	"event=0xe,umask=0x1");			/* uops_issued.any */
302 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
303 	"event=0xc2,umask=0x2");		/* uops_retired.retire_slots */
304 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
305 	"event=0x9c,umask=0x1");		/* idq_uops_not_delivered_core */
306 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
307 	"event=0xd,umask=0x3,cmask=1",		/* int_misc.recovery_cycles */
308 	"event=0xd,umask=0x3,cmask=1,any=1");	/* int_misc.recovery_cycles_any */
309 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
310 	"4", "2");
311 
312 static struct attribute *snb_events_attrs[] = {
313 	EVENT_PTR(td_slots_issued),
314 	EVENT_PTR(td_slots_retired),
315 	EVENT_PTR(td_fetch_bubbles),
316 	EVENT_PTR(td_total_slots),
317 	EVENT_PTR(td_total_slots_scale),
318 	EVENT_PTR(td_recovery_bubbles),
319 	EVENT_PTR(td_recovery_bubbles_scale),
320 	NULL,
321 };
322 
323 static struct attribute *snb_mem_events_attrs[] = {
324 	EVENT_PTR(mem_ld_snb),
325 	EVENT_PTR(mem_st_snb),
326 	NULL,
327 };
328 
329 static struct event_constraint intel_hsw_event_constraints[] = {
330 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
331 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
332 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
333 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
334 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
335 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
336 	/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
337 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
338 	/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
339 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
340 	/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
341 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
342 
343 	/*
344 	 * When HT is off these events can only run on the bottom 4 counters
345 	 * When HT is on, they are impacted by the HT bug and require EXCL access
346 	 */
347 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
348 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
349 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
350 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
351 
352 	EVENT_CONSTRAINT_END
353 };
354 
355 static struct event_constraint intel_bdw_event_constraints[] = {
356 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
357 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
358 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
359 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
360 	INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),	/* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
361 	/*
362 	 * when HT is off, these can only run on the bottom 4 counters
363 	 */
364 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
365 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
366 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
367 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
368 	EVENT_CONSTRAINT_END
369 };
370 
371 static u64 intel_pmu_event_map(int hw_event)
372 {
373 	return intel_perfmon_event_map[hw_event];
374 }
375 
376 /*
377  * Notes on the events:
378  * - data reads do not include code reads (comparable to earlier tables)
379  * - data counts include speculative execution (except L1 write, dtlb, bpu)
380  * - remote node access includes remote memory, remote cache, remote mmio.
381  * - prefetches are not included in the counts.
382  * - icache miss does not include decoded icache
383  */
384 
385 #define SKL_DEMAND_DATA_RD		BIT_ULL(0)
386 #define SKL_DEMAND_RFO			BIT_ULL(1)
387 #define SKL_ANY_RESPONSE		BIT_ULL(16)
388 #define SKL_SUPPLIER_NONE		BIT_ULL(17)
389 #define SKL_L3_MISS_LOCAL_DRAM		BIT_ULL(26)
390 #define SKL_L3_MISS_REMOTE_HOP0_DRAM	BIT_ULL(27)
391 #define SKL_L3_MISS_REMOTE_HOP1_DRAM	BIT_ULL(28)
392 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM	BIT_ULL(29)
393 #define SKL_L3_MISS			(SKL_L3_MISS_LOCAL_DRAM| \
394 					 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
395 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
396 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
397 #define SKL_SPL_HIT			BIT_ULL(30)
398 #define SKL_SNOOP_NONE			BIT_ULL(31)
399 #define SKL_SNOOP_NOT_NEEDED		BIT_ULL(32)
400 #define SKL_SNOOP_MISS			BIT_ULL(33)
401 #define SKL_SNOOP_HIT_NO_FWD		BIT_ULL(34)
402 #define SKL_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
403 #define SKL_SNOOP_HITM			BIT_ULL(36)
404 #define SKL_SNOOP_NON_DRAM		BIT_ULL(37)
405 #define SKL_ANY_SNOOP			(SKL_SPL_HIT|SKL_SNOOP_NONE| \
406 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
407 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
408 					 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
409 #define SKL_DEMAND_READ			SKL_DEMAND_DATA_RD
410 #define SKL_SNOOP_DRAM			(SKL_SNOOP_NONE| \
411 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
412 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
413 					 SKL_SNOOP_HITM|SKL_SPL_HIT)
414 #define SKL_DEMAND_WRITE		SKL_DEMAND_RFO
415 #define SKL_LLC_ACCESS			SKL_ANY_RESPONSE
416 #define SKL_L3_MISS_REMOTE		(SKL_L3_MISS_REMOTE_HOP0_DRAM| \
417 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
418 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
419 
420 static __initconst const u64 skl_hw_cache_event_ids
421 				[PERF_COUNT_HW_CACHE_MAX]
422 				[PERF_COUNT_HW_CACHE_OP_MAX]
423 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
424 {
425  [ C(L1D ) ] = {
426 	[ C(OP_READ) ] = {
427 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
428 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
429 	},
430 	[ C(OP_WRITE) ] = {
431 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
432 		[ C(RESULT_MISS)   ] = 0x0,
433 	},
434 	[ C(OP_PREFETCH) ] = {
435 		[ C(RESULT_ACCESS) ] = 0x0,
436 		[ C(RESULT_MISS)   ] = 0x0,
437 	},
438  },
439  [ C(L1I ) ] = {
440 	[ C(OP_READ) ] = {
441 		[ C(RESULT_ACCESS) ] = 0x0,
442 		[ C(RESULT_MISS)   ] = 0x283,	/* ICACHE_64B.MISS */
443 	},
444 	[ C(OP_WRITE) ] = {
445 		[ C(RESULT_ACCESS) ] = -1,
446 		[ C(RESULT_MISS)   ] = -1,
447 	},
448 	[ C(OP_PREFETCH) ] = {
449 		[ C(RESULT_ACCESS) ] = 0x0,
450 		[ C(RESULT_MISS)   ] = 0x0,
451 	},
452  },
453  [ C(LL  ) ] = {
454 	[ C(OP_READ) ] = {
455 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
456 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
457 	},
458 	[ C(OP_WRITE) ] = {
459 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
460 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
461 	},
462 	[ C(OP_PREFETCH) ] = {
463 		[ C(RESULT_ACCESS) ] = 0x0,
464 		[ C(RESULT_MISS)   ] = 0x0,
465 	},
466  },
467  [ C(DTLB) ] = {
468 	[ C(OP_READ) ] = {
469 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
470 		[ C(RESULT_MISS)   ] = 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
471 	},
472 	[ C(OP_WRITE) ] = {
473 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
474 		[ C(RESULT_MISS)   ] = 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
475 	},
476 	[ C(OP_PREFETCH) ] = {
477 		[ C(RESULT_ACCESS) ] = 0x0,
478 		[ C(RESULT_MISS)   ] = 0x0,
479 	},
480  },
481  [ C(ITLB) ] = {
482 	[ C(OP_READ) ] = {
483 		[ C(RESULT_ACCESS) ] = 0x2085,	/* ITLB_MISSES.STLB_HIT */
484 		[ C(RESULT_MISS)   ] = 0xe85,	/* ITLB_MISSES.WALK_COMPLETED */
485 	},
486 	[ C(OP_WRITE) ] = {
487 		[ C(RESULT_ACCESS) ] = -1,
488 		[ C(RESULT_MISS)   ] = -1,
489 	},
490 	[ C(OP_PREFETCH) ] = {
491 		[ C(RESULT_ACCESS) ] = -1,
492 		[ C(RESULT_MISS)   ] = -1,
493 	},
494  },
495  [ C(BPU ) ] = {
496 	[ C(OP_READ) ] = {
497 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
498 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
499 	},
500 	[ C(OP_WRITE) ] = {
501 		[ C(RESULT_ACCESS) ] = -1,
502 		[ C(RESULT_MISS)   ] = -1,
503 	},
504 	[ C(OP_PREFETCH) ] = {
505 		[ C(RESULT_ACCESS) ] = -1,
506 		[ C(RESULT_MISS)   ] = -1,
507 	},
508  },
509  [ C(NODE) ] = {
510 	[ C(OP_READ) ] = {
511 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
512 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
513 	},
514 	[ C(OP_WRITE) ] = {
515 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
516 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
517 	},
518 	[ C(OP_PREFETCH) ] = {
519 		[ C(RESULT_ACCESS) ] = 0x0,
520 		[ C(RESULT_MISS)   ] = 0x0,
521 	},
522  },
523 };
524 
525 static __initconst const u64 skl_hw_cache_extra_regs
526 				[PERF_COUNT_HW_CACHE_MAX]
527 				[PERF_COUNT_HW_CACHE_OP_MAX]
528 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
529 {
530  [ C(LL  ) ] = {
531 	[ C(OP_READ) ] = {
532 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
533 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
534 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
535 				       SKL_L3_MISS|SKL_ANY_SNOOP|
536 				       SKL_SUPPLIER_NONE,
537 	},
538 	[ C(OP_WRITE) ] = {
539 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
540 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
541 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
542 				       SKL_L3_MISS|SKL_ANY_SNOOP|
543 				       SKL_SUPPLIER_NONE,
544 	},
545 	[ C(OP_PREFETCH) ] = {
546 		[ C(RESULT_ACCESS) ] = 0x0,
547 		[ C(RESULT_MISS)   ] = 0x0,
548 	},
549  },
550  [ C(NODE) ] = {
551 	[ C(OP_READ) ] = {
552 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
553 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
554 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
555 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
556 	},
557 	[ C(OP_WRITE) ] = {
558 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
559 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
560 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
561 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
562 	},
563 	[ C(OP_PREFETCH) ] = {
564 		[ C(RESULT_ACCESS) ] = 0x0,
565 		[ C(RESULT_MISS)   ] = 0x0,
566 	},
567  },
568 };
569 
570 #define SNB_DMND_DATA_RD	(1ULL << 0)
571 #define SNB_DMND_RFO		(1ULL << 1)
572 #define SNB_DMND_IFETCH		(1ULL << 2)
573 #define SNB_DMND_WB		(1ULL << 3)
574 #define SNB_PF_DATA_RD		(1ULL << 4)
575 #define SNB_PF_RFO		(1ULL << 5)
576 #define SNB_PF_IFETCH		(1ULL << 6)
577 #define SNB_LLC_DATA_RD		(1ULL << 7)
578 #define SNB_LLC_RFO		(1ULL << 8)
579 #define SNB_LLC_IFETCH		(1ULL << 9)
580 #define SNB_BUS_LOCKS		(1ULL << 10)
581 #define SNB_STRM_ST		(1ULL << 11)
582 #define SNB_OTHER		(1ULL << 15)
583 #define SNB_RESP_ANY		(1ULL << 16)
584 #define SNB_NO_SUPP		(1ULL << 17)
585 #define SNB_LLC_HITM		(1ULL << 18)
586 #define SNB_LLC_HITE		(1ULL << 19)
587 #define SNB_LLC_HITS		(1ULL << 20)
588 #define SNB_LLC_HITF		(1ULL << 21)
589 #define SNB_LOCAL		(1ULL << 22)
590 #define SNB_REMOTE		(0xffULL << 23)
591 #define SNB_SNP_NONE		(1ULL << 31)
592 #define SNB_SNP_NOT_NEEDED	(1ULL << 32)
593 #define SNB_SNP_MISS		(1ULL << 33)
594 #define SNB_NO_FWD		(1ULL << 34)
595 #define SNB_SNP_FWD		(1ULL << 35)
596 #define SNB_HITM		(1ULL << 36)
597 #define SNB_NON_DRAM		(1ULL << 37)
598 
599 #define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
600 #define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
601 #define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
602 
603 #define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
604 				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
605 				 SNB_HITM)
606 
607 #define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
608 #define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)
609 
610 #define SNB_L3_ACCESS		SNB_RESP_ANY
611 #define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)
612 
613 static __initconst const u64 snb_hw_cache_extra_regs
614 				[PERF_COUNT_HW_CACHE_MAX]
615 				[PERF_COUNT_HW_CACHE_OP_MAX]
616 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
617 {
618  [ C(LL  ) ] = {
619 	[ C(OP_READ) ] = {
620 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
621 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
622 	},
623 	[ C(OP_WRITE) ] = {
624 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
625 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
626 	},
627 	[ C(OP_PREFETCH) ] = {
628 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
629 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
630 	},
631  },
632  [ C(NODE) ] = {
633 	[ C(OP_READ) ] = {
634 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
635 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
636 	},
637 	[ C(OP_WRITE) ] = {
638 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
639 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
640 	},
641 	[ C(OP_PREFETCH) ] = {
642 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
643 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
644 	},
645  },
646 };
647 
648 static __initconst const u64 snb_hw_cache_event_ids
649 				[PERF_COUNT_HW_CACHE_MAX]
650 				[PERF_COUNT_HW_CACHE_OP_MAX]
651 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
652 {
653  [ C(L1D) ] = {
654 	[ C(OP_READ) ] = {
655 		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
656 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
657 	},
658 	[ C(OP_WRITE) ] = {
659 		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
660 		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
661 	},
662 	[ C(OP_PREFETCH) ] = {
663 		[ C(RESULT_ACCESS) ] = 0x0,
664 		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
665 	},
666  },
667  [ C(L1I ) ] = {
668 	[ C(OP_READ) ] = {
669 		[ C(RESULT_ACCESS) ] = 0x0,
670 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
671 	},
672 	[ C(OP_WRITE) ] = {
673 		[ C(RESULT_ACCESS) ] = -1,
674 		[ C(RESULT_MISS)   ] = -1,
675 	},
676 	[ C(OP_PREFETCH) ] = {
677 		[ C(RESULT_ACCESS) ] = 0x0,
678 		[ C(RESULT_MISS)   ] = 0x0,
679 	},
680  },
681  [ C(LL  ) ] = {
682 	[ C(OP_READ) ] = {
683 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
684 		[ C(RESULT_ACCESS) ] = 0x01b7,
685 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
686 		[ C(RESULT_MISS)   ] = 0x01b7,
687 	},
688 	[ C(OP_WRITE) ] = {
689 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
690 		[ C(RESULT_ACCESS) ] = 0x01b7,
691 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
692 		[ C(RESULT_MISS)   ] = 0x01b7,
693 	},
694 	[ C(OP_PREFETCH) ] = {
695 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
696 		[ C(RESULT_ACCESS) ] = 0x01b7,
697 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
698 		[ C(RESULT_MISS)   ] = 0x01b7,
699 	},
700  },
701  [ C(DTLB) ] = {
702 	[ C(OP_READ) ] = {
703 		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
704 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
705 	},
706 	[ C(OP_WRITE) ] = {
707 		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
708 		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
709 	},
710 	[ C(OP_PREFETCH) ] = {
711 		[ C(RESULT_ACCESS) ] = 0x0,
712 		[ C(RESULT_MISS)   ] = 0x0,
713 	},
714  },
715  [ C(ITLB) ] = {
716 	[ C(OP_READ) ] = {
717 		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
718 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
719 	},
720 	[ C(OP_WRITE) ] = {
721 		[ C(RESULT_ACCESS) ] = -1,
722 		[ C(RESULT_MISS)   ] = -1,
723 	},
724 	[ C(OP_PREFETCH) ] = {
725 		[ C(RESULT_ACCESS) ] = -1,
726 		[ C(RESULT_MISS)   ] = -1,
727 	},
728  },
729  [ C(BPU ) ] = {
730 	[ C(OP_READ) ] = {
731 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
732 		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
733 	},
734 	[ C(OP_WRITE) ] = {
735 		[ C(RESULT_ACCESS) ] = -1,
736 		[ C(RESULT_MISS)   ] = -1,
737 	},
738 	[ C(OP_PREFETCH) ] = {
739 		[ C(RESULT_ACCESS) ] = -1,
740 		[ C(RESULT_MISS)   ] = -1,
741 	},
742  },
743  [ C(NODE) ] = {
744 	[ C(OP_READ) ] = {
745 		[ C(RESULT_ACCESS) ] = 0x01b7,
746 		[ C(RESULT_MISS)   ] = 0x01b7,
747 	},
748 	[ C(OP_WRITE) ] = {
749 		[ C(RESULT_ACCESS) ] = 0x01b7,
750 		[ C(RESULT_MISS)   ] = 0x01b7,
751 	},
752 	[ C(OP_PREFETCH) ] = {
753 		[ C(RESULT_ACCESS) ] = 0x01b7,
754 		[ C(RESULT_MISS)   ] = 0x01b7,
755 	},
756  },
757 
758 };
759 
760 /*
761  * Notes on the events:
762  * - data reads do not include code reads (comparable to earlier tables)
763  * - data counts include speculative execution (except L1 write, dtlb, bpu)
764  * - remote node access includes remote memory, remote cache, remote mmio.
765  * - prefetches are not included in the counts because they are not
766  *   reliably counted.
767  */
768 
769 #define HSW_DEMAND_DATA_RD		BIT_ULL(0)
770 #define HSW_DEMAND_RFO			BIT_ULL(1)
771 #define HSW_ANY_RESPONSE		BIT_ULL(16)
772 #define HSW_SUPPLIER_NONE		BIT_ULL(17)
773 #define HSW_L3_MISS_LOCAL_DRAM		BIT_ULL(22)
774 #define HSW_L3_MISS_REMOTE_HOP0		BIT_ULL(27)
775 #define HSW_L3_MISS_REMOTE_HOP1		BIT_ULL(28)
776 #define HSW_L3_MISS_REMOTE_HOP2P	BIT_ULL(29)
777 #define HSW_L3_MISS			(HSW_L3_MISS_LOCAL_DRAM| \
778 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
779 					 HSW_L3_MISS_REMOTE_HOP2P)
780 #define HSW_SNOOP_NONE			BIT_ULL(31)
781 #define HSW_SNOOP_NOT_NEEDED		BIT_ULL(32)
782 #define HSW_SNOOP_MISS			BIT_ULL(33)
783 #define HSW_SNOOP_HIT_NO_FWD		BIT_ULL(34)
784 #define HSW_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
785 #define HSW_SNOOP_HITM			BIT_ULL(36)
786 #define HSW_SNOOP_NON_DRAM		BIT_ULL(37)
787 #define HSW_ANY_SNOOP			(HSW_SNOOP_NONE| \
788 					 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
789 					 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
790 					 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
791 #define HSW_SNOOP_DRAM			(HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
792 #define HSW_DEMAND_READ			HSW_DEMAND_DATA_RD
793 #define HSW_DEMAND_WRITE		HSW_DEMAND_RFO
794 #define HSW_L3_MISS_REMOTE		(HSW_L3_MISS_REMOTE_HOP0|\
795 					 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
796 #define HSW_LLC_ACCESS			HSW_ANY_RESPONSE
797 
798 #define BDW_L3_MISS_LOCAL		BIT(26)
799 #define BDW_L3_MISS			(BDW_L3_MISS_LOCAL| \
800 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
801 					 HSW_L3_MISS_REMOTE_HOP2P)
802 
803 
804 static __initconst const u64 hsw_hw_cache_event_ids
805 				[PERF_COUNT_HW_CACHE_MAX]
806 				[PERF_COUNT_HW_CACHE_OP_MAX]
807 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
808 {
809  [ C(L1D ) ] = {
810 	[ C(OP_READ) ] = {
811 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
812 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
813 	},
814 	[ C(OP_WRITE) ] = {
815 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
816 		[ C(RESULT_MISS)   ] = 0x0,
817 	},
818 	[ C(OP_PREFETCH) ] = {
819 		[ C(RESULT_ACCESS) ] = 0x0,
820 		[ C(RESULT_MISS)   ] = 0x0,
821 	},
822  },
823  [ C(L1I ) ] = {
824 	[ C(OP_READ) ] = {
825 		[ C(RESULT_ACCESS) ] = 0x0,
826 		[ C(RESULT_MISS)   ] = 0x280,	/* ICACHE.MISSES */
827 	},
828 	[ C(OP_WRITE) ] = {
829 		[ C(RESULT_ACCESS) ] = -1,
830 		[ C(RESULT_MISS)   ] = -1,
831 	},
832 	[ C(OP_PREFETCH) ] = {
833 		[ C(RESULT_ACCESS) ] = 0x0,
834 		[ C(RESULT_MISS)   ] = 0x0,
835 	},
836  },
837  [ C(LL  ) ] = {
838 	[ C(OP_READ) ] = {
839 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
840 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
841 	},
842 	[ C(OP_WRITE) ] = {
843 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
844 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
845 	},
846 	[ C(OP_PREFETCH) ] = {
847 		[ C(RESULT_ACCESS) ] = 0x0,
848 		[ C(RESULT_MISS)   ] = 0x0,
849 	},
850  },
851  [ C(DTLB) ] = {
852 	[ C(OP_READ) ] = {
853 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
854 		[ C(RESULT_MISS)   ] = 0x108,	/* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
855 	},
856 	[ C(OP_WRITE) ] = {
857 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
858 		[ C(RESULT_MISS)   ] = 0x149,	/* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
859 	},
860 	[ C(OP_PREFETCH) ] = {
861 		[ C(RESULT_ACCESS) ] = 0x0,
862 		[ C(RESULT_MISS)   ] = 0x0,
863 	},
864  },
865  [ C(ITLB) ] = {
866 	[ C(OP_READ) ] = {
867 		[ C(RESULT_ACCESS) ] = 0x6085,	/* ITLB_MISSES.STLB_HIT */
868 		[ C(RESULT_MISS)   ] = 0x185,	/* ITLB_MISSES.MISS_CAUSES_A_WALK */
869 	},
870 	[ C(OP_WRITE) ] = {
871 		[ C(RESULT_ACCESS) ] = -1,
872 		[ C(RESULT_MISS)   ] = -1,
873 	},
874 	[ C(OP_PREFETCH) ] = {
875 		[ C(RESULT_ACCESS) ] = -1,
876 		[ C(RESULT_MISS)   ] = -1,
877 	},
878  },
879  [ C(BPU ) ] = {
880 	[ C(OP_READ) ] = {
881 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
882 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
883 	},
884 	[ C(OP_WRITE) ] = {
885 		[ C(RESULT_ACCESS) ] = -1,
886 		[ C(RESULT_MISS)   ] = -1,
887 	},
888 	[ C(OP_PREFETCH) ] = {
889 		[ C(RESULT_ACCESS) ] = -1,
890 		[ C(RESULT_MISS)   ] = -1,
891 	},
892  },
893  [ C(NODE) ] = {
894 	[ C(OP_READ) ] = {
895 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
896 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
897 	},
898 	[ C(OP_WRITE) ] = {
899 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
900 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
901 	},
902 	[ C(OP_PREFETCH) ] = {
903 		[ C(RESULT_ACCESS) ] = 0x0,
904 		[ C(RESULT_MISS)   ] = 0x0,
905 	},
906  },
907 };
908 
909 static __initconst const u64 hsw_hw_cache_extra_regs
910 				[PERF_COUNT_HW_CACHE_MAX]
911 				[PERF_COUNT_HW_CACHE_OP_MAX]
912 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
913 {
914  [ C(LL  ) ] = {
915 	[ C(OP_READ) ] = {
916 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
917 				       HSW_LLC_ACCESS,
918 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
919 				       HSW_L3_MISS|HSW_ANY_SNOOP,
920 	},
921 	[ C(OP_WRITE) ] = {
922 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
923 				       HSW_LLC_ACCESS,
924 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
925 				       HSW_L3_MISS|HSW_ANY_SNOOP,
926 	},
927 	[ C(OP_PREFETCH) ] = {
928 		[ C(RESULT_ACCESS) ] = 0x0,
929 		[ C(RESULT_MISS)   ] = 0x0,
930 	},
931  },
932  [ C(NODE) ] = {
933 	[ C(OP_READ) ] = {
934 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
935 				       HSW_L3_MISS_LOCAL_DRAM|
936 				       HSW_SNOOP_DRAM,
937 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
938 				       HSW_L3_MISS_REMOTE|
939 				       HSW_SNOOP_DRAM,
940 	},
941 	[ C(OP_WRITE) ] = {
942 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
943 				       HSW_L3_MISS_LOCAL_DRAM|
944 				       HSW_SNOOP_DRAM,
945 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
946 				       HSW_L3_MISS_REMOTE|
947 				       HSW_SNOOP_DRAM,
948 	},
949 	[ C(OP_PREFETCH) ] = {
950 		[ C(RESULT_ACCESS) ] = 0x0,
951 		[ C(RESULT_MISS)   ] = 0x0,
952 	},
953  },
954 };
955 
956 static __initconst const u64 westmere_hw_cache_event_ids
957 				[PERF_COUNT_HW_CACHE_MAX]
958 				[PERF_COUNT_HW_CACHE_OP_MAX]
959 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
960 {
961  [ C(L1D) ] = {
962 	[ C(OP_READ) ] = {
963 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
964 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
965 	},
966 	[ C(OP_WRITE) ] = {
967 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
968 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
969 	},
970 	[ C(OP_PREFETCH) ] = {
971 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
972 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
973 	},
974  },
975  [ C(L1I ) ] = {
976 	[ C(OP_READ) ] = {
977 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
978 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
979 	},
980 	[ C(OP_WRITE) ] = {
981 		[ C(RESULT_ACCESS) ] = -1,
982 		[ C(RESULT_MISS)   ] = -1,
983 	},
984 	[ C(OP_PREFETCH) ] = {
985 		[ C(RESULT_ACCESS) ] = 0x0,
986 		[ C(RESULT_MISS)   ] = 0x0,
987 	},
988  },
989  [ C(LL  ) ] = {
990 	[ C(OP_READ) ] = {
991 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
992 		[ C(RESULT_ACCESS) ] = 0x01b7,
993 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
994 		[ C(RESULT_MISS)   ] = 0x01b7,
995 	},
996 	/*
997 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
998 	 * on RFO.
999 	 */
1000 	[ C(OP_WRITE) ] = {
1001 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1002 		[ C(RESULT_ACCESS) ] = 0x01b7,
1003 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1004 		[ C(RESULT_MISS)   ] = 0x01b7,
1005 	},
1006 	[ C(OP_PREFETCH) ] = {
1007 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1008 		[ C(RESULT_ACCESS) ] = 0x01b7,
1009 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1010 		[ C(RESULT_MISS)   ] = 0x01b7,
1011 	},
1012  },
1013  [ C(DTLB) ] = {
1014 	[ C(OP_READ) ] = {
1015 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1016 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1017 	},
1018 	[ C(OP_WRITE) ] = {
1019 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1020 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1021 	},
1022 	[ C(OP_PREFETCH) ] = {
1023 		[ C(RESULT_ACCESS) ] = 0x0,
1024 		[ C(RESULT_MISS)   ] = 0x0,
1025 	},
1026  },
1027  [ C(ITLB) ] = {
1028 	[ C(OP_READ) ] = {
1029 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1030 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
1031 	},
1032 	[ C(OP_WRITE) ] = {
1033 		[ C(RESULT_ACCESS) ] = -1,
1034 		[ C(RESULT_MISS)   ] = -1,
1035 	},
1036 	[ C(OP_PREFETCH) ] = {
1037 		[ C(RESULT_ACCESS) ] = -1,
1038 		[ C(RESULT_MISS)   ] = -1,
1039 	},
1040  },
1041  [ C(BPU ) ] = {
1042 	[ C(OP_READ) ] = {
1043 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1044 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1045 	},
1046 	[ C(OP_WRITE) ] = {
1047 		[ C(RESULT_ACCESS) ] = -1,
1048 		[ C(RESULT_MISS)   ] = -1,
1049 	},
1050 	[ C(OP_PREFETCH) ] = {
1051 		[ C(RESULT_ACCESS) ] = -1,
1052 		[ C(RESULT_MISS)   ] = -1,
1053 	},
1054  },
1055  [ C(NODE) ] = {
1056 	[ C(OP_READ) ] = {
1057 		[ C(RESULT_ACCESS) ] = 0x01b7,
1058 		[ C(RESULT_MISS)   ] = 0x01b7,
1059 	},
1060 	[ C(OP_WRITE) ] = {
1061 		[ C(RESULT_ACCESS) ] = 0x01b7,
1062 		[ C(RESULT_MISS)   ] = 0x01b7,
1063 	},
1064 	[ C(OP_PREFETCH) ] = {
1065 		[ C(RESULT_ACCESS) ] = 0x01b7,
1066 		[ C(RESULT_MISS)   ] = 0x01b7,
1067 	},
1068  },
1069 };
1070 
1071 /*
1072  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1073  * See IA32 SDM Vol 3B 30.6.1.3
1074  */
1075 
1076 #define NHM_DMND_DATA_RD	(1 << 0)
1077 #define NHM_DMND_RFO		(1 << 1)
1078 #define NHM_DMND_IFETCH		(1 << 2)
1079 #define NHM_DMND_WB		(1 << 3)
1080 #define NHM_PF_DATA_RD		(1 << 4)
1081 #define NHM_PF_DATA_RFO		(1 << 5)
1082 #define NHM_PF_IFETCH		(1 << 6)
1083 #define NHM_OFFCORE_OTHER	(1 << 7)
1084 #define NHM_UNCORE_HIT		(1 << 8)
1085 #define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
1086 #define NHM_OTHER_CORE_HITM	(1 << 10)
1087         			/* reserved */
1088 #define NHM_REMOTE_CACHE_FWD	(1 << 12)
1089 #define NHM_REMOTE_DRAM		(1 << 13)
1090 #define NHM_LOCAL_DRAM		(1 << 14)
1091 #define NHM_NON_DRAM		(1 << 15)
1092 
1093 #define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1094 #define NHM_REMOTE		(NHM_REMOTE_DRAM)
1095 
1096 #define NHM_DMND_READ		(NHM_DMND_DATA_RD)
1097 #define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
1098 #define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1099 
1100 #define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1101 #define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1102 #define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
1103 
1104 static __initconst const u64 nehalem_hw_cache_extra_regs
1105 				[PERF_COUNT_HW_CACHE_MAX]
1106 				[PERF_COUNT_HW_CACHE_OP_MAX]
1107 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1108 {
1109  [ C(LL  ) ] = {
1110 	[ C(OP_READ) ] = {
1111 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1112 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1113 	},
1114 	[ C(OP_WRITE) ] = {
1115 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1116 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1117 	},
1118 	[ C(OP_PREFETCH) ] = {
1119 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1120 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1121 	},
1122  },
1123  [ C(NODE) ] = {
1124 	[ C(OP_READ) ] = {
1125 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1126 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1127 	},
1128 	[ C(OP_WRITE) ] = {
1129 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1130 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1131 	},
1132 	[ C(OP_PREFETCH) ] = {
1133 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1134 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1135 	},
1136  },
1137 };
1138 
1139 static __initconst const u64 nehalem_hw_cache_event_ids
1140 				[PERF_COUNT_HW_CACHE_MAX]
1141 				[PERF_COUNT_HW_CACHE_OP_MAX]
1142 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1143 {
1144  [ C(L1D) ] = {
1145 	[ C(OP_READ) ] = {
1146 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1147 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1148 	},
1149 	[ C(OP_WRITE) ] = {
1150 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1151 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1152 	},
1153 	[ C(OP_PREFETCH) ] = {
1154 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1155 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1156 	},
1157  },
1158  [ C(L1I ) ] = {
1159 	[ C(OP_READ) ] = {
1160 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1161 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1162 	},
1163 	[ C(OP_WRITE) ] = {
1164 		[ C(RESULT_ACCESS) ] = -1,
1165 		[ C(RESULT_MISS)   ] = -1,
1166 	},
1167 	[ C(OP_PREFETCH) ] = {
1168 		[ C(RESULT_ACCESS) ] = 0x0,
1169 		[ C(RESULT_MISS)   ] = 0x0,
1170 	},
1171  },
1172  [ C(LL  ) ] = {
1173 	[ C(OP_READ) ] = {
1174 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1175 		[ C(RESULT_ACCESS) ] = 0x01b7,
1176 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1177 		[ C(RESULT_MISS)   ] = 0x01b7,
1178 	},
1179 	/*
1180 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1181 	 * on RFO.
1182 	 */
1183 	[ C(OP_WRITE) ] = {
1184 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1185 		[ C(RESULT_ACCESS) ] = 0x01b7,
1186 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1187 		[ C(RESULT_MISS)   ] = 0x01b7,
1188 	},
1189 	[ C(OP_PREFETCH) ] = {
1190 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1191 		[ C(RESULT_ACCESS) ] = 0x01b7,
1192 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1193 		[ C(RESULT_MISS)   ] = 0x01b7,
1194 	},
1195  },
1196  [ C(DTLB) ] = {
1197 	[ C(OP_READ) ] = {
1198 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1199 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1200 	},
1201 	[ C(OP_WRITE) ] = {
1202 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1203 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1204 	},
1205 	[ C(OP_PREFETCH) ] = {
1206 		[ C(RESULT_ACCESS) ] = 0x0,
1207 		[ C(RESULT_MISS)   ] = 0x0,
1208 	},
1209  },
1210  [ C(ITLB) ] = {
1211 	[ C(OP_READ) ] = {
1212 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1213 		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1214 	},
1215 	[ C(OP_WRITE) ] = {
1216 		[ C(RESULT_ACCESS) ] = -1,
1217 		[ C(RESULT_MISS)   ] = -1,
1218 	},
1219 	[ C(OP_PREFETCH) ] = {
1220 		[ C(RESULT_ACCESS) ] = -1,
1221 		[ C(RESULT_MISS)   ] = -1,
1222 	},
1223  },
1224  [ C(BPU ) ] = {
1225 	[ C(OP_READ) ] = {
1226 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1227 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1228 	},
1229 	[ C(OP_WRITE) ] = {
1230 		[ C(RESULT_ACCESS) ] = -1,
1231 		[ C(RESULT_MISS)   ] = -1,
1232 	},
1233 	[ C(OP_PREFETCH) ] = {
1234 		[ C(RESULT_ACCESS) ] = -1,
1235 		[ C(RESULT_MISS)   ] = -1,
1236 	},
1237  },
1238  [ C(NODE) ] = {
1239 	[ C(OP_READ) ] = {
1240 		[ C(RESULT_ACCESS) ] = 0x01b7,
1241 		[ C(RESULT_MISS)   ] = 0x01b7,
1242 	},
1243 	[ C(OP_WRITE) ] = {
1244 		[ C(RESULT_ACCESS) ] = 0x01b7,
1245 		[ C(RESULT_MISS)   ] = 0x01b7,
1246 	},
1247 	[ C(OP_PREFETCH) ] = {
1248 		[ C(RESULT_ACCESS) ] = 0x01b7,
1249 		[ C(RESULT_MISS)   ] = 0x01b7,
1250 	},
1251  },
1252 };
1253 
1254 static __initconst const u64 core2_hw_cache_event_ids
1255 				[PERF_COUNT_HW_CACHE_MAX]
1256 				[PERF_COUNT_HW_CACHE_OP_MAX]
1257 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1258 {
1259  [ C(L1D) ] = {
1260 	[ C(OP_READ) ] = {
1261 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1262 		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1263 	},
1264 	[ C(OP_WRITE) ] = {
1265 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1266 		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1267 	},
1268 	[ C(OP_PREFETCH) ] = {
1269 		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1270 		[ C(RESULT_MISS)   ] = 0,
1271 	},
1272  },
1273  [ C(L1I ) ] = {
1274 	[ C(OP_READ) ] = {
1275 		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1276 		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1277 	},
1278 	[ C(OP_WRITE) ] = {
1279 		[ C(RESULT_ACCESS) ] = -1,
1280 		[ C(RESULT_MISS)   ] = -1,
1281 	},
1282 	[ C(OP_PREFETCH) ] = {
1283 		[ C(RESULT_ACCESS) ] = 0,
1284 		[ C(RESULT_MISS)   ] = 0,
1285 	},
1286  },
1287  [ C(LL  ) ] = {
1288 	[ C(OP_READ) ] = {
1289 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1290 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1291 	},
1292 	[ C(OP_WRITE) ] = {
1293 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1294 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1295 	},
1296 	[ C(OP_PREFETCH) ] = {
1297 		[ C(RESULT_ACCESS) ] = 0,
1298 		[ C(RESULT_MISS)   ] = 0,
1299 	},
1300  },
1301  [ C(DTLB) ] = {
1302 	[ C(OP_READ) ] = {
1303 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1304 		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1305 	},
1306 	[ C(OP_WRITE) ] = {
1307 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1308 		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1309 	},
1310 	[ C(OP_PREFETCH) ] = {
1311 		[ C(RESULT_ACCESS) ] = 0,
1312 		[ C(RESULT_MISS)   ] = 0,
1313 	},
1314  },
1315  [ C(ITLB) ] = {
1316 	[ C(OP_READ) ] = {
1317 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1318 		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1319 	},
1320 	[ C(OP_WRITE) ] = {
1321 		[ C(RESULT_ACCESS) ] = -1,
1322 		[ C(RESULT_MISS)   ] = -1,
1323 	},
1324 	[ C(OP_PREFETCH) ] = {
1325 		[ C(RESULT_ACCESS) ] = -1,
1326 		[ C(RESULT_MISS)   ] = -1,
1327 	},
1328  },
1329  [ C(BPU ) ] = {
1330 	[ C(OP_READ) ] = {
1331 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1332 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1333 	},
1334 	[ C(OP_WRITE) ] = {
1335 		[ C(RESULT_ACCESS) ] = -1,
1336 		[ C(RESULT_MISS)   ] = -1,
1337 	},
1338 	[ C(OP_PREFETCH) ] = {
1339 		[ C(RESULT_ACCESS) ] = -1,
1340 		[ C(RESULT_MISS)   ] = -1,
1341 	},
1342  },
1343 };
1344 
1345 static __initconst const u64 atom_hw_cache_event_ids
1346 				[PERF_COUNT_HW_CACHE_MAX]
1347 				[PERF_COUNT_HW_CACHE_OP_MAX]
1348 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1349 {
1350  [ C(L1D) ] = {
1351 	[ C(OP_READ) ] = {
1352 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1353 		[ C(RESULT_MISS)   ] = 0,
1354 	},
1355 	[ C(OP_WRITE) ] = {
1356 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1357 		[ C(RESULT_MISS)   ] = 0,
1358 	},
1359 	[ C(OP_PREFETCH) ] = {
1360 		[ C(RESULT_ACCESS) ] = 0x0,
1361 		[ C(RESULT_MISS)   ] = 0,
1362 	},
1363  },
1364  [ C(L1I ) ] = {
1365 	[ C(OP_READ) ] = {
1366 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1367 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1368 	},
1369 	[ C(OP_WRITE) ] = {
1370 		[ C(RESULT_ACCESS) ] = -1,
1371 		[ C(RESULT_MISS)   ] = -1,
1372 	},
1373 	[ C(OP_PREFETCH) ] = {
1374 		[ C(RESULT_ACCESS) ] = 0,
1375 		[ C(RESULT_MISS)   ] = 0,
1376 	},
1377  },
1378  [ C(LL  ) ] = {
1379 	[ C(OP_READ) ] = {
1380 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1381 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1382 	},
1383 	[ C(OP_WRITE) ] = {
1384 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1385 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1386 	},
1387 	[ C(OP_PREFETCH) ] = {
1388 		[ C(RESULT_ACCESS) ] = 0,
1389 		[ C(RESULT_MISS)   ] = 0,
1390 	},
1391  },
1392  [ C(DTLB) ] = {
1393 	[ C(OP_READ) ] = {
1394 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1395 		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1396 	},
1397 	[ C(OP_WRITE) ] = {
1398 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1399 		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1400 	},
1401 	[ C(OP_PREFETCH) ] = {
1402 		[ C(RESULT_ACCESS) ] = 0,
1403 		[ C(RESULT_MISS)   ] = 0,
1404 	},
1405  },
1406  [ C(ITLB) ] = {
1407 	[ C(OP_READ) ] = {
1408 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1409 		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1410 	},
1411 	[ C(OP_WRITE) ] = {
1412 		[ C(RESULT_ACCESS) ] = -1,
1413 		[ C(RESULT_MISS)   ] = -1,
1414 	},
1415 	[ C(OP_PREFETCH) ] = {
1416 		[ C(RESULT_ACCESS) ] = -1,
1417 		[ C(RESULT_MISS)   ] = -1,
1418 	},
1419  },
1420  [ C(BPU ) ] = {
1421 	[ C(OP_READ) ] = {
1422 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1423 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1424 	},
1425 	[ C(OP_WRITE) ] = {
1426 		[ C(RESULT_ACCESS) ] = -1,
1427 		[ C(RESULT_MISS)   ] = -1,
1428 	},
1429 	[ C(OP_PREFETCH) ] = {
1430 		[ C(RESULT_ACCESS) ] = -1,
1431 		[ C(RESULT_MISS)   ] = -1,
1432 	},
1433  },
1434 };
1435 
1436 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1437 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1438 /* no_alloc_cycles.not_delivered */
1439 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1440 	       "event=0xca,umask=0x50");
1441 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1442 /* uops_retired.all */
1443 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1444 	       "event=0xc2,umask=0x10");
1445 /* uops_retired.all */
1446 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1447 	       "event=0xc2,umask=0x10");
1448 
1449 static struct attribute *slm_events_attrs[] = {
1450 	EVENT_PTR(td_total_slots_slm),
1451 	EVENT_PTR(td_total_slots_scale_slm),
1452 	EVENT_PTR(td_fetch_bubbles_slm),
1453 	EVENT_PTR(td_fetch_bubbles_scale_slm),
1454 	EVENT_PTR(td_slots_issued_slm),
1455 	EVENT_PTR(td_slots_retired_slm),
1456 	NULL
1457 };
1458 
1459 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1460 {
1461 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1462 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1463 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1464 	EVENT_EXTRA_END
1465 };
1466 
1467 #define SLM_DMND_READ		SNB_DMND_DATA_RD
1468 #define SLM_DMND_WRITE		SNB_DMND_RFO
1469 #define SLM_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
1470 
1471 #define SLM_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1472 #define SLM_LLC_ACCESS		SNB_RESP_ANY
1473 #define SLM_LLC_MISS		(SLM_SNP_ANY|SNB_NON_DRAM)
1474 
1475 static __initconst const u64 slm_hw_cache_extra_regs
1476 				[PERF_COUNT_HW_CACHE_MAX]
1477 				[PERF_COUNT_HW_CACHE_OP_MAX]
1478 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1479 {
1480  [ C(LL  ) ] = {
1481 	[ C(OP_READ) ] = {
1482 		[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1483 		[ C(RESULT_MISS)   ] = 0,
1484 	},
1485 	[ C(OP_WRITE) ] = {
1486 		[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1487 		[ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1488 	},
1489 	[ C(OP_PREFETCH) ] = {
1490 		[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1491 		[ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1492 	},
1493  },
1494 };
1495 
1496 static __initconst const u64 slm_hw_cache_event_ids
1497 				[PERF_COUNT_HW_CACHE_MAX]
1498 				[PERF_COUNT_HW_CACHE_OP_MAX]
1499 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1500 {
1501  [ C(L1D) ] = {
1502 	[ C(OP_READ) ] = {
1503 		[ C(RESULT_ACCESS) ] = 0,
1504 		[ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1505 	},
1506 	[ C(OP_WRITE) ] = {
1507 		[ C(RESULT_ACCESS) ] = 0,
1508 		[ C(RESULT_MISS)   ] = 0,
1509 	},
1510 	[ C(OP_PREFETCH) ] = {
1511 		[ C(RESULT_ACCESS) ] = 0,
1512 		[ C(RESULT_MISS)   ] = 0,
1513 	},
1514  },
1515  [ C(L1I ) ] = {
1516 	[ C(OP_READ) ] = {
1517 		[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1518 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1519 	},
1520 	[ C(OP_WRITE) ] = {
1521 		[ C(RESULT_ACCESS) ] = -1,
1522 		[ C(RESULT_MISS)   ] = -1,
1523 	},
1524 	[ C(OP_PREFETCH) ] = {
1525 		[ C(RESULT_ACCESS) ] = 0,
1526 		[ C(RESULT_MISS)   ] = 0,
1527 	},
1528  },
1529  [ C(LL  ) ] = {
1530 	[ C(OP_READ) ] = {
1531 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1532 		[ C(RESULT_ACCESS) ] = 0x01b7,
1533 		[ C(RESULT_MISS)   ] = 0,
1534 	},
1535 	[ C(OP_WRITE) ] = {
1536 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1537 		[ C(RESULT_ACCESS) ] = 0x01b7,
1538 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1539 		[ C(RESULT_MISS)   ] = 0x01b7,
1540 	},
1541 	[ C(OP_PREFETCH) ] = {
1542 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1543 		[ C(RESULT_ACCESS) ] = 0x01b7,
1544 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1545 		[ C(RESULT_MISS)   ] = 0x01b7,
1546 	},
1547  },
1548  [ C(DTLB) ] = {
1549 	[ C(OP_READ) ] = {
1550 		[ C(RESULT_ACCESS) ] = 0,
1551 		[ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1552 	},
1553 	[ C(OP_WRITE) ] = {
1554 		[ C(RESULT_ACCESS) ] = 0,
1555 		[ C(RESULT_MISS)   ] = 0,
1556 	},
1557 	[ C(OP_PREFETCH) ] = {
1558 		[ C(RESULT_ACCESS) ] = 0,
1559 		[ C(RESULT_MISS)   ] = 0,
1560 	},
1561  },
1562  [ C(ITLB) ] = {
1563 	[ C(OP_READ) ] = {
1564 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1565 		[ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1566 	},
1567 	[ C(OP_WRITE) ] = {
1568 		[ C(RESULT_ACCESS) ] = -1,
1569 		[ C(RESULT_MISS)   ] = -1,
1570 	},
1571 	[ C(OP_PREFETCH) ] = {
1572 		[ C(RESULT_ACCESS) ] = -1,
1573 		[ C(RESULT_MISS)   ] = -1,
1574 	},
1575  },
1576  [ C(BPU ) ] = {
1577 	[ C(OP_READ) ] = {
1578 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1579 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1580 	},
1581 	[ C(OP_WRITE) ] = {
1582 		[ C(RESULT_ACCESS) ] = -1,
1583 		[ C(RESULT_MISS)   ] = -1,
1584 	},
1585 	[ C(OP_PREFETCH) ] = {
1586 		[ C(RESULT_ACCESS) ] = -1,
1587 		[ C(RESULT_MISS)   ] = -1,
1588 	},
1589  },
1590 };
1591 
1592 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1593 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1594 /* UOPS_NOT_DELIVERED.ANY */
1595 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1596 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1597 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1598 /* UOPS_RETIRED.ANY */
1599 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1600 /* UOPS_ISSUED.ANY */
1601 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1602 
1603 static struct attribute *glm_events_attrs[] = {
1604 	EVENT_PTR(td_total_slots_glm),
1605 	EVENT_PTR(td_total_slots_scale_glm),
1606 	EVENT_PTR(td_fetch_bubbles_glm),
1607 	EVENT_PTR(td_recovery_bubbles_glm),
1608 	EVENT_PTR(td_slots_issued_glm),
1609 	EVENT_PTR(td_slots_retired_glm),
1610 	NULL
1611 };
1612 
1613 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1614 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1615 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1616 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1617 	EVENT_EXTRA_END
1618 };
1619 
1620 #define GLM_DEMAND_DATA_RD		BIT_ULL(0)
1621 #define GLM_DEMAND_RFO			BIT_ULL(1)
1622 #define GLM_ANY_RESPONSE		BIT_ULL(16)
1623 #define GLM_SNP_NONE_OR_MISS		BIT_ULL(33)
1624 #define GLM_DEMAND_READ			GLM_DEMAND_DATA_RD
1625 #define GLM_DEMAND_WRITE		GLM_DEMAND_RFO
1626 #define GLM_DEMAND_PREFETCH		(SNB_PF_DATA_RD|SNB_PF_RFO)
1627 #define GLM_LLC_ACCESS			GLM_ANY_RESPONSE
1628 #define GLM_SNP_ANY			(GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1629 #define GLM_LLC_MISS			(GLM_SNP_ANY|SNB_NON_DRAM)
1630 
1631 static __initconst const u64 glm_hw_cache_event_ids
1632 				[PERF_COUNT_HW_CACHE_MAX]
1633 				[PERF_COUNT_HW_CACHE_OP_MAX]
1634 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1635 	[C(L1D)] = {
1636 		[C(OP_READ)] = {
1637 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1638 			[C(RESULT_MISS)]	= 0x0,
1639 		},
1640 		[C(OP_WRITE)] = {
1641 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1642 			[C(RESULT_MISS)]	= 0x0,
1643 		},
1644 		[C(OP_PREFETCH)] = {
1645 			[C(RESULT_ACCESS)]	= 0x0,
1646 			[C(RESULT_MISS)]	= 0x0,
1647 		},
1648 	},
1649 	[C(L1I)] = {
1650 		[C(OP_READ)] = {
1651 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1652 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1653 		},
1654 		[C(OP_WRITE)] = {
1655 			[C(RESULT_ACCESS)]	= -1,
1656 			[C(RESULT_MISS)]	= -1,
1657 		},
1658 		[C(OP_PREFETCH)] = {
1659 			[C(RESULT_ACCESS)]	= 0x0,
1660 			[C(RESULT_MISS)]	= 0x0,
1661 		},
1662 	},
1663 	[C(LL)] = {
1664 		[C(OP_READ)] = {
1665 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1666 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1667 		},
1668 		[C(OP_WRITE)] = {
1669 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1670 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1671 		},
1672 		[C(OP_PREFETCH)] = {
1673 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1674 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1675 		},
1676 	},
1677 	[C(DTLB)] = {
1678 		[C(OP_READ)] = {
1679 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1680 			[C(RESULT_MISS)]	= 0x0,
1681 		},
1682 		[C(OP_WRITE)] = {
1683 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1684 			[C(RESULT_MISS)]	= 0x0,
1685 		},
1686 		[C(OP_PREFETCH)] = {
1687 			[C(RESULT_ACCESS)]	= 0x0,
1688 			[C(RESULT_MISS)]	= 0x0,
1689 		},
1690 	},
1691 	[C(ITLB)] = {
1692 		[C(OP_READ)] = {
1693 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1694 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1695 		},
1696 		[C(OP_WRITE)] = {
1697 			[C(RESULT_ACCESS)]	= -1,
1698 			[C(RESULT_MISS)]	= -1,
1699 		},
1700 		[C(OP_PREFETCH)] = {
1701 			[C(RESULT_ACCESS)]	= -1,
1702 			[C(RESULT_MISS)]	= -1,
1703 		},
1704 	},
1705 	[C(BPU)] = {
1706 		[C(OP_READ)] = {
1707 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1708 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1709 		},
1710 		[C(OP_WRITE)] = {
1711 			[C(RESULT_ACCESS)]	= -1,
1712 			[C(RESULT_MISS)]	= -1,
1713 		},
1714 		[C(OP_PREFETCH)] = {
1715 			[C(RESULT_ACCESS)]	= -1,
1716 			[C(RESULT_MISS)]	= -1,
1717 		},
1718 	},
1719 };
1720 
1721 static __initconst const u64 glm_hw_cache_extra_regs
1722 				[PERF_COUNT_HW_CACHE_MAX]
1723 				[PERF_COUNT_HW_CACHE_OP_MAX]
1724 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1725 	[C(LL)] = {
1726 		[C(OP_READ)] = {
1727 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
1728 						  GLM_LLC_ACCESS,
1729 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
1730 						  GLM_LLC_MISS,
1731 		},
1732 		[C(OP_WRITE)] = {
1733 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
1734 						  GLM_LLC_ACCESS,
1735 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
1736 						  GLM_LLC_MISS,
1737 		},
1738 		[C(OP_PREFETCH)] = {
1739 			[C(RESULT_ACCESS)]	= GLM_DEMAND_PREFETCH|
1740 						  GLM_LLC_ACCESS,
1741 			[C(RESULT_MISS)]	= GLM_DEMAND_PREFETCH|
1742 						  GLM_LLC_MISS,
1743 		},
1744 	},
1745 };
1746 
1747 static __initconst const u64 glp_hw_cache_event_ids
1748 				[PERF_COUNT_HW_CACHE_MAX]
1749 				[PERF_COUNT_HW_CACHE_OP_MAX]
1750 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1751 	[C(L1D)] = {
1752 		[C(OP_READ)] = {
1753 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1754 			[C(RESULT_MISS)]	= 0x0,
1755 		},
1756 		[C(OP_WRITE)] = {
1757 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1758 			[C(RESULT_MISS)]	= 0x0,
1759 		},
1760 		[C(OP_PREFETCH)] = {
1761 			[C(RESULT_ACCESS)]	= 0x0,
1762 			[C(RESULT_MISS)]	= 0x0,
1763 		},
1764 	},
1765 	[C(L1I)] = {
1766 		[C(OP_READ)] = {
1767 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1768 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1769 		},
1770 		[C(OP_WRITE)] = {
1771 			[C(RESULT_ACCESS)]	= -1,
1772 			[C(RESULT_MISS)]	= -1,
1773 		},
1774 		[C(OP_PREFETCH)] = {
1775 			[C(RESULT_ACCESS)]	= 0x0,
1776 			[C(RESULT_MISS)]	= 0x0,
1777 		},
1778 	},
1779 	[C(LL)] = {
1780 		[C(OP_READ)] = {
1781 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1782 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1783 		},
1784 		[C(OP_WRITE)] = {
1785 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1786 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1787 		},
1788 		[C(OP_PREFETCH)] = {
1789 			[C(RESULT_ACCESS)]	= 0x0,
1790 			[C(RESULT_MISS)]	= 0x0,
1791 		},
1792 	},
1793 	[C(DTLB)] = {
1794 		[C(OP_READ)] = {
1795 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1796 			[C(RESULT_MISS)]	= 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
1797 		},
1798 		[C(OP_WRITE)] = {
1799 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1800 			[C(RESULT_MISS)]	= 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
1801 		},
1802 		[C(OP_PREFETCH)] = {
1803 			[C(RESULT_ACCESS)]	= 0x0,
1804 			[C(RESULT_MISS)]	= 0x0,
1805 		},
1806 	},
1807 	[C(ITLB)] = {
1808 		[C(OP_READ)] = {
1809 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1810 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1811 		},
1812 		[C(OP_WRITE)] = {
1813 			[C(RESULT_ACCESS)]	= -1,
1814 			[C(RESULT_MISS)]	= -1,
1815 		},
1816 		[C(OP_PREFETCH)] = {
1817 			[C(RESULT_ACCESS)]	= -1,
1818 			[C(RESULT_MISS)]	= -1,
1819 		},
1820 	},
1821 	[C(BPU)] = {
1822 		[C(OP_READ)] = {
1823 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1824 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1825 		},
1826 		[C(OP_WRITE)] = {
1827 			[C(RESULT_ACCESS)]	= -1,
1828 			[C(RESULT_MISS)]	= -1,
1829 		},
1830 		[C(OP_PREFETCH)] = {
1831 			[C(RESULT_ACCESS)]	= -1,
1832 			[C(RESULT_MISS)]	= -1,
1833 		},
1834 	},
1835 };
1836 
1837 static __initconst const u64 glp_hw_cache_extra_regs
1838 				[PERF_COUNT_HW_CACHE_MAX]
1839 				[PERF_COUNT_HW_CACHE_OP_MAX]
1840 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1841 	[C(LL)] = {
1842 		[C(OP_READ)] = {
1843 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
1844 						  GLM_LLC_ACCESS,
1845 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
1846 						  GLM_LLC_MISS,
1847 		},
1848 		[C(OP_WRITE)] = {
1849 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
1850 						  GLM_LLC_ACCESS,
1851 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
1852 						  GLM_LLC_MISS,
1853 		},
1854 		[C(OP_PREFETCH)] = {
1855 			[C(RESULT_ACCESS)]	= 0x0,
1856 			[C(RESULT_MISS)]	= 0x0,
1857 		},
1858 	},
1859 };
1860 
1861 #define TNT_LOCAL_DRAM			BIT_ULL(26)
1862 #define TNT_DEMAND_READ			GLM_DEMAND_DATA_RD
1863 #define TNT_DEMAND_WRITE		GLM_DEMAND_RFO
1864 #define TNT_LLC_ACCESS			GLM_ANY_RESPONSE
1865 #define TNT_SNP_ANY			(SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
1866 					 SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
1867 #define TNT_LLC_MISS			(TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
1868 
1869 static __initconst const u64 tnt_hw_cache_extra_regs
1870 				[PERF_COUNT_HW_CACHE_MAX]
1871 				[PERF_COUNT_HW_CACHE_OP_MAX]
1872 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1873 	[C(LL)] = {
1874 		[C(OP_READ)] = {
1875 			[C(RESULT_ACCESS)]	= TNT_DEMAND_READ|
1876 						  TNT_LLC_ACCESS,
1877 			[C(RESULT_MISS)]	= TNT_DEMAND_READ|
1878 						  TNT_LLC_MISS,
1879 		},
1880 		[C(OP_WRITE)] = {
1881 			[C(RESULT_ACCESS)]	= TNT_DEMAND_WRITE|
1882 						  TNT_LLC_ACCESS,
1883 			[C(RESULT_MISS)]	= TNT_DEMAND_WRITE|
1884 						  TNT_LLC_MISS,
1885 		},
1886 		[C(OP_PREFETCH)] = {
1887 			[C(RESULT_ACCESS)]	= 0x0,
1888 			[C(RESULT_MISS)]	= 0x0,
1889 		},
1890 	},
1891 };
1892 
1893 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
1894 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1895 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffffff9fffull, RSP_0),
1896 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xffffff9fffull, RSP_1),
1897 	EVENT_EXTRA_END
1898 };
1899 
1900 #define KNL_OT_L2_HITE		BIT_ULL(19) /* Other Tile L2 Hit */
1901 #define KNL_OT_L2_HITF		BIT_ULL(20) /* Other Tile L2 Hit */
1902 #define KNL_MCDRAM_LOCAL	BIT_ULL(21)
1903 #define KNL_MCDRAM_FAR		BIT_ULL(22)
1904 #define KNL_DDR_LOCAL		BIT_ULL(23)
1905 #define KNL_DDR_FAR		BIT_ULL(24)
1906 #define KNL_DRAM_ANY		(KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1907 				    KNL_DDR_LOCAL | KNL_DDR_FAR)
1908 #define KNL_L2_READ		SLM_DMND_READ
1909 #define KNL_L2_WRITE		SLM_DMND_WRITE
1910 #define KNL_L2_PREFETCH		SLM_DMND_PREFETCH
1911 #define KNL_L2_ACCESS		SLM_LLC_ACCESS
1912 #define KNL_L2_MISS		(KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1913 				   KNL_DRAM_ANY | SNB_SNP_ANY | \
1914 						  SNB_NON_DRAM)
1915 
1916 static __initconst const u64 knl_hw_cache_extra_regs
1917 				[PERF_COUNT_HW_CACHE_MAX]
1918 				[PERF_COUNT_HW_CACHE_OP_MAX]
1919 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1920 	[C(LL)] = {
1921 		[C(OP_READ)] = {
1922 			[C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1923 			[C(RESULT_MISS)]   = 0,
1924 		},
1925 		[C(OP_WRITE)] = {
1926 			[C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1927 			[C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
1928 		},
1929 		[C(OP_PREFETCH)] = {
1930 			[C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1931 			[C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
1932 		},
1933 	},
1934 };
1935 
1936 /*
1937  * Used from PMIs where the LBRs are already disabled.
1938  *
1939  * This function could be called consecutively. It is required to remain in
1940  * disabled state if called consecutively.
1941  *
1942  * During consecutive calls, the same disable value will be written to related
1943  * registers, so the PMU state remains unchanged.
1944  *
1945  * intel_bts events don't coexist with intel PMU's BTS events because of
1946  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
1947  * disabled around intel PMU's event batching etc, only inside the PMI handler.
1948  */
1949 static void __intel_pmu_disable_all(void)
1950 {
1951 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1952 
1953 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1954 
1955 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1956 		intel_pmu_disable_bts();
1957 
1958 	intel_pmu_pebs_disable_all();
1959 }
1960 
1961 static void intel_pmu_disable_all(void)
1962 {
1963 	__intel_pmu_disable_all();
1964 	intel_pmu_lbr_disable_all();
1965 }
1966 
1967 static void __intel_pmu_enable_all(int added, bool pmi)
1968 {
1969 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1970 
1971 	intel_pmu_pebs_enable_all();
1972 	intel_pmu_lbr_enable_all(pmi);
1973 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1974 			x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1975 
1976 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1977 		struct perf_event *event =
1978 			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1979 
1980 		if (WARN_ON_ONCE(!event))
1981 			return;
1982 
1983 		intel_pmu_enable_bts(event->hw.config);
1984 	}
1985 }
1986 
1987 static void intel_pmu_enable_all(int added)
1988 {
1989 	__intel_pmu_enable_all(added, false);
1990 }
1991 
1992 /*
1993  * Workaround for:
1994  *   Intel Errata AAK100 (model 26)
1995  *   Intel Errata AAP53  (model 30)
1996  *   Intel Errata BD53   (model 44)
1997  *
1998  * The official story:
1999  *   These chips need to be 'reset' when adding counters by programming the
2000  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2001  *   in sequence on the same PMC or on different PMCs.
2002  *
2003  * In practise it appears some of these events do in fact count, and
2004  * we need to program all 4 events.
2005  */
2006 static void intel_pmu_nhm_workaround(void)
2007 {
2008 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2009 	static const unsigned long nhm_magic[4] = {
2010 		0x4300B5,
2011 		0x4300D2,
2012 		0x4300B1,
2013 		0x4300B1
2014 	};
2015 	struct perf_event *event;
2016 	int i;
2017 
2018 	/*
2019 	 * The Errata requires below steps:
2020 	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2021 	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
2022 	 *    the corresponding PMCx;
2023 	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2024 	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2025 	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2026 	 */
2027 
2028 	/*
2029 	 * The real steps we choose are a little different from above.
2030 	 * A) To reduce MSR operations, we don't run step 1) as they
2031 	 *    are already cleared before this function is called;
2032 	 * B) Call x86_perf_event_update to save PMCx before configuring
2033 	 *    PERFEVTSELx with magic number;
2034 	 * C) With step 5), we do clear only when the PERFEVTSELx is
2035 	 *    not used currently.
2036 	 * D) Call x86_perf_event_set_period to restore PMCx;
2037 	 */
2038 
2039 	/* We always operate 4 pairs of PERF Counters */
2040 	for (i = 0; i < 4; i++) {
2041 		event = cpuc->events[i];
2042 		if (event)
2043 			x86_perf_event_update(event);
2044 	}
2045 
2046 	for (i = 0; i < 4; i++) {
2047 		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2048 		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2049 	}
2050 
2051 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2052 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2053 
2054 	for (i = 0; i < 4; i++) {
2055 		event = cpuc->events[i];
2056 
2057 		if (event) {
2058 			x86_perf_event_set_period(event);
2059 			__x86_pmu_enable_event(&event->hw,
2060 					ARCH_PERFMON_EVENTSEL_ENABLE);
2061 		} else
2062 			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2063 	}
2064 }
2065 
2066 static void intel_pmu_nhm_enable_all(int added)
2067 {
2068 	if (added)
2069 		intel_pmu_nhm_workaround();
2070 	intel_pmu_enable_all(added);
2071 }
2072 
2073 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2074 {
2075 	u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2076 
2077 	if (cpuc->tfa_shadow != val) {
2078 		cpuc->tfa_shadow = val;
2079 		wrmsrl(MSR_TSX_FORCE_ABORT, val);
2080 	}
2081 }
2082 
2083 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2084 {
2085 	/*
2086 	 * We're going to use PMC3, make sure TFA is set before we touch it.
2087 	 */
2088 	if (cntr == 3)
2089 		intel_set_tfa(cpuc, true);
2090 }
2091 
2092 static void intel_tfa_pmu_enable_all(int added)
2093 {
2094 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2095 
2096 	/*
2097 	 * If we find PMC3 is no longer used when we enable the PMU, we can
2098 	 * clear TFA.
2099 	 */
2100 	if (!test_bit(3, cpuc->active_mask))
2101 		intel_set_tfa(cpuc, false);
2102 
2103 	intel_pmu_enable_all(added);
2104 }
2105 
2106 static void enable_counter_freeze(void)
2107 {
2108 	update_debugctlmsr(get_debugctlmsr() |
2109 			DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2110 }
2111 
2112 static void disable_counter_freeze(void)
2113 {
2114 	update_debugctlmsr(get_debugctlmsr() &
2115 			~DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2116 }
2117 
2118 static inline u64 intel_pmu_get_status(void)
2119 {
2120 	u64 status;
2121 
2122 	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2123 
2124 	return status;
2125 }
2126 
2127 static inline void intel_pmu_ack_status(u64 ack)
2128 {
2129 	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2130 }
2131 
2132 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
2133 {
2134 	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2135 	u64 ctrl_val, mask;
2136 
2137 	mask = 0xfULL << (idx * 4);
2138 
2139 	rdmsrl(hwc->config_base, ctrl_val);
2140 	ctrl_val &= ~mask;
2141 	wrmsrl(hwc->config_base, ctrl_val);
2142 }
2143 
2144 static inline bool event_is_checkpointed(struct perf_event *event)
2145 {
2146 	return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2147 }
2148 
2149 static void intel_pmu_disable_event(struct perf_event *event)
2150 {
2151 	struct hw_perf_event *hwc = &event->hw;
2152 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2153 
2154 	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2155 		intel_pmu_disable_bts();
2156 		intel_pmu_drain_bts_buffer();
2157 		return;
2158 	}
2159 
2160 	cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
2161 	cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
2162 	cpuc->intel_cp_status &= ~(1ull << hwc->idx);
2163 
2164 	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL))
2165 		intel_pmu_disable_fixed(hwc);
2166 	else
2167 		x86_pmu_disable_event(event);
2168 
2169 	/*
2170 	 * Needs to be called after x86_pmu_disable_event,
2171 	 * so we don't trigger the event without PEBS bit set.
2172 	 */
2173 	if (unlikely(event->attr.precise_ip))
2174 		intel_pmu_pebs_disable(event);
2175 }
2176 
2177 static void intel_pmu_del_event(struct perf_event *event)
2178 {
2179 	if (needs_branch_stack(event))
2180 		intel_pmu_lbr_del(event);
2181 	if (event->attr.precise_ip)
2182 		intel_pmu_pebs_del(event);
2183 }
2184 
2185 static void intel_pmu_read_event(struct perf_event *event)
2186 {
2187 	if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2188 		intel_pmu_auto_reload_read(event);
2189 	else
2190 		x86_perf_event_update(event);
2191 }
2192 
2193 static void intel_pmu_enable_fixed(struct perf_event *event)
2194 {
2195 	struct hw_perf_event *hwc = &event->hw;
2196 	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2197 	u64 ctrl_val, mask, bits = 0;
2198 
2199 	/*
2200 	 * Enable IRQ generation (0x8), if not PEBS,
2201 	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2202 	 * if requested:
2203 	 */
2204 	if (!event->attr.precise_ip)
2205 		bits |= 0x8;
2206 	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2207 		bits |= 0x2;
2208 	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2209 		bits |= 0x1;
2210 
2211 	/*
2212 	 * ANY bit is supported in v3 and up
2213 	 */
2214 	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2215 		bits |= 0x4;
2216 
2217 	bits <<= (idx * 4);
2218 	mask = 0xfULL << (idx * 4);
2219 
2220 	if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2221 		bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2222 		mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2223 	}
2224 
2225 	rdmsrl(hwc->config_base, ctrl_val);
2226 	ctrl_val &= ~mask;
2227 	ctrl_val |= bits;
2228 	wrmsrl(hwc->config_base, ctrl_val);
2229 }
2230 
2231 static void intel_pmu_enable_event(struct perf_event *event)
2232 {
2233 	struct hw_perf_event *hwc = &event->hw;
2234 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2235 
2236 	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2237 		if (!__this_cpu_read(cpu_hw_events.enabled))
2238 			return;
2239 
2240 		intel_pmu_enable_bts(hwc->config);
2241 		return;
2242 	}
2243 
2244 	if (event->attr.exclude_host)
2245 		cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
2246 	if (event->attr.exclude_guest)
2247 		cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
2248 
2249 	if (unlikely(event_is_checkpointed(event)))
2250 		cpuc->intel_cp_status |= (1ull << hwc->idx);
2251 
2252 	if (unlikely(event->attr.precise_ip))
2253 		intel_pmu_pebs_enable(event);
2254 
2255 	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2256 		intel_pmu_enable_fixed(event);
2257 		return;
2258 	}
2259 
2260 	__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2261 }
2262 
2263 static void intel_pmu_add_event(struct perf_event *event)
2264 {
2265 	if (event->attr.precise_ip)
2266 		intel_pmu_pebs_add(event);
2267 	if (needs_branch_stack(event))
2268 		intel_pmu_lbr_add(event);
2269 }
2270 
2271 /*
2272  * Save and restart an expired event. Called by NMI contexts,
2273  * so it has to be careful about preempting normal event ops:
2274  */
2275 int intel_pmu_save_and_restart(struct perf_event *event)
2276 {
2277 	x86_perf_event_update(event);
2278 	/*
2279 	 * For a checkpointed counter always reset back to 0.  This
2280 	 * avoids a situation where the counter overflows, aborts the
2281 	 * transaction and is then set back to shortly before the
2282 	 * overflow, and overflows and aborts again.
2283 	 */
2284 	if (unlikely(event_is_checkpointed(event))) {
2285 		/* No race with NMIs because the counter should not be armed */
2286 		wrmsrl(event->hw.event_base, 0);
2287 		local64_set(&event->hw.prev_count, 0);
2288 	}
2289 	return x86_perf_event_set_period(event);
2290 }
2291 
2292 static void intel_pmu_reset(void)
2293 {
2294 	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2295 	unsigned long flags;
2296 	int idx;
2297 
2298 	if (!x86_pmu.num_counters)
2299 		return;
2300 
2301 	local_irq_save(flags);
2302 
2303 	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2304 
2305 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2306 		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2307 		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2308 	}
2309 	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
2310 		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2311 
2312 	if (ds)
2313 		ds->bts_index = ds->bts_buffer_base;
2314 
2315 	/* Ack all overflows and disable fixed counters */
2316 	if (x86_pmu.version >= 2) {
2317 		intel_pmu_ack_status(intel_pmu_get_status());
2318 		wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2319 	}
2320 
2321 	/* Reset LBRs and LBR freezing */
2322 	if (x86_pmu.lbr_nr) {
2323 		update_debugctlmsr(get_debugctlmsr() &
2324 			~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2325 	}
2326 
2327 	local_irq_restore(flags);
2328 }
2329 
2330 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2331 {
2332 	struct perf_sample_data data;
2333 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2334 	int bit;
2335 	int handled = 0;
2336 
2337 	inc_irq_stat(apic_perf_irqs);
2338 
2339 	/*
2340 	 * Ignore a range of extra bits in status that do not indicate
2341 	 * overflow by themselves.
2342 	 */
2343 	status &= ~(GLOBAL_STATUS_COND_CHG |
2344 		    GLOBAL_STATUS_ASIF |
2345 		    GLOBAL_STATUS_LBRS_FROZEN);
2346 	if (!status)
2347 		return 0;
2348 	/*
2349 	 * In case multiple PEBS events are sampled at the same time,
2350 	 * it is possible to have GLOBAL_STATUS bit 62 set indicating
2351 	 * PEBS buffer overflow and also seeing at most 3 PEBS counters
2352 	 * having their bits set in the status register. This is a sign
2353 	 * that there was at least one PEBS record pending at the time
2354 	 * of the PMU interrupt. PEBS counters must only be processed
2355 	 * via the drain_pebs() calls and not via the regular sample
2356 	 * processing loop coming after that the function, otherwise
2357 	 * phony regular samples may be generated in the sampling buffer
2358 	 * not marked with the EXACT tag. Another possibility is to have
2359 	 * one PEBS event and at least one non-PEBS event whic hoverflows
2360 	 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2361 	 * not be set, yet the overflow status bit for the PEBS counter will
2362 	 * be on Skylake.
2363 	 *
2364 	 * To avoid this problem, we systematically ignore the PEBS-enabled
2365 	 * counters from the GLOBAL_STATUS mask and we always process PEBS
2366 	 * events via drain_pebs().
2367 	 */
2368 	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
2369 		status &= ~cpuc->pebs_enabled;
2370 	else
2371 		status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2372 
2373 	/*
2374 	 * PEBS overflow sets bit 62 in the global status register
2375 	 */
2376 	if (__test_and_clear_bit(62, (unsigned long *)&status)) {
2377 		handled++;
2378 		x86_pmu.drain_pebs(regs);
2379 		status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2380 	}
2381 
2382 	/*
2383 	 * Intel PT
2384 	 */
2385 	if (__test_and_clear_bit(55, (unsigned long *)&status)) {
2386 		handled++;
2387 		if (unlikely(perf_guest_cbs && perf_guest_cbs->is_in_guest() &&
2388 			perf_guest_cbs->handle_intel_pt_intr))
2389 			perf_guest_cbs->handle_intel_pt_intr();
2390 		else
2391 			intel_pt_interrupt();
2392 	}
2393 
2394 	/*
2395 	 * Checkpointed counters can lead to 'spurious' PMIs because the
2396 	 * rollback caused by the PMI will have cleared the overflow status
2397 	 * bit. Therefore always force probe these counters.
2398 	 */
2399 	status |= cpuc->intel_cp_status;
2400 
2401 	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2402 		struct perf_event *event = cpuc->events[bit];
2403 
2404 		handled++;
2405 
2406 		if (!test_bit(bit, cpuc->active_mask))
2407 			continue;
2408 
2409 		if (!intel_pmu_save_and_restart(event))
2410 			continue;
2411 
2412 		perf_sample_data_init(&data, 0, event->hw.last_period);
2413 
2414 		if (has_branch_stack(event))
2415 			data.br_stack = &cpuc->lbr_stack;
2416 
2417 		if (perf_event_overflow(event, &data, regs))
2418 			x86_pmu_stop(event, 0);
2419 	}
2420 
2421 	return handled;
2422 }
2423 
2424 static bool disable_counter_freezing = true;
2425 static int __init intel_perf_counter_freezing_setup(char *s)
2426 {
2427 	bool res;
2428 
2429 	if (kstrtobool(s, &res))
2430 		return -EINVAL;
2431 
2432 	disable_counter_freezing = !res;
2433 	return 1;
2434 }
2435 __setup("perf_v4_pmi=", intel_perf_counter_freezing_setup);
2436 
2437 /*
2438  * Simplified handler for Arch Perfmon v4:
2439  * - We rely on counter freezing/unfreezing to enable/disable the PMU.
2440  * This is done automatically on PMU ack.
2441  * - Ack the PMU only after the APIC.
2442  */
2443 
2444 static int intel_pmu_handle_irq_v4(struct pt_regs *regs)
2445 {
2446 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2447 	int handled = 0;
2448 	bool bts = false;
2449 	u64 status;
2450 	int pmu_enabled = cpuc->enabled;
2451 	int loops = 0;
2452 
2453 	/* PMU has been disabled because of counter freezing */
2454 	cpuc->enabled = 0;
2455 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2456 		bts = true;
2457 		intel_bts_disable_local();
2458 		handled = intel_pmu_drain_bts_buffer();
2459 		handled += intel_bts_interrupt();
2460 	}
2461 	status = intel_pmu_get_status();
2462 	if (!status)
2463 		goto done;
2464 again:
2465 	intel_pmu_lbr_read();
2466 	if (++loops > 100) {
2467 		static bool warned;
2468 
2469 		if (!warned) {
2470 			WARN(1, "perfevents: irq loop stuck!\n");
2471 			perf_event_print_debug();
2472 			warned = true;
2473 		}
2474 		intel_pmu_reset();
2475 		goto done;
2476 	}
2477 
2478 
2479 	handled += handle_pmi_common(regs, status);
2480 done:
2481 	/* Ack the PMI in the APIC */
2482 	apic_write(APIC_LVTPC, APIC_DM_NMI);
2483 
2484 	/*
2485 	 * The counters start counting immediately while ack the status.
2486 	 * Make it as close as possible to IRET. This avoids bogus
2487 	 * freezing on Skylake CPUs.
2488 	 */
2489 	if (status) {
2490 		intel_pmu_ack_status(status);
2491 	} else {
2492 		/*
2493 		 * CPU may issues two PMIs very close to each other.
2494 		 * When the PMI handler services the first one, the
2495 		 * GLOBAL_STATUS is already updated to reflect both.
2496 		 * When it IRETs, the second PMI is immediately
2497 		 * handled and it sees clear status. At the meantime,
2498 		 * there may be a third PMI, because the freezing bit
2499 		 * isn't set since the ack in first PMI handlers.
2500 		 * Double check if there is more work to be done.
2501 		 */
2502 		status = intel_pmu_get_status();
2503 		if (status)
2504 			goto again;
2505 	}
2506 
2507 	if (bts)
2508 		intel_bts_enable_local();
2509 	cpuc->enabled = pmu_enabled;
2510 	return handled;
2511 }
2512 
2513 /*
2514  * This handler is triggered by the local APIC, so the APIC IRQ handling
2515  * rules apply:
2516  */
2517 static int intel_pmu_handle_irq(struct pt_regs *regs)
2518 {
2519 	struct cpu_hw_events *cpuc;
2520 	int loops;
2521 	u64 status;
2522 	int handled;
2523 	int pmu_enabled;
2524 
2525 	cpuc = this_cpu_ptr(&cpu_hw_events);
2526 
2527 	/*
2528 	 * Save the PMU state.
2529 	 * It needs to be restored when leaving the handler.
2530 	 */
2531 	pmu_enabled = cpuc->enabled;
2532 	/*
2533 	 * No known reason to not always do late ACK,
2534 	 * but just in case do it opt-in.
2535 	 */
2536 	if (!x86_pmu.late_ack)
2537 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2538 	intel_bts_disable_local();
2539 	cpuc->enabled = 0;
2540 	__intel_pmu_disable_all();
2541 	handled = intel_pmu_drain_bts_buffer();
2542 	handled += intel_bts_interrupt();
2543 	status = intel_pmu_get_status();
2544 	if (!status)
2545 		goto done;
2546 
2547 	loops = 0;
2548 again:
2549 	intel_pmu_lbr_read();
2550 	intel_pmu_ack_status(status);
2551 	if (++loops > 100) {
2552 		static bool warned;
2553 
2554 		if (!warned) {
2555 			WARN(1, "perfevents: irq loop stuck!\n");
2556 			perf_event_print_debug();
2557 			warned = true;
2558 		}
2559 		intel_pmu_reset();
2560 		goto done;
2561 	}
2562 
2563 	handled += handle_pmi_common(regs, status);
2564 
2565 	/*
2566 	 * Repeat if there is more work to be done:
2567 	 */
2568 	status = intel_pmu_get_status();
2569 	if (status)
2570 		goto again;
2571 
2572 done:
2573 	/* Only restore PMU state when it's active. See x86_pmu_disable(). */
2574 	cpuc->enabled = pmu_enabled;
2575 	if (pmu_enabled)
2576 		__intel_pmu_enable_all(0, true);
2577 	intel_bts_enable_local();
2578 
2579 	/*
2580 	 * Only unmask the NMI after the overflow counters
2581 	 * have been reset. This avoids spurious NMIs on
2582 	 * Haswell CPUs.
2583 	 */
2584 	if (x86_pmu.late_ack)
2585 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2586 	return handled;
2587 }
2588 
2589 static struct event_constraint *
2590 intel_bts_constraints(struct perf_event *event)
2591 {
2592 	if (unlikely(intel_pmu_has_bts(event)))
2593 		return &bts_constraint;
2594 
2595 	return NULL;
2596 }
2597 
2598 static int intel_alt_er(int idx, u64 config)
2599 {
2600 	int alt_idx = idx;
2601 
2602 	if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2603 		return idx;
2604 
2605 	if (idx == EXTRA_REG_RSP_0)
2606 		alt_idx = EXTRA_REG_RSP_1;
2607 
2608 	if (idx == EXTRA_REG_RSP_1)
2609 		alt_idx = EXTRA_REG_RSP_0;
2610 
2611 	if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2612 		return idx;
2613 
2614 	return alt_idx;
2615 }
2616 
2617 static void intel_fixup_er(struct perf_event *event, int idx)
2618 {
2619 	event->hw.extra_reg.idx = idx;
2620 
2621 	if (idx == EXTRA_REG_RSP_0) {
2622 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2623 		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2624 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2625 	} else if (idx == EXTRA_REG_RSP_1) {
2626 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2627 		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2628 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2629 	}
2630 }
2631 
2632 /*
2633  * manage allocation of shared extra msr for certain events
2634  *
2635  * sharing can be:
2636  * per-cpu: to be shared between the various events on a single PMU
2637  * per-core: per-cpu + shared by HT threads
2638  */
2639 static struct event_constraint *
2640 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2641 				   struct perf_event *event,
2642 				   struct hw_perf_event_extra *reg)
2643 {
2644 	struct event_constraint *c = &emptyconstraint;
2645 	struct er_account *era;
2646 	unsigned long flags;
2647 	int idx = reg->idx;
2648 
2649 	/*
2650 	 * reg->alloc can be set due to existing state, so for fake cpuc we
2651 	 * need to ignore this, otherwise we might fail to allocate proper fake
2652 	 * state for this extra reg constraint. Also see the comment below.
2653 	 */
2654 	if (reg->alloc && !cpuc->is_fake)
2655 		return NULL; /* call x86_get_event_constraint() */
2656 
2657 again:
2658 	era = &cpuc->shared_regs->regs[idx];
2659 	/*
2660 	 * we use spin_lock_irqsave() to avoid lockdep issues when
2661 	 * passing a fake cpuc
2662 	 */
2663 	raw_spin_lock_irqsave(&era->lock, flags);
2664 
2665 	if (!atomic_read(&era->ref) || era->config == reg->config) {
2666 
2667 		/*
2668 		 * If its a fake cpuc -- as per validate_{group,event}() we
2669 		 * shouldn't touch event state and we can avoid doing so
2670 		 * since both will only call get_event_constraints() once
2671 		 * on each event, this avoids the need for reg->alloc.
2672 		 *
2673 		 * Not doing the ER fixup will only result in era->reg being
2674 		 * wrong, but since we won't actually try and program hardware
2675 		 * this isn't a problem either.
2676 		 */
2677 		if (!cpuc->is_fake) {
2678 			if (idx != reg->idx)
2679 				intel_fixup_er(event, idx);
2680 
2681 			/*
2682 			 * x86_schedule_events() can call get_event_constraints()
2683 			 * multiple times on events in the case of incremental
2684 			 * scheduling(). reg->alloc ensures we only do the ER
2685 			 * allocation once.
2686 			 */
2687 			reg->alloc = 1;
2688 		}
2689 
2690 		/* lock in msr value */
2691 		era->config = reg->config;
2692 		era->reg = reg->reg;
2693 
2694 		/* one more user */
2695 		atomic_inc(&era->ref);
2696 
2697 		/*
2698 		 * need to call x86_get_event_constraint()
2699 		 * to check if associated event has constraints
2700 		 */
2701 		c = NULL;
2702 	} else {
2703 		idx = intel_alt_er(idx, reg->config);
2704 		if (idx != reg->idx) {
2705 			raw_spin_unlock_irqrestore(&era->lock, flags);
2706 			goto again;
2707 		}
2708 	}
2709 	raw_spin_unlock_irqrestore(&era->lock, flags);
2710 
2711 	return c;
2712 }
2713 
2714 static void
2715 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2716 				   struct hw_perf_event_extra *reg)
2717 {
2718 	struct er_account *era;
2719 
2720 	/*
2721 	 * Only put constraint if extra reg was actually allocated. Also takes
2722 	 * care of event which do not use an extra shared reg.
2723 	 *
2724 	 * Also, if this is a fake cpuc we shouldn't touch any event state
2725 	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2726 	 * either since it'll be thrown out.
2727 	 */
2728 	if (!reg->alloc || cpuc->is_fake)
2729 		return;
2730 
2731 	era = &cpuc->shared_regs->regs[reg->idx];
2732 
2733 	/* one fewer user */
2734 	atomic_dec(&era->ref);
2735 
2736 	/* allocate again next time */
2737 	reg->alloc = 0;
2738 }
2739 
2740 static struct event_constraint *
2741 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2742 			      struct perf_event *event)
2743 {
2744 	struct event_constraint *c = NULL, *d;
2745 	struct hw_perf_event_extra *xreg, *breg;
2746 
2747 	xreg = &event->hw.extra_reg;
2748 	if (xreg->idx != EXTRA_REG_NONE) {
2749 		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2750 		if (c == &emptyconstraint)
2751 			return c;
2752 	}
2753 	breg = &event->hw.branch_reg;
2754 	if (breg->idx != EXTRA_REG_NONE) {
2755 		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2756 		if (d == &emptyconstraint) {
2757 			__intel_shared_reg_put_constraints(cpuc, xreg);
2758 			c = d;
2759 		}
2760 	}
2761 	return c;
2762 }
2763 
2764 struct event_constraint *
2765 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2766 			  struct perf_event *event)
2767 {
2768 	struct event_constraint *c;
2769 
2770 	if (x86_pmu.event_constraints) {
2771 		for_each_event_constraint(c, x86_pmu.event_constraints) {
2772 			if (constraint_match(c, event->hw.config)) {
2773 				event->hw.flags |= c->flags;
2774 				return c;
2775 			}
2776 		}
2777 	}
2778 
2779 	return &unconstrained;
2780 }
2781 
2782 static struct event_constraint *
2783 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2784 			    struct perf_event *event)
2785 {
2786 	struct event_constraint *c;
2787 
2788 	c = intel_bts_constraints(event);
2789 	if (c)
2790 		return c;
2791 
2792 	c = intel_shared_regs_constraints(cpuc, event);
2793 	if (c)
2794 		return c;
2795 
2796 	c = intel_pebs_constraints(event);
2797 	if (c)
2798 		return c;
2799 
2800 	return x86_get_event_constraints(cpuc, idx, event);
2801 }
2802 
2803 static void
2804 intel_start_scheduling(struct cpu_hw_events *cpuc)
2805 {
2806 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2807 	struct intel_excl_states *xl;
2808 	int tid = cpuc->excl_thread_id;
2809 
2810 	/*
2811 	 * nothing needed if in group validation mode
2812 	 */
2813 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2814 		return;
2815 
2816 	/*
2817 	 * no exclusion needed
2818 	 */
2819 	if (WARN_ON_ONCE(!excl_cntrs))
2820 		return;
2821 
2822 	xl = &excl_cntrs->states[tid];
2823 
2824 	xl->sched_started = true;
2825 	/*
2826 	 * lock shared state until we are done scheduling
2827 	 * in stop_event_scheduling()
2828 	 * makes scheduling appear as a transaction
2829 	 */
2830 	raw_spin_lock(&excl_cntrs->lock);
2831 }
2832 
2833 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2834 {
2835 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2836 	struct event_constraint *c = cpuc->event_constraint[idx];
2837 	struct intel_excl_states *xl;
2838 	int tid = cpuc->excl_thread_id;
2839 
2840 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2841 		return;
2842 
2843 	if (WARN_ON_ONCE(!excl_cntrs))
2844 		return;
2845 
2846 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2847 		return;
2848 
2849 	xl = &excl_cntrs->states[tid];
2850 
2851 	lockdep_assert_held(&excl_cntrs->lock);
2852 
2853 	if (c->flags & PERF_X86_EVENT_EXCL)
2854 		xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2855 	else
2856 		xl->state[cntr] = INTEL_EXCL_SHARED;
2857 }
2858 
2859 static void
2860 intel_stop_scheduling(struct cpu_hw_events *cpuc)
2861 {
2862 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2863 	struct intel_excl_states *xl;
2864 	int tid = cpuc->excl_thread_id;
2865 
2866 	/*
2867 	 * nothing needed if in group validation mode
2868 	 */
2869 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2870 		return;
2871 	/*
2872 	 * no exclusion needed
2873 	 */
2874 	if (WARN_ON_ONCE(!excl_cntrs))
2875 		return;
2876 
2877 	xl = &excl_cntrs->states[tid];
2878 
2879 	xl->sched_started = false;
2880 	/*
2881 	 * release shared state lock (acquired in intel_start_scheduling())
2882 	 */
2883 	raw_spin_unlock(&excl_cntrs->lock);
2884 }
2885 
2886 static struct event_constraint *
2887 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
2888 {
2889 	WARN_ON_ONCE(!cpuc->constraint_list);
2890 
2891 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2892 		struct event_constraint *cx;
2893 
2894 		/*
2895 		 * grab pre-allocated constraint entry
2896 		 */
2897 		cx = &cpuc->constraint_list[idx];
2898 
2899 		/*
2900 		 * initialize dynamic constraint
2901 		 * with static constraint
2902 		 */
2903 		*cx = *c;
2904 
2905 		/*
2906 		 * mark constraint as dynamic
2907 		 */
2908 		cx->flags |= PERF_X86_EVENT_DYNAMIC;
2909 		c = cx;
2910 	}
2911 
2912 	return c;
2913 }
2914 
2915 static struct event_constraint *
2916 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2917 			   int idx, struct event_constraint *c)
2918 {
2919 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2920 	struct intel_excl_states *xlo;
2921 	int tid = cpuc->excl_thread_id;
2922 	int is_excl, i, w;
2923 
2924 	/*
2925 	 * validating a group does not require
2926 	 * enforcing cross-thread  exclusion
2927 	 */
2928 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2929 		return c;
2930 
2931 	/*
2932 	 * no exclusion needed
2933 	 */
2934 	if (WARN_ON_ONCE(!excl_cntrs))
2935 		return c;
2936 
2937 	/*
2938 	 * because we modify the constraint, we need
2939 	 * to make a copy. Static constraints come
2940 	 * from static const tables.
2941 	 *
2942 	 * only needed when constraint has not yet
2943 	 * been cloned (marked dynamic)
2944 	 */
2945 	c = dyn_constraint(cpuc, c, idx);
2946 
2947 	/*
2948 	 * From here on, the constraint is dynamic.
2949 	 * Either it was just allocated above, or it
2950 	 * was allocated during a earlier invocation
2951 	 * of this function
2952 	 */
2953 
2954 	/*
2955 	 * state of sibling HT
2956 	 */
2957 	xlo = &excl_cntrs->states[tid ^ 1];
2958 
2959 	/*
2960 	 * event requires exclusive counter access
2961 	 * across HT threads
2962 	 */
2963 	is_excl = c->flags & PERF_X86_EVENT_EXCL;
2964 	if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2965 		event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2966 		if (!cpuc->n_excl++)
2967 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2968 	}
2969 
2970 	/*
2971 	 * Modify static constraint with current dynamic
2972 	 * state of thread
2973 	 *
2974 	 * EXCLUSIVE: sibling counter measuring exclusive event
2975 	 * SHARED   : sibling counter measuring non-exclusive event
2976 	 * UNUSED   : sibling counter unused
2977 	 */
2978 	w = c->weight;
2979 	for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2980 		/*
2981 		 * exclusive event in sibling counter
2982 		 * our corresponding counter cannot be used
2983 		 * regardless of our event
2984 		 */
2985 		if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
2986 			__clear_bit(i, c->idxmsk);
2987 			w--;
2988 			continue;
2989 		}
2990 		/*
2991 		 * if measuring an exclusive event, sibling
2992 		 * measuring non-exclusive, then counter cannot
2993 		 * be used
2994 		 */
2995 		if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
2996 			__clear_bit(i, c->idxmsk);
2997 			w--;
2998 			continue;
2999 		}
3000 	}
3001 
3002 	/*
3003 	 * if we return an empty mask, then switch
3004 	 * back to static empty constraint to avoid
3005 	 * the cost of freeing later on
3006 	 */
3007 	if (!w)
3008 		c = &emptyconstraint;
3009 
3010 	c->weight = w;
3011 
3012 	return c;
3013 }
3014 
3015 static struct event_constraint *
3016 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3017 			    struct perf_event *event)
3018 {
3019 	struct event_constraint *c1, *c2;
3020 
3021 	c1 = cpuc->event_constraint[idx];
3022 
3023 	/*
3024 	 * first time only
3025 	 * - static constraint: no change across incremental scheduling calls
3026 	 * - dynamic constraint: handled by intel_get_excl_constraints()
3027 	 */
3028 	c2 = __intel_get_event_constraints(cpuc, idx, event);
3029 	if (c1) {
3030 	        WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3031 		bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3032 		c1->weight = c2->weight;
3033 		c2 = c1;
3034 	}
3035 
3036 	if (cpuc->excl_cntrs)
3037 		return intel_get_excl_constraints(cpuc, event, idx, c2);
3038 
3039 	return c2;
3040 }
3041 
3042 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3043 		struct perf_event *event)
3044 {
3045 	struct hw_perf_event *hwc = &event->hw;
3046 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3047 	int tid = cpuc->excl_thread_id;
3048 	struct intel_excl_states *xl;
3049 
3050 	/*
3051 	 * nothing needed if in group validation mode
3052 	 */
3053 	if (cpuc->is_fake)
3054 		return;
3055 
3056 	if (WARN_ON_ONCE(!excl_cntrs))
3057 		return;
3058 
3059 	if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3060 		hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3061 		if (!--cpuc->n_excl)
3062 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3063 	}
3064 
3065 	/*
3066 	 * If event was actually assigned, then mark the counter state as
3067 	 * unused now.
3068 	 */
3069 	if (hwc->idx >= 0) {
3070 		xl = &excl_cntrs->states[tid];
3071 
3072 		/*
3073 		 * put_constraint may be called from x86_schedule_events()
3074 		 * which already has the lock held so here make locking
3075 		 * conditional.
3076 		 */
3077 		if (!xl->sched_started)
3078 			raw_spin_lock(&excl_cntrs->lock);
3079 
3080 		xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3081 
3082 		if (!xl->sched_started)
3083 			raw_spin_unlock(&excl_cntrs->lock);
3084 	}
3085 }
3086 
3087 static void
3088 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3089 					struct perf_event *event)
3090 {
3091 	struct hw_perf_event_extra *reg;
3092 
3093 	reg = &event->hw.extra_reg;
3094 	if (reg->idx != EXTRA_REG_NONE)
3095 		__intel_shared_reg_put_constraints(cpuc, reg);
3096 
3097 	reg = &event->hw.branch_reg;
3098 	if (reg->idx != EXTRA_REG_NONE)
3099 		__intel_shared_reg_put_constraints(cpuc, reg);
3100 }
3101 
3102 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3103 					struct perf_event *event)
3104 {
3105 	intel_put_shared_regs_event_constraints(cpuc, event);
3106 
3107 	/*
3108 	 * is PMU has exclusive counter restrictions, then
3109 	 * all events are subject to and must call the
3110 	 * put_excl_constraints() routine
3111 	 */
3112 	if (cpuc->excl_cntrs)
3113 		intel_put_excl_constraints(cpuc, event);
3114 }
3115 
3116 static void intel_pebs_aliases_core2(struct perf_event *event)
3117 {
3118 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3119 		/*
3120 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3121 		 * (0x003c) so that we can use it with PEBS.
3122 		 *
3123 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3124 		 * PEBS capable. However we can use INST_RETIRED.ANY_P
3125 		 * (0x00c0), which is a PEBS capable event, to get the same
3126 		 * count.
3127 		 *
3128 		 * INST_RETIRED.ANY_P counts the number of cycles that retires
3129 		 * CNTMASK instructions. By setting CNTMASK to a value (16)
3130 		 * larger than the maximum number of instructions that can be
3131 		 * retired per cycle (4) and then inverting the condition, we
3132 		 * count all cycles that retire 16 or less instructions, which
3133 		 * is every cycle.
3134 		 *
3135 		 * Thereby we gain a PEBS capable cycle counter.
3136 		 */
3137 		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3138 
3139 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3140 		event->hw.config = alt_config;
3141 	}
3142 }
3143 
3144 static void intel_pebs_aliases_snb(struct perf_event *event)
3145 {
3146 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3147 		/*
3148 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3149 		 * (0x003c) so that we can use it with PEBS.
3150 		 *
3151 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3152 		 * PEBS capable. However we can use UOPS_RETIRED.ALL
3153 		 * (0x01c2), which is a PEBS capable event, to get the same
3154 		 * count.
3155 		 *
3156 		 * UOPS_RETIRED.ALL counts the number of cycles that retires
3157 		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3158 		 * larger than the maximum number of micro-ops that can be
3159 		 * retired per cycle (4) and then inverting the condition, we
3160 		 * count all cycles that retire 16 or less micro-ops, which
3161 		 * is every cycle.
3162 		 *
3163 		 * Thereby we gain a PEBS capable cycle counter.
3164 		 */
3165 		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3166 
3167 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3168 		event->hw.config = alt_config;
3169 	}
3170 }
3171 
3172 static void intel_pebs_aliases_precdist(struct perf_event *event)
3173 {
3174 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3175 		/*
3176 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3177 		 * (0x003c) so that we can use it with PEBS.
3178 		 *
3179 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3180 		 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3181 		 * (0x01c0), which is a PEBS capable event, to get the same
3182 		 * count.
3183 		 *
3184 		 * The PREC_DIST event has special support to minimize sample
3185 		 * shadowing effects. One drawback is that it can be
3186 		 * only programmed on counter 1, but that seems like an
3187 		 * acceptable trade off.
3188 		 */
3189 		u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3190 
3191 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3192 		event->hw.config = alt_config;
3193 	}
3194 }
3195 
3196 static void intel_pebs_aliases_ivb(struct perf_event *event)
3197 {
3198 	if (event->attr.precise_ip < 3)
3199 		return intel_pebs_aliases_snb(event);
3200 	return intel_pebs_aliases_precdist(event);
3201 }
3202 
3203 static void intel_pebs_aliases_skl(struct perf_event *event)
3204 {
3205 	if (event->attr.precise_ip < 3)
3206 		return intel_pebs_aliases_core2(event);
3207 	return intel_pebs_aliases_precdist(event);
3208 }
3209 
3210 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3211 {
3212 	unsigned long flags = x86_pmu.large_pebs_flags;
3213 
3214 	if (event->attr.use_clockid)
3215 		flags &= ~PERF_SAMPLE_TIME;
3216 	if (!event->attr.exclude_kernel)
3217 		flags &= ~PERF_SAMPLE_REGS_USER;
3218 	if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3219 		flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3220 	return flags;
3221 }
3222 
3223 static int intel_pmu_bts_config(struct perf_event *event)
3224 {
3225 	struct perf_event_attr *attr = &event->attr;
3226 
3227 	if (unlikely(intel_pmu_has_bts(event))) {
3228 		/* BTS is not supported by this architecture. */
3229 		if (!x86_pmu.bts_active)
3230 			return -EOPNOTSUPP;
3231 
3232 		/* BTS is currently only allowed for user-mode. */
3233 		if (!attr->exclude_kernel)
3234 			return -EOPNOTSUPP;
3235 
3236 		/* BTS is not allowed for precise events. */
3237 		if (attr->precise_ip)
3238 			return -EOPNOTSUPP;
3239 
3240 		/* disallow bts if conflicting events are present */
3241 		if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3242 			return -EBUSY;
3243 
3244 		event->destroy = hw_perf_lbr_event_destroy;
3245 	}
3246 
3247 	return 0;
3248 }
3249 
3250 static int core_pmu_hw_config(struct perf_event *event)
3251 {
3252 	int ret = x86_pmu_hw_config(event);
3253 
3254 	if (ret)
3255 		return ret;
3256 
3257 	return intel_pmu_bts_config(event);
3258 }
3259 
3260 static int intel_pmu_hw_config(struct perf_event *event)
3261 {
3262 	int ret = x86_pmu_hw_config(event);
3263 
3264 	if (ret)
3265 		return ret;
3266 
3267 	ret = intel_pmu_bts_config(event);
3268 	if (ret)
3269 		return ret;
3270 
3271 	if (event->attr.precise_ip) {
3272 		if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3273 			event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3274 			if (!(event->attr.sample_type &
3275 			      ~intel_pmu_large_pebs_flags(event)))
3276 				event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3277 		}
3278 		if (x86_pmu.pebs_aliases)
3279 			x86_pmu.pebs_aliases(event);
3280 
3281 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3282 			event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3283 	}
3284 
3285 	if (needs_branch_stack(event)) {
3286 		ret = intel_pmu_setup_lbr_filter(event);
3287 		if (ret)
3288 			return ret;
3289 
3290 		/*
3291 		 * BTS is set up earlier in this path, so don't account twice
3292 		 */
3293 		if (!unlikely(intel_pmu_has_bts(event))) {
3294 			/* disallow lbr if conflicting events are present */
3295 			if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3296 				return -EBUSY;
3297 
3298 			event->destroy = hw_perf_lbr_event_destroy;
3299 		}
3300 	}
3301 
3302 	if (event->attr.aux_output) {
3303 		if (!event->attr.precise_ip)
3304 			return -EINVAL;
3305 
3306 		event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
3307 	}
3308 
3309 	if (event->attr.type != PERF_TYPE_RAW)
3310 		return 0;
3311 
3312 	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3313 		return 0;
3314 
3315 	if (x86_pmu.version < 3)
3316 		return -EINVAL;
3317 
3318 	ret = perf_allow_cpu(&event->attr);
3319 	if (ret)
3320 		return ret;
3321 
3322 	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3323 
3324 	return 0;
3325 }
3326 
3327 #ifdef CONFIG_RETPOLINE
3328 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr);
3329 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr);
3330 #endif
3331 
3332 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
3333 {
3334 #ifdef CONFIG_RETPOLINE
3335 	if (x86_pmu.guest_get_msrs == intel_guest_get_msrs)
3336 		return intel_guest_get_msrs(nr);
3337 	else if (x86_pmu.guest_get_msrs == core_guest_get_msrs)
3338 		return core_guest_get_msrs(nr);
3339 #endif
3340 	if (x86_pmu.guest_get_msrs)
3341 		return x86_pmu.guest_get_msrs(nr);
3342 	*nr = 0;
3343 	return NULL;
3344 }
3345 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
3346 
3347 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3348 {
3349 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3350 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3351 
3352 	arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3353 	arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3354 	arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3355 	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
3356 		arr[0].guest &= ~cpuc->pebs_enabled;
3357 	else
3358 		arr[0].guest &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
3359 	*nr = 1;
3360 
3361 	if (x86_pmu.pebs && x86_pmu.pebs_no_isolation) {
3362 		/*
3363 		 * If PMU counter has PEBS enabled it is not enough to
3364 		 * disable counter on a guest entry since PEBS memory
3365 		 * write can overshoot guest entry and corrupt guest
3366 		 * memory. Disabling PEBS solves the problem.
3367 		 *
3368 		 * Don't do this if the CPU already enforces it.
3369 		 */
3370 		arr[1].msr = MSR_IA32_PEBS_ENABLE;
3371 		arr[1].host = cpuc->pebs_enabled;
3372 		arr[1].guest = 0;
3373 		*nr = 2;
3374 	}
3375 
3376 	return arr;
3377 }
3378 
3379 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3380 {
3381 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3382 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3383 	int idx;
3384 
3385 	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
3386 		struct perf_event *event = cpuc->events[idx];
3387 
3388 		arr[idx].msr = x86_pmu_config_addr(idx);
3389 		arr[idx].host = arr[idx].guest = 0;
3390 
3391 		if (!test_bit(idx, cpuc->active_mask))
3392 			continue;
3393 
3394 		arr[idx].host = arr[idx].guest =
3395 			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3396 
3397 		if (event->attr.exclude_host)
3398 			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3399 		else if (event->attr.exclude_guest)
3400 			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3401 	}
3402 
3403 	*nr = x86_pmu.num_counters;
3404 	return arr;
3405 }
3406 
3407 static void core_pmu_enable_event(struct perf_event *event)
3408 {
3409 	if (!event->attr.exclude_host)
3410 		x86_pmu_enable_event(event);
3411 }
3412 
3413 static void core_pmu_enable_all(int added)
3414 {
3415 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3416 	int idx;
3417 
3418 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3419 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
3420 
3421 		if (!test_bit(idx, cpuc->active_mask) ||
3422 				cpuc->events[idx]->attr.exclude_host)
3423 			continue;
3424 
3425 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
3426 	}
3427 }
3428 
3429 static int hsw_hw_config(struct perf_event *event)
3430 {
3431 	int ret = intel_pmu_hw_config(event);
3432 
3433 	if (ret)
3434 		return ret;
3435 	if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
3436 		return 0;
3437 	event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
3438 
3439 	/*
3440 	 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3441 	 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3442 	 * this combination.
3443 	 */
3444 	if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
3445 	     ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
3446 	      event->attr.precise_ip > 0))
3447 		return -EOPNOTSUPP;
3448 
3449 	if (event_is_checkpointed(event)) {
3450 		/*
3451 		 * Sampling of checkpointed events can cause situations where
3452 		 * the CPU constantly aborts because of a overflow, which is
3453 		 * then checkpointed back and ignored. Forbid checkpointing
3454 		 * for sampling.
3455 		 *
3456 		 * But still allow a long sampling period, so that perf stat
3457 		 * from KVM works.
3458 		 */
3459 		if (event->attr.sample_period > 0 &&
3460 		    event->attr.sample_period < 0x7fffffff)
3461 			return -EOPNOTSUPP;
3462 	}
3463 	return 0;
3464 }
3465 
3466 static struct event_constraint counter0_constraint =
3467 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3468 
3469 static struct event_constraint counter2_constraint =
3470 			EVENT_CONSTRAINT(0, 0x4, 0);
3471 
3472 static struct event_constraint fixed0_constraint =
3473 			FIXED_EVENT_CONSTRAINT(0x00c0, 0);
3474 
3475 static struct event_constraint fixed0_counter0_constraint =
3476 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
3477 
3478 static struct event_constraint *
3479 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3480 			  struct perf_event *event)
3481 {
3482 	struct event_constraint *c;
3483 
3484 	c = intel_get_event_constraints(cpuc, idx, event);
3485 
3486 	/* Handle special quirk on in_tx_checkpointed only in counter 2 */
3487 	if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
3488 		if (c->idxmsk64 & (1U << 2))
3489 			return &counter2_constraint;
3490 		return &emptyconstraint;
3491 	}
3492 
3493 	return c;
3494 }
3495 
3496 static struct event_constraint *
3497 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3498 			  struct perf_event *event)
3499 {
3500 	/*
3501 	 * Fixed counter 0 has less skid.
3502 	 * Force instruction:ppp in Fixed counter 0
3503 	 */
3504 	if ((event->attr.precise_ip == 3) &&
3505 	    constraint_match(&fixed0_constraint, event->hw.config))
3506 		return &fixed0_constraint;
3507 
3508 	return hsw_get_event_constraints(cpuc, idx, event);
3509 }
3510 
3511 static struct event_constraint *
3512 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3513 			  struct perf_event *event)
3514 {
3515 	struct event_constraint *c;
3516 
3517 	/* :ppp means to do reduced skid PEBS which is PMC0 only. */
3518 	if (event->attr.precise_ip == 3)
3519 		return &counter0_constraint;
3520 
3521 	c = intel_get_event_constraints(cpuc, idx, event);
3522 
3523 	return c;
3524 }
3525 
3526 static struct event_constraint *
3527 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3528 			  struct perf_event *event)
3529 {
3530 	struct event_constraint *c;
3531 
3532 	/*
3533 	 * :ppp means to do reduced skid PEBS,
3534 	 * which is available on PMC0 and fixed counter 0.
3535 	 */
3536 	if (event->attr.precise_ip == 3) {
3537 		/* Force instruction:ppp on PMC0 and Fixed counter 0 */
3538 		if (constraint_match(&fixed0_constraint, event->hw.config))
3539 			return &fixed0_counter0_constraint;
3540 
3541 		return &counter0_constraint;
3542 	}
3543 
3544 	c = intel_get_event_constraints(cpuc, idx, event);
3545 
3546 	return c;
3547 }
3548 
3549 static bool allow_tsx_force_abort = true;
3550 
3551 static struct event_constraint *
3552 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3553 			  struct perf_event *event)
3554 {
3555 	struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
3556 
3557 	/*
3558 	 * Without TFA we must not use PMC3.
3559 	 */
3560 	if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
3561 		c = dyn_constraint(cpuc, c, idx);
3562 		c->idxmsk64 &= ~(1ULL << 3);
3563 		c->weight--;
3564 	}
3565 
3566 	return c;
3567 }
3568 
3569 /*
3570  * Broadwell:
3571  *
3572  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
3573  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
3574  * the two to enforce a minimum period of 128 (the smallest value that has bits
3575  * 0-5 cleared and >= 100).
3576  *
3577  * Because of how the code in x86_perf_event_set_period() works, the truncation
3578  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
3579  * to make up for the 'lost' events due to carrying the 'error' in period_left.
3580  *
3581  * Therefore the effective (average) period matches the requested period,
3582  * despite coarser hardware granularity.
3583  */
3584 static u64 bdw_limit_period(struct perf_event *event, u64 left)
3585 {
3586 	if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
3587 			X86_CONFIG(.event=0xc0, .umask=0x01)) {
3588 		if (left < 128)
3589 			left = 128;
3590 		left &= ~0x3fULL;
3591 	}
3592 	return left;
3593 }
3594 
3595 static u64 nhm_limit_period(struct perf_event *event, u64 left)
3596 {
3597 	return max(left, 32ULL);
3598 }
3599 
3600 PMU_FORMAT_ATTR(event,	"config:0-7"	);
3601 PMU_FORMAT_ATTR(umask,	"config:8-15"	);
3602 PMU_FORMAT_ATTR(edge,	"config:18"	);
3603 PMU_FORMAT_ATTR(pc,	"config:19"	);
3604 PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
3605 PMU_FORMAT_ATTR(inv,	"config:23"	);
3606 PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
3607 PMU_FORMAT_ATTR(in_tx,  "config:32");
3608 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
3609 
3610 static struct attribute *intel_arch_formats_attr[] = {
3611 	&format_attr_event.attr,
3612 	&format_attr_umask.attr,
3613 	&format_attr_edge.attr,
3614 	&format_attr_pc.attr,
3615 	&format_attr_inv.attr,
3616 	&format_attr_cmask.attr,
3617 	NULL,
3618 };
3619 
3620 ssize_t intel_event_sysfs_show(char *page, u64 config)
3621 {
3622 	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
3623 
3624 	return x86_event_sysfs_show(page, config, event);
3625 }
3626 
3627 static struct intel_shared_regs *allocate_shared_regs(int cpu)
3628 {
3629 	struct intel_shared_regs *regs;
3630 	int i;
3631 
3632 	regs = kzalloc_node(sizeof(struct intel_shared_regs),
3633 			    GFP_KERNEL, cpu_to_node(cpu));
3634 	if (regs) {
3635 		/*
3636 		 * initialize the locks to keep lockdep happy
3637 		 */
3638 		for (i = 0; i < EXTRA_REG_MAX; i++)
3639 			raw_spin_lock_init(&regs->regs[i].lock);
3640 
3641 		regs->core_id = -1;
3642 	}
3643 	return regs;
3644 }
3645 
3646 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
3647 {
3648 	struct intel_excl_cntrs *c;
3649 
3650 	c = kzalloc_node(sizeof(struct intel_excl_cntrs),
3651 			 GFP_KERNEL, cpu_to_node(cpu));
3652 	if (c) {
3653 		raw_spin_lock_init(&c->lock);
3654 		c->core_id = -1;
3655 	}
3656 	return c;
3657 }
3658 
3659 
3660 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
3661 {
3662 	cpuc->pebs_record_size = x86_pmu.pebs_record_size;
3663 
3664 	if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
3665 		cpuc->shared_regs = allocate_shared_regs(cpu);
3666 		if (!cpuc->shared_regs)
3667 			goto err;
3668 	}
3669 
3670 	if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
3671 		size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
3672 
3673 		cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
3674 		if (!cpuc->constraint_list)
3675 			goto err_shared_regs;
3676 	}
3677 
3678 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3679 		cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
3680 		if (!cpuc->excl_cntrs)
3681 			goto err_constraint_list;
3682 
3683 		cpuc->excl_thread_id = 0;
3684 	}
3685 
3686 	return 0;
3687 
3688 err_constraint_list:
3689 	kfree(cpuc->constraint_list);
3690 	cpuc->constraint_list = NULL;
3691 
3692 err_shared_regs:
3693 	kfree(cpuc->shared_regs);
3694 	cpuc->shared_regs = NULL;
3695 
3696 err:
3697 	return -ENOMEM;
3698 }
3699 
3700 static int intel_pmu_cpu_prepare(int cpu)
3701 {
3702 	return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
3703 }
3704 
3705 static void flip_smm_bit(void *data)
3706 {
3707 	unsigned long set = *(unsigned long *)data;
3708 
3709 	if (set > 0) {
3710 		msr_set_bit(MSR_IA32_DEBUGCTLMSR,
3711 			    DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3712 	} else {
3713 		msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
3714 			      DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3715 	}
3716 }
3717 
3718 static void intel_pmu_cpu_starting(int cpu)
3719 {
3720 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3721 	int core_id = topology_core_id(cpu);
3722 	int i;
3723 
3724 	init_debug_store_on_cpu(cpu);
3725 	/*
3726 	 * Deal with CPUs that don't clear their LBRs on power-up.
3727 	 */
3728 	intel_pmu_lbr_reset();
3729 
3730 	cpuc->lbr_sel = NULL;
3731 
3732 	if (x86_pmu.flags & PMU_FL_TFA) {
3733 		WARN_ON_ONCE(cpuc->tfa_shadow);
3734 		cpuc->tfa_shadow = ~0ULL;
3735 		intel_set_tfa(cpuc, false);
3736 	}
3737 
3738 	if (x86_pmu.version > 1)
3739 		flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
3740 
3741 	if (x86_pmu.counter_freezing)
3742 		enable_counter_freeze();
3743 
3744 	if (!cpuc->shared_regs)
3745 		return;
3746 
3747 	if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
3748 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3749 			struct intel_shared_regs *pc;
3750 
3751 			pc = per_cpu(cpu_hw_events, i).shared_regs;
3752 			if (pc && pc->core_id == core_id) {
3753 				cpuc->kfree_on_online[0] = cpuc->shared_regs;
3754 				cpuc->shared_regs = pc;
3755 				break;
3756 			}
3757 		}
3758 		cpuc->shared_regs->core_id = core_id;
3759 		cpuc->shared_regs->refcnt++;
3760 	}
3761 
3762 	if (x86_pmu.lbr_sel_map)
3763 		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
3764 
3765 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3766 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3767 			struct cpu_hw_events *sibling;
3768 			struct intel_excl_cntrs *c;
3769 
3770 			sibling = &per_cpu(cpu_hw_events, i);
3771 			c = sibling->excl_cntrs;
3772 			if (c && c->core_id == core_id) {
3773 				cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
3774 				cpuc->excl_cntrs = c;
3775 				if (!sibling->excl_thread_id)
3776 					cpuc->excl_thread_id = 1;
3777 				break;
3778 			}
3779 		}
3780 		cpuc->excl_cntrs->core_id = core_id;
3781 		cpuc->excl_cntrs->refcnt++;
3782 	}
3783 }
3784 
3785 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
3786 {
3787 	struct intel_excl_cntrs *c;
3788 
3789 	c = cpuc->excl_cntrs;
3790 	if (c) {
3791 		if (c->core_id == -1 || --c->refcnt == 0)
3792 			kfree(c);
3793 		cpuc->excl_cntrs = NULL;
3794 	}
3795 
3796 	kfree(cpuc->constraint_list);
3797 	cpuc->constraint_list = NULL;
3798 }
3799 
3800 static void intel_pmu_cpu_dying(int cpu)
3801 {
3802 	fini_debug_store_on_cpu(cpu);
3803 
3804 	if (x86_pmu.counter_freezing)
3805 		disable_counter_freeze();
3806 }
3807 
3808 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
3809 {
3810 	struct intel_shared_regs *pc;
3811 
3812 	pc = cpuc->shared_regs;
3813 	if (pc) {
3814 		if (pc->core_id == -1 || --pc->refcnt == 0)
3815 			kfree(pc);
3816 		cpuc->shared_regs = NULL;
3817 	}
3818 
3819 	free_excl_cntrs(cpuc);
3820 }
3821 
3822 static void intel_pmu_cpu_dead(int cpu)
3823 {
3824 	intel_cpuc_finish(&per_cpu(cpu_hw_events, cpu));
3825 }
3826 
3827 static void intel_pmu_sched_task(struct perf_event_context *ctx,
3828 				 bool sched_in)
3829 {
3830 	intel_pmu_pebs_sched_task(ctx, sched_in);
3831 	intel_pmu_lbr_sched_task(ctx, sched_in);
3832 }
3833 
3834 static void intel_pmu_swap_task_ctx(struct perf_event_context *prev,
3835 				    struct perf_event_context *next)
3836 {
3837 	intel_pmu_lbr_swap_task_ctx(prev, next);
3838 }
3839 
3840 static int intel_pmu_check_period(struct perf_event *event, u64 value)
3841 {
3842 	return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
3843 }
3844 
3845 static int intel_pmu_aux_output_match(struct perf_event *event)
3846 {
3847 	if (!x86_pmu.intel_cap.pebs_output_pt_available)
3848 		return 0;
3849 
3850 	return is_intel_pt_event(event);
3851 }
3852 
3853 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
3854 
3855 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
3856 
3857 PMU_FORMAT_ATTR(frontend, "config1:0-23");
3858 
3859 static struct attribute *intel_arch3_formats_attr[] = {
3860 	&format_attr_event.attr,
3861 	&format_attr_umask.attr,
3862 	&format_attr_edge.attr,
3863 	&format_attr_pc.attr,
3864 	&format_attr_any.attr,
3865 	&format_attr_inv.attr,
3866 	&format_attr_cmask.attr,
3867 	NULL,
3868 };
3869 
3870 static struct attribute *hsw_format_attr[] = {
3871 	&format_attr_in_tx.attr,
3872 	&format_attr_in_tx_cp.attr,
3873 	&format_attr_offcore_rsp.attr,
3874 	&format_attr_ldlat.attr,
3875 	NULL
3876 };
3877 
3878 static struct attribute *nhm_format_attr[] = {
3879 	&format_attr_offcore_rsp.attr,
3880 	&format_attr_ldlat.attr,
3881 	NULL
3882 };
3883 
3884 static struct attribute *slm_format_attr[] = {
3885 	&format_attr_offcore_rsp.attr,
3886 	NULL
3887 };
3888 
3889 static struct attribute *skl_format_attr[] = {
3890 	&format_attr_frontend.attr,
3891 	NULL,
3892 };
3893 
3894 static __initconst const struct x86_pmu core_pmu = {
3895 	.name			= "core",
3896 	.handle_irq		= x86_pmu_handle_irq,
3897 	.disable_all		= x86_pmu_disable_all,
3898 	.enable_all		= core_pmu_enable_all,
3899 	.enable			= core_pmu_enable_event,
3900 	.disable		= x86_pmu_disable_event,
3901 	.hw_config		= core_pmu_hw_config,
3902 	.schedule_events	= x86_schedule_events,
3903 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
3904 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
3905 	.event_map		= intel_pmu_event_map,
3906 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
3907 	.apic			= 1,
3908 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
3909 
3910 	/*
3911 	 * Intel PMCs cannot be accessed sanely above 32-bit width,
3912 	 * so we install an artificial 1<<31 period regardless of
3913 	 * the generic event period:
3914 	 */
3915 	.max_period		= (1ULL<<31) - 1,
3916 	.get_event_constraints	= intel_get_event_constraints,
3917 	.put_event_constraints	= intel_put_event_constraints,
3918 	.event_constraints	= intel_core_event_constraints,
3919 	.guest_get_msrs		= core_guest_get_msrs,
3920 	.format_attrs		= intel_arch_formats_attr,
3921 	.events_sysfs_show	= intel_event_sysfs_show,
3922 
3923 	/*
3924 	 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
3925 	 * together with PMU version 1 and thus be using core_pmu with
3926 	 * shared_regs. We need following callbacks here to allocate
3927 	 * it properly.
3928 	 */
3929 	.cpu_prepare		= intel_pmu_cpu_prepare,
3930 	.cpu_starting		= intel_pmu_cpu_starting,
3931 	.cpu_dying		= intel_pmu_cpu_dying,
3932 	.cpu_dead		= intel_pmu_cpu_dead,
3933 
3934 	.check_period		= intel_pmu_check_period,
3935 };
3936 
3937 static __initconst const struct x86_pmu intel_pmu = {
3938 	.name			= "Intel",
3939 	.handle_irq		= intel_pmu_handle_irq,
3940 	.disable_all		= intel_pmu_disable_all,
3941 	.enable_all		= intel_pmu_enable_all,
3942 	.enable			= intel_pmu_enable_event,
3943 	.disable		= intel_pmu_disable_event,
3944 	.add			= intel_pmu_add_event,
3945 	.del			= intel_pmu_del_event,
3946 	.read			= intel_pmu_read_event,
3947 	.hw_config		= intel_pmu_hw_config,
3948 	.schedule_events	= x86_schedule_events,
3949 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
3950 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
3951 	.event_map		= intel_pmu_event_map,
3952 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
3953 	.apic			= 1,
3954 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
3955 	/*
3956 	 * Intel PMCs cannot be accessed sanely above 32 bit width,
3957 	 * so we install an artificial 1<<31 period regardless of
3958 	 * the generic event period:
3959 	 */
3960 	.max_period		= (1ULL << 31) - 1,
3961 	.get_event_constraints	= intel_get_event_constraints,
3962 	.put_event_constraints	= intel_put_event_constraints,
3963 	.pebs_aliases		= intel_pebs_aliases_core2,
3964 
3965 	.format_attrs		= intel_arch3_formats_attr,
3966 	.events_sysfs_show	= intel_event_sysfs_show,
3967 
3968 	.cpu_prepare		= intel_pmu_cpu_prepare,
3969 	.cpu_starting		= intel_pmu_cpu_starting,
3970 	.cpu_dying		= intel_pmu_cpu_dying,
3971 	.cpu_dead		= intel_pmu_cpu_dead,
3972 
3973 	.guest_get_msrs		= intel_guest_get_msrs,
3974 	.sched_task		= intel_pmu_sched_task,
3975 	.swap_task_ctx		= intel_pmu_swap_task_ctx,
3976 
3977 	.check_period		= intel_pmu_check_period,
3978 
3979 	.aux_output_match	= intel_pmu_aux_output_match,
3980 };
3981 
3982 static __init void intel_clovertown_quirk(void)
3983 {
3984 	/*
3985 	 * PEBS is unreliable due to:
3986 	 *
3987 	 *   AJ67  - PEBS may experience CPL leaks
3988 	 *   AJ68  - PEBS PMI may be delayed by one event
3989 	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
3990 	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
3991 	 *
3992 	 * AJ67 could be worked around by restricting the OS/USR flags.
3993 	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
3994 	 *
3995 	 * AJ106 could possibly be worked around by not allowing LBR
3996 	 *       usage from PEBS, including the fixup.
3997 	 * AJ68  could possibly be worked around by always programming
3998 	 *	 a pebs_event_reset[0] value and coping with the lost events.
3999 	 *
4000 	 * But taken together it might just make sense to not enable PEBS on
4001 	 * these chips.
4002 	 */
4003 	pr_warn("PEBS disabled due to CPU errata\n");
4004 	x86_pmu.pebs = 0;
4005 	x86_pmu.pebs_constraints = NULL;
4006 }
4007 
4008 static const struct x86_cpu_desc isolation_ucodes[] = {
4009 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL,		 3, 0x0000001f),
4010 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L,		 1, 0x0000001e),
4011 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G,		 1, 0x00000015),
4012 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 2, 0x00000037),
4013 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 4, 0x0000000a),
4014 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL,		 4, 0x00000023),
4015 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G,		 1, 0x00000014),
4016 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 2, 0x00000010),
4017 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 3, 0x07000009),
4018 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 4, 0x0f000009),
4019 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 5, 0x0e000002),
4020 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,		 2, 0x0b000014),
4021 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 3, 0x00000021),
4022 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 4, 0x00000000),
4023 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L,		 3, 0x0000007c),
4024 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE,		 3, 0x0000007c),
4025 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		 9, 0x0000004e),
4026 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		 9, 0x0000004e),
4027 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		10, 0x0000004e),
4028 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		11, 0x0000004e),
4029 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		12, 0x0000004e),
4030 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		10, 0x0000004e),
4031 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		11, 0x0000004e),
4032 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		12, 0x0000004e),
4033 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		13, 0x0000004e),
4034 	{}
4035 };
4036 
4037 static void intel_check_pebs_isolation(void)
4038 {
4039 	x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
4040 }
4041 
4042 static __init void intel_pebs_isolation_quirk(void)
4043 {
4044 	WARN_ON_ONCE(x86_pmu.check_microcode);
4045 	x86_pmu.check_microcode = intel_check_pebs_isolation;
4046 	intel_check_pebs_isolation();
4047 }
4048 
4049 static const struct x86_cpu_desc pebs_ucodes[] = {
4050 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,		7, 0x00000028),
4051 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	6, 0x00000618),
4052 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	7, 0x0000070c),
4053 	{}
4054 };
4055 
4056 static bool intel_snb_pebs_broken(void)
4057 {
4058 	return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
4059 }
4060 
4061 static void intel_snb_check_microcode(void)
4062 {
4063 	if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
4064 		return;
4065 
4066 	/*
4067 	 * Serialized by the microcode lock..
4068 	 */
4069 	if (x86_pmu.pebs_broken) {
4070 		pr_info("PEBS enabled due to microcode update\n");
4071 		x86_pmu.pebs_broken = 0;
4072 	} else {
4073 		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
4074 		x86_pmu.pebs_broken = 1;
4075 	}
4076 }
4077 
4078 static bool is_lbr_from(unsigned long msr)
4079 {
4080 	unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
4081 
4082 	return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
4083 }
4084 
4085 /*
4086  * Under certain circumstances, access certain MSR may cause #GP.
4087  * The function tests if the input MSR can be safely accessed.
4088  */
4089 static bool check_msr(unsigned long msr, u64 mask)
4090 {
4091 	u64 val_old, val_new, val_tmp;
4092 
4093 	/*
4094 	 * Disable the check for real HW, so we don't
4095 	 * mess with potentionaly enabled registers:
4096 	 */
4097 	if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
4098 		return true;
4099 
4100 	/*
4101 	 * Read the current value, change it and read it back to see if it
4102 	 * matches, this is needed to detect certain hardware emulators
4103 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4104 	 */
4105 	if (rdmsrl_safe(msr, &val_old))
4106 		return false;
4107 
4108 	/*
4109 	 * Only change the bits which can be updated by wrmsrl.
4110 	 */
4111 	val_tmp = val_old ^ mask;
4112 
4113 	if (is_lbr_from(msr))
4114 		val_tmp = lbr_from_signext_quirk_wr(val_tmp);
4115 
4116 	if (wrmsrl_safe(msr, val_tmp) ||
4117 	    rdmsrl_safe(msr, &val_new))
4118 		return false;
4119 
4120 	/*
4121 	 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
4122 	 * should equal rdmsrl()'s even with the quirk.
4123 	 */
4124 	if (val_new != val_tmp)
4125 		return false;
4126 
4127 	if (is_lbr_from(msr))
4128 		val_old = lbr_from_signext_quirk_wr(val_old);
4129 
4130 	/* Here it's sure that the MSR can be safely accessed.
4131 	 * Restore the old value and return.
4132 	 */
4133 	wrmsrl(msr, val_old);
4134 
4135 	return true;
4136 }
4137 
4138 static __init void intel_sandybridge_quirk(void)
4139 {
4140 	x86_pmu.check_microcode = intel_snb_check_microcode;
4141 	cpus_read_lock();
4142 	intel_snb_check_microcode();
4143 	cpus_read_unlock();
4144 }
4145 
4146 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
4147 	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
4148 	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
4149 	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
4150 	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
4151 	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
4152 	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
4153 	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
4154 };
4155 
4156 static __init void intel_arch_events_quirk(void)
4157 {
4158 	int bit;
4159 
4160 	/* disable event that reported as not presend by cpuid */
4161 	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
4162 		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
4163 		pr_warn("CPUID marked event: \'%s\' unavailable\n",
4164 			intel_arch_events_map[bit].name);
4165 	}
4166 }
4167 
4168 static __init void intel_nehalem_quirk(void)
4169 {
4170 	union cpuid10_ebx ebx;
4171 
4172 	ebx.full = x86_pmu.events_maskl;
4173 	if (ebx.split.no_branch_misses_retired) {
4174 		/*
4175 		 * Erratum AAJ80 detected, we work it around by using
4176 		 * the BR_MISP_EXEC.ANY event. This will over-count
4177 		 * branch-misses, but it's still much better than the
4178 		 * architectural event which is often completely bogus:
4179 		 */
4180 		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
4181 		ebx.split.no_branch_misses_retired = 0;
4182 		x86_pmu.events_maskl = ebx.full;
4183 		pr_info("CPU erratum AAJ80 worked around\n");
4184 	}
4185 }
4186 
4187 static const struct x86_cpu_desc counter_freezing_ucodes[] = {
4188 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,	 2, 0x0000000e),
4189 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,	 9, 0x0000002e),
4190 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,	10, 0x00000008),
4191 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_D,	 1, 0x00000028),
4192 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS,	 1, 0x00000028),
4193 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS,	 8, 0x00000006),
4194 	{}
4195 };
4196 
4197 static bool intel_counter_freezing_broken(void)
4198 {
4199 	return !x86_cpu_has_min_microcode_rev(counter_freezing_ucodes);
4200 }
4201 
4202 static __init void intel_counter_freezing_quirk(void)
4203 {
4204 	/* Check if it's already disabled */
4205 	if (disable_counter_freezing)
4206 		return;
4207 
4208 	/*
4209 	 * If the system starts with the wrong ucode, leave the
4210 	 * counter-freezing feature permanently disabled.
4211 	 */
4212 	if (intel_counter_freezing_broken()) {
4213 		pr_info("PMU counter freezing disabled due to CPU errata,"
4214 			"please upgrade microcode\n");
4215 		x86_pmu.counter_freezing = false;
4216 		x86_pmu.handle_irq = intel_pmu_handle_irq;
4217 	}
4218 }
4219 
4220 /*
4221  * enable software workaround for errata:
4222  * SNB: BJ122
4223  * IVB: BV98
4224  * HSW: HSD29
4225  *
4226  * Only needed when HT is enabled. However detecting
4227  * if HT is enabled is difficult (model specific). So instead,
4228  * we enable the workaround in the early boot, and verify if
4229  * it is needed in a later initcall phase once we have valid
4230  * topology information to check if HT is actually enabled
4231  */
4232 static __init void intel_ht_bug(void)
4233 {
4234 	x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
4235 
4236 	x86_pmu.start_scheduling = intel_start_scheduling;
4237 	x86_pmu.commit_scheduling = intel_commit_scheduling;
4238 	x86_pmu.stop_scheduling = intel_stop_scheduling;
4239 }
4240 
4241 EVENT_ATTR_STR(mem-loads,	mem_ld_hsw,	"event=0xcd,umask=0x1,ldlat=3");
4242 EVENT_ATTR_STR(mem-stores,	mem_st_hsw,	"event=0xd0,umask=0x82")
4243 
4244 /* Haswell special events */
4245 EVENT_ATTR_STR(tx-start,	tx_start,	"event=0xc9,umask=0x1");
4246 EVENT_ATTR_STR(tx-commit,	tx_commit,	"event=0xc9,umask=0x2");
4247 EVENT_ATTR_STR(tx-abort,	tx_abort,	"event=0xc9,umask=0x4");
4248 EVENT_ATTR_STR(tx-capacity,	tx_capacity,	"event=0x54,umask=0x2");
4249 EVENT_ATTR_STR(tx-conflict,	tx_conflict,	"event=0x54,umask=0x1");
4250 EVENT_ATTR_STR(el-start,	el_start,	"event=0xc8,umask=0x1");
4251 EVENT_ATTR_STR(el-commit,	el_commit,	"event=0xc8,umask=0x2");
4252 EVENT_ATTR_STR(el-abort,	el_abort,	"event=0xc8,umask=0x4");
4253 EVENT_ATTR_STR(el-capacity,	el_capacity,	"event=0x54,umask=0x2");
4254 EVENT_ATTR_STR(el-conflict,	el_conflict,	"event=0x54,umask=0x1");
4255 EVENT_ATTR_STR(cycles-t,	cycles_t,	"event=0x3c,in_tx=1");
4256 EVENT_ATTR_STR(cycles-ct,	cycles_ct,	"event=0x3c,in_tx=1,in_tx_cp=1");
4257 
4258 static struct attribute *hsw_events_attrs[] = {
4259 	EVENT_PTR(td_slots_issued),
4260 	EVENT_PTR(td_slots_retired),
4261 	EVENT_PTR(td_fetch_bubbles),
4262 	EVENT_PTR(td_total_slots),
4263 	EVENT_PTR(td_total_slots_scale),
4264 	EVENT_PTR(td_recovery_bubbles),
4265 	EVENT_PTR(td_recovery_bubbles_scale),
4266 	NULL
4267 };
4268 
4269 static struct attribute *hsw_mem_events_attrs[] = {
4270 	EVENT_PTR(mem_ld_hsw),
4271 	EVENT_PTR(mem_st_hsw),
4272 	NULL,
4273 };
4274 
4275 static struct attribute *hsw_tsx_events_attrs[] = {
4276 	EVENT_PTR(tx_start),
4277 	EVENT_PTR(tx_commit),
4278 	EVENT_PTR(tx_abort),
4279 	EVENT_PTR(tx_capacity),
4280 	EVENT_PTR(tx_conflict),
4281 	EVENT_PTR(el_start),
4282 	EVENT_PTR(el_commit),
4283 	EVENT_PTR(el_abort),
4284 	EVENT_PTR(el_capacity),
4285 	EVENT_PTR(el_conflict),
4286 	EVENT_PTR(cycles_t),
4287 	EVENT_PTR(cycles_ct),
4288 	NULL
4289 };
4290 
4291 EVENT_ATTR_STR(tx-capacity-read,  tx_capacity_read,  "event=0x54,umask=0x80");
4292 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
4293 EVENT_ATTR_STR(el-capacity-read,  el_capacity_read,  "event=0x54,umask=0x80");
4294 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
4295 
4296 static struct attribute *icl_events_attrs[] = {
4297 	EVENT_PTR(mem_ld_hsw),
4298 	EVENT_PTR(mem_st_hsw),
4299 	NULL,
4300 };
4301 
4302 static struct attribute *icl_tsx_events_attrs[] = {
4303 	EVENT_PTR(tx_start),
4304 	EVENT_PTR(tx_abort),
4305 	EVENT_PTR(tx_commit),
4306 	EVENT_PTR(tx_capacity_read),
4307 	EVENT_PTR(tx_capacity_write),
4308 	EVENT_PTR(tx_conflict),
4309 	EVENT_PTR(el_start),
4310 	EVENT_PTR(el_abort),
4311 	EVENT_PTR(el_commit),
4312 	EVENT_PTR(el_capacity_read),
4313 	EVENT_PTR(el_capacity_write),
4314 	EVENT_PTR(el_conflict),
4315 	EVENT_PTR(cycles_t),
4316 	EVENT_PTR(cycles_ct),
4317 	NULL,
4318 };
4319 
4320 static ssize_t freeze_on_smi_show(struct device *cdev,
4321 				  struct device_attribute *attr,
4322 				  char *buf)
4323 {
4324 	return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
4325 }
4326 
4327 static DEFINE_MUTEX(freeze_on_smi_mutex);
4328 
4329 static ssize_t freeze_on_smi_store(struct device *cdev,
4330 				   struct device_attribute *attr,
4331 				   const char *buf, size_t count)
4332 {
4333 	unsigned long val;
4334 	ssize_t ret;
4335 
4336 	ret = kstrtoul(buf, 0, &val);
4337 	if (ret)
4338 		return ret;
4339 
4340 	if (val > 1)
4341 		return -EINVAL;
4342 
4343 	mutex_lock(&freeze_on_smi_mutex);
4344 
4345 	if (x86_pmu.attr_freeze_on_smi == val)
4346 		goto done;
4347 
4348 	x86_pmu.attr_freeze_on_smi = val;
4349 
4350 	get_online_cpus();
4351 	on_each_cpu(flip_smm_bit, &val, 1);
4352 	put_online_cpus();
4353 done:
4354 	mutex_unlock(&freeze_on_smi_mutex);
4355 
4356 	return count;
4357 }
4358 
4359 static void update_tfa_sched(void *ignored)
4360 {
4361 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4362 
4363 	/*
4364 	 * check if PMC3 is used
4365 	 * and if so force schedule out for all event types all contexts
4366 	 */
4367 	if (test_bit(3, cpuc->active_mask))
4368 		perf_pmu_resched(x86_get_pmu());
4369 }
4370 
4371 static ssize_t show_sysctl_tfa(struct device *cdev,
4372 			      struct device_attribute *attr,
4373 			      char *buf)
4374 {
4375 	return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
4376 }
4377 
4378 static ssize_t set_sysctl_tfa(struct device *cdev,
4379 			      struct device_attribute *attr,
4380 			      const char *buf, size_t count)
4381 {
4382 	bool val;
4383 	ssize_t ret;
4384 
4385 	ret = kstrtobool(buf, &val);
4386 	if (ret)
4387 		return ret;
4388 
4389 	/* no change */
4390 	if (val == allow_tsx_force_abort)
4391 		return count;
4392 
4393 	allow_tsx_force_abort = val;
4394 
4395 	get_online_cpus();
4396 	on_each_cpu(update_tfa_sched, NULL, 1);
4397 	put_online_cpus();
4398 
4399 	return count;
4400 }
4401 
4402 
4403 static DEVICE_ATTR_RW(freeze_on_smi);
4404 
4405 static ssize_t branches_show(struct device *cdev,
4406 			     struct device_attribute *attr,
4407 			     char *buf)
4408 {
4409 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
4410 }
4411 
4412 static DEVICE_ATTR_RO(branches);
4413 
4414 static struct attribute *lbr_attrs[] = {
4415 	&dev_attr_branches.attr,
4416 	NULL
4417 };
4418 
4419 static char pmu_name_str[30];
4420 
4421 static ssize_t pmu_name_show(struct device *cdev,
4422 			     struct device_attribute *attr,
4423 			     char *buf)
4424 {
4425 	return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
4426 }
4427 
4428 static DEVICE_ATTR_RO(pmu_name);
4429 
4430 static struct attribute *intel_pmu_caps_attrs[] = {
4431        &dev_attr_pmu_name.attr,
4432        NULL
4433 };
4434 
4435 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
4436 		   show_sysctl_tfa,
4437 		   set_sysctl_tfa);
4438 
4439 static struct attribute *intel_pmu_attrs[] = {
4440 	&dev_attr_freeze_on_smi.attr,
4441 	&dev_attr_allow_tsx_force_abort.attr,
4442 	NULL,
4443 };
4444 
4445 static umode_t
4446 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4447 {
4448 	return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
4449 }
4450 
4451 static umode_t
4452 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4453 {
4454 	return x86_pmu.pebs ? attr->mode : 0;
4455 }
4456 
4457 static umode_t
4458 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4459 {
4460 	return x86_pmu.lbr_nr ? attr->mode : 0;
4461 }
4462 
4463 static umode_t
4464 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4465 {
4466 	return x86_pmu.version >= 2 ? attr->mode : 0;
4467 }
4468 
4469 static umode_t
4470 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4471 {
4472 	if (attr == &dev_attr_allow_tsx_force_abort.attr)
4473 		return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
4474 
4475 	return attr->mode;
4476 }
4477 
4478 static struct attribute_group group_events_td  = {
4479 	.name = "events",
4480 };
4481 
4482 static struct attribute_group group_events_mem = {
4483 	.name       = "events",
4484 	.is_visible = pebs_is_visible,
4485 };
4486 
4487 static struct attribute_group group_events_tsx = {
4488 	.name       = "events",
4489 	.is_visible = tsx_is_visible,
4490 };
4491 
4492 static struct attribute_group group_caps_gen = {
4493 	.name  = "caps",
4494 	.attrs = intel_pmu_caps_attrs,
4495 };
4496 
4497 static struct attribute_group group_caps_lbr = {
4498 	.name       = "caps",
4499 	.attrs	    = lbr_attrs,
4500 	.is_visible = lbr_is_visible,
4501 };
4502 
4503 static struct attribute_group group_format_extra = {
4504 	.name       = "format",
4505 	.is_visible = exra_is_visible,
4506 };
4507 
4508 static struct attribute_group group_format_extra_skl = {
4509 	.name       = "format",
4510 	.is_visible = exra_is_visible,
4511 };
4512 
4513 static struct attribute_group group_default = {
4514 	.attrs      = intel_pmu_attrs,
4515 	.is_visible = default_is_visible,
4516 };
4517 
4518 static const struct attribute_group *attr_update[] = {
4519 	&group_events_td,
4520 	&group_events_mem,
4521 	&group_events_tsx,
4522 	&group_caps_gen,
4523 	&group_caps_lbr,
4524 	&group_format_extra,
4525 	&group_format_extra_skl,
4526 	&group_default,
4527 	NULL,
4528 };
4529 
4530 static struct attribute *empty_attrs;
4531 
4532 __init int intel_pmu_init(void)
4533 {
4534 	struct attribute **extra_skl_attr = &empty_attrs;
4535 	struct attribute **extra_attr = &empty_attrs;
4536 	struct attribute **td_attr    = &empty_attrs;
4537 	struct attribute **mem_attr   = &empty_attrs;
4538 	struct attribute **tsx_attr   = &empty_attrs;
4539 	union cpuid10_edx edx;
4540 	union cpuid10_eax eax;
4541 	union cpuid10_ebx ebx;
4542 	struct event_constraint *c;
4543 	unsigned int unused;
4544 	struct extra_reg *er;
4545 	bool pmem = false;
4546 	int version, i;
4547 	char *name;
4548 
4549 	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
4550 		switch (boot_cpu_data.x86) {
4551 		case 0x6:
4552 			return p6_pmu_init();
4553 		case 0xb:
4554 			return knc_pmu_init();
4555 		case 0xf:
4556 			return p4_pmu_init();
4557 		}
4558 		return -ENODEV;
4559 	}
4560 
4561 	/*
4562 	 * Check whether the Architectural PerfMon supports
4563 	 * Branch Misses Retired hw_event or not.
4564 	 */
4565 	cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
4566 	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
4567 		return -ENODEV;
4568 
4569 	version = eax.split.version_id;
4570 	if (version < 2)
4571 		x86_pmu = core_pmu;
4572 	else
4573 		x86_pmu = intel_pmu;
4574 
4575 	x86_pmu.version			= version;
4576 	x86_pmu.num_counters		= eax.split.num_counters;
4577 	x86_pmu.cntval_bits		= eax.split.bit_width;
4578 	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
4579 
4580 	x86_pmu.events_maskl		= ebx.full;
4581 	x86_pmu.events_mask_len		= eax.split.mask_length;
4582 
4583 	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
4584 
4585 	/*
4586 	 * Quirk: v2 perfmon does not report fixed-purpose events, so
4587 	 * assume at least 3 events, when not running in a hypervisor:
4588 	 */
4589 	if (version > 1) {
4590 		int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
4591 
4592 		x86_pmu.num_counters_fixed =
4593 			max((int)edx.split.num_counters_fixed, assume);
4594 	}
4595 
4596 	if (version >= 4)
4597 		x86_pmu.counter_freezing = !disable_counter_freezing;
4598 
4599 	if (boot_cpu_has(X86_FEATURE_PDCM)) {
4600 		u64 capabilities;
4601 
4602 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
4603 		x86_pmu.intel_cap.capabilities = capabilities;
4604 	}
4605 
4606 	intel_ds_init();
4607 
4608 	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
4609 
4610 	/*
4611 	 * Install the hw-cache-events table:
4612 	 */
4613 	switch (boot_cpu_data.x86_model) {
4614 	case INTEL_FAM6_CORE_YONAH:
4615 		pr_cont("Core events, ");
4616 		name = "core";
4617 		break;
4618 
4619 	case INTEL_FAM6_CORE2_MEROM:
4620 		x86_add_quirk(intel_clovertown_quirk);
4621 		/* fall through */
4622 
4623 	case INTEL_FAM6_CORE2_MEROM_L:
4624 	case INTEL_FAM6_CORE2_PENRYN:
4625 	case INTEL_FAM6_CORE2_DUNNINGTON:
4626 		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
4627 		       sizeof(hw_cache_event_ids));
4628 
4629 		intel_pmu_lbr_init_core();
4630 
4631 		x86_pmu.event_constraints = intel_core2_event_constraints;
4632 		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
4633 		pr_cont("Core2 events, ");
4634 		name = "core2";
4635 		break;
4636 
4637 	case INTEL_FAM6_NEHALEM:
4638 	case INTEL_FAM6_NEHALEM_EP:
4639 	case INTEL_FAM6_NEHALEM_EX:
4640 		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
4641 		       sizeof(hw_cache_event_ids));
4642 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
4643 		       sizeof(hw_cache_extra_regs));
4644 
4645 		intel_pmu_lbr_init_nhm();
4646 
4647 		x86_pmu.event_constraints = intel_nehalem_event_constraints;
4648 		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
4649 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
4650 		x86_pmu.extra_regs = intel_nehalem_extra_regs;
4651 		x86_pmu.limit_period = nhm_limit_period;
4652 
4653 		mem_attr = nhm_mem_events_attrs;
4654 
4655 		/* UOPS_ISSUED.STALLED_CYCLES */
4656 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4657 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4658 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4659 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4660 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
4661 
4662 		intel_pmu_pebs_data_source_nhm();
4663 		x86_add_quirk(intel_nehalem_quirk);
4664 		x86_pmu.pebs_no_tlb = 1;
4665 		extra_attr = nhm_format_attr;
4666 
4667 		pr_cont("Nehalem events, ");
4668 		name = "nehalem";
4669 		break;
4670 
4671 	case INTEL_FAM6_ATOM_BONNELL:
4672 	case INTEL_FAM6_ATOM_BONNELL_MID:
4673 	case INTEL_FAM6_ATOM_SALTWELL:
4674 	case INTEL_FAM6_ATOM_SALTWELL_MID:
4675 	case INTEL_FAM6_ATOM_SALTWELL_TABLET:
4676 		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
4677 		       sizeof(hw_cache_event_ids));
4678 
4679 		intel_pmu_lbr_init_atom();
4680 
4681 		x86_pmu.event_constraints = intel_gen_event_constraints;
4682 		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
4683 		x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
4684 		pr_cont("Atom events, ");
4685 		name = "bonnell";
4686 		break;
4687 
4688 	case INTEL_FAM6_ATOM_SILVERMONT:
4689 	case INTEL_FAM6_ATOM_SILVERMONT_D:
4690 	case INTEL_FAM6_ATOM_SILVERMONT_MID:
4691 	case INTEL_FAM6_ATOM_AIRMONT:
4692 	case INTEL_FAM6_ATOM_AIRMONT_MID:
4693 		memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
4694 			sizeof(hw_cache_event_ids));
4695 		memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
4696 		       sizeof(hw_cache_extra_regs));
4697 
4698 		intel_pmu_lbr_init_slm();
4699 
4700 		x86_pmu.event_constraints = intel_slm_event_constraints;
4701 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4702 		x86_pmu.extra_regs = intel_slm_extra_regs;
4703 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4704 		td_attr = slm_events_attrs;
4705 		extra_attr = slm_format_attr;
4706 		pr_cont("Silvermont events, ");
4707 		name = "silvermont";
4708 		break;
4709 
4710 	case INTEL_FAM6_ATOM_GOLDMONT:
4711 	case INTEL_FAM6_ATOM_GOLDMONT_D:
4712 		x86_add_quirk(intel_counter_freezing_quirk);
4713 		memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
4714 		       sizeof(hw_cache_event_ids));
4715 		memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
4716 		       sizeof(hw_cache_extra_regs));
4717 
4718 		intel_pmu_lbr_init_skl();
4719 
4720 		x86_pmu.event_constraints = intel_slm_event_constraints;
4721 		x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
4722 		x86_pmu.extra_regs = intel_glm_extra_regs;
4723 		/*
4724 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4725 		 * for precise cycles.
4726 		 * :pp is identical to :ppp
4727 		 */
4728 		x86_pmu.pebs_aliases = NULL;
4729 		x86_pmu.pebs_prec_dist = true;
4730 		x86_pmu.lbr_pt_coexist = true;
4731 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4732 		td_attr = glm_events_attrs;
4733 		extra_attr = slm_format_attr;
4734 		pr_cont("Goldmont events, ");
4735 		name = "goldmont";
4736 		break;
4737 
4738 	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
4739 		x86_add_quirk(intel_counter_freezing_quirk);
4740 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
4741 		       sizeof(hw_cache_event_ids));
4742 		memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
4743 		       sizeof(hw_cache_extra_regs));
4744 
4745 		intel_pmu_lbr_init_skl();
4746 
4747 		x86_pmu.event_constraints = intel_slm_event_constraints;
4748 		x86_pmu.extra_regs = intel_glm_extra_regs;
4749 		/*
4750 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4751 		 * for precise cycles.
4752 		 */
4753 		x86_pmu.pebs_aliases = NULL;
4754 		x86_pmu.pebs_prec_dist = true;
4755 		x86_pmu.lbr_pt_coexist = true;
4756 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4757 		x86_pmu.flags |= PMU_FL_PEBS_ALL;
4758 		x86_pmu.get_event_constraints = glp_get_event_constraints;
4759 		td_attr = glm_events_attrs;
4760 		/* Goldmont Plus has 4-wide pipeline */
4761 		event_attr_td_total_slots_scale_glm.event_str = "4";
4762 		extra_attr = slm_format_attr;
4763 		pr_cont("Goldmont plus events, ");
4764 		name = "goldmont_plus";
4765 		break;
4766 
4767 	case INTEL_FAM6_ATOM_TREMONT_D:
4768 		x86_pmu.late_ack = true;
4769 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
4770 		       sizeof(hw_cache_event_ids));
4771 		memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
4772 		       sizeof(hw_cache_extra_regs));
4773 		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
4774 
4775 		intel_pmu_lbr_init_skl();
4776 
4777 		x86_pmu.event_constraints = intel_slm_event_constraints;
4778 		x86_pmu.extra_regs = intel_tnt_extra_regs;
4779 		/*
4780 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4781 		 * for precise cycles.
4782 		 */
4783 		x86_pmu.pebs_aliases = NULL;
4784 		x86_pmu.pebs_prec_dist = true;
4785 		x86_pmu.lbr_pt_coexist = true;
4786 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4787 		x86_pmu.get_event_constraints = tnt_get_event_constraints;
4788 		extra_attr = slm_format_attr;
4789 		pr_cont("Tremont events, ");
4790 		name = "Tremont";
4791 		break;
4792 
4793 	case INTEL_FAM6_WESTMERE:
4794 	case INTEL_FAM6_WESTMERE_EP:
4795 	case INTEL_FAM6_WESTMERE_EX:
4796 		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
4797 		       sizeof(hw_cache_event_ids));
4798 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
4799 		       sizeof(hw_cache_extra_regs));
4800 
4801 		intel_pmu_lbr_init_nhm();
4802 
4803 		x86_pmu.event_constraints = intel_westmere_event_constraints;
4804 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
4805 		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
4806 		x86_pmu.extra_regs = intel_westmere_extra_regs;
4807 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4808 
4809 		mem_attr = nhm_mem_events_attrs;
4810 
4811 		/* UOPS_ISSUED.STALLED_CYCLES */
4812 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4813 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4814 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4815 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4816 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
4817 
4818 		intel_pmu_pebs_data_source_nhm();
4819 		extra_attr = nhm_format_attr;
4820 		pr_cont("Westmere events, ");
4821 		name = "westmere";
4822 		break;
4823 
4824 	case INTEL_FAM6_SANDYBRIDGE:
4825 	case INTEL_FAM6_SANDYBRIDGE_X:
4826 		x86_add_quirk(intel_sandybridge_quirk);
4827 		x86_add_quirk(intel_ht_bug);
4828 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4829 		       sizeof(hw_cache_event_ids));
4830 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4831 		       sizeof(hw_cache_extra_regs));
4832 
4833 		intel_pmu_lbr_init_snb();
4834 
4835 		x86_pmu.event_constraints = intel_snb_event_constraints;
4836 		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
4837 		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
4838 		if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
4839 			x86_pmu.extra_regs = intel_snbep_extra_regs;
4840 		else
4841 			x86_pmu.extra_regs = intel_snb_extra_regs;
4842 
4843 
4844 		/* all extra regs are per-cpu when HT is on */
4845 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4846 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4847 
4848 		td_attr  = snb_events_attrs;
4849 		mem_attr = snb_mem_events_attrs;
4850 
4851 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4852 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4853 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4854 		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
4855 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4856 			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
4857 
4858 		extra_attr = nhm_format_attr;
4859 
4860 		pr_cont("SandyBridge events, ");
4861 		name = "sandybridge";
4862 		break;
4863 
4864 	case INTEL_FAM6_IVYBRIDGE:
4865 	case INTEL_FAM6_IVYBRIDGE_X:
4866 		x86_add_quirk(intel_ht_bug);
4867 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4868 		       sizeof(hw_cache_event_ids));
4869 		/* dTLB-load-misses on IVB is different than SNB */
4870 		hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
4871 
4872 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4873 		       sizeof(hw_cache_extra_regs));
4874 
4875 		intel_pmu_lbr_init_snb();
4876 
4877 		x86_pmu.event_constraints = intel_ivb_event_constraints;
4878 		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
4879 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4880 		x86_pmu.pebs_prec_dist = true;
4881 		if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
4882 			x86_pmu.extra_regs = intel_snbep_extra_regs;
4883 		else
4884 			x86_pmu.extra_regs = intel_snb_extra_regs;
4885 		/* all extra regs are per-cpu when HT is on */
4886 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4887 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4888 
4889 		td_attr  = snb_events_attrs;
4890 		mem_attr = snb_mem_events_attrs;
4891 
4892 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4893 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4894 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4895 
4896 		extra_attr = nhm_format_attr;
4897 
4898 		pr_cont("IvyBridge events, ");
4899 		name = "ivybridge";
4900 		break;
4901 
4902 
4903 	case INTEL_FAM6_HASWELL:
4904 	case INTEL_FAM6_HASWELL_X:
4905 	case INTEL_FAM6_HASWELL_L:
4906 	case INTEL_FAM6_HASWELL_G:
4907 		x86_add_quirk(intel_ht_bug);
4908 		x86_add_quirk(intel_pebs_isolation_quirk);
4909 		x86_pmu.late_ack = true;
4910 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4911 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4912 
4913 		intel_pmu_lbr_init_hsw();
4914 
4915 		x86_pmu.event_constraints = intel_hsw_event_constraints;
4916 		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
4917 		x86_pmu.extra_regs = intel_snbep_extra_regs;
4918 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4919 		x86_pmu.pebs_prec_dist = true;
4920 		/* all extra regs are per-cpu when HT is on */
4921 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4922 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4923 
4924 		x86_pmu.hw_config = hsw_hw_config;
4925 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
4926 		x86_pmu.lbr_double_abort = true;
4927 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4928 			hsw_format_attr : nhm_format_attr;
4929 		td_attr  = hsw_events_attrs;
4930 		mem_attr = hsw_mem_events_attrs;
4931 		tsx_attr = hsw_tsx_events_attrs;
4932 		pr_cont("Haswell events, ");
4933 		name = "haswell";
4934 		break;
4935 
4936 	case INTEL_FAM6_BROADWELL:
4937 	case INTEL_FAM6_BROADWELL_D:
4938 	case INTEL_FAM6_BROADWELL_G:
4939 	case INTEL_FAM6_BROADWELL_X:
4940 		x86_add_quirk(intel_pebs_isolation_quirk);
4941 		x86_pmu.late_ack = true;
4942 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4943 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4944 
4945 		/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
4946 		hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
4947 									 BDW_L3_MISS|HSW_SNOOP_DRAM;
4948 		hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
4949 									  HSW_SNOOP_DRAM;
4950 		hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
4951 									     BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
4952 		hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
4953 									      BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
4954 
4955 		intel_pmu_lbr_init_hsw();
4956 
4957 		x86_pmu.event_constraints = intel_bdw_event_constraints;
4958 		x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
4959 		x86_pmu.extra_regs = intel_snbep_extra_regs;
4960 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4961 		x86_pmu.pebs_prec_dist = true;
4962 		/* all extra regs are per-cpu when HT is on */
4963 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4964 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4965 
4966 		x86_pmu.hw_config = hsw_hw_config;
4967 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
4968 		x86_pmu.limit_period = bdw_limit_period;
4969 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4970 			hsw_format_attr : nhm_format_attr;
4971 		td_attr  = hsw_events_attrs;
4972 		mem_attr = hsw_mem_events_attrs;
4973 		tsx_attr = hsw_tsx_events_attrs;
4974 		pr_cont("Broadwell events, ");
4975 		name = "broadwell";
4976 		break;
4977 
4978 	case INTEL_FAM6_XEON_PHI_KNL:
4979 	case INTEL_FAM6_XEON_PHI_KNM:
4980 		memcpy(hw_cache_event_ids,
4981 		       slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4982 		memcpy(hw_cache_extra_regs,
4983 		       knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4984 		intel_pmu_lbr_init_knl();
4985 
4986 		x86_pmu.event_constraints = intel_slm_event_constraints;
4987 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4988 		x86_pmu.extra_regs = intel_knl_extra_regs;
4989 
4990 		/* all extra regs are per-cpu when HT is on */
4991 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4992 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4993 		extra_attr = slm_format_attr;
4994 		pr_cont("Knights Landing/Mill events, ");
4995 		name = "knights-landing";
4996 		break;
4997 
4998 	case INTEL_FAM6_SKYLAKE_X:
4999 		pmem = true;
5000 		/* fall through */
5001 	case INTEL_FAM6_SKYLAKE_L:
5002 	case INTEL_FAM6_SKYLAKE:
5003 	case INTEL_FAM6_KABYLAKE_L:
5004 	case INTEL_FAM6_KABYLAKE:
5005 	case INTEL_FAM6_COMETLAKE_L:
5006 	case INTEL_FAM6_COMETLAKE:
5007 		x86_add_quirk(intel_pebs_isolation_quirk);
5008 		x86_pmu.late_ack = true;
5009 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5010 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5011 		intel_pmu_lbr_init_skl();
5012 
5013 		/* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
5014 		event_attr_td_recovery_bubbles.event_str_noht =
5015 			"event=0xd,umask=0x1,cmask=1";
5016 		event_attr_td_recovery_bubbles.event_str_ht =
5017 			"event=0xd,umask=0x1,cmask=1,any=1";
5018 
5019 		x86_pmu.event_constraints = intel_skl_event_constraints;
5020 		x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
5021 		x86_pmu.extra_regs = intel_skl_extra_regs;
5022 		x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
5023 		x86_pmu.pebs_prec_dist = true;
5024 		/* all extra regs are per-cpu when HT is on */
5025 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5026 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5027 
5028 		x86_pmu.hw_config = hsw_hw_config;
5029 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
5030 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5031 			hsw_format_attr : nhm_format_attr;
5032 		extra_skl_attr = skl_format_attr;
5033 		td_attr  = hsw_events_attrs;
5034 		mem_attr = hsw_mem_events_attrs;
5035 		tsx_attr = hsw_tsx_events_attrs;
5036 		intel_pmu_pebs_data_source_skl(pmem);
5037 
5038 		if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT)) {
5039 			x86_pmu.flags |= PMU_FL_TFA;
5040 			x86_pmu.get_event_constraints = tfa_get_event_constraints;
5041 			x86_pmu.enable_all = intel_tfa_pmu_enable_all;
5042 			x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
5043 		}
5044 
5045 		pr_cont("Skylake events, ");
5046 		name = "skylake";
5047 		break;
5048 
5049 	case INTEL_FAM6_ICELAKE_X:
5050 	case INTEL_FAM6_ICELAKE_D:
5051 		pmem = true;
5052 		/* fall through */
5053 	case INTEL_FAM6_ICELAKE_L:
5054 	case INTEL_FAM6_ICELAKE:
5055 	case INTEL_FAM6_TIGERLAKE_L:
5056 	case INTEL_FAM6_TIGERLAKE:
5057 		x86_pmu.late_ack = true;
5058 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5059 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5060 		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
5061 		intel_pmu_lbr_init_skl();
5062 
5063 		x86_pmu.event_constraints = intel_icl_event_constraints;
5064 		x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
5065 		x86_pmu.extra_regs = intel_icl_extra_regs;
5066 		x86_pmu.pebs_aliases = NULL;
5067 		x86_pmu.pebs_prec_dist = true;
5068 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5069 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5070 
5071 		x86_pmu.hw_config = hsw_hw_config;
5072 		x86_pmu.get_event_constraints = icl_get_event_constraints;
5073 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5074 			hsw_format_attr : nhm_format_attr;
5075 		extra_skl_attr = skl_format_attr;
5076 		mem_attr = icl_events_attrs;
5077 		tsx_attr = icl_tsx_events_attrs;
5078 		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xca, .umask=0x02);
5079 		x86_pmu.lbr_pt_coexist = true;
5080 		intel_pmu_pebs_data_source_skl(pmem);
5081 		pr_cont("Icelake events, ");
5082 		name = "icelake";
5083 		break;
5084 
5085 	default:
5086 		switch (x86_pmu.version) {
5087 		case 1:
5088 			x86_pmu.event_constraints = intel_v1_event_constraints;
5089 			pr_cont("generic architected perfmon v1, ");
5090 			name = "generic_arch_v1";
5091 			break;
5092 		default:
5093 			/*
5094 			 * default constraints for v2 and up
5095 			 */
5096 			x86_pmu.event_constraints = intel_gen_event_constraints;
5097 			pr_cont("generic architected perfmon, ");
5098 			name = "generic_arch_v2+";
5099 			break;
5100 		}
5101 	}
5102 
5103 	snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
5104 
5105 
5106 	group_events_td.attrs  = td_attr;
5107 	group_events_mem.attrs = mem_attr;
5108 	group_events_tsx.attrs = tsx_attr;
5109 	group_format_extra.attrs = extra_attr;
5110 	group_format_extra_skl.attrs = extra_skl_attr;
5111 
5112 	x86_pmu.attr_update = attr_update;
5113 
5114 	if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
5115 		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5116 		     x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
5117 		x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
5118 	}
5119 	x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1;
5120 
5121 	if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
5122 		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5123 		     x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
5124 		x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
5125 	}
5126 
5127 	x86_pmu.intel_ctrl |=
5128 		((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
5129 
5130 	if (x86_pmu.event_constraints) {
5131 		/*
5132 		 * event on fixed counter2 (REF_CYCLES) only works on this
5133 		 * counter, so do not extend mask to generic counters
5134 		 */
5135 		for_each_event_constraint(c, x86_pmu.event_constraints) {
5136 			if (c->cmask == FIXED_EVENT_FLAGS
5137 			    && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
5138 				c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
5139 			}
5140 			c->idxmsk64 &=
5141 				~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
5142 			c->weight = hweight64(c->idxmsk64);
5143 		}
5144 	}
5145 
5146 	/*
5147 	 * Access LBR MSR may cause #GP under certain circumstances.
5148 	 * E.g. KVM doesn't support LBR MSR
5149 	 * Check all LBT MSR here.
5150 	 * Disable LBR access if any LBR MSRs can not be accessed.
5151 	 */
5152 	if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
5153 		x86_pmu.lbr_nr = 0;
5154 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
5155 		if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
5156 		      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
5157 			x86_pmu.lbr_nr = 0;
5158 	}
5159 
5160 	if (x86_pmu.lbr_nr)
5161 		pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
5162 
5163 	/*
5164 	 * Access extra MSR may cause #GP under certain circumstances.
5165 	 * E.g. KVM doesn't support offcore event
5166 	 * Check all extra_regs here.
5167 	 */
5168 	if (x86_pmu.extra_regs) {
5169 		for (er = x86_pmu.extra_regs; er->msr; er++) {
5170 			er->extra_msr_access = check_msr(er->msr, 0x11UL);
5171 			/* Disable LBR select mapping */
5172 			if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
5173 				x86_pmu.lbr_sel_map = NULL;
5174 		}
5175 	}
5176 
5177 	/* Support full width counters using alternative MSR range */
5178 	if (x86_pmu.intel_cap.full_width_write) {
5179 		x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
5180 		x86_pmu.perfctr = MSR_IA32_PMC0;
5181 		pr_cont("full-width counters, ");
5182 	}
5183 
5184 	/*
5185 	 * For arch perfmon 4 use counter freezing to avoid
5186 	 * several MSR accesses in the PMI.
5187 	 */
5188 	if (x86_pmu.counter_freezing)
5189 		x86_pmu.handle_irq = intel_pmu_handle_irq_v4;
5190 
5191 	return 0;
5192 }
5193 
5194 /*
5195  * HT bug: phase 2 init
5196  * Called once we have valid topology information to check
5197  * whether or not HT is enabled
5198  * If HT is off, then we disable the workaround
5199  */
5200 static __init int fixup_ht_bug(void)
5201 {
5202 	int c;
5203 	/*
5204 	 * problem not present on this CPU model, nothing to do
5205 	 */
5206 	if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
5207 		return 0;
5208 
5209 	if (topology_max_smt_threads() > 1) {
5210 		pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
5211 		return 0;
5212 	}
5213 
5214 	cpus_read_lock();
5215 
5216 	hardlockup_detector_perf_stop();
5217 
5218 	x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
5219 
5220 	x86_pmu.start_scheduling = NULL;
5221 	x86_pmu.commit_scheduling = NULL;
5222 	x86_pmu.stop_scheduling = NULL;
5223 
5224 	hardlockup_detector_perf_restart();
5225 
5226 	for_each_online_cpu(c)
5227 		free_excl_cntrs(&per_cpu(cpu_hw_events, c));
5228 
5229 	cpus_read_unlock();
5230 	pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
5231 	return 0;
5232 }
5233 subsys_initcall(fixup_ht_bug)
5234