xref: /openbmc/linux/arch/x86/events/intel/core.c (revision e0d07278)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Per core/cpu state
4  *
5  * Used to coordinate shared registers between HT threads or
6  * among events on a single PMU.
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
17 
18 #include <asm/cpufeature.h>
19 #include <asm/hardirq.h>
20 #include <asm/intel-family.h>
21 #include <asm/intel_pt.h>
22 #include <asm/apic.h>
23 #include <asm/cpu_device_id.h>
24 
25 #include "../perf_event.h"
26 
27 /*
28  * Intel PerfMon, used on Core and later.
29  */
30 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
31 {
32 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
33 	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
34 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
35 	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
36 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
37 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
38 	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
39 	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
40 };
41 
42 static struct event_constraint intel_core_event_constraints[] __read_mostly =
43 {
44 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
45 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
46 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
47 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
48 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
49 	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
50 	EVENT_CONSTRAINT_END
51 };
52 
53 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
54 {
55 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
56 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
57 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
58 	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
59 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
60 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
61 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
62 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
63 	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
64 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
65 	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
66 	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
67 	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
68 	EVENT_CONSTRAINT_END
69 };
70 
71 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
72 {
73 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
74 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
75 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
76 	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
77 	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
78 	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
79 	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
80 	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
81 	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
82 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
83 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
84 	EVENT_CONSTRAINT_END
85 };
86 
87 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
88 {
89 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
90 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
91 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
92 	EVENT_EXTRA_END
93 };
94 
95 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
96 {
97 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
98 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
99 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
100 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
101 	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
102 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
103 	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
104 	EVENT_CONSTRAINT_END
105 };
106 
107 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
108 {
109 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
110 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
111 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
112 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
113 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
114 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
115 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
116 	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
117 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
118 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
119 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
120 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
121 
122 	/*
123 	 * When HT is off these events can only run on the bottom 4 counters
124 	 * When HT is on, they are impacted by the HT bug and require EXCL access
125 	 */
126 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
127 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
128 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
129 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
130 
131 	EVENT_CONSTRAINT_END
132 };
133 
134 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
135 {
136 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
137 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
138 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
139 	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
140 	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
141 	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
142 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
143 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
144 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
145 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
146 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
147 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
148 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
149 
150 	/*
151 	 * When HT is off these events can only run on the bottom 4 counters
152 	 * When HT is on, they are impacted by the HT bug and require EXCL access
153 	 */
154 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
155 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
156 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
157 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
158 
159 	EVENT_CONSTRAINT_END
160 };
161 
162 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
163 {
164 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
165 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
166 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
167 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
168 	EVENT_EXTRA_END
169 };
170 
171 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
172 {
173 	EVENT_CONSTRAINT_END
174 };
175 
176 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
177 {
178 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
179 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
180 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
181 	EVENT_CONSTRAINT_END
182 };
183 
184 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
185 {
186 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
187 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
188 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
189 	EVENT_CONSTRAINT_END
190 };
191 
192 static struct event_constraint intel_skl_event_constraints[] = {
193 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
194 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
195 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
196 	INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
197 
198 	/*
199 	 * when HT is off, these can only run on the bottom 4 counters
200 	 */
201 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
202 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
203 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
204 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
205 	INTEL_EVENT_CONSTRAINT(0xc6, 0xf),	/* FRONTEND_RETIRED.* */
206 
207 	EVENT_CONSTRAINT_END
208 };
209 
210 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
211 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
212 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
213 	EVENT_EXTRA_END
214 };
215 
216 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
217 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
218 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
219 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
220 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
221 	EVENT_EXTRA_END
222 };
223 
224 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
225 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
226 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
227 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
228 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
229 	EVENT_EXTRA_END
230 };
231 
232 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
233 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
234 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
235 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
236 	/*
237 	 * Note the low 8 bits eventsel code is not a continuous field, containing
238 	 * some #GPing bits. These are masked out.
239 	 */
240 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
241 	EVENT_EXTRA_END
242 };
243 
244 static struct event_constraint intel_icl_event_constraints[] = {
245 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
246 	INTEL_UEVENT_CONSTRAINT(0x1c0, 0),	/* INST_RETIRED.PREC_DIST */
247 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
248 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
249 	FIXED_EVENT_CONSTRAINT(0x0400, 3),	/* SLOTS */
250 	INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
251 	INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
252 	INTEL_EVENT_CONSTRAINT(0x32, 0xf),	/* SW_PREFETCH_ACCESS.* */
253 	INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x54, 0xf),
254 	INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
255 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_TOTAL */
256 	INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
257 	INTEL_EVENT_CONSTRAINT(0xa3, 0xf),      /* CYCLE_ACTIVITY.* */
258 	INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
259 	INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
260 	INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
261 	INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
262 	EVENT_CONSTRAINT_END
263 };
264 
265 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
266 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
267 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
268 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
269 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
270 	EVENT_EXTRA_END
271 };
272 
273 EVENT_ATTR_STR(mem-loads,	mem_ld_nhm,	"event=0x0b,umask=0x10,ldlat=3");
274 EVENT_ATTR_STR(mem-loads,	mem_ld_snb,	"event=0xcd,umask=0x1,ldlat=3");
275 EVENT_ATTR_STR(mem-stores,	mem_st_snb,	"event=0xcd,umask=0x2");
276 
277 static struct attribute *nhm_mem_events_attrs[] = {
278 	EVENT_PTR(mem_ld_nhm),
279 	NULL,
280 };
281 
282 /*
283  * topdown events for Intel Core CPUs.
284  *
285  * The events are all in slots, which is a free slot in a 4 wide
286  * pipeline. Some events are already reported in slots, for cycle
287  * events we multiply by the pipeline width (4).
288  *
289  * With Hyper Threading on, topdown metrics are either summed or averaged
290  * between the threads of a core: (count_t0 + count_t1).
291  *
292  * For the average case the metric is always scaled to pipeline width,
293  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
294  */
295 
296 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
297 	"event=0x3c,umask=0x0",			/* cpu_clk_unhalted.thread */
298 	"event=0x3c,umask=0x0,any=1");		/* cpu_clk_unhalted.thread_any */
299 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
300 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
301 	"event=0xe,umask=0x1");			/* uops_issued.any */
302 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
303 	"event=0xc2,umask=0x2");		/* uops_retired.retire_slots */
304 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
305 	"event=0x9c,umask=0x1");		/* idq_uops_not_delivered_core */
306 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
307 	"event=0xd,umask=0x3,cmask=1",		/* int_misc.recovery_cycles */
308 	"event=0xd,umask=0x3,cmask=1,any=1");	/* int_misc.recovery_cycles_any */
309 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
310 	"4", "2");
311 
312 static struct attribute *snb_events_attrs[] = {
313 	EVENT_PTR(td_slots_issued),
314 	EVENT_PTR(td_slots_retired),
315 	EVENT_PTR(td_fetch_bubbles),
316 	EVENT_PTR(td_total_slots),
317 	EVENT_PTR(td_total_slots_scale),
318 	EVENT_PTR(td_recovery_bubbles),
319 	EVENT_PTR(td_recovery_bubbles_scale),
320 	NULL,
321 };
322 
323 static struct attribute *snb_mem_events_attrs[] = {
324 	EVENT_PTR(mem_ld_snb),
325 	EVENT_PTR(mem_st_snb),
326 	NULL,
327 };
328 
329 static struct event_constraint intel_hsw_event_constraints[] = {
330 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
331 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
332 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
333 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
334 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
335 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
336 	/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
337 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
338 	/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
339 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
340 	/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
341 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
342 
343 	/*
344 	 * When HT is off these events can only run on the bottom 4 counters
345 	 * When HT is on, they are impacted by the HT bug and require EXCL access
346 	 */
347 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
348 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
349 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
350 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
351 
352 	EVENT_CONSTRAINT_END
353 };
354 
355 static struct event_constraint intel_bdw_event_constraints[] = {
356 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
357 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
358 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
359 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
360 	INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),	/* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
361 	/*
362 	 * when HT is off, these can only run on the bottom 4 counters
363 	 */
364 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
365 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
366 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
367 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
368 	EVENT_CONSTRAINT_END
369 };
370 
371 static u64 intel_pmu_event_map(int hw_event)
372 {
373 	return intel_perfmon_event_map[hw_event];
374 }
375 
376 /*
377  * Notes on the events:
378  * - data reads do not include code reads (comparable to earlier tables)
379  * - data counts include speculative execution (except L1 write, dtlb, bpu)
380  * - remote node access includes remote memory, remote cache, remote mmio.
381  * - prefetches are not included in the counts.
382  * - icache miss does not include decoded icache
383  */
384 
385 #define SKL_DEMAND_DATA_RD		BIT_ULL(0)
386 #define SKL_DEMAND_RFO			BIT_ULL(1)
387 #define SKL_ANY_RESPONSE		BIT_ULL(16)
388 #define SKL_SUPPLIER_NONE		BIT_ULL(17)
389 #define SKL_L3_MISS_LOCAL_DRAM		BIT_ULL(26)
390 #define SKL_L3_MISS_REMOTE_HOP0_DRAM	BIT_ULL(27)
391 #define SKL_L3_MISS_REMOTE_HOP1_DRAM	BIT_ULL(28)
392 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM	BIT_ULL(29)
393 #define SKL_L3_MISS			(SKL_L3_MISS_LOCAL_DRAM| \
394 					 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
395 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
396 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
397 #define SKL_SPL_HIT			BIT_ULL(30)
398 #define SKL_SNOOP_NONE			BIT_ULL(31)
399 #define SKL_SNOOP_NOT_NEEDED		BIT_ULL(32)
400 #define SKL_SNOOP_MISS			BIT_ULL(33)
401 #define SKL_SNOOP_HIT_NO_FWD		BIT_ULL(34)
402 #define SKL_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
403 #define SKL_SNOOP_HITM			BIT_ULL(36)
404 #define SKL_SNOOP_NON_DRAM		BIT_ULL(37)
405 #define SKL_ANY_SNOOP			(SKL_SPL_HIT|SKL_SNOOP_NONE| \
406 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
407 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
408 					 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
409 #define SKL_DEMAND_READ			SKL_DEMAND_DATA_RD
410 #define SKL_SNOOP_DRAM			(SKL_SNOOP_NONE| \
411 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
412 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
413 					 SKL_SNOOP_HITM|SKL_SPL_HIT)
414 #define SKL_DEMAND_WRITE		SKL_DEMAND_RFO
415 #define SKL_LLC_ACCESS			SKL_ANY_RESPONSE
416 #define SKL_L3_MISS_REMOTE		(SKL_L3_MISS_REMOTE_HOP0_DRAM| \
417 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
418 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
419 
420 static __initconst const u64 skl_hw_cache_event_ids
421 				[PERF_COUNT_HW_CACHE_MAX]
422 				[PERF_COUNT_HW_CACHE_OP_MAX]
423 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
424 {
425  [ C(L1D ) ] = {
426 	[ C(OP_READ) ] = {
427 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
428 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
429 	},
430 	[ C(OP_WRITE) ] = {
431 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
432 		[ C(RESULT_MISS)   ] = 0x0,
433 	},
434 	[ C(OP_PREFETCH) ] = {
435 		[ C(RESULT_ACCESS) ] = 0x0,
436 		[ C(RESULT_MISS)   ] = 0x0,
437 	},
438  },
439  [ C(L1I ) ] = {
440 	[ C(OP_READ) ] = {
441 		[ C(RESULT_ACCESS) ] = 0x0,
442 		[ C(RESULT_MISS)   ] = 0x283,	/* ICACHE_64B.MISS */
443 	},
444 	[ C(OP_WRITE) ] = {
445 		[ C(RESULT_ACCESS) ] = -1,
446 		[ C(RESULT_MISS)   ] = -1,
447 	},
448 	[ C(OP_PREFETCH) ] = {
449 		[ C(RESULT_ACCESS) ] = 0x0,
450 		[ C(RESULT_MISS)   ] = 0x0,
451 	},
452  },
453  [ C(LL  ) ] = {
454 	[ C(OP_READ) ] = {
455 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
456 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
457 	},
458 	[ C(OP_WRITE) ] = {
459 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
460 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
461 	},
462 	[ C(OP_PREFETCH) ] = {
463 		[ C(RESULT_ACCESS) ] = 0x0,
464 		[ C(RESULT_MISS)   ] = 0x0,
465 	},
466  },
467  [ C(DTLB) ] = {
468 	[ C(OP_READ) ] = {
469 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
470 		[ C(RESULT_MISS)   ] = 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
471 	},
472 	[ C(OP_WRITE) ] = {
473 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
474 		[ C(RESULT_MISS)   ] = 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
475 	},
476 	[ C(OP_PREFETCH) ] = {
477 		[ C(RESULT_ACCESS) ] = 0x0,
478 		[ C(RESULT_MISS)   ] = 0x0,
479 	},
480  },
481  [ C(ITLB) ] = {
482 	[ C(OP_READ) ] = {
483 		[ C(RESULT_ACCESS) ] = 0x2085,	/* ITLB_MISSES.STLB_HIT */
484 		[ C(RESULT_MISS)   ] = 0xe85,	/* ITLB_MISSES.WALK_COMPLETED */
485 	},
486 	[ C(OP_WRITE) ] = {
487 		[ C(RESULT_ACCESS) ] = -1,
488 		[ C(RESULT_MISS)   ] = -1,
489 	},
490 	[ C(OP_PREFETCH) ] = {
491 		[ C(RESULT_ACCESS) ] = -1,
492 		[ C(RESULT_MISS)   ] = -1,
493 	},
494  },
495  [ C(BPU ) ] = {
496 	[ C(OP_READ) ] = {
497 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
498 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
499 	},
500 	[ C(OP_WRITE) ] = {
501 		[ C(RESULT_ACCESS) ] = -1,
502 		[ C(RESULT_MISS)   ] = -1,
503 	},
504 	[ C(OP_PREFETCH) ] = {
505 		[ C(RESULT_ACCESS) ] = -1,
506 		[ C(RESULT_MISS)   ] = -1,
507 	},
508  },
509  [ C(NODE) ] = {
510 	[ C(OP_READ) ] = {
511 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
512 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
513 	},
514 	[ C(OP_WRITE) ] = {
515 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
516 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
517 	},
518 	[ C(OP_PREFETCH) ] = {
519 		[ C(RESULT_ACCESS) ] = 0x0,
520 		[ C(RESULT_MISS)   ] = 0x0,
521 	},
522  },
523 };
524 
525 static __initconst const u64 skl_hw_cache_extra_regs
526 				[PERF_COUNT_HW_CACHE_MAX]
527 				[PERF_COUNT_HW_CACHE_OP_MAX]
528 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
529 {
530  [ C(LL  ) ] = {
531 	[ C(OP_READ) ] = {
532 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
533 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
534 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
535 				       SKL_L3_MISS|SKL_ANY_SNOOP|
536 				       SKL_SUPPLIER_NONE,
537 	},
538 	[ C(OP_WRITE) ] = {
539 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
540 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
541 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
542 				       SKL_L3_MISS|SKL_ANY_SNOOP|
543 				       SKL_SUPPLIER_NONE,
544 	},
545 	[ C(OP_PREFETCH) ] = {
546 		[ C(RESULT_ACCESS) ] = 0x0,
547 		[ C(RESULT_MISS)   ] = 0x0,
548 	},
549  },
550  [ C(NODE) ] = {
551 	[ C(OP_READ) ] = {
552 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
553 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
554 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
555 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
556 	},
557 	[ C(OP_WRITE) ] = {
558 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
559 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
560 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
561 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
562 	},
563 	[ C(OP_PREFETCH) ] = {
564 		[ C(RESULT_ACCESS) ] = 0x0,
565 		[ C(RESULT_MISS)   ] = 0x0,
566 	},
567  },
568 };
569 
570 #define SNB_DMND_DATA_RD	(1ULL << 0)
571 #define SNB_DMND_RFO		(1ULL << 1)
572 #define SNB_DMND_IFETCH		(1ULL << 2)
573 #define SNB_DMND_WB		(1ULL << 3)
574 #define SNB_PF_DATA_RD		(1ULL << 4)
575 #define SNB_PF_RFO		(1ULL << 5)
576 #define SNB_PF_IFETCH		(1ULL << 6)
577 #define SNB_LLC_DATA_RD		(1ULL << 7)
578 #define SNB_LLC_RFO		(1ULL << 8)
579 #define SNB_LLC_IFETCH		(1ULL << 9)
580 #define SNB_BUS_LOCKS		(1ULL << 10)
581 #define SNB_STRM_ST		(1ULL << 11)
582 #define SNB_OTHER		(1ULL << 15)
583 #define SNB_RESP_ANY		(1ULL << 16)
584 #define SNB_NO_SUPP		(1ULL << 17)
585 #define SNB_LLC_HITM		(1ULL << 18)
586 #define SNB_LLC_HITE		(1ULL << 19)
587 #define SNB_LLC_HITS		(1ULL << 20)
588 #define SNB_LLC_HITF		(1ULL << 21)
589 #define SNB_LOCAL		(1ULL << 22)
590 #define SNB_REMOTE		(0xffULL << 23)
591 #define SNB_SNP_NONE		(1ULL << 31)
592 #define SNB_SNP_NOT_NEEDED	(1ULL << 32)
593 #define SNB_SNP_MISS		(1ULL << 33)
594 #define SNB_NO_FWD		(1ULL << 34)
595 #define SNB_SNP_FWD		(1ULL << 35)
596 #define SNB_HITM		(1ULL << 36)
597 #define SNB_NON_DRAM		(1ULL << 37)
598 
599 #define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
600 #define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
601 #define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
602 
603 #define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
604 				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
605 				 SNB_HITM)
606 
607 #define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
608 #define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)
609 
610 #define SNB_L3_ACCESS		SNB_RESP_ANY
611 #define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)
612 
613 static __initconst const u64 snb_hw_cache_extra_regs
614 				[PERF_COUNT_HW_CACHE_MAX]
615 				[PERF_COUNT_HW_CACHE_OP_MAX]
616 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
617 {
618  [ C(LL  ) ] = {
619 	[ C(OP_READ) ] = {
620 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
621 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
622 	},
623 	[ C(OP_WRITE) ] = {
624 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
625 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
626 	},
627 	[ C(OP_PREFETCH) ] = {
628 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
629 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
630 	},
631  },
632  [ C(NODE) ] = {
633 	[ C(OP_READ) ] = {
634 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
635 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
636 	},
637 	[ C(OP_WRITE) ] = {
638 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
639 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
640 	},
641 	[ C(OP_PREFETCH) ] = {
642 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
643 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
644 	},
645  },
646 };
647 
648 static __initconst const u64 snb_hw_cache_event_ids
649 				[PERF_COUNT_HW_CACHE_MAX]
650 				[PERF_COUNT_HW_CACHE_OP_MAX]
651 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
652 {
653  [ C(L1D) ] = {
654 	[ C(OP_READ) ] = {
655 		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
656 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
657 	},
658 	[ C(OP_WRITE) ] = {
659 		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
660 		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
661 	},
662 	[ C(OP_PREFETCH) ] = {
663 		[ C(RESULT_ACCESS) ] = 0x0,
664 		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
665 	},
666  },
667  [ C(L1I ) ] = {
668 	[ C(OP_READ) ] = {
669 		[ C(RESULT_ACCESS) ] = 0x0,
670 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
671 	},
672 	[ C(OP_WRITE) ] = {
673 		[ C(RESULT_ACCESS) ] = -1,
674 		[ C(RESULT_MISS)   ] = -1,
675 	},
676 	[ C(OP_PREFETCH) ] = {
677 		[ C(RESULT_ACCESS) ] = 0x0,
678 		[ C(RESULT_MISS)   ] = 0x0,
679 	},
680  },
681  [ C(LL  ) ] = {
682 	[ C(OP_READ) ] = {
683 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
684 		[ C(RESULT_ACCESS) ] = 0x01b7,
685 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
686 		[ C(RESULT_MISS)   ] = 0x01b7,
687 	},
688 	[ C(OP_WRITE) ] = {
689 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
690 		[ C(RESULT_ACCESS) ] = 0x01b7,
691 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
692 		[ C(RESULT_MISS)   ] = 0x01b7,
693 	},
694 	[ C(OP_PREFETCH) ] = {
695 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
696 		[ C(RESULT_ACCESS) ] = 0x01b7,
697 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
698 		[ C(RESULT_MISS)   ] = 0x01b7,
699 	},
700  },
701  [ C(DTLB) ] = {
702 	[ C(OP_READ) ] = {
703 		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
704 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
705 	},
706 	[ C(OP_WRITE) ] = {
707 		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
708 		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
709 	},
710 	[ C(OP_PREFETCH) ] = {
711 		[ C(RESULT_ACCESS) ] = 0x0,
712 		[ C(RESULT_MISS)   ] = 0x0,
713 	},
714  },
715  [ C(ITLB) ] = {
716 	[ C(OP_READ) ] = {
717 		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
718 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
719 	},
720 	[ C(OP_WRITE) ] = {
721 		[ C(RESULT_ACCESS) ] = -1,
722 		[ C(RESULT_MISS)   ] = -1,
723 	},
724 	[ C(OP_PREFETCH) ] = {
725 		[ C(RESULT_ACCESS) ] = -1,
726 		[ C(RESULT_MISS)   ] = -1,
727 	},
728  },
729  [ C(BPU ) ] = {
730 	[ C(OP_READ) ] = {
731 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
732 		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
733 	},
734 	[ C(OP_WRITE) ] = {
735 		[ C(RESULT_ACCESS) ] = -1,
736 		[ C(RESULT_MISS)   ] = -1,
737 	},
738 	[ C(OP_PREFETCH) ] = {
739 		[ C(RESULT_ACCESS) ] = -1,
740 		[ C(RESULT_MISS)   ] = -1,
741 	},
742  },
743  [ C(NODE) ] = {
744 	[ C(OP_READ) ] = {
745 		[ C(RESULT_ACCESS) ] = 0x01b7,
746 		[ C(RESULT_MISS)   ] = 0x01b7,
747 	},
748 	[ C(OP_WRITE) ] = {
749 		[ C(RESULT_ACCESS) ] = 0x01b7,
750 		[ C(RESULT_MISS)   ] = 0x01b7,
751 	},
752 	[ C(OP_PREFETCH) ] = {
753 		[ C(RESULT_ACCESS) ] = 0x01b7,
754 		[ C(RESULT_MISS)   ] = 0x01b7,
755 	},
756  },
757 
758 };
759 
760 /*
761  * Notes on the events:
762  * - data reads do not include code reads (comparable to earlier tables)
763  * - data counts include speculative execution (except L1 write, dtlb, bpu)
764  * - remote node access includes remote memory, remote cache, remote mmio.
765  * - prefetches are not included in the counts because they are not
766  *   reliably counted.
767  */
768 
769 #define HSW_DEMAND_DATA_RD		BIT_ULL(0)
770 #define HSW_DEMAND_RFO			BIT_ULL(1)
771 #define HSW_ANY_RESPONSE		BIT_ULL(16)
772 #define HSW_SUPPLIER_NONE		BIT_ULL(17)
773 #define HSW_L3_MISS_LOCAL_DRAM		BIT_ULL(22)
774 #define HSW_L3_MISS_REMOTE_HOP0		BIT_ULL(27)
775 #define HSW_L3_MISS_REMOTE_HOP1		BIT_ULL(28)
776 #define HSW_L3_MISS_REMOTE_HOP2P	BIT_ULL(29)
777 #define HSW_L3_MISS			(HSW_L3_MISS_LOCAL_DRAM| \
778 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
779 					 HSW_L3_MISS_REMOTE_HOP2P)
780 #define HSW_SNOOP_NONE			BIT_ULL(31)
781 #define HSW_SNOOP_NOT_NEEDED		BIT_ULL(32)
782 #define HSW_SNOOP_MISS			BIT_ULL(33)
783 #define HSW_SNOOP_HIT_NO_FWD		BIT_ULL(34)
784 #define HSW_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
785 #define HSW_SNOOP_HITM			BIT_ULL(36)
786 #define HSW_SNOOP_NON_DRAM		BIT_ULL(37)
787 #define HSW_ANY_SNOOP			(HSW_SNOOP_NONE| \
788 					 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
789 					 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
790 					 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
791 #define HSW_SNOOP_DRAM			(HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
792 #define HSW_DEMAND_READ			HSW_DEMAND_DATA_RD
793 #define HSW_DEMAND_WRITE		HSW_DEMAND_RFO
794 #define HSW_L3_MISS_REMOTE		(HSW_L3_MISS_REMOTE_HOP0|\
795 					 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
796 #define HSW_LLC_ACCESS			HSW_ANY_RESPONSE
797 
798 #define BDW_L3_MISS_LOCAL		BIT(26)
799 #define BDW_L3_MISS			(BDW_L3_MISS_LOCAL| \
800 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
801 					 HSW_L3_MISS_REMOTE_HOP2P)
802 
803 
804 static __initconst const u64 hsw_hw_cache_event_ids
805 				[PERF_COUNT_HW_CACHE_MAX]
806 				[PERF_COUNT_HW_CACHE_OP_MAX]
807 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
808 {
809  [ C(L1D ) ] = {
810 	[ C(OP_READ) ] = {
811 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
812 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
813 	},
814 	[ C(OP_WRITE) ] = {
815 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
816 		[ C(RESULT_MISS)   ] = 0x0,
817 	},
818 	[ C(OP_PREFETCH) ] = {
819 		[ C(RESULT_ACCESS) ] = 0x0,
820 		[ C(RESULT_MISS)   ] = 0x0,
821 	},
822  },
823  [ C(L1I ) ] = {
824 	[ C(OP_READ) ] = {
825 		[ C(RESULT_ACCESS) ] = 0x0,
826 		[ C(RESULT_MISS)   ] = 0x280,	/* ICACHE.MISSES */
827 	},
828 	[ C(OP_WRITE) ] = {
829 		[ C(RESULT_ACCESS) ] = -1,
830 		[ C(RESULT_MISS)   ] = -1,
831 	},
832 	[ C(OP_PREFETCH) ] = {
833 		[ C(RESULT_ACCESS) ] = 0x0,
834 		[ C(RESULT_MISS)   ] = 0x0,
835 	},
836  },
837  [ C(LL  ) ] = {
838 	[ C(OP_READ) ] = {
839 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
840 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
841 	},
842 	[ C(OP_WRITE) ] = {
843 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
844 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
845 	},
846 	[ C(OP_PREFETCH) ] = {
847 		[ C(RESULT_ACCESS) ] = 0x0,
848 		[ C(RESULT_MISS)   ] = 0x0,
849 	},
850  },
851  [ C(DTLB) ] = {
852 	[ C(OP_READ) ] = {
853 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
854 		[ C(RESULT_MISS)   ] = 0x108,	/* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
855 	},
856 	[ C(OP_WRITE) ] = {
857 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
858 		[ C(RESULT_MISS)   ] = 0x149,	/* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
859 	},
860 	[ C(OP_PREFETCH) ] = {
861 		[ C(RESULT_ACCESS) ] = 0x0,
862 		[ C(RESULT_MISS)   ] = 0x0,
863 	},
864  },
865  [ C(ITLB) ] = {
866 	[ C(OP_READ) ] = {
867 		[ C(RESULT_ACCESS) ] = 0x6085,	/* ITLB_MISSES.STLB_HIT */
868 		[ C(RESULT_MISS)   ] = 0x185,	/* ITLB_MISSES.MISS_CAUSES_A_WALK */
869 	},
870 	[ C(OP_WRITE) ] = {
871 		[ C(RESULT_ACCESS) ] = -1,
872 		[ C(RESULT_MISS)   ] = -1,
873 	},
874 	[ C(OP_PREFETCH) ] = {
875 		[ C(RESULT_ACCESS) ] = -1,
876 		[ C(RESULT_MISS)   ] = -1,
877 	},
878  },
879  [ C(BPU ) ] = {
880 	[ C(OP_READ) ] = {
881 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
882 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
883 	},
884 	[ C(OP_WRITE) ] = {
885 		[ C(RESULT_ACCESS) ] = -1,
886 		[ C(RESULT_MISS)   ] = -1,
887 	},
888 	[ C(OP_PREFETCH) ] = {
889 		[ C(RESULT_ACCESS) ] = -1,
890 		[ C(RESULT_MISS)   ] = -1,
891 	},
892  },
893  [ C(NODE) ] = {
894 	[ C(OP_READ) ] = {
895 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
896 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
897 	},
898 	[ C(OP_WRITE) ] = {
899 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
900 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
901 	},
902 	[ C(OP_PREFETCH) ] = {
903 		[ C(RESULT_ACCESS) ] = 0x0,
904 		[ C(RESULT_MISS)   ] = 0x0,
905 	},
906  },
907 };
908 
909 static __initconst const u64 hsw_hw_cache_extra_regs
910 				[PERF_COUNT_HW_CACHE_MAX]
911 				[PERF_COUNT_HW_CACHE_OP_MAX]
912 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
913 {
914  [ C(LL  ) ] = {
915 	[ C(OP_READ) ] = {
916 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
917 				       HSW_LLC_ACCESS,
918 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
919 				       HSW_L3_MISS|HSW_ANY_SNOOP,
920 	},
921 	[ C(OP_WRITE) ] = {
922 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
923 				       HSW_LLC_ACCESS,
924 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
925 				       HSW_L3_MISS|HSW_ANY_SNOOP,
926 	},
927 	[ C(OP_PREFETCH) ] = {
928 		[ C(RESULT_ACCESS) ] = 0x0,
929 		[ C(RESULT_MISS)   ] = 0x0,
930 	},
931  },
932  [ C(NODE) ] = {
933 	[ C(OP_READ) ] = {
934 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
935 				       HSW_L3_MISS_LOCAL_DRAM|
936 				       HSW_SNOOP_DRAM,
937 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
938 				       HSW_L3_MISS_REMOTE|
939 				       HSW_SNOOP_DRAM,
940 	},
941 	[ C(OP_WRITE) ] = {
942 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
943 				       HSW_L3_MISS_LOCAL_DRAM|
944 				       HSW_SNOOP_DRAM,
945 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
946 				       HSW_L3_MISS_REMOTE|
947 				       HSW_SNOOP_DRAM,
948 	},
949 	[ C(OP_PREFETCH) ] = {
950 		[ C(RESULT_ACCESS) ] = 0x0,
951 		[ C(RESULT_MISS)   ] = 0x0,
952 	},
953  },
954 };
955 
956 static __initconst const u64 westmere_hw_cache_event_ids
957 				[PERF_COUNT_HW_CACHE_MAX]
958 				[PERF_COUNT_HW_CACHE_OP_MAX]
959 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
960 {
961  [ C(L1D) ] = {
962 	[ C(OP_READ) ] = {
963 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
964 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
965 	},
966 	[ C(OP_WRITE) ] = {
967 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
968 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
969 	},
970 	[ C(OP_PREFETCH) ] = {
971 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
972 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
973 	},
974  },
975  [ C(L1I ) ] = {
976 	[ C(OP_READ) ] = {
977 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
978 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
979 	},
980 	[ C(OP_WRITE) ] = {
981 		[ C(RESULT_ACCESS) ] = -1,
982 		[ C(RESULT_MISS)   ] = -1,
983 	},
984 	[ C(OP_PREFETCH) ] = {
985 		[ C(RESULT_ACCESS) ] = 0x0,
986 		[ C(RESULT_MISS)   ] = 0x0,
987 	},
988  },
989  [ C(LL  ) ] = {
990 	[ C(OP_READ) ] = {
991 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
992 		[ C(RESULT_ACCESS) ] = 0x01b7,
993 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
994 		[ C(RESULT_MISS)   ] = 0x01b7,
995 	},
996 	/*
997 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
998 	 * on RFO.
999 	 */
1000 	[ C(OP_WRITE) ] = {
1001 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1002 		[ C(RESULT_ACCESS) ] = 0x01b7,
1003 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1004 		[ C(RESULT_MISS)   ] = 0x01b7,
1005 	},
1006 	[ C(OP_PREFETCH) ] = {
1007 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1008 		[ C(RESULT_ACCESS) ] = 0x01b7,
1009 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1010 		[ C(RESULT_MISS)   ] = 0x01b7,
1011 	},
1012  },
1013  [ C(DTLB) ] = {
1014 	[ C(OP_READ) ] = {
1015 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1016 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1017 	},
1018 	[ C(OP_WRITE) ] = {
1019 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1020 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1021 	},
1022 	[ C(OP_PREFETCH) ] = {
1023 		[ C(RESULT_ACCESS) ] = 0x0,
1024 		[ C(RESULT_MISS)   ] = 0x0,
1025 	},
1026  },
1027  [ C(ITLB) ] = {
1028 	[ C(OP_READ) ] = {
1029 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1030 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
1031 	},
1032 	[ C(OP_WRITE) ] = {
1033 		[ C(RESULT_ACCESS) ] = -1,
1034 		[ C(RESULT_MISS)   ] = -1,
1035 	},
1036 	[ C(OP_PREFETCH) ] = {
1037 		[ C(RESULT_ACCESS) ] = -1,
1038 		[ C(RESULT_MISS)   ] = -1,
1039 	},
1040  },
1041  [ C(BPU ) ] = {
1042 	[ C(OP_READ) ] = {
1043 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1044 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1045 	},
1046 	[ C(OP_WRITE) ] = {
1047 		[ C(RESULT_ACCESS) ] = -1,
1048 		[ C(RESULT_MISS)   ] = -1,
1049 	},
1050 	[ C(OP_PREFETCH) ] = {
1051 		[ C(RESULT_ACCESS) ] = -1,
1052 		[ C(RESULT_MISS)   ] = -1,
1053 	},
1054  },
1055  [ C(NODE) ] = {
1056 	[ C(OP_READ) ] = {
1057 		[ C(RESULT_ACCESS) ] = 0x01b7,
1058 		[ C(RESULT_MISS)   ] = 0x01b7,
1059 	},
1060 	[ C(OP_WRITE) ] = {
1061 		[ C(RESULT_ACCESS) ] = 0x01b7,
1062 		[ C(RESULT_MISS)   ] = 0x01b7,
1063 	},
1064 	[ C(OP_PREFETCH) ] = {
1065 		[ C(RESULT_ACCESS) ] = 0x01b7,
1066 		[ C(RESULT_MISS)   ] = 0x01b7,
1067 	},
1068  },
1069 };
1070 
1071 /*
1072  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1073  * See IA32 SDM Vol 3B 30.6.1.3
1074  */
1075 
1076 #define NHM_DMND_DATA_RD	(1 << 0)
1077 #define NHM_DMND_RFO		(1 << 1)
1078 #define NHM_DMND_IFETCH		(1 << 2)
1079 #define NHM_DMND_WB		(1 << 3)
1080 #define NHM_PF_DATA_RD		(1 << 4)
1081 #define NHM_PF_DATA_RFO		(1 << 5)
1082 #define NHM_PF_IFETCH		(1 << 6)
1083 #define NHM_OFFCORE_OTHER	(1 << 7)
1084 #define NHM_UNCORE_HIT		(1 << 8)
1085 #define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
1086 #define NHM_OTHER_CORE_HITM	(1 << 10)
1087         			/* reserved */
1088 #define NHM_REMOTE_CACHE_FWD	(1 << 12)
1089 #define NHM_REMOTE_DRAM		(1 << 13)
1090 #define NHM_LOCAL_DRAM		(1 << 14)
1091 #define NHM_NON_DRAM		(1 << 15)
1092 
1093 #define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1094 #define NHM_REMOTE		(NHM_REMOTE_DRAM)
1095 
1096 #define NHM_DMND_READ		(NHM_DMND_DATA_RD)
1097 #define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
1098 #define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1099 
1100 #define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1101 #define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1102 #define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
1103 
1104 static __initconst const u64 nehalem_hw_cache_extra_regs
1105 				[PERF_COUNT_HW_CACHE_MAX]
1106 				[PERF_COUNT_HW_CACHE_OP_MAX]
1107 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1108 {
1109  [ C(LL  ) ] = {
1110 	[ C(OP_READ) ] = {
1111 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1112 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1113 	},
1114 	[ C(OP_WRITE) ] = {
1115 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1116 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1117 	},
1118 	[ C(OP_PREFETCH) ] = {
1119 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1120 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1121 	},
1122  },
1123  [ C(NODE) ] = {
1124 	[ C(OP_READ) ] = {
1125 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1126 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1127 	},
1128 	[ C(OP_WRITE) ] = {
1129 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1130 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1131 	},
1132 	[ C(OP_PREFETCH) ] = {
1133 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1134 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1135 	},
1136  },
1137 };
1138 
1139 static __initconst const u64 nehalem_hw_cache_event_ids
1140 				[PERF_COUNT_HW_CACHE_MAX]
1141 				[PERF_COUNT_HW_CACHE_OP_MAX]
1142 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1143 {
1144  [ C(L1D) ] = {
1145 	[ C(OP_READ) ] = {
1146 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1147 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1148 	},
1149 	[ C(OP_WRITE) ] = {
1150 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1151 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1152 	},
1153 	[ C(OP_PREFETCH) ] = {
1154 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1155 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1156 	},
1157  },
1158  [ C(L1I ) ] = {
1159 	[ C(OP_READ) ] = {
1160 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1161 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1162 	},
1163 	[ C(OP_WRITE) ] = {
1164 		[ C(RESULT_ACCESS) ] = -1,
1165 		[ C(RESULT_MISS)   ] = -1,
1166 	},
1167 	[ C(OP_PREFETCH) ] = {
1168 		[ C(RESULT_ACCESS) ] = 0x0,
1169 		[ C(RESULT_MISS)   ] = 0x0,
1170 	},
1171  },
1172  [ C(LL  ) ] = {
1173 	[ C(OP_READ) ] = {
1174 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1175 		[ C(RESULT_ACCESS) ] = 0x01b7,
1176 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1177 		[ C(RESULT_MISS)   ] = 0x01b7,
1178 	},
1179 	/*
1180 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1181 	 * on RFO.
1182 	 */
1183 	[ C(OP_WRITE) ] = {
1184 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1185 		[ C(RESULT_ACCESS) ] = 0x01b7,
1186 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1187 		[ C(RESULT_MISS)   ] = 0x01b7,
1188 	},
1189 	[ C(OP_PREFETCH) ] = {
1190 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1191 		[ C(RESULT_ACCESS) ] = 0x01b7,
1192 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1193 		[ C(RESULT_MISS)   ] = 0x01b7,
1194 	},
1195  },
1196  [ C(DTLB) ] = {
1197 	[ C(OP_READ) ] = {
1198 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1199 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1200 	},
1201 	[ C(OP_WRITE) ] = {
1202 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1203 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1204 	},
1205 	[ C(OP_PREFETCH) ] = {
1206 		[ C(RESULT_ACCESS) ] = 0x0,
1207 		[ C(RESULT_MISS)   ] = 0x0,
1208 	},
1209  },
1210  [ C(ITLB) ] = {
1211 	[ C(OP_READ) ] = {
1212 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1213 		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1214 	},
1215 	[ C(OP_WRITE) ] = {
1216 		[ C(RESULT_ACCESS) ] = -1,
1217 		[ C(RESULT_MISS)   ] = -1,
1218 	},
1219 	[ C(OP_PREFETCH) ] = {
1220 		[ C(RESULT_ACCESS) ] = -1,
1221 		[ C(RESULT_MISS)   ] = -1,
1222 	},
1223  },
1224  [ C(BPU ) ] = {
1225 	[ C(OP_READ) ] = {
1226 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1227 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1228 	},
1229 	[ C(OP_WRITE) ] = {
1230 		[ C(RESULT_ACCESS) ] = -1,
1231 		[ C(RESULT_MISS)   ] = -1,
1232 	},
1233 	[ C(OP_PREFETCH) ] = {
1234 		[ C(RESULT_ACCESS) ] = -1,
1235 		[ C(RESULT_MISS)   ] = -1,
1236 	},
1237  },
1238  [ C(NODE) ] = {
1239 	[ C(OP_READ) ] = {
1240 		[ C(RESULT_ACCESS) ] = 0x01b7,
1241 		[ C(RESULT_MISS)   ] = 0x01b7,
1242 	},
1243 	[ C(OP_WRITE) ] = {
1244 		[ C(RESULT_ACCESS) ] = 0x01b7,
1245 		[ C(RESULT_MISS)   ] = 0x01b7,
1246 	},
1247 	[ C(OP_PREFETCH) ] = {
1248 		[ C(RESULT_ACCESS) ] = 0x01b7,
1249 		[ C(RESULT_MISS)   ] = 0x01b7,
1250 	},
1251  },
1252 };
1253 
1254 static __initconst const u64 core2_hw_cache_event_ids
1255 				[PERF_COUNT_HW_CACHE_MAX]
1256 				[PERF_COUNT_HW_CACHE_OP_MAX]
1257 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1258 {
1259  [ C(L1D) ] = {
1260 	[ C(OP_READ) ] = {
1261 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1262 		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1263 	},
1264 	[ C(OP_WRITE) ] = {
1265 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1266 		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1267 	},
1268 	[ C(OP_PREFETCH) ] = {
1269 		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1270 		[ C(RESULT_MISS)   ] = 0,
1271 	},
1272  },
1273  [ C(L1I ) ] = {
1274 	[ C(OP_READ) ] = {
1275 		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1276 		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1277 	},
1278 	[ C(OP_WRITE) ] = {
1279 		[ C(RESULT_ACCESS) ] = -1,
1280 		[ C(RESULT_MISS)   ] = -1,
1281 	},
1282 	[ C(OP_PREFETCH) ] = {
1283 		[ C(RESULT_ACCESS) ] = 0,
1284 		[ C(RESULT_MISS)   ] = 0,
1285 	},
1286  },
1287  [ C(LL  ) ] = {
1288 	[ C(OP_READ) ] = {
1289 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1290 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1291 	},
1292 	[ C(OP_WRITE) ] = {
1293 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1294 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1295 	},
1296 	[ C(OP_PREFETCH) ] = {
1297 		[ C(RESULT_ACCESS) ] = 0,
1298 		[ C(RESULT_MISS)   ] = 0,
1299 	},
1300  },
1301  [ C(DTLB) ] = {
1302 	[ C(OP_READ) ] = {
1303 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1304 		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1305 	},
1306 	[ C(OP_WRITE) ] = {
1307 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1308 		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1309 	},
1310 	[ C(OP_PREFETCH) ] = {
1311 		[ C(RESULT_ACCESS) ] = 0,
1312 		[ C(RESULT_MISS)   ] = 0,
1313 	},
1314  },
1315  [ C(ITLB) ] = {
1316 	[ C(OP_READ) ] = {
1317 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1318 		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1319 	},
1320 	[ C(OP_WRITE) ] = {
1321 		[ C(RESULT_ACCESS) ] = -1,
1322 		[ C(RESULT_MISS)   ] = -1,
1323 	},
1324 	[ C(OP_PREFETCH) ] = {
1325 		[ C(RESULT_ACCESS) ] = -1,
1326 		[ C(RESULT_MISS)   ] = -1,
1327 	},
1328  },
1329  [ C(BPU ) ] = {
1330 	[ C(OP_READ) ] = {
1331 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1332 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1333 	},
1334 	[ C(OP_WRITE) ] = {
1335 		[ C(RESULT_ACCESS) ] = -1,
1336 		[ C(RESULT_MISS)   ] = -1,
1337 	},
1338 	[ C(OP_PREFETCH) ] = {
1339 		[ C(RESULT_ACCESS) ] = -1,
1340 		[ C(RESULT_MISS)   ] = -1,
1341 	},
1342  },
1343 };
1344 
1345 static __initconst const u64 atom_hw_cache_event_ids
1346 				[PERF_COUNT_HW_CACHE_MAX]
1347 				[PERF_COUNT_HW_CACHE_OP_MAX]
1348 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1349 {
1350  [ C(L1D) ] = {
1351 	[ C(OP_READ) ] = {
1352 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1353 		[ C(RESULT_MISS)   ] = 0,
1354 	},
1355 	[ C(OP_WRITE) ] = {
1356 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1357 		[ C(RESULT_MISS)   ] = 0,
1358 	},
1359 	[ C(OP_PREFETCH) ] = {
1360 		[ C(RESULT_ACCESS) ] = 0x0,
1361 		[ C(RESULT_MISS)   ] = 0,
1362 	},
1363  },
1364  [ C(L1I ) ] = {
1365 	[ C(OP_READ) ] = {
1366 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1367 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1368 	},
1369 	[ C(OP_WRITE) ] = {
1370 		[ C(RESULT_ACCESS) ] = -1,
1371 		[ C(RESULT_MISS)   ] = -1,
1372 	},
1373 	[ C(OP_PREFETCH) ] = {
1374 		[ C(RESULT_ACCESS) ] = 0,
1375 		[ C(RESULT_MISS)   ] = 0,
1376 	},
1377  },
1378  [ C(LL  ) ] = {
1379 	[ C(OP_READ) ] = {
1380 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1381 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1382 	},
1383 	[ C(OP_WRITE) ] = {
1384 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1385 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1386 	},
1387 	[ C(OP_PREFETCH) ] = {
1388 		[ C(RESULT_ACCESS) ] = 0,
1389 		[ C(RESULT_MISS)   ] = 0,
1390 	},
1391  },
1392  [ C(DTLB) ] = {
1393 	[ C(OP_READ) ] = {
1394 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1395 		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1396 	},
1397 	[ C(OP_WRITE) ] = {
1398 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1399 		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1400 	},
1401 	[ C(OP_PREFETCH) ] = {
1402 		[ C(RESULT_ACCESS) ] = 0,
1403 		[ C(RESULT_MISS)   ] = 0,
1404 	},
1405  },
1406  [ C(ITLB) ] = {
1407 	[ C(OP_READ) ] = {
1408 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1409 		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1410 	},
1411 	[ C(OP_WRITE) ] = {
1412 		[ C(RESULT_ACCESS) ] = -1,
1413 		[ C(RESULT_MISS)   ] = -1,
1414 	},
1415 	[ C(OP_PREFETCH) ] = {
1416 		[ C(RESULT_ACCESS) ] = -1,
1417 		[ C(RESULT_MISS)   ] = -1,
1418 	},
1419  },
1420  [ C(BPU ) ] = {
1421 	[ C(OP_READ) ] = {
1422 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1423 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1424 	},
1425 	[ C(OP_WRITE) ] = {
1426 		[ C(RESULT_ACCESS) ] = -1,
1427 		[ C(RESULT_MISS)   ] = -1,
1428 	},
1429 	[ C(OP_PREFETCH) ] = {
1430 		[ C(RESULT_ACCESS) ] = -1,
1431 		[ C(RESULT_MISS)   ] = -1,
1432 	},
1433  },
1434 };
1435 
1436 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1437 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1438 /* no_alloc_cycles.not_delivered */
1439 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1440 	       "event=0xca,umask=0x50");
1441 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1442 /* uops_retired.all */
1443 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1444 	       "event=0xc2,umask=0x10");
1445 /* uops_retired.all */
1446 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1447 	       "event=0xc2,umask=0x10");
1448 
1449 static struct attribute *slm_events_attrs[] = {
1450 	EVENT_PTR(td_total_slots_slm),
1451 	EVENT_PTR(td_total_slots_scale_slm),
1452 	EVENT_PTR(td_fetch_bubbles_slm),
1453 	EVENT_PTR(td_fetch_bubbles_scale_slm),
1454 	EVENT_PTR(td_slots_issued_slm),
1455 	EVENT_PTR(td_slots_retired_slm),
1456 	NULL
1457 };
1458 
1459 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1460 {
1461 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1462 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1463 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1464 	EVENT_EXTRA_END
1465 };
1466 
1467 #define SLM_DMND_READ		SNB_DMND_DATA_RD
1468 #define SLM_DMND_WRITE		SNB_DMND_RFO
1469 #define SLM_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
1470 
1471 #define SLM_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1472 #define SLM_LLC_ACCESS		SNB_RESP_ANY
1473 #define SLM_LLC_MISS		(SLM_SNP_ANY|SNB_NON_DRAM)
1474 
1475 static __initconst const u64 slm_hw_cache_extra_regs
1476 				[PERF_COUNT_HW_CACHE_MAX]
1477 				[PERF_COUNT_HW_CACHE_OP_MAX]
1478 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1479 {
1480  [ C(LL  ) ] = {
1481 	[ C(OP_READ) ] = {
1482 		[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1483 		[ C(RESULT_MISS)   ] = 0,
1484 	},
1485 	[ C(OP_WRITE) ] = {
1486 		[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1487 		[ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1488 	},
1489 	[ C(OP_PREFETCH) ] = {
1490 		[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1491 		[ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1492 	},
1493  },
1494 };
1495 
1496 static __initconst const u64 slm_hw_cache_event_ids
1497 				[PERF_COUNT_HW_CACHE_MAX]
1498 				[PERF_COUNT_HW_CACHE_OP_MAX]
1499 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1500 {
1501  [ C(L1D) ] = {
1502 	[ C(OP_READ) ] = {
1503 		[ C(RESULT_ACCESS) ] = 0,
1504 		[ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1505 	},
1506 	[ C(OP_WRITE) ] = {
1507 		[ C(RESULT_ACCESS) ] = 0,
1508 		[ C(RESULT_MISS)   ] = 0,
1509 	},
1510 	[ C(OP_PREFETCH) ] = {
1511 		[ C(RESULT_ACCESS) ] = 0,
1512 		[ C(RESULT_MISS)   ] = 0,
1513 	},
1514  },
1515  [ C(L1I ) ] = {
1516 	[ C(OP_READ) ] = {
1517 		[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1518 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1519 	},
1520 	[ C(OP_WRITE) ] = {
1521 		[ C(RESULT_ACCESS) ] = -1,
1522 		[ C(RESULT_MISS)   ] = -1,
1523 	},
1524 	[ C(OP_PREFETCH) ] = {
1525 		[ C(RESULT_ACCESS) ] = 0,
1526 		[ C(RESULT_MISS)   ] = 0,
1527 	},
1528  },
1529  [ C(LL  ) ] = {
1530 	[ C(OP_READ) ] = {
1531 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1532 		[ C(RESULT_ACCESS) ] = 0x01b7,
1533 		[ C(RESULT_MISS)   ] = 0,
1534 	},
1535 	[ C(OP_WRITE) ] = {
1536 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1537 		[ C(RESULT_ACCESS) ] = 0x01b7,
1538 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1539 		[ C(RESULT_MISS)   ] = 0x01b7,
1540 	},
1541 	[ C(OP_PREFETCH) ] = {
1542 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1543 		[ C(RESULT_ACCESS) ] = 0x01b7,
1544 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1545 		[ C(RESULT_MISS)   ] = 0x01b7,
1546 	},
1547  },
1548  [ C(DTLB) ] = {
1549 	[ C(OP_READ) ] = {
1550 		[ C(RESULT_ACCESS) ] = 0,
1551 		[ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1552 	},
1553 	[ C(OP_WRITE) ] = {
1554 		[ C(RESULT_ACCESS) ] = 0,
1555 		[ C(RESULT_MISS)   ] = 0,
1556 	},
1557 	[ C(OP_PREFETCH) ] = {
1558 		[ C(RESULT_ACCESS) ] = 0,
1559 		[ C(RESULT_MISS)   ] = 0,
1560 	},
1561  },
1562  [ C(ITLB) ] = {
1563 	[ C(OP_READ) ] = {
1564 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1565 		[ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1566 	},
1567 	[ C(OP_WRITE) ] = {
1568 		[ C(RESULT_ACCESS) ] = -1,
1569 		[ C(RESULT_MISS)   ] = -1,
1570 	},
1571 	[ C(OP_PREFETCH) ] = {
1572 		[ C(RESULT_ACCESS) ] = -1,
1573 		[ C(RESULT_MISS)   ] = -1,
1574 	},
1575  },
1576  [ C(BPU ) ] = {
1577 	[ C(OP_READ) ] = {
1578 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1579 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1580 	},
1581 	[ C(OP_WRITE) ] = {
1582 		[ C(RESULT_ACCESS) ] = -1,
1583 		[ C(RESULT_MISS)   ] = -1,
1584 	},
1585 	[ C(OP_PREFETCH) ] = {
1586 		[ C(RESULT_ACCESS) ] = -1,
1587 		[ C(RESULT_MISS)   ] = -1,
1588 	},
1589  },
1590 };
1591 
1592 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1593 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1594 /* UOPS_NOT_DELIVERED.ANY */
1595 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1596 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1597 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1598 /* UOPS_RETIRED.ANY */
1599 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1600 /* UOPS_ISSUED.ANY */
1601 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1602 
1603 static struct attribute *glm_events_attrs[] = {
1604 	EVENT_PTR(td_total_slots_glm),
1605 	EVENT_PTR(td_total_slots_scale_glm),
1606 	EVENT_PTR(td_fetch_bubbles_glm),
1607 	EVENT_PTR(td_recovery_bubbles_glm),
1608 	EVENT_PTR(td_slots_issued_glm),
1609 	EVENT_PTR(td_slots_retired_glm),
1610 	NULL
1611 };
1612 
1613 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1614 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1615 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1616 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1617 	EVENT_EXTRA_END
1618 };
1619 
1620 #define GLM_DEMAND_DATA_RD		BIT_ULL(0)
1621 #define GLM_DEMAND_RFO			BIT_ULL(1)
1622 #define GLM_ANY_RESPONSE		BIT_ULL(16)
1623 #define GLM_SNP_NONE_OR_MISS		BIT_ULL(33)
1624 #define GLM_DEMAND_READ			GLM_DEMAND_DATA_RD
1625 #define GLM_DEMAND_WRITE		GLM_DEMAND_RFO
1626 #define GLM_DEMAND_PREFETCH		(SNB_PF_DATA_RD|SNB_PF_RFO)
1627 #define GLM_LLC_ACCESS			GLM_ANY_RESPONSE
1628 #define GLM_SNP_ANY			(GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1629 #define GLM_LLC_MISS			(GLM_SNP_ANY|SNB_NON_DRAM)
1630 
1631 static __initconst const u64 glm_hw_cache_event_ids
1632 				[PERF_COUNT_HW_CACHE_MAX]
1633 				[PERF_COUNT_HW_CACHE_OP_MAX]
1634 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1635 	[C(L1D)] = {
1636 		[C(OP_READ)] = {
1637 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1638 			[C(RESULT_MISS)]	= 0x0,
1639 		},
1640 		[C(OP_WRITE)] = {
1641 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1642 			[C(RESULT_MISS)]	= 0x0,
1643 		},
1644 		[C(OP_PREFETCH)] = {
1645 			[C(RESULT_ACCESS)]	= 0x0,
1646 			[C(RESULT_MISS)]	= 0x0,
1647 		},
1648 	},
1649 	[C(L1I)] = {
1650 		[C(OP_READ)] = {
1651 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1652 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1653 		},
1654 		[C(OP_WRITE)] = {
1655 			[C(RESULT_ACCESS)]	= -1,
1656 			[C(RESULT_MISS)]	= -1,
1657 		},
1658 		[C(OP_PREFETCH)] = {
1659 			[C(RESULT_ACCESS)]	= 0x0,
1660 			[C(RESULT_MISS)]	= 0x0,
1661 		},
1662 	},
1663 	[C(LL)] = {
1664 		[C(OP_READ)] = {
1665 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1666 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1667 		},
1668 		[C(OP_WRITE)] = {
1669 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1670 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1671 		},
1672 		[C(OP_PREFETCH)] = {
1673 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1674 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1675 		},
1676 	},
1677 	[C(DTLB)] = {
1678 		[C(OP_READ)] = {
1679 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1680 			[C(RESULT_MISS)]	= 0x0,
1681 		},
1682 		[C(OP_WRITE)] = {
1683 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1684 			[C(RESULT_MISS)]	= 0x0,
1685 		},
1686 		[C(OP_PREFETCH)] = {
1687 			[C(RESULT_ACCESS)]	= 0x0,
1688 			[C(RESULT_MISS)]	= 0x0,
1689 		},
1690 	},
1691 	[C(ITLB)] = {
1692 		[C(OP_READ)] = {
1693 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1694 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1695 		},
1696 		[C(OP_WRITE)] = {
1697 			[C(RESULT_ACCESS)]	= -1,
1698 			[C(RESULT_MISS)]	= -1,
1699 		},
1700 		[C(OP_PREFETCH)] = {
1701 			[C(RESULT_ACCESS)]	= -1,
1702 			[C(RESULT_MISS)]	= -1,
1703 		},
1704 	},
1705 	[C(BPU)] = {
1706 		[C(OP_READ)] = {
1707 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1708 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1709 		},
1710 		[C(OP_WRITE)] = {
1711 			[C(RESULT_ACCESS)]	= -1,
1712 			[C(RESULT_MISS)]	= -1,
1713 		},
1714 		[C(OP_PREFETCH)] = {
1715 			[C(RESULT_ACCESS)]	= -1,
1716 			[C(RESULT_MISS)]	= -1,
1717 		},
1718 	},
1719 };
1720 
1721 static __initconst const u64 glm_hw_cache_extra_regs
1722 				[PERF_COUNT_HW_CACHE_MAX]
1723 				[PERF_COUNT_HW_CACHE_OP_MAX]
1724 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1725 	[C(LL)] = {
1726 		[C(OP_READ)] = {
1727 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
1728 						  GLM_LLC_ACCESS,
1729 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
1730 						  GLM_LLC_MISS,
1731 		},
1732 		[C(OP_WRITE)] = {
1733 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
1734 						  GLM_LLC_ACCESS,
1735 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
1736 						  GLM_LLC_MISS,
1737 		},
1738 		[C(OP_PREFETCH)] = {
1739 			[C(RESULT_ACCESS)]	= GLM_DEMAND_PREFETCH|
1740 						  GLM_LLC_ACCESS,
1741 			[C(RESULT_MISS)]	= GLM_DEMAND_PREFETCH|
1742 						  GLM_LLC_MISS,
1743 		},
1744 	},
1745 };
1746 
1747 static __initconst const u64 glp_hw_cache_event_ids
1748 				[PERF_COUNT_HW_CACHE_MAX]
1749 				[PERF_COUNT_HW_CACHE_OP_MAX]
1750 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1751 	[C(L1D)] = {
1752 		[C(OP_READ)] = {
1753 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1754 			[C(RESULT_MISS)]	= 0x0,
1755 		},
1756 		[C(OP_WRITE)] = {
1757 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1758 			[C(RESULT_MISS)]	= 0x0,
1759 		},
1760 		[C(OP_PREFETCH)] = {
1761 			[C(RESULT_ACCESS)]	= 0x0,
1762 			[C(RESULT_MISS)]	= 0x0,
1763 		},
1764 	},
1765 	[C(L1I)] = {
1766 		[C(OP_READ)] = {
1767 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1768 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1769 		},
1770 		[C(OP_WRITE)] = {
1771 			[C(RESULT_ACCESS)]	= -1,
1772 			[C(RESULT_MISS)]	= -1,
1773 		},
1774 		[C(OP_PREFETCH)] = {
1775 			[C(RESULT_ACCESS)]	= 0x0,
1776 			[C(RESULT_MISS)]	= 0x0,
1777 		},
1778 	},
1779 	[C(LL)] = {
1780 		[C(OP_READ)] = {
1781 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1782 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1783 		},
1784 		[C(OP_WRITE)] = {
1785 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1786 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1787 		},
1788 		[C(OP_PREFETCH)] = {
1789 			[C(RESULT_ACCESS)]	= 0x0,
1790 			[C(RESULT_MISS)]	= 0x0,
1791 		},
1792 	},
1793 	[C(DTLB)] = {
1794 		[C(OP_READ)] = {
1795 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1796 			[C(RESULT_MISS)]	= 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
1797 		},
1798 		[C(OP_WRITE)] = {
1799 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1800 			[C(RESULT_MISS)]	= 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
1801 		},
1802 		[C(OP_PREFETCH)] = {
1803 			[C(RESULT_ACCESS)]	= 0x0,
1804 			[C(RESULT_MISS)]	= 0x0,
1805 		},
1806 	},
1807 	[C(ITLB)] = {
1808 		[C(OP_READ)] = {
1809 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1810 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1811 		},
1812 		[C(OP_WRITE)] = {
1813 			[C(RESULT_ACCESS)]	= -1,
1814 			[C(RESULT_MISS)]	= -1,
1815 		},
1816 		[C(OP_PREFETCH)] = {
1817 			[C(RESULT_ACCESS)]	= -1,
1818 			[C(RESULT_MISS)]	= -1,
1819 		},
1820 	},
1821 	[C(BPU)] = {
1822 		[C(OP_READ)] = {
1823 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1824 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1825 		},
1826 		[C(OP_WRITE)] = {
1827 			[C(RESULT_ACCESS)]	= -1,
1828 			[C(RESULT_MISS)]	= -1,
1829 		},
1830 		[C(OP_PREFETCH)] = {
1831 			[C(RESULT_ACCESS)]	= -1,
1832 			[C(RESULT_MISS)]	= -1,
1833 		},
1834 	},
1835 };
1836 
1837 static __initconst const u64 glp_hw_cache_extra_regs
1838 				[PERF_COUNT_HW_CACHE_MAX]
1839 				[PERF_COUNT_HW_CACHE_OP_MAX]
1840 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1841 	[C(LL)] = {
1842 		[C(OP_READ)] = {
1843 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
1844 						  GLM_LLC_ACCESS,
1845 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
1846 						  GLM_LLC_MISS,
1847 		},
1848 		[C(OP_WRITE)] = {
1849 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
1850 						  GLM_LLC_ACCESS,
1851 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
1852 						  GLM_LLC_MISS,
1853 		},
1854 		[C(OP_PREFETCH)] = {
1855 			[C(RESULT_ACCESS)]	= 0x0,
1856 			[C(RESULT_MISS)]	= 0x0,
1857 		},
1858 	},
1859 };
1860 
1861 #define TNT_LOCAL_DRAM			BIT_ULL(26)
1862 #define TNT_DEMAND_READ			GLM_DEMAND_DATA_RD
1863 #define TNT_DEMAND_WRITE		GLM_DEMAND_RFO
1864 #define TNT_LLC_ACCESS			GLM_ANY_RESPONSE
1865 #define TNT_SNP_ANY			(SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
1866 					 SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
1867 #define TNT_LLC_MISS			(TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
1868 
1869 static __initconst const u64 tnt_hw_cache_extra_regs
1870 				[PERF_COUNT_HW_CACHE_MAX]
1871 				[PERF_COUNT_HW_CACHE_OP_MAX]
1872 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1873 	[C(LL)] = {
1874 		[C(OP_READ)] = {
1875 			[C(RESULT_ACCESS)]	= TNT_DEMAND_READ|
1876 						  TNT_LLC_ACCESS,
1877 			[C(RESULT_MISS)]	= TNT_DEMAND_READ|
1878 						  TNT_LLC_MISS,
1879 		},
1880 		[C(OP_WRITE)] = {
1881 			[C(RESULT_ACCESS)]	= TNT_DEMAND_WRITE|
1882 						  TNT_LLC_ACCESS,
1883 			[C(RESULT_MISS)]	= TNT_DEMAND_WRITE|
1884 						  TNT_LLC_MISS,
1885 		},
1886 		[C(OP_PREFETCH)] = {
1887 			[C(RESULT_ACCESS)]	= 0x0,
1888 			[C(RESULT_MISS)]	= 0x0,
1889 		},
1890 	},
1891 };
1892 
1893 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
1894 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1895 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
1896 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
1897 	EVENT_EXTRA_END
1898 };
1899 
1900 #define KNL_OT_L2_HITE		BIT_ULL(19) /* Other Tile L2 Hit */
1901 #define KNL_OT_L2_HITF		BIT_ULL(20) /* Other Tile L2 Hit */
1902 #define KNL_MCDRAM_LOCAL	BIT_ULL(21)
1903 #define KNL_MCDRAM_FAR		BIT_ULL(22)
1904 #define KNL_DDR_LOCAL		BIT_ULL(23)
1905 #define KNL_DDR_FAR		BIT_ULL(24)
1906 #define KNL_DRAM_ANY		(KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1907 				    KNL_DDR_LOCAL | KNL_DDR_FAR)
1908 #define KNL_L2_READ		SLM_DMND_READ
1909 #define KNL_L2_WRITE		SLM_DMND_WRITE
1910 #define KNL_L2_PREFETCH		SLM_DMND_PREFETCH
1911 #define KNL_L2_ACCESS		SLM_LLC_ACCESS
1912 #define KNL_L2_MISS		(KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1913 				   KNL_DRAM_ANY | SNB_SNP_ANY | \
1914 						  SNB_NON_DRAM)
1915 
1916 static __initconst const u64 knl_hw_cache_extra_regs
1917 				[PERF_COUNT_HW_CACHE_MAX]
1918 				[PERF_COUNT_HW_CACHE_OP_MAX]
1919 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1920 	[C(LL)] = {
1921 		[C(OP_READ)] = {
1922 			[C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1923 			[C(RESULT_MISS)]   = 0,
1924 		},
1925 		[C(OP_WRITE)] = {
1926 			[C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1927 			[C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
1928 		},
1929 		[C(OP_PREFETCH)] = {
1930 			[C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1931 			[C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
1932 		},
1933 	},
1934 };
1935 
1936 /*
1937  * Used from PMIs where the LBRs are already disabled.
1938  *
1939  * This function could be called consecutively. It is required to remain in
1940  * disabled state if called consecutively.
1941  *
1942  * During consecutive calls, the same disable value will be written to related
1943  * registers, so the PMU state remains unchanged.
1944  *
1945  * intel_bts events don't coexist with intel PMU's BTS events because of
1946  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
1947  * disabled around intel PMU's event batching etc, only inside the PMI handler.
1948  *
1949  * Avoid PEBS_ENABLE MSR access in PMIs.
1950  * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
1951  * It doesn't matter if the PEBS is enabled or not.
1952  * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
1953  * access PEBS_ENABLE MSR in disable_all()/enable_all().
1954  * However, there are some cases which may change PEBS status, e.g. PMI
1955  * throttle. The PEBS_ENABLE should be updated where the status changes.
1956  */
1957 static void __intel_pmu_disable_all(void)
1958 {
1959 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1960 
1961 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1962 
1963 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1964 		intel_pmu_disable_bts();
1965 }
1966 
1967 static void intel_pmu_disable_all(void)
1968 {
1969 	__intel_pmu_disable_all();
1970 	intel_pmu_pebs_disable_all();
1971 	intel_pmu_lbr_disable_all();
1972 }
1973 
1974 static void __intel_pmu_enable_all(int added, bool pmi)
1975 {
1976 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1977 
1978 	intel_pmu_lbr_enable_all(pmi);
1979 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1980 			x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1981 
1982 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1983 		struct perf_event *event =
1984 			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1985 
1986 		if (WARN_ON_ONCE(!event))
1987 			return;
1988 
1989 		intel_pmu_enable_bts(event->hw.config);
1990 	}
1991 }
1992 
1993 static void intel_pmu_enable_all(int added)
1994 {
1995 	intel_pmu_pebs_enable_all();
1996 	__intel_pmu_enable_all(added, false);
1997 }
1998 
1999 /*
2000  * Workaround for:
2001  *   Intel Errata AAK100 (model 26)
2002  *   Intel Errata AAP53  (model 30)
2003  *   Intel Errata BD53   (model 44)
2004  *
2005  * The official story:
2006  *   These chips need to be 'reset' when adding counters by programming the
2007  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2008  *   in sequence on the same PMC or on different PMCs.
2009  *
2010  * In practise it appears some of these events do in fact count, and
2011  * we need to program all 4 events.
2012  */
2013 static void intel_pmu_nhm_workaround(void)
2014 {
2015 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2016 	static const unsigned long nhm_magic[4] = {
2017 		0x4300B5,
2018 		0x4300D2,
2019 		0x4300B1,
2020 		0x4300B1
2021 	};
2022 	struct perf_event *event;
2023 	int i;
2024 
2025 	/*
2026 	 * The Errata requires below steps:
2027 	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2028 	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
2029 	 *    the corresponding PMCx;
2030 	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2031 	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2032 	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2033 	 */
2034 
2035 	/*
2036 	 * The real steps we choose are a little different from above.
2037 	 * A) To reduce MSR operations, we don't run step 1) as they
2038 	 *    are already cleared before this function is called;
2039 	 * B) Call x86_perf_event_update to save PMCx before configuring
2040 	 *    PERFEVTSELx with magic number;
2041 	 * C) With step 5), we do clear only when the PERFEVTSELx is
2042 	 *    not used currently.
2043 	 * D) Call x86_perf_event_set_period to restore PMCx;
2044 	 */
2045 
2046 	/* We always operate 4 pairs of PERF Counters */
2047 	for (i = 0; i < 4; i++) {
2048 		event = cpuc->events[i];
2049 		if (event)
2050 			x86_perf_event_update(event);
2051 	}
2052 
2053 	for (i = 0; i < 4; i++) {
2054 		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2055 		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2056 	}
2057 
2058 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2059 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2060 
2061 	for (i = 0; i < 4; i++) {
2062 		event = cpuc->events[i];
2063 
2064 		if (event) {
2065 			x86_perf_event_set_period(event);
2066 			__x86_pmu_enable_event(&event->hw,
2067 					ARCH_PERFMON_EVENTSEL_ENABLE);
2068 		} else
2069 			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2070 	}
2071 }
2072 
2073 static void intel_pmu_nhm_enable_all(int added)
2074 {
2075 	if (added)
2076 		intel_pmu_nhm_workaround();
2077 	intel_pmu_enable_all(added);
2078 }
2079 
2080 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2081 {
2082 	u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2083 
2084 	if (cpuc->tfa_shadow != val) {
2085 		cpuc->tfa_shadow = val;
2086 		wrmsrl(MSR_TSX_FORCE_ABORT, val);
2087 	}
2088 }
2089 
2090 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2091 {
2092 	/*
2093 	 * We're going to use PMC3, make sure TFA is set before we touch it.
2094 	 */
2095 	if (cntr == 3)
2096 		intel_set_tfa(cpuc, true);
2097 }
2098 
2099 static void intel_tfa_pmu_enable_all(int added)
2100 {
2101 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2102 
2103 	/*
2104 	 * If we find PMC3 is no longer used when we enable the PMU, we can
2105 	 * clear TFA.
2106 	 */
2107 	if (!test_bit(3, cpuc->active_mask))
2108 		intel_set_tfa(cpuc, false);
2109 
2110 	intel_pmu_enable_all(added);
2111 }
2112 
2113 static void enable_counter_freeze(void)
2114 {
2115 	update_debugctlmsr(get_debugctlmsr() |
2116 			DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2117 }
2118 
2119 static void disable_counter_freeze(void)
2120 {
2121 	update_debugctlmsr(get_debugctlmsr() &
2122 			~DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2123 }
2124 
2125 static inline u64 intel_pmu_get_status(void)
2126 {
2127 	u64 status;
2128 
2129 	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2130 
2131 	return status;
2132 }
2133 
2134 static inline void intel_pmu_ack_status(u64 ack)
2135 {
2136 	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2137 }
2138 
2139 static inline bool event_is_checkpointed(struct perf_event *event)
2140 {
2141 	return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2142 }
2143 
2144 static inline void intel_set_masks(struct perf_event *event, int idx)
2145 {
2146 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2147 
2148 	if (event->attr.exclude_host)
2149 		__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2150 	if (event->attr.exclude_guest)
2151 		__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2152 	if (event_is_checkpointed(event))
2153 		__set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2154 }
2155 
2156 static inline void intel_clear_masks(struct perf_event *event, int idx)
2157 {
2158 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2159 
2160 	__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2161 	__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2162 	__clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2163 }
2164 
2165 static void intel_pmu_disable_fixed(struct perf_event *event)
2166 {
2167 	struct hw_perf_event *hwc = &event->hw;
2168 	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2169 	u64 ctrl_val, mask;
2170 
2171 	mask = 0xfULL << (idx * 4);
2172 
2173 	rdmsrl(hwc->config_base, ctrl_val);
2174 	ctrl_val &= ~mask;
2175 	wrmsrl(hwc->config_base, ctrl_val);
2176 }
2177 
2178 static void intel_pmu_disable_event(struct perf_event *event)
2179 {
2180 	struct hw_perf_event *hwc = &event->hw;
2181 	int idx = hwc->idx;
2182 
2183 	if (idx < INTEL_PMC_IDX_FIXED) {
2184 		intel_clear_masks(event, idx);
2185 		x86_pmu_disable_event(event);
2186 	} else if (idx < INTEL_PMC_IDX_FIXED_BTS) {
2187 		intel_clear_masks(event, idx);
2188 		intel_pmu_disable_fixed(event);
2189 	} else if (idx == INTEL_PMC_IDX_FIXED_BTS) {
2190 		intel_pmu_disable_bts();
2191 		intel_pmu_drain_bts_buffer();
2192 	} else if (idx == INTEL_PMC_IDX_FIXED_VLBR)
2193 		intel_clear_masks(event, idx);
2194 
2195 	/*
2196 	 * Needs to be called after x86_pmu_disable_event,
2197 	 * so we don't trigger the event without PEBS bit set.
2198 	 */
2199 	if (unlikely(event->attr.precise_ip))
2200 		intel_pmu_pebs_disable(event);
2201 }
2202 
2203 static void intel_pmu_del_event(struct perf_event *event)
2204 {
2205 	if (needs_branch_stack(event))
2206 		intel_pmu_lbr_del(event);
2207 	if (event->attr.precise_ip)
2208 		intel_pmu_pebs_del(event);
2209 }
2210 
2211 static void intel_pmu_read_event(struct perf_event *event)
2212 {
2213 	if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2214 		intel_pmu_auto_reload_read(event);
2215 	else
2216 		x86_perf_event_update(event);
2217 }
2218 
2219 static void intel_pmu_enable_fixed(struct perf_event *event)
2220 {
2221 	struct hw_perf_event *hwc = &event->hw;
2222 	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2223 	u64 ctrl_val, mask, bits = 0;
2224 
2225 	/*
2226 	 * Enable IRQ generation (0x8), if not PEBS,
2227 	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2228 	 * if requested:
2229 	 */
2230 	if (!event->attr.precise_ip)
2231 		bits |= 0x8;
2232 	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2233 		bits |= 0x2;
2234 	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2235 		bits |= 0x1;
2236 
2237 	/*
2238 	 * ANY bit is supported in v3 and up
2239 	 */
2240 	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2241 		bits |= 0x4;
2242 
2243 	bits <<= (idx * 4);
2244 	mask = 0xfULL << (idx * 4);
2245 
2246 	if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2247 		bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2248 		mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2249 	}
2250 
2251 	rdmsrl(hwc->config_base, ctrl_val);
2252 	ctrl_val &= ~mask;
2253 	ctrl_val |= bits;
2254 	wrmsrl(hwc->config_base, ctrl_val);
2255 }
2256 
2257 static void intel_pmu_enable_event(struct perf_event *event)
2258 {
2259 	struct hw_perf_event *hwc = &event->hw;
2260 	int idx = hwc->idx;
2261 
2262 	if (unlikely(event->attr.precise_ip))
2263 		intel_pmu_pebs_enable(event);
2264 
2265 	if (idx < INTEL_PMC_IDX_FIXED) {
2266 		intel_set_masks(event, idx);
2267 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2268 	} else if (idx < INTEL_PMC_IDX_FIXED_BTS) {
2269 		intel_set_masks(event, idx);
2270 		intel_pmu_enable_fixed(event);
2271 	} else if (idx == INTEL_PMC_IDX_FIXED_BTS) {
2272 		if (!__this_cpu_read(cpu_hw_events.enabled))
2273 			return;
2274 		intel_pmu_enable_bts(hwc->config);
2275 	} else if (idx == INTEL_PMC_IDX_FIXED_VLBR)
2276 		intel_set_masks(event, idx);
2277 }
2278 
2279 static void intel_pmu_add_event(struct perf_event *event)
2280 {
2281 	if (event->attr.precise_ip)
2282 		intel_pmu_pebs_add(event);
2283 	if (needs_branch_stack(event))
2284 		intel_pmu_lbr_add(event);
2285 }
2286 
2287 /*
2288  * Save and restart an expired event. Called by NMI contexts,
2289  * so it has to be careful about preempting normal event ops:
2290  */
2291 int intel_pmu_save_and_restart(struct perf_event *event)
2292 {
2293 	x86_perf_event_update(event);
2294 	/*
2295 	 * For a checkpointed counter always reset back to 0.  This
2296 	 * avoids a situation where the counter overflows, aborts the
2297 	 * transaction and is then set back to shortly before the
2298 	 * overflow, and overflows and aborts again.
2299 	 */
2300 	if (unlikely(event_is_checkpointed(event))) {
2301 		/* No race with NMIs because the counter should not be armed */
2302 		wrmsrl(event->hw.event_base, 0);
2303 		local64_set(&event->hw.prev_count, 0);
2304 	}
2305 	return x86_perf_event_set_period(event);
2306 }
2307 
2308 static void intel_pmu_reset(void)
2309 {
2310 	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2311 	unsigned long flags;
2312 	int idx;
2313 
2314 	if (!x86_pmu.num_counters)
2315 		return;
2316 
2317 	local_irq_save(flags);
2318 
2319 	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2320 
2321 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2322 		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2323 		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2324 	}
2325 	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
2326 		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2327 
2328 	if (ds)
2329 		ds->bts_index = ds->bts_buffer_base;
2330 
2331 	/* Ack all overflows and disable fixed counters */
2332 	if (x86_pmu.version >= 2) {
2333 		intel_pmu_ack_status(intel_pmu_get_status());
2334 		wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2335 	}
2336 
2337 	/* Reset LBRs and LBR freezing */
2338 	if (x86_pmu.lbr_nr) {
2339 		update_debugctlmsr(get_debugctlmsr() &
2340 			~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2341 	}
2342 
2343 	local_irq_restore(flags);
2344 }
2345 
2346 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2347 {
2348 	struct perf_sample_data data;
2349 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2350 	int bit;
2351 	int handled = 0;
2352 
2353 	inc_irq_stat(apic_perf_irqs);
2354 
2355 	/*
2356 	 * Ignore a range of extra bits in status that do not indicate
2357 	 * overflow by themselves.
2358 	 */
2359 	status &= ~(GLOBAL_STATUS_COND_CHG |
2360 		    GLOBAL_STATUS_ASIF |
2361 		    GLOBAL_STATUS_LBRS_FROZEN);
2362 	if (!status)
2363 		return 0;
2364 	/*
2365 	 * In case multiple PEBS events are sampled at the same time,
2366 	 * it is possible to have GLOBAL_STATUS bit 62 set indicating
2367 	 * PEBS buffer overflow and also seeing at most 3 PEBS counters
2368 	 * having their bits set in the status register. This is a sign
2369 	 * that there was at least one PEBS record pending at the time
2370 	 * of the PMU interrupt. PEBS counters must only be processed
2371 	 * via the drain_pebs() calls and not via the regular sample
2372 	 * processing loop coming after that the function, otherwise
2373 	 * phony regular samples may be generated in the sampling buffer
2374 	 * not marked with the EXACT tag. Another possibility is to have
2375 	 * one PEBS event and at least one non-PEBS event whic hoverflows
2376 	 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2377 	 * not be set, yet the overflow status bit for the PEBS counter will
2378 	 * be on Skylake.
2379 	 *
2380 	 * To avoid this problem, we systematically ignore the PEBS-enabled
2381 	 * counters from the GLOBAL_STATUS mask and we always process PEBS
2382 	 * events via drain_pebs().
2383 	 */
2384 	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
2385 		status &= ~cpuc->pebs_enabled;
2386 	else
2387 		status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2388 
2389 	/*
2390 	 * PEBS overflow sets bit 62 in the global status register
2391 	 */
2392 	if (__test_and_clear_bit(62, (unsigned long *)&status)) {
2393 		u64 pebs_enabled = cpuc->pebs_enabled;
2394 
2395 		handled++;
2396 		x86_pmu.drain_pebs(regs);
2397 		status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2398 
2399 		/*
2400 		 * PMI throttle may be triggered, which stops the PEBS event.
2401 		 * Although cpuc->pebs_enabled is updated accordingly, the
2402 		 * MSR_IA32_PEBS_ENABLE is not updated. Because the
2403 		 * cpuc->enabled has been forced to 0 in PMI.
2404 		 * Update the MSR if pebs_enabled is changed.
2405 		 */
2406 		if (pebs_enabled != cpuc->pebs_enabled)
2407 			wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
2408 	}
2409 
2410 	/*
2411 	 * Intel PT
2412 	 */
2413 	if (__test_and_clear_bit(55, (unsigned long *)&status)) {
2414 		handled++;
2415 		if (unlikely(perf_guest_cbs && perf_guest_cbs->is_in_guest() &&
2416 			perf_guest_cbs->handle_intel_pt_intr))
2417 			perf_guest_cbs->handle_intel_pt_intr();
2418 		else
2419 			intel_pt_interrupt();
2420 	}
2421 
2422 	/*
2423 	 * Checkpointed counters can lead to 'spurious' PMIs because the
2424 	 * rollback caused by the PMI will have cleared the overflow status
2425 	 * bit. Therefore always force probe these counters.
2426 	 */
2427 	status |= cpuc->intel_cp_status;
2428 
2429 	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2430 		struct perf_event *event = cpuc->events[bit];
2431 
2432 		handled++;
2433 
2434 		if (!test_bit(bit, cpuc->active_mask))
2435 			continue;
2436 
2437 		if (!intel_pmu_save_and_restart(event))
2438 			continue;
2439 
2440 		perf_sample_data_init(&data, 0, event->hw.last_period);
2441 
2442 		if (has_branch_stack(event))
2443 			data.br_stack = &cpuc->lbr_stack;
2444 
2445 		if (perf_event_overflow(event, &data, regs))
2446 			x86_pmu_stop(event, 0);
2447 	}
2448 
2449 	return handled;
2450 }
2451 
2452 static bool disable_counter_freezing = true;
2453 static int __init intel_perf_counter_freezing_setup(char *s)
2454 {
2455 	bool res;
2456 
2457 	if (kstrtobool(s, &res))
2458 		return -EINVAL;
2459 
2460 	disable_counter_freezing = !res;
2461 	return 1;
2462 }
2463 __setup("perf_v4_pmi=", intel_perf_counter_freezing_setup);
2464 
2465 /*
2466  * Simplified handler for Arch Perfmon v4:
2467  * - We rely on counter freezing/unfreezing to enable/disable the PMU.
2468  * This is done automatically on PMU ack.
2469  * - Ack the PMU only after the APIC.
2470  */
2471 
2472 static int intel_pmu_handle_irq_v4(struct pt_regs *regs)
2473 {
2474 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2475 	int handled = 0;
2476 	bool bts = false;
2477 	u64 status;
2478 	int pmu_enabled = cpuc->enabled;
2479 	int loops = 0;
2480 
2481 	/* PMU has been disabled because of counter freezing */
2482 	cpuc->enabled = 0;
2483 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2484 		bts = true;
2485 		intel_bts_disable_local();
2486 		handled = intel_pmu_drain_bts_buffer();
2487 		handled += intel_bts_interrupt();
2488 	}
2489 	status = intel_pmu_get_status();
2490 	if (!status)
2491 		goto done;
2492 again:
2493 	intel_pmu_lbr_read();
2494 	if (++loops > 100) {
2495 		static bool warned;
2496 
2497 		if (!warned) {
2498 			WARN(1, "perfevents: irq loop stuck!\n");
2499 			perf_event_print_debug();
2500 			warned = true;
2501 		}
2502 		intel_pmu_reset();
2503 		goto done;
2504 	}
2505 
2506 
2507 	handled += handle_pmi_common(regs, status);
2508 done:
2509 	/* Ack the PMI in the APIC */
2510 	apic_write(APIC_LVTPC, APIC_DM_NMI);
2511 
2512 	/*
2513 	 * The counters start counting immediately while ack the status.
2514 	 * Make it as close as possible to IRET. This avoids bogus
2515 	 * freezing on Skylake CPUs.
2516 	 */
2517 	if (status) {
2518 		intel_pmu_ack_status(status);
2519 	} else {
2520 		/*
2521 		 * CPU may issues two PMIs very close to each other.
2522 		 * When the PMI handler services the first one, the
2523 		 * GLOBAL_STATUS is already updated to reflect both.
2524 		 * When it IRETs, the second PMI is immediately
2525 		 * handled and it sees clear status. At the meantime,
2526 		 * there may be a third PMI, because the freezing bit
2527 		 * isn't set since the ack in first PMI handlers.
2528 		 * Double check if there is more work to be done.
2529 		 */
2530 		status = intel_pmu_get_status();
2531 		if (status)
2532 			goto again;
2533 	}
2534 
2535 	if (bts)
2536 		intel_bts_enable_local();
2537 	cpuc->enabled = pmu_enabled;
2538 	return handled;
2539 }
2540 
2541 /*
2542  * This handler is triggered by the local APIC, so the APIC IRQ handling
2543  * rules apply:
2544  */
2545 static int intel_pmu_handle_irq(struct pt_regs *regs)
2546 {
2547 	struct cpu_hw_events *cpuc;
2548 	int loops;
2549 	u64 status;
2550 	int handled;
2551 	int pmu_enabled;
2552 
2553 	cpuc = this_cpu_ptr(&cpu_hw_events);
2554 
2555 	/*
2556 	 * Save the PMU state.
2557 	 * It needs to be restored when leaving the handler.
2558 	 */
2559 	pmu_enabled = cpuc->enabled;
2560 	/*
2561 	 * No known reason to not always do late ACK,
2562 	 * but just in case do it opt-in.
2563 	 */
2564 	if (!x86_pmu.late_ack)
2565 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2566 	intel_bts_disable_local();
2567 	cpuc->enabled = 0;
2568 	__intel_pmu_disable_all();
2569 	handled = intel_pmu_drain_bts_buffer();
2570 	handled += intel_bts_interrupt();
2571 	status = intel_pmu_get_status();
2572 	if (!status)
2573 		goto done;
2574 
2575 	loops = 0;
2576 again:
2577 	intel_pmu_lbr_read();
2578 	intel_pmu_ack_status(status);
2579 	if (++loops > 100) {
2580 		static bool warned;
2581 
2582 		if (!warned) {
2583 			WARN(1, "perfevents: irq loop stuck!\n");
2584 			perf_event_print_debug();
2585 			warned = true;
2586 		}
2587 		intel_pmu_reset();
2588 		goto done;
2589 	}
2590 
2591 	handled += handle_pmi_common(regs, status);
2592 
2593 	/*
2594 	 * Repeat if there is more work to be done:
2595 	 */
2596 	status = intel_pmu_get_status();
2597 	if (status)
2598 		goto again;
2599 
2600 done:
2601 	/* Only restore PMU state when it's active. See x86_pmu_disable(). */
2602 	cpuc->enabled = pmu_enabled;
2603 	if (pmu_enabled)
2604 		__intel_pmu_enable_all(0, true);
2605 	intel_bts_enable_local();
2606 
2607 	/*
2608 	 * Only unmask the NMI after the overflow counters
2609 	 * have been reset. This avoids spurious NMIs on
2610 	 * Haswell CPUs.
2611 	 */
2612 	if (x86_pmu.late_ack)
2613 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2614 	return handled;
2615 }
2616 
2617 static struct event_constraint *
2618 intel_bts_constraints(struct perf_event *event)
2619 {
2620 	if (unlikely(intel_pmu_has_bts(event)))
2621 		return &bts_constraint;
2622 
2623 	return NULL;
2624 }
2625 
2626 /*
2627  * Note: matches a fake event, like Fixed2.
2628  */
2629 static struct event_constraint *
2630 intel_vlbr_constraints(struct perf_event *event)
2631 {
2632 	struct event_constraint *c = &vlbr_constraint;
2633 
2634 	if (unlikely(constraint_match(c, event->hw.config)))
2635 		return c;
2636 
2637 	return NULL;
2638 }
2639 
2640 static int intel_alt_er(int idx, u64 config)
2641 {
2642 	int alt_idx = idx;
2643 
2644 	if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2645 		return idx;
2646 
2647 	if (idx == EXTRA_REG_RSP_0)
2648 		alt_idx = EXTRA_REG_RSP_1;
2649 
2650 	if (idx == EXTRA_REG_RSP_1)
2651 		alt_idx = EXTRA_REG_RSP_0;
2652 
2653 	if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2654 		return idx;
2655 
2656 	return alt_idx;
2657 }
2658 
2659 static void intel_fixup_er(struct perf_event *event, int idx)
2660 {
2661 	event->hw.extra_reg.idx = idx;
2662 
2663 	if (idx == EXTRA_REG_RSP_0) {
2664 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2665 		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2666 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2667 	} else if (idx == EXTRA_REG_RSP_1) {
2668 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2669 		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2670 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2671 	}
2672 }
2673 
2674 /*
2675  * manage allocation of shared extra msr for certain events
2676  *
2677  * sharing can be:
2678  * per-cpu: to be shared between the various events on a single PMU
2679  * per-core: per-cpu + shared by HT threads
2680  */
2681 static struct event_constraint *
2682 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2683 				   struct perf_event *event,
2684 				   struct hw_perf_event_extra *reg)
2685 {
2686 	struct event_constraint *c = &emptyconstraint;
2687 	struct er_account *era;
2688 	unsigned long flags;
2689 	int idx = reg->idx;
2690 
2691 	/*
2692 	 * reg->alloc can be set due to existing state, so for fake cpuc we
2693 	 * need to ignore this, otherwise we might fail to allocate proper fake
2694 	 * state for this extra reg constraint. Also see the comment below.
2695 	 */
2696 	if (reg->alloc && !cpuc->is_fake)
2697 		return NULL; /* call x86_get_event_constraint() */
2698 
2699 again:
2700 	era = &cpuc->shared_regs->regs[idx];
2701 	/*
2702 	 * we use spin_lock_irqsave() to avoid lockdep issues when
2703 	 * passing a fake cpuc
2704 	 */
2705 	raw_spin_lock_irqsave(&era->lock, flags);
2706 
2707 	if (!atomic_read(&era->ref) || era->config == reg->config) {
2708 
2709 		/*
2710 		 * If its a fake cpuc -- as per validate_{group,event}() we
2711 		 * shouldn't touch event state and we can avoid doing so
2712 		 * since both will only call get_event_constraints() once
2713 		 * on each event, this avoids the need for reg->alloc.
2714 		 *
2715 		 * Not doing the ER fixup will only result in era->reg being
2716 		 * wrong, but since we won't actually try and program hardware
2717 		 * this isn't a problem either.
2718 		 */
2719 		if (!cpuc->is_fake) {
2720 			if (idx != reg->idx)
2721 				intel_fixup_er(event, idx);
2722 
2723 			/*
2724 			 * x86_schedule_events() can call get_event_constraints()
2725 			 * multiple times on events in the case of incremental
2726 			 * scheduling(). reg->alloc ensures we only do the ER
2727 			 * allocation once.
2728 			 */
2729 			reg->alloc = 1;
2730 		}
2731 
2732 		/* lock in msr value */
2733 		era->config = reg->config;
2734 		era->reg = reg->reg;
2735 
2736 		/* one more user */
2737 		atomic_inc(&era->ref);
2738 
2739 		/*
2740 		 * need to call x86_get_event_constraint()
2741 		 * to check if associated event has constraints
2742 		 */
2743 		c = NULL;
2744 	} else {
2745 		idx = intel_alt_er(idx, reg->config);
2746 		if (idx != reg->idx) {
2747 			raw_spin_unlock_irqrestore(&era->lock, flags);
2748 			goto again;
2749 		}
2750 	}
2751 	raw_spin_unlock_irqrestore(&era->lock, flags);
2752 
2753 	return c;
2754 }
2755 
2756 static void
2757 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2758 				   struct hw_perf_event_extra *reg)
2759 {
2760 	struct er_account *era;
2761 
2762 	/*
2763 	 * Only put constraint if extra reg was actually allocated. Also takes
2764 	 * care of event which do not use an extra shared reg.
2765 	 *
2766 	 * Also, if this is a fake cpuc we shouldn't touch any event state
2767 	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2768 	 * either since it'll be thrown out.
2769 	 */
2770 	if (!reg->alloc || cpuc->is_fake)
2771 		return;
2772 
2773 	era = &cpuc->shared_regs->regs[reg->idx];
2774 
2775 	/* one fewer user */
2776 	atomic_dec(&era->ref);
2777 
2778 	/* allocate again next time */
2779 	reg->alloc = 0;
2780 }
2781 
2782 static struct event_constraint *
2783 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2784 			      struct perf_event *event)
2785 {
2786 	struct event_constraint *c = NULL, *d;
2787 	struct hw_perf_event_extra *xreg, *breg;
2788 
2789 	xreg = &event->hw.extra_reg;
2790 	if (xreg->idx != EXTRA_REG_NONE) {
2791 		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2792 		if (c == &emptyconstraint)
2793 			return c;
2794 	}
2795 	breg = &event->hw.branch_reg;
2796 	if (breg->idx != EXTRA_REG_NONE) {
2797 		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2798 		if (d == &emptyconstraint) {
2799 			__intel_shared_reg_put_constraints(cpuc, xreg);
2800 			c = d;
2801 		}
2802 	}
2803 	return c;
2804 }
2805 
2806 struct event_constraint *
2807 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2808 			  struct perf_event *event)
2809 {
2810 	struct event_constraint *c;
2811 
2812 	if (x86_pmu.event_constraints) {
2813 		for_each_event_constraint(c, x86_pmu.event_constraints) {
2814 			if (constraint_match(c, event->hw.config)) {
2815 				event->hw.flags |= c->flags;
2816 				return c;
2817 			}
2818 		}
2819 	}
2820 
2821 	return &unconstrained;
2822 }
2823 
2824 static struct event_constraint *
2825 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2826 			    struct perf_event *event)
2827 {
2828 	struct event_constraint *c;
2829 
2830 	c = intel_vlbr_constraints(event);
2831 	if (c)
2832 		return c;
2833 
2834 	c = intel_bts_constraints(event);
2835 	if (c)
2836 		return c;
2837 
2838 	c = intel_shared_regs_constraints(cpuc, event);
2839 	if (c)
2840 		return c;
2841 
2842 	c = intel_pebs_constraints(event);
2843 	if (c)
2844 		return c;
2845 
2846 	return x86_get_event_constraints(cpuc, idx, event);
2847 }
2848 
2849 static void
2850 intel_start_scheduling(struct cpu_hw_events *cpuc)
2851 {
2852 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2853 	struct intel_excl_states *xl;
2854 	int tid = cpuc->excl_thread_id;
2855 
2856 	/*
2857 	 * nothing needed if in group validation mode
2858 	 */
2859 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2860 		return;
2861 
2862 	/*
2863 	 * no exclusion needed
2864 	 */
2865 	if (WARN_ON_ONCE(!excl_cntrs))
2866 		return;
2867 
2868 	xl = &excl_cntrs->states[tid];
2869 
2870 	xl->sched_started = true;
2871 	/*
2872 	 * lock shared state until we are done scheduling
2873 	 * in stop_event_scheduling()
2874 	 * makes scheduling appear as a transaction
2875 	 */
2876 	raw_spin_lock(&excl_cntrs->lock);
2877 }
2878 
2879 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2880 {
2881 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2882 	struct event_constraint *c = cpuc->event_constraint[idx];
2883 	struct intel_excl_states *xl;
2884 	int tid = cpuc->excl_thread_id;
2885 
2886 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2887 		return;
2888 
2889 	if (WARN_ON_ONCE(!excl_cntrs))
2890 		return;
2891 
2892 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2893 		return;
2894 
2895 	xl = &excl_cntrs->states[tid];
2896 
2897 	lockdep_assert_held(&excl_cntrs->lock);
2898 
2899 	if (c->flags & PERF_X86_EVENT_EXCL)
2900 		xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2901 	else
2902 		xl->state[cntr] = INTEL_EXCL_SHARED;
2903 }
2904 
2905 static void
2906 intel_stop_scheduling(struct cpu_hw_events *cpuc)
2907 {
2908 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2909 	struct intel_excl_states *xl;
2910 	int tid = cpuc->excl_thread_id;
2911 
2912 	/*
2913 	 * nothing needed if in group validation mode
2914 	 */
2915 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2916 		return;
2917 	/*
2918 	 * no exclusion needed
2919 	 */
2920 	if (WARN_ON_ONCE(!excl_cntrs))
2921 		return;
2922 
2923 	xl = &excl_cntrs->states[tid];
2924 
2925 	xl->sched_started = false;
2926 	/*
2927 	 * release shared state lock (acquired in intel_start_scheduling())
2928 	 */
2929 	raw_spin_unlock(&excl_cntrs->lock);
2930 }
2931 
2932 static struct event_constraint *
2933 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
2934 {
2935 	WARN_ON_ONCE(!cpuc->constraint_list);
2936 
2937 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2938 		struct event_constraint *cx;
2939 
2940 		/*
2941 		 * grab pre-allocated constraint entry
2942 		 */
2943 		cx = &cpuc->constraint_list[idx];
2944 
2945 		/*
2946 		 * initialize dynamic constraint
2947 		 * with static constraint
2948 		 */
2949 		*cx = *c;
2950 
2951 		/*
2952 		 * mark constraint as dynamic
2953 		 */
2954 		cx->flags |= PERF_X86_EVENT_DYNAMIC;
2955 		c = cx;
2956 	}
2957 
2958 	return c;
2959 }
2960 
2961 static struct event_constraint *
2962 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2963 			   int idx, struct event_constraint *c)
2964 {
2965 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2966 	struct intel_excl_states *xlo;
2967 	int tid = cpuc->excl_thread_id;
2968 	int is_excl, i, w;
2969 
2970 	/*
2971 	 * validating a group does not require
2972 	 * enforcing cross-thread  exclusion
2973 	 */
2974 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2975 		return c;
2976 
2977 	/*
2978 	 * no exclusion needed
2979 	 */
2980 	if (WARN_ON_ONCE(!excl_cntrs))
2981 		return c;
2982 
2983 	/*
2984 	 * because we modify the constraint, we need
2985 	 * to make a copy. Static constraints come
2986 	 * from static const tables.
2987 	 *
2988 	 * only needed when constraint has not yet
2989 	 * been cloned (marked dynamic)
2990 	 */
2991 	c = dyn_constraint(cpuc, c, idx);
2992 
2993 	/*
2994 	 * From here on, the constraint is dynamic.
2995 	 * Either it was just allocated above, or it
2996 	 * was allocated during a earlier invocation
2997 	 * of this function
2998 	 */
2999 
3000 	/*
3001 	 * state of sibling HT
3002 	 */
3003 	xlo = &excl_cntrs->states[tid ^ 1];
3004 
3005 	/*
3006 	 * event requires exclusive counter access
3007 	 * across HT threads
3008 	 */
3009 	is_excl = c->flags & PERF_X86_EVENT_EXCL;
3010 	if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
3011 		event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
3012 		if (!cpuc->n_excl++)
3013 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
3014 	}
3015 
3016 	/*
3017 	 * Modify static constraint with current dynamic
3018 	 * state of thread
3019 	 *
3020 	 * EXCLUSIVE: sibling counter measuring exclusive event
3021 	 * SHARED   : sibling counter measuring non-exclusive event
3022 	 * UNUSED   : sibling counter unused
3023 	 */
3024 	w = c->weight;
3025 	for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3026 		/*
3027 		 * exclusive event in sibling counter
3028 		 * our corresponding counter cannot be used
3029 		 * regardless of our event
3030 		 */
3031 		if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3032 			__clear_bit(i, c->idxmsk);
3033 			w--;
3034 			continue;
3035 		}
3036 		/*
3037 		 * if measuring an exclusive event, sibling
3038 		 * measuring non-exclusive, then counter cannot
3039 		 * be used
3040 		 */
3041 		if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3042 			__clear_bit(i, c->idxmsk);
3043 			w--;
3044 			continue;
3045 		}
3046 	}
3047 
3048 	/*
3049 	 * if we return an empty mask, then switch
3050 	 * back to static empty constraint to avoid
3051 	 * the cost of freeing later on
3052 	 */
3053 	if (!w)
3054 		c = &emptyconstraint;
3055 
3056 	c->weight = w;
3057 
3058 	return c;
3059 }
3060 
3061 static struct event_constraint *
3062 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3063 			    struct perf_event *event)
3064 {
3065 	struct event_constraint *c1, *c2;
3066 
3067 	c1 = cpuc->event_constraint[idx];
3068 
3069 	/*
3070 	 * first time only
3071 	 * - static constraint: no change across incremental scheduling calls
3072 	 * - dynamic constraint: handled by intel_get_excl_constraints()
3073 	 */
3074 	c2 = __intel_get_event_constraints(cpuc, idx, event);
3075 	if (c1) {
3076 	        WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3077 		bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3078 		c1->weight = c2->weight;
3079 		c2 = c1;
3080 	}
3081 
3082 	if (cpuc->excl_cntrs)
3083 		return intel_get_excl_constraints(cpuc, event, idx, c2);
3084 
3085 	return c2;
3086 }
3087 
3088 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3089 		struct perf_event *event)
3090 {
3091 	struct hw_perf_event *hwc = &event->hw;
3092 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3093 	int tid = cpuc->excl_thread_id;
3094 	struct intel_excl_states *xl;
3095 
3096 	/*
3097 	 * nothing needed if in group validation mode
3098 	 */
3099 	if (cpuc->is_fake)
3100 		return;
3101 
3102 	if (WARN_ON_ONCE(!excl_cntrs))
3103 		return;
3104 
3105 	if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3106 		hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3107 		if (!--cpuc->n_excl)
3108 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3109 	}
3110 
3111 	/*
3112 	 * If event was actually assigned, then mark the counter state as
3113 	 * unused now.
3114 	 */
3115 	if (hwc->idx >= 0) {
3116 		xl = &excl_cntrs->states[tid];
3117 
3118 		/*
3119 		 * put_constraint may be called from x86_schedule_events()
3120 		 * which already has the lock held so here make locking
3121 		 * conditional.
3122 		 */
3123 		if (!xl->sched_started)
3124 			raw_spin_lock(&excl_cntrs->lock);
3125 
3126 		xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3127 
3128 		if (!xl->sched_started)
3129 			raw_spin_unlock(&excl_cntrs->lock);
3130 	}
3131 }
3132 
3133 static void
3134 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3135 					struct perf_event *event)
3136 {
3137 	struct hw_perf_event_extra *reg;
3138 
3139 	reg = &event->hw.extra_reg;
3140 	if (reg->idx != EXTRA_REG_NONE)
3141 		__intel_shared_reg_put_constraints(cpuc, reg);
3142 
3143 	reg = &event->hw.branch_reg;
3144 	if (reg->idx != EXTRA_REG_NONE)
3145 		__intel_shared_reg_put_constraints(cpuc, reg);
3146 }
3147 
3148 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3149 					struct perf_event *event)
3150 {
3151 	intel_put_shared_regs_event_constraints(cpuc, event);
3152 
3153 	/*
3154 	 * is PMU has exclusive counter restrictions, then
3155 	 * all events are subject to and must call the
3156 	 * put_excl_constraints() routine
3157 	 */
3158 	if (cpuc->excl_cntrs)
3159 		intel_put_excl_constraints(cpuc, event);
3160 }
3161 
3162 static void intel_pebs_aliases_core2(struct perf_event *event)
3163 {
3164 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3165 		/*
3166 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3167 		 * (0x003c) so that we can use it with PEBS.
3168 		 *
3169 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3170 		 * PEBS capable. However we can use INST_RETIRED.ANY_P
3171 		 * (0x00c0), which is a PEBS capable event, to get the same
3172 		 * count.
3173 		 *
3174 		 * INST_RETIRED.ANY_P counts the number of cycles that retires
3175 		 * CNTMASK instructions. By setting CNTMASK to a value (16)
3176 		 * larger than the maximum number of instructions that can be
3177 		 * retired per cycle (4) and then inverting the condition, we
3178 		 * count all cycles that retire 16 or less instructions, which
3179 		 * is every cycle.
3180 		 *
3181 		 * Thereby we gain a PEBS capable cycle counter.
3182 		 */
3183 		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3184 
3185 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3186 		event->hw.config = alt_config;
3187 	}
3188 }
3189 
3190 static void intel_pebs_aliases_snb(struct perf_event *event)
3191 {
3192 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3193 		/*
3194 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3195 		 * (0x003c) so that we can use it with PEBS.
3196 		 *
3197 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3198 		 * PEBS capable. However we can use UOPS_RETIRED.ALL
3199 		 * (0x01c2), which is a PEBS capable event, to get the same
3200 		 * count.
3201 		 *
3202 		 * UOPS_RETIRED.ALL counts the number of cycles that retires
3203 		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3204 		 * larger than the maximum number of micro-ops that can be
3205 		 * retired per cycle (4) and then inverting the condition, we
3206 		 * count all cycles that retire 16 or less micro-ops, which
3207 		 * is every cycle.
3208 		 *
3209 		 * Thereby we gain a PEBS capable cycle counter.
3210 		 */
3211 		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3212 
3213 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3214 		event->hw.config = alt_config;
3215 	}
3216 }
3217 
3218 static void intel_pebs_aliases_precdist(struct perf_event *event)
3219 {
3220 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3221 		/*
3222 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3223 		 * (0x003c) so that we can use it with PEBS.
3224 		 *
3225 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3226 		 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3227 		 * (0x01c0), which is a PEBS capable event, to get the same
3228 		 * count.
3229 		 *
3230 		 * The PREC_DIST event has special support to minimize sample
3231 		 * shadowing effects. One drawback is that it can be
3232 		 * only programmed on counter 1, but that seems like an
3233 		 * acceptable trade off.
3234 		 */
3235 		u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3236 
3237 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3238 		event->hw.config = alt_config;
3239 	}
3240 }
3241 
3242 static void intel_pebs_aliases_ivb(struct perf_event *event)
3243 {
3244 	if (event->attr.precise_ip < 3)
3245 		return intel_pebs_aliases_snb(event);
3246 	return intel_pebs_aliases_precdist(event);
3247 }
3248 
3249 static void intel_pebs_aliases_skl(struct perf_event *event)
3250 {
3251 	if (event->attr.precise_ip < 3)
3252 		return intel_pebs_aliases_core2(event);
3253 	return intel_pebs_aliases_precdist(event);
3254 }
3255 
3256 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3257 {
3258 	unsigned long flags = x86_pmu.large_pebs_flags;
3259 
3260 	if (event->attr.use_clockid)
3261 		flags &= ~PERF_SAMPLE_TIME;
3262 	if (!event->attr.exclude_kernel)
3263 		flags &= ~PERF_SAMPLE_REGS_USER;
3264 	if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3265 		flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3266 	return flags;
3267 }
3268 
3269 static int intel_pmu_bts_config(struct perf_event *event)
3270 {
3271 	struct perf_event_attr *attr = &event->attr;
3272 
3273 	if (unlikely(intel_pmu_has_bts(event))) {
3274 		/* BTS is not supported by this architecture. */
3275 		if (!x86_pmu.bts_active)
3276 			return -EOPNOTSUPP;
3277 
3278 		/* BTS is currently only allowed for user-mode. */
3279 		if (!attr->exclude_kernel)
3280 			return -EOPNOTSUPP;
3281 
3282 		/* BTS is not allowed for precise events. */
3283 		if (attr->precise_ip)
3284 			return -EOPNOTSUPP;
3285 
3286 		/* disallow bts if conflicting events are present */
3287 		if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3288 			return -EBUSY;
3289 
3290 		event->destroy = hw_perf_lbr_event_destroy;
3291 	}
3292 
3293 	return 0;
3294 }
3295 
3296 static int core_pmu_hw_config(struct perf_event *event)
3297 {
3298 	int ret = x86_pmu_hw_config(event);
3299 
3300 	if (ret)
3301 		return ret;
3302 
3303 	return intel_pmu_bts_config(event);
3304 }
3305 
3306 static int intel_pmu_hw_config(struct perf_event *event)
3307 {
3308 	int ret = x86_pmu_hw_config(event);
3309 
3310 	if (ret)
3311 		return ret;
3312 
3313 	ret = intel_pmu_bts_config(event);
3314 	if (ret)
3315 		return ret;
3316 
3317 	if (event->attr.precise_ip) {
3318 		if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3319 			event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3320 			if (!(event->attr.sample_type &
3321 			      ~intel_pmu_large_pebs_flags(event)))
3322 				event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3323 		}
3324 		if (x86_pmu.pebs_aliases)
3325 			x86_pmu.pebs_aliases(event);
3326 
3327 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3328 			event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3329 	}
3330 
3331 	if (needs_branch_stack(event)) {
3332 		ret = intel_pmu_setup_lbr_filter(event);
3333 		if (ret)
3334 			return ret;
3335 
3336 		/*
3337 		 * BTS is set up earlier in this path, so don't account twice
3338 		 */
3339 		if (!unlikely(intel_pmu_has_bts(event))) {
3340 			/* disallow lbr if conflicting events are present */
3341 			if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3342 				return -EBUSY;
3343 
3344 			event->destroy = hw_perf_lbr_event_destroy;
3345 		}
3346 	}
3347 
3348 	if (event->attr.aux_output) {
3349 		if (!event->attr.precise_ip)
3350 			return -EINVAL;
3351 
3352 		event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
3353 	}
3354 
3355 	if (event->attr.type != PERF_TYPE_RAW)
3356 		return 0;
3357 
3358 	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3359 		return 0;
3360 
3361 	if (x86_pmu.version < 3)
3362 		return -EINVAL;
3363 
3364 	ret = perf_allow_cpu(&event->attr);
3365 	if (ret)
3366 		return ret;
3367 
3368 	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3369 
3370 	return 0;
3371 }
3372 
3373 #ifdef CONFIG_RETPOLINE
3374 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr);
3375 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr);
3376 #endif
3377 
3378 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
3379 {
3380 #ifdef CONFIG_RETPOLINE
3381 	if (x86_pmu.guest_get_msrs == intel_guest_get_msrs)
3382 		return intel_guest_get_msrs(nr);
3383 	else if (x86_pmu.guest_get_msrs == core_guest_get_msrs)
3384 		return core_guest_get_msrs(nr);
3385 #endif
3386 	if (x86_pmu.guest_get_msrs)
3387 		return x86_pmu.guest_get_msrs(nr);
3388 	*nr = 0;
3389 	return NULL;
3390 }
3391 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
3392 
3393 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3394 {
3395 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3396 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3397 
3398 	arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3399 	arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3400 	arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3401 	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
3402 		arr[0].guest &= ~cpuc->pebs_enabled;
3403 	else
3404 		arr[0].guest &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
3405 	*nr = 1;
3406 
3407 	if (x86_pmu.pebs && x86_pmu.pebs_no_isolation) {
3408 		/*
3409 		 * If PMU counter has PEBS enabled it is not enough to
3410 		 * disable counter on a guest entry since PEBS memory
3411 		 * write can overshoot guest entry and corrupt guest
3412 		 * memory. Disabling PEBS solves the problem.
3413 		 *
3414 		 * Don't do this if the CPU already enforces it.
3415 		 */
3416 		arr[1].msr = MSR_IA32_PEBS_ENABLE;
3417 		arr[1].host = cpuc->pebs_enabled;
3418 		arr[1].guest = 0;
3419 		*nr = 2;
3420 	}
3421 
3422 	return arr;
3423 }
3424 
3425 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3426 {
3427 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3428 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3429 	int idx;
3430 
3431 	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
3432 		struct perf_event *event = cpuc->events[idx];
3433 
3434 		arr[idx].msr = x86_pmu_config_addr(idx);
3435 		arr[idx].host = arr[idx].guest = 0;
3436 
3437 		if (!test_bit(idx, cpuc->active_mask))
3438 			continue;
3439 
3440 		arr[idx].host = arr[idx].guest =
3441 			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3442 
3443 		if (event->attr.exclude_host)
3444 			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3445 		else if (event->attr.exclude_guest)
3446 			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3447 	}
3448 
3449 	*nr = x86_pmu.num_counters;
3450 	return arr;
3451 }
3452 
3453 static void core_pmu_enable_event(struct perf_event *event)
3454 {
3455 	if (!event->attr.exclude_host)
3456 		x86_pmu_enable_event(event);
3457 }
3458 
3459 static void core_pmu_enable_all(int added)
3460 {
3461 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3462 	int idx;
3463 
3464 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3465 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
3466 
3467 		if (!test_bit(idx, cpuc->active_mask) ||
3468 				cpuc->events[idx]->attr.exclude_host)
3469 			continue;
3470 
3471 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
3472 	}
3473 }
3474 
3475 static int hsw_hw_config(struct perf_event *event)
3476 {
3477 	int ret = intel_pmu_hw_config(event);
3478 
3479 	if (ret)
3480 		return ret;
3481 	if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
3482 		return 0;
3483 	event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
3484 
3485 	/*
3486 	 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3487 	 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3488 	 * this combination.
3489 	 */
3490 	if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
3491 	     ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
3492 	      event->attr.precise_ip > 0))
3493 		return -EOPNOTSUPP;
3494 
3495 	if (event_is_checkpointed(event)) {
3496 		/*
3497 		 * Sampling of checkpointed events can cause situations where
3498 		 * the CPU constantly aborts because of a overflow, which is
3499 		 * then checkpointed back and ignored. Forbid checkpointing
3500 		 * for sampling.
3501 		 *
3502 		 * But still allow a long sampling period, so that perf stat
3503 		 * from KVM works.
3504 		 */
3505 		if (event->attr.sample_period > 0 &&
3506 		    event->attr.sample_period < 0x7fffffff)
3507 			return -EOPNOTSUPP;
3508 	}
3509 	return 0;
3510 }
3511 
3512 static struct event_constraint counter0_constraint =
3513 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3514 
3515 static struct event_constraint counter2_constraint =
3516 			EVENT_CONSTRAINT(0, 0x4, 0);
3517 
3518 static struct event_constraint fixed0_constraint =
3519 			FIXED_EVENT_CONSTRAINT(0x00c0, 0);
3520 
3521 static struct event_constraint fixed0_counter0_constraint =
3522 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
3523 
3524 static struct event_constraint *
3525 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3526 			  struct perf_event *event)
3527 {
3528 	struct event_constraint *c;
3529 
3530 	c = intel_get_event_constraints(cpuc, idx, event);
3531 
3532 	/* Handle special quirk on in_tx_checkpointed only in counter 2 */
3533 	if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
3534 		if (c->idxmsk64 & (1U << 2))
3535 			return &counter2_constraint;
3536 		return &emptyconstraint;
3537 	}
3538 
3539 	return c;
3540 }
3541 
3542 static struct event_constraint *
3543 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3544 			  struct perf_event *event)
3545 {
3546 	/*
3547 	 * Fixed counter 0 has less skid.
3548 	 * Force instruction:ppp in Fixed counter 0
3549 	 */
3550 	if ((event->attr.precise_ip == 3) &&
3551 	    constraint_match(&fixed0_constraint, event->hw.config))
3552 		return &fixed0_constraint;
3553 
3554 	return hsw_get_event_constraints(cpuc, idx, event);
3555 }
3556 
3557 static struct event_constraint *
3558 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3559 			  struct perf_event *event)
3560 {
3561 	struct event_constraint *c;
3562 
3563 	/* :ppp means to do reduced skid PEBS which is PMC0 only. */
3564 	if (event->attr.precise_ip == 3)
3565 		return &counter0_constraint;
3566 
3567 	c = intel_get_event_constraints(cpuc, idx, event);
3568 
3569 	return c;
3570 }
3571 
3572 static struct event_constraint *
3573 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3574 			  struct perf_event *event)
3575 {
3576 	struct event_constraint *c;
3577 
3578 	/*
3579 	 * :ppp means to do reduced skid PEBS,
3580 	 * which is available on PMC0 and fixed counter 0.
3581 	 */
3582 	if (event->attr.precise_ip == 3) {
3583 		/* Force instruction:ppp on PMC0 and Fixed counter 0 */
3584 		if (constraint_match(&fixed0_constraint, event->hw.config))
3585 			return &fixed0_counter0_constraint;
3586 
3587 		return &counter0_constraint;
3588 	}
3589 
3590 	c = intel_get_event_constraints(cpuc, idx, event);
3591 
3592 	return c;
3593 }
3594 
3595 static bool allow_tsx_force_abort = true;
3596 
3597 static struct event_constraint *
3598 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3599 			  struct perf_event *event)
3600 {
3601 	struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
3602 
3603 	/*
3604 	 * Without TFA we must not use PMC3.
3605 	 */
3606 	if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
3607 		c = dyn_constraint(cpuc, c, idx);
3608 		c->idxmsk64 &= ~(1ULL << 3);
3609 		c->weight--;
3610 	}
3611 
3612 	return c;
3613 }
3614 
3615 /*
3616  * Broadwell:
3617  *
3618  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
3619  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
3620  * the two to enforce a minimum period of 128 (the smallest value that has bits
3621  * 0-5 cleared and >= 100).
3622  *
3623  * Because of how the code in x86_perf_event_set_period() works, the truncation
3624  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
3625  * to make up for the 'lost' events due to carrying the 'error' in period_left.
3626  *
3627  * Therefore the effective (average) period matches the requested period,
3628  * despite coarser hardware granularity.
3629  */
3630 static u64 bdw_limit_period(struct perf_event *event, u64 left)
3631 {
3632 	if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
3633 			X86_CONFIG(.event=0xc0, .umask=0x01)) {
3634 		if (left < 128)
3635 			left = 128;
3636 		left &= ~0x3fULL;
3637 	}
3638 	return left;
3639 }
3640 
3641 static u64 nhm_limit_period(struct perf_event *event, u64 left)
3642 {
3643 	return max(left, 32ULL);
3644 }
3645 
3646 PMU_FORMAT_ATTR(event,	"config:0-7"	);
3647 PMU_FORMAT_ATTR(umask,	"config:8-15"	);
3648 PMU_FORMAT_ATTR(edge,	"config:18"	);
3649 PMU_FORMAT_ATTR(pc,	"config:19"	);
3650 PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
3651 PMU_FORMAT_ATTR(inv,	"config:23"	);
3652 PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
3653 PMU_FORMAT_ATTR(in_tx,  "config:32");
3654 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
3655 
3656 static struct attribute *intel_arch_formats_attr[] = {
3657 	&format_attr_event.attr,
3658 	&format_attr_umask.attr,
3659 	&format_attr_edge.attr,
3660 	&format_attr_pc.attr,
3661 	&format_attr_inv.attr,
3662 	&format_attr_cmask.attr,
3663 	NULL,
3664 };
3665 
3666 ssize_t intel_event_sysfs_show(char *page, u64 config)
3667 {
3668 	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
3669 
3670 	return x86_event_sysfs_show(page, config, event);
3671 }
3672 
3673 static struct intel_shared_regs *allocate_shared_regs(int cpu)
3674 {
3675 	struct intel_shared_regs *regs;
3676 	int i;
3677 
3678 	regs = kzalloc_node(sizeof(struct intel_shared_regs),
3679 			    GFP_KERNEL, cpu_to_node(cpu));
3680 	if (regs) {
3681 		/*
3682 		 * initialize the locks to keep lockdep happy
3683 		 */
3684 		for (i = 0; i < EXTRA_REG_MAX; i++)
3685 			raw_spin_lock_init(&regs->regs[i].lock);
3686 
3687 		regs->core_id = -1;
3688 	}
3689 	return regs;
3690 }
3691 
3692 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
3693 {
3694 	struct intel_excl_cntrs *c;
3695 
3696 	c = kzalloc_node(sizeof(struct intel_excl_cntrs),
3697 			 GFP_KERNEL, cpu_to_node(cpu));
3698 	if (c) {
3699 		raw_spin_lock_init(&c->lock);
3700 		c->core_id = -1;
3701 	}
3702 	return c;
3703 }
3704 
3705 
3706 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
3707 {
3708 	cpuc->pebs_record_size = x86_pmu.pebs_record_size;
3709 
3710 	if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
3711 		cpuc->shared_regs = allocate_shared_regs(cpu);
3712 		if (!cpuc->shared_regs)
3713 			goto err;
3714 	}
3715 
3716 	if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
3717 		size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
3718 
3719 		cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
3720 		if (!cpuc->constraint_list)
3721 			goto err_shared_regs;
3722 	}
3723 
3724 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3725 		cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
3726 		if (!cpuc->excl_cntrs)
3727 			goto err_constraint_list;
3728 
3729 		cpuc->excl_thread_id = 0;
3730 	}
3731 
3732 	return 0;
3733 
3734 err_constraint_list:
3735 	kfree(cpuc->constraint_list);
3736 	cpuc->constraint_list = NULL;
3737 
3738 err_shared_regs:
3739 	kfree(cpuc->shared_regs);
3740 	cpuc->shared_regs = NULL;
3741 
3742 err:
3743 	return -ENOMEM;
3744 }
3745 
3746 static int intel_pmu_cpu_prepare(int cpu)
3747 {
3748 	return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
3749 }
3750 
3751 static void flip_smm_bit(void *data)
3752 {
3753 	unsigned long set = *(unsigned long *)data;
3754 
3755 	if (set > 0) {
3756 		msr_set_bit(MSR_IA32_DEBUGCTLMSR,
3757 			    DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3758 	} else {
3759 		msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
3760 			      DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3761 	}
3762 }
3763 
3764 static void intel_pmu_cpu_starting(int cpu)
3765 {
3766 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3767 	int core_id = topology_core_id(cpu);
3768 	int i;
3769 
3770 	init_debug_store_on_cpu(cpu);
3771 	/*
3772 	 * Deal with CPUs that don't clear their LBRs on power-up.
3773 	 */
3774 	intel_pmu_lbr_reset();
3775 
3776 	cpuc->lbr_sel = NULL;
3777 
3778 	if (x86_pmu.flags & PMU_FL_TFA) {
3779 		WARN_ON_ONCE(cpuc->tfa_shadow);
3780 		cpuc->tfa_shadow = ~0ULL;
3781 		intel_set_tfa(cpuc, false);
3782 	}
3783 
3784 	if (x86_pmu.version > 1)
3785 		flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
3786 
3787 	if (x86_pmu.counter_freezing)
3788 		enable_counter_freeze();
3789 
3790 	if (!cpuc->shared_regs)
3791 		return;
3792 
3793 	if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
3794 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3795 			struct intel_shared_regs *pc;
3796 
3797 			pc = per_cpu(cpu_hw_events, i).shared_regs;
3798 			if (pc && pc->core_id == core_id) {
3799 				cpuc->kfree_on_online[0] = cpuc->shared_regs;
3800 				cpuc->shared_regs = pc;
3801 				break;
3802 			}
3803 		}
3804 		cpuc->shared_regs->core_id = core_id;
3805 		cpuc->shared_regs->refcnt++;
3806 	}
3807 
3808 	if (x86_pmu.lbr_sel_map)
3809 		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
3810 
3811 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3812 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3813 			struct cpu_hw_events *sibling;
3814 			struct intel_excl_cntrs *c;
3815 
3816 			sibling = &per_cpu(cpu_hw_events, i);
3817 			c = sibling->excl_cntrs;
3818 			if (c && c->core_id == core_id) {
3819 				cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
3820 				cpuc->excl_cntrs = c;
3821 				if (!sibling->excl_thread_id)
3822 					cpuc->excl_thread_id = 1;
3823 				break;
3824 			}
3825 		}
3826 		cpuc->excl_cntrs->core_id = core_id;
3827 		cpuc->excl_cntrs->refcnt++;
3828 	}
3829 }
3830 
3831 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
3832 {
3833 	struct intel_excl_cntrs *c;
3834 
3835 	c = cpuc->excl_cntrs;
3836 	if (c) {
3837 		if (c->core_id == -1 || --c->refcnt == 0)
3838 			kfree(c);
3839 		cpuc->excl_cntrs = NULL;
3840 	}
3841 
3842 	kfree(cpuc->constraint_list);
3843 	cpuc->constraint_list = NULL;
3844 }
3845 
3846 static void intel_pmu_cpu_dying(int cpu)
3847 {
3848 	fini_debug_store_on_cpu(cpu);
3849 
3850 	if (x86_pmu.counter_freezing)
3851 		disable_counter_freeze();
3852 }
3853 
3854 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
3855 {
3856 	struct intel_shared_regs *pc;
3857 
3858 	pc = cpuc->shared_regs;
3859 	if (pc) {
3860 		if (pc->core_id == -1 || --pc->refcnt == 0)
3861 			kfree(pc);
3862 		cpuc->shared_regs = NULL;
3863 	}
3864 
3865 	free_excl_cntrs(cpuc);
3866 }
3867 
3868 static void intel_pmu_cpu_dead(int cpu)
3869 {
3870 	intel_cpuc_finish(&per_cpu(cpu_hw_events, cpu));
3871 }
3872 
3873 static void intel_pmu_sched_task(struct perf_event_context *ctx,
3874 				 bool sched_in)
3875 {
3876 	intel_pmu_pebs_sched_task(ctx, sched_in);
3877 	intel_pmu_lbr_sched_task(ctx, sched_in);
3878 }
3879 
3880 static void intel_pmu_swap_task_ctx(struct perf_event_context *prev,
3881 				    struct perf_event_context *next)
3882 {
3883 	intel_pmu_lbr_swap_task_ctx(prev, next);
3884 }
3885 
3886 static int intel_pmu_check_period(struct perf_event *event, u64 value)
3887 {
3888 	return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
3889 }
3890 
3891 static int intel_pmu_aux_output_match(struct perf_event *event)
3892 {
3893 	if (!x86_pmu.intel_cap.pebs_output_pt_available)
3894 		return 0;
3895 
3896 	return is_intel_pt_event(event);
3897 }
3898 
3899 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
3900 
3901 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
3902 
3903 PMU_FORMAT_ATTR(frontend, "config1:0-23");
3904 
3905 static struct attribute *intel_arch3_formats_attr[] = {
3906 	&format_attr_event.attr,
3907 	&format_attr_umask.attr,
3908 	&format_attr_edge.attr,
3909 	&format_attr_pc.attr,
3910 	&format_attr_any.attr,
3911 	&format_attr_inv.attr,
3912 	&format_attr_cmask.attr,
3913 	NULL,
3914 };
3915 
3916 static struct attribute *hsw_format_attr[] = {
3917 	&format_attr_in_tx.attr,
3918 	&format_attr_in_tx_cp.attr,
3919 	&format_attr_offcore_rsp.attr,
3920 	&format_attr_ldlat.attr,
3921 	NULL
3922 };
3923 
3924 static struct attribute *nhm_format_attr[] = {
3925 	&format_attr_offcore_rsp.attr,
3926 	&format_attr_ldlat.attr,
3927 	NULL
3928 };
3929 
3930 static struct attribute *slm_format_attr[] = {
3931 	&format_attr_offcore_rsp.attr,
3932 	NULL
3933 };
3934 
3935 static struct attribute *skl_format_attr[] = {
3936 	&format_attr_frontend.attr,
3937 	NULL,
3938 };
3939 
3940 static __initconst const struct x86_pmu core_pmu = {
3941 	.name			= "core",
3942 	.handle_irq		= x86_pmu_handle_irq,
3943 	.disable_all		= x86_pmu_disable_all,
3944 	.enable_all		= core_pmu_enable_all,
3945 	.enable			= core_pmu_enable_event,
3946 	.disable		= x86_pmu_disable_event,
3947 	.hw_config		= core_pmu_hw_config,
3948 	.schedule_events	= x86_schedule_events,
3949 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
3950 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
3951 	.event_map		= intel_pmu_event_map,
3952 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
3953 	.apic			= 1,
3954 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
3955 
3956 	/*
3957 	 * Intel PMCs cannot be accessed sanely above 32-bit width,
3958 	 * so we install an artificial 1<<31 period regardless of
3959 	 * the generic event period:
3960 	 */
3961 	.max_period		= (1ULL<<31) - 1,
3962 	.get_event_constraints	= intel_get_event_constraints,
3963 	.put_event_constraints	= intel_put_event_constraints,
3964 	.event_constraints	= intel_core_event_constraints,
3965 	.guest_get_msrs		= core_guest_get_msrs,
3966 	.format_attrs		= intel_arch_formats_attr,
3967 	.events_sysfs_show	= intel_event_sysfs_show,
3968 
3969 	/*
3970 	 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
3971 	 * together with PMU version 1 and thus be using core_pmu with
3972 	 * shared_regs. We need following callbacks here to allocate
3973 	 * it properly.
3974 	 */
3975 	.cpu_prepare		= intel_pmu_cpu_prepare,
3976 	.cpu_starting		= intel_pmu_cpu_starting,
3977 	.cpu_dying		= intel_pmu_cpu_dying,
3978 	.cpu_dead		= intel_pmu_cpu_dead,
3979 
3980 	.check_period		= intel_pmu_check_period,
3981 
3982 	.lbr_reset		= intel_pmu_lbr_reset_64,
3983 	.lbr_read		= intel_pmu_lbr_read_64,
3984 	.lbr_save		= intel_pmu_lbr_save,
3985 	.lbr_restore		= intel_pmu_lbr_restore,
3986 };
3987 
3988 static __initconst const struct x86_pmu intel_pmu = {
3989 	.name			= "Intel",
3990 	.handle_irq		= intel_pmu_handle_irq,
3991 	.disable_all		= intel_pmu_disable_all,
3992 	.enable_all		= intel_pmu_enable_all,
3993 	.enable			= intel_pmu_enable_event,
3994 	.disable		= intel_pmu_disable_event,
3995 	.add			= intel_pmu_add_event,
3996 	.del			= intel_pmu_del_event,
3997 	.read			= intel_pmu_read_event,
3998 	.hw_config		= intel_pmu_hw_config,
3999 	.schedule_events	= x86_schedule_events,
4000 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
4001 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
4002 	.event_map		= intel_pmu_event_map,
4003 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
4004 	.apic			= 1,
4005 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
4006 	/*
4007 	 * Intel PMCs cannot be accessed sanely above 32 bit width,
4008 	 * so we install an artificial 1<<31 period regardless of
4009 	 * the generic event period:
4010 	 */
4011 	.max_period		= (1ULL << 31) - 1,
4012 	.get_event_constraints	= intel_get_event_constraints,
4013 	.put_event_constraints	= intel_put_event_constraints,
4014 	.pebs_aliases		= intel_pebs_aliases_core2,
4015 
4016 	.format_attrs		= intel_arch3_formats_attr,
4017 	.events_sysfs_show	= intel_event_sysfs_show,
4018 
4019 	.cpu_prepare		= intel_pmu_cpu_prepare,
4020 	.cpu_starting		= intel_pmu_cpu_starting,
4021 	.cpu_dying		= intel_pmu_cpu_dying,
4022 	.cpu_dead		= intel_pmu_cpu_dead,
4023 
4024 	.guest_get_msrs		= intel_guest_get_msrs,
4025 	.sched_task		= intel_pmu_sched_task,
4026 	.swap_task_ctx		= intel_pmu_swap_task_ctx,
4027 
4028 	.check_period		= intel_pmu_check_period,
4029 
4030 	.aux_output_match	= intel_pmu_aux_output_match,
4031 
4032 	.lbr_reset		= intel_pmu_lbr_reset_64,
4033 	.lbr_read		= intel_pmu_lbr_read_64,
4034 	.lbr_save		= intel_pmu_lbr_save,
4035 	.lbr_restore		= intel_pmu_lbr_restore,
4036 };
4037 
4038 static __init void intel_clovertown_quirk(void)
4039 {
4040 	/*
4041 	 * PEBS is unreliable due to:
4042 	 *
4043 	 *   AJ67  - PEBS may experience CPL leaks
4044 	 *   AJ68  - PEBS PMI may be delayed by one event
4045 	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
4046 	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
4047 	 *
4048 	 * AJ67 could be worked around by restricting the OS/USR flags.
4049 	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
4050 	 *
4051 	 * AJ106 could possibly be worked around by not allowing LBR
4052 	 *       usage from PEBS, including the fixup.
4053 	 * AJ68  could possibly be worked around by always programming
4054 	 *	 a pebs_event_reset[0] value and coping with the lost events.
4055 	 *
4056 	 * But taken together it might just make sense to not enable PEBS on
4057 	 * these chips.
4058 	 */
4059 	pr_warn("PEBS disabled due to CPU errata\n");
4060 	x86_pmu.pebs = 0;
4061 	x86_pmu.pebs_constraints = NULL;
4062 }
4063 
4064 static const struct x86_cpu_desc isolation_ucodes[] = {
4065 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL,		 3, 0x0000001f),
4066 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L,		 1, 0x0000001e),
4067 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G,		 1, 0x00000015),
4068 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 2, 0x00000037),
4069 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 4, 0x0000000a),
4070 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL,		 4, 0x00000023),
4071 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G,		 1, 0x00000014),
4072 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 2, 0x00000010),
4073 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 3, 0x07000009),
4074 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 4, 0x0f000009),
4075 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 5, 0x0e000002),
4076 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,		 2, 0x0b000014),
4077 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 3, 0x00000021),
4078 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 4, 0x00000000),
4079 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L,		 3, 0x0000007c),
4080 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE,		 3, 0x0000007c),
4081 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		 9, 0x0000004e),
4082 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		 9, 0x0000004e),
4083 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		10, 0x0000004e),
4084 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		11, 0x0000004e),
4085 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		12, 0x0000004e),
4086 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		10, 0x0000004e),
4087 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		11, 0x0000004e),
4088 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		12, 0x0000004e),
4089 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		13, 0x0000004e),
4090 	{}
4091 };
4092 
4093 static void intel_check_pebs_isolation(void)
4094 {
4095 	x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
4096 }
4097 
4098 static __init void intel_pebs_isolation_quirk(void)
4099 {
4100 	WARN_ON_ONCE(x86_pmu.check_microcode);
4101 	x86_pmu.check_microcode = intel_check_pebs_isolation;
4102 	intel_check_pebs_isolation();
4103 }
4104 
4105 static const struct x86_cpu_desc pebs_ucodes[] = {
4106 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,		7, 0x00000028),
4107 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	6, 0x00000618),
4108 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	7, 0x0000070c),
4109 	{}
4110 };
4111 
4112 static bool intel_snb_pebs_broken(void)
4113 {
4114 	return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
4115 }
4116 
4117 static void intel_snb_check_microcode(void)
4118 {
4119 	if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
4120 		return;
4121 
4122 	/*
4123 	 * Serialized by the microcode lock..
4124 	 */
4125 	if (x86_pmu.pebs_broken) {
4126 		pr_info("PEBS enabled due to microcode update\n");
4127 		x86_pmu.pebs_broken = 0;
4128 	} else {
4129 		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
4130 		x86_pmu.pebs_broken = 1;
4131 	}
4132 }
4133 
4134 static bool is_lbr_from(unsigned long msr)
4135 {
4136 	unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
4137 
4138 	return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
4139 }
4140 
4141 /*
4142  * Under certain circumstances, access certain MSR may cause #GP.
4143  * The function tests if the input MSR can be safely accessed.
4144  */
4145 static bool check_msr(unsigned long msr, u64 mask)
4146 {
4147 	u64 val_old, val_new, val_tmp;
4148 
4149 	/*
4150 	 * Disable the check for real HW, so we don't
4151 	 * mess with potentionaly enabled registers:
4152 	 */
4153 	if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
4154 		return true;
4155 
4156 	/*
4157 	 * Read the current value, change it and read it back to see if it
4158 	 * matches, this is needed to detect certain hardware emulators
4159 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4160 	 */
4161 	if (rdmsrl_safe(msr, &val_old))
4162 		return false;
4163 
4164 	/*
4165 	 * Only change the bits which can be updated by wrmsrl.
4166 	 */
4167 	val_tmp = val_old ^ mask;
4168 
4169 	if (is_lbr_from(msr))
4170 		val_tmp = lbr_from_signext_quirk_wr(val_tmp);
4171 
4172 	if (wrmsrl_safe(msr, val_tmp) ||
4173 	    rdmsrl_safe(msr, &val_new))
4174 		return false;
4175 
4176 	/*
4177 	 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
4178 	 * should equal rdmsrl()'s even with the quirk.
4179 	 */
4180 	if (val_new != val_tmp)
4181 		return false;
4182 
4183 	if (is_lbr_from(msr))
4184 		val_old = lbr_from_signext_quirk_wr(val_old);
4185 
4186 	/* Here it's sure that the MSR can be safely accessed.
4187 	 * Restore the old value and return.
4188 	 */
4189 	wrmsrl(msr, val_old);
4190 
4191 	return true;
4192 }
4193 
4194 static __init void intel_sandybridge_quirk(void)
4195 {
4196 	x86_pmu.check_microcode = intel_snb_check_microcode;
4197 	cpus_read_lock();
4198 	intel_snb_check_microcode();
4199 	cpus_read_unlock();
4200 }
4201 
4202 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
4203 	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
4204 	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
4205 	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
4206 	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
4207 	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
4208 	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
4209 	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
4210 };
4211 
4212 static __init void intel_arch_events_quirk(void)
4213 {
4214 	int bit;
4215 
4216 	/* disable event that reported as not presend by cpuid */
4217 	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
4218 		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
4219 		pr_warn("CPUID marked event: \'%s\' unavailable\n",
4220 			intel_arch_events_map[bit].name);
4221 	}
4222 }
4223 
4224 static __init void intel_nehalem_quirk(void)
4225 {
4226 	union cpuid10_ebx ebx;
4227 
4228 	ebx.full = x86_pmu.events_maskl;
4229 	if (ebx.split.no_branch_misses_retired) {
4230 		/*
4231 		 * Erratum AAJ80 detected, we work it around by using
4232 		 * the BR_MISP_EXEC.ANY event. This will over-count
4233 		 * branch-misses, but it's still much better than the
4234 		 * architectural event which is often completely bogus:
4235 		 */
4236 		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
4237 		ebx.split.no_branch_misses_retired = 0;
4238 		x86_pmu.events_maskl = ebx.full;
4239 		pr_info("CPU erratum AAJ80 worked around\n");
4240 	}
4241 }
4242 
4243 static const struct x86_cpu_desc counter_freezing_ucodes[] = {
4244 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,	 2, 0x0000000e),
4245 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,	 9, 0x0000002e),
4246 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,	10, 0x00000008),
4247 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_D,	 1, 0x00000028),
4248 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS,	 1, 0x00000028),
4249 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS,	 8, 0x00000006),
4250 	{}
4251 };
4252 
4253 static bool intel_counter_freezing_broken(void)
4254 {
4255 	return !x86_cpu_has_min_microcode_rev(counter_freezing_ucodes);
4256 }
4257 
4258 static __init void intel_counter_freezing_quirk(void)
4259 {
4260 	/* Check if it's already disabled */
4261 	if (disable_counter_freezing)
4262 		return;
4263 
4264 	/*
4265 	 * If the system starts with the wrong ucode, leave the
4266 	 * counter-freezing feature permanently disabled.
4267 	 */
4268 	if (intel_counter_freezing_broken()) {
4269 		pr_info("PMU counter freezing disabled due to CPU errata,"
4270 			"please upgrade microcode\n");
4271 		x86_pmu.counter_freezing = false;
4272 		x86_pmu.handle_irq = intel_pmu_handle_irq;
4273 	}
4274 }
4275 
4276 /*
4277  * enable software workaround for errata:
4278  * SNB: BJ122
4279  * IVB: BV98
4280  * HSW: HSD29
4281  *
4282  * Only needed when HT is enabled. However detecting
4283  * if HT is enabled is difficult (model specific). So instead,
4284  * we enable the workaround in the early boot, and verify if
4285  * it is needed in a later initcall phase once we have valid
4286  * topology information to check if HT is actually enabled
4287  */
4288 static __init void intel_ht_bug(void)
4289 {
4290 	x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
4291 
4292 	x86_pmu.start_scheduling = intel_start_scheduling;
4293 	x86_pmu.commit_scheduling = intel_commit_scheduling;
4294 	x86_pmu.stop_scheduling = intel_stop_scheduling;
4295 }
4296 
4297 EVENT_ATTR_STR(mem-loads,	mem_ld_hsw,	"event=0xcd,umask=0x1,ldlat=3");
4298 EVENT_ATTR_STR(mem-stores,	mem_st_hsw,	"event=0xd0,umask=0x82")
4299 
4300 /* Haswell special events */
4301 EVENT_ATTR_STR(tx-start,	tx_start,	"event=0xc9,umask=0x1");
4302 EVENT_ATTR_STR(tx-commit,	tx_commit,	"event=0xc9,umask=0x2");
4303 EVENT_ATTR_STR(tx-abort,	tx_abort,	"event=0xc9,umask=0x4");
4304 EVENT_ATTR_STR(tx-capacity,	tx_capacity,	"event=0x54,umask=0x2");
4305 EVENT_ATTR_STR(tx-conflict,	tx_conflict,	"event=0x54,umask=0x1");
4306 EVENT_ATTR_STR(el-start,	el_start,	"event=0xc8,umask=0x1");
4307 EVENT_ATTR_STR(el-commit,	el_commit,	"event=0xc8,umask=0x2");
4308 EVENT_ATTR_STR(el-abort,	el_abort,	"event=0xc8,umask=0x4");
4309 EVENT_ATTR_STR(el-capacity,	el_capacity,	"event=0x54,umask=0x2");
4310 EVENT_ATTR_STR(el-conflict,	el_conflict,	"event=0x54,umask=0x1");
4311 EVENT_ATTR_STR(cycles-t,	cycles_t,	"event=0x3c,in_tx=1");
4312 EVENT_ATTR_STR(cycles-ct,	cycles_ct,	"event=0x3c,in_tx=1,in_tx_cp=1");
4313 
4314 static struct attribute *hsw_events_attrs[] = {
4315 	EVENT_PTR(td_slots_issued),
4316 	EVENT_PTR(td_slots_retired),
4317 	EVENT_PTR(td_fetch_bubbles),
4318 	EVENT_PTR(td_total_slots),
4319 	EVENT_PTR(td_total_slots_scale),
4320 	EVENT_PTR(td_recovery_bubbles),
4321 	EVENT_PTR(td_recovery_bubbles_scale),
4322 	NULL
4323 };
4324 
4325 static struct attribute *hsw_mem_events_attrs[] = {
4326 	EVENT_PTR(mem_ld_hsw),
4327 	EVENT_PTR(mem_st_hsw),
4328 	NULL,
4329 };
4330 
4331 static struct attribute *hsw_tsx_events_attrs[] = {
4332 	EVENT_PTR(tx_start),
4333 	EVENT_PTR(tx_commit),
4334 	EVENT_PTR(tx_abort),
4335 	EVENT_PTR(tx_capacity),
4336 	EVENT_PTR(tx_conflict),
4337 	EVENT_PTR(el_start),
4338 	EVENT_PTR(el_commit),
4339 	EVENT_PTR(el_abort),
4340 	EVENT_PTR(el_capacity),
4341 	EVENT_PTR(el_conflict),
4342 	EVENT_PTR(cycles_t),
4343 	EVENT_PTR(cycles_ct),
4344 	NULL
4345 };
4346 
4347 EVENT_ATTR_STR(tx-capacity-read,  tx_capacity_read,  "event=0x54,umask=0x80");
4348 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
4349 EVENT_ATTR_STR(el-capacity-read,  el_capacity_read,  "event=0x54,umask=0x80");
4350 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
4351 
4352 static struct attribute *icl_events_attrs[] = {
4353 	EVENT_PTR(mem_ld_hsw),
4354 	EVENT_PTR(mem_st_hsw),
4355 	NULL,
4356 };
4357 
4358 static struct attribute *icl_tsx_events_attrs[] = {
4359 	EVENT_PTR(tx_start),
4360 	EVENT_PTR(tx_abort),
4361 	EVENT_PTR(tx_commit),
4362 	EVENT_PTR(tx_capacity_read),
4363 	EVENT_PTR(tx_capacity_write),
4364 	EVENT_PTR(tx_conflict),
4365 	EVENT_PTR(el_start),
4366 	EVENT_PTR(el_abort),
4367 	EVENT_PTR(el_commit),
4368 	EVENT_PTR(el_capacity_read),
4369 	EVENT_PTR(el_capacity_write),
4370 	EVENT_PTR(el_conflict),
4371 	EVENT_PTR(cycles_t),
4372 	EVENT_PTR(cycles_ct),
4373 	NULL,
4374 };
4375 
4376 static ssize_t freeze_on_smi_show(struct device *cdev,
4377 				  struct device_attribute *attr,
4378 				  char *buf)
4379 {
4380 	return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
4381 }
4382 
4383 static DEFINE_MUTEX(freeze_on_smi_mutex);
4384 
4385 static ssize_t freeze_on_smi_store(struct device *cdev,
4386 				   struct device_attribute *attr,
4387 				   const char *buf, size_t count)
4388 {
4389 	unsigned long val;
4390 	ssize_t ret;
4391 
4392 	ret = kstrtoul(buf, 0, &val);
4393 	if (ret)
4394 		return ret;
4395 
4396 	if (val > 1)
4397 		return -EINVAL;
4398 
4399 	mutex_lock(&freeze_on_smi_mutex);
4400 
4401 	if (x86_pmu.attr_freeze_on_smi == val)
4402 		goto done;
4403 
4404 	x86_pmu.attr_freeze_on_smi = val;
4405 
4406 	get_online_cpus();
4407 	on_each_cpu(flip_smm_bit, &val, 1);
4408 	put_online_cpus();
4409 done:
4410 	mutex_unlock(&freeze_on_smi_mutex);
4411 
4412 	return count;
4413 }
4414 
4415 static void update_tfa_sched(void *ignored)
4416 {
4417 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4418 
4419 	/*
4420 	 * check if PMC3 is used
4421 	 * and if so force schedule out for all event types all contexts
4422 	 */
4423 	if (test_bit(3, cpuc->active_mask))
4424 		perf_pmu_resched(x86_get_pmu());
4425 }
4426 
4427 static ssize_t show_sysctl_tfa(struct device *cdev,
4428 			      struct device_attribute *attr,
4429 			      char *buf)
4430 {
4431 	return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
4432 }
4433 
4434 static ssize_t set_sysctl_tfa(struct device *cdev,
4435 			      struct device_attribute *attr,
4436 			      const char *buf, size_t count)
4437 {
4438 	bool val;
4439 	ssize_t ret;
4440 
4441 	ret = kstrtobool(buf, &val);
4442 	if (ret)
4443 		return ret;
4444 
4445 	/* no change */
4446 	if (val == allow_tsx_force_abort)
4447 		return count;
4448 
4449 	allow_tsx_force_abort = val;
4450 
4451 	get_online_cpus();
4452 	on_each_cpu(update_tfa_sched, NULL, 1);
4453 	put_online_cpus();
4454 
4455 	return count;
4456 }
4457 
4458 
4459 static DEVICE_ATTR_RW(freeze_on_smi);
4460 
4461 static ssize_t branches_show(struct device *cdev,
4462 			     struct device_attribute *attr,
4463 			     char *buf)
4464 {
4465 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
4466 }
4467 
4468 static DEVICE_ATTR_RO(branches);
4469 
4470 static struct attribute *lbr_attrs[] = {
4471 	&dev_attr_branches.attr,
4472 	NULL
4473 };
4474 
4475 static char pmu_name_str[30];
4476 
4477 static ssize_t pmu_name_show(struct device *cdev,
4478 			     struct device_attribute *attr,
4479 			     char *buf)
4480 {
4481 	return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
4482 }
4483 
4484 static DEVICE_ATTR_RO(pmu_name);
4485 
4486 static struct attribute *intel_pmu_caps_attrs[] = {
4487        &dev_attr_pmu_name.attr,
4488        NULL
4489 };
4490 
4491 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
4492 		   show_sysctl_tfa,
4493 		   set_sysctl_tfa);
4494 
4495 static struct attribute *intel_pmu_attrs[] = {
4496 	&dev_attr_freeze_on_smi.attr,
4497 	&dev_attr_allow_tsx_force_abort.attr,
4498 	NULL,
4499 };
4500 
4501 static umode_t
4502 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4503 {
4504 	return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
4505 }
4506 
4507 static umode_t
4508 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4509 {
4510 	return x86_pmu.pebs ? attr->mode : 0;
4511 }
4512 
4513 static umode_t
4514 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4515 {
4516 	return x86_pmu.lbr_nr ? attr->mode : 0;
4517 }
4518 
4519 static umode_t
4520 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4521 {
4522 	return x86_pmu.version >= 2 ? attr->mode : 0;
4523 }
4524 
4525 static umode_t
4526 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4527 {
4528 	if (attr == &dev_attr_allow_tsx_force_abort.attr)
4529 		return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
4530 
4531 	return attr->mode;
4532 }
4533 
4534 static struct attribute_group group_events_td  = {
4535 	.name = "events",
4536 };
4537 
4538 static struct attribute_group group_events_mem = {
4539 	.name       = "events",
4540 	.is_visible = pebs_is_visible,
4541 };
4542 
4543 static struct attribute_group group_events_tsx = {
4544 	.name       = "events",
4545 	.is_visible = tsx_is_visible,
4546 };
4547 
4548 static struct attribute_group group_caps_gen = {
4549 	.name  = "caps",
4550 	.attrs = intel_pmu_caps_attrs,
4551 };
4552 
4553 static struct attribute_group group_caps_lbr = {
4554 	.name       = "caps",
4555 	.attrs	    = lbr_attrs,
4556 	.is_visible = lbr_is_visible,
4557 };
4558 
4559 static struct attribute_group group_format_extra = {
4560 	.name       = "format",
4561 	.is_visible = exra_is_visible,
4562 };
4563 
4564 static struct attribute_group group_format_extra_skl = {
4565 	.name       = "format",
4566 	.is_visible = exra_is_visible,
4567 };
4568 
4569 static struct attribute_group group_default = {
4570 	.attrs      = intel_pmu_attrs,
4571 	.is_visible = default_is_visible,
4572 };
4573 
4574 static const struct attribute_group *attr_update[] = {
4575 	&group_events_td,
4576 	&group_events_mem,
4577 	&group_events_tsx,
4578 	&group_caps_gen,
4579 	&group_caps_lbr,
4580 	&group_format_extra,
4581 	&group_format_extra_skl,
4582 	&group_default,
4583 	NULL,
4584 };
4585 
4586 static struct attribute *empty_attrs;
4587 
4588 __init int intel_pmu_init(void)
4589 {
4590 	struct attribute **extra_skl_attr = &empty_attrs;
4591 	struct attribute **extra_attr = &empty_attrs;
4592 	struct attribute **td_attr    = &empty_attrs;
4593 	struct attribute **mem_attr   = &empty_attrs;
4594 	struct attribute **tsx_attr   = &empty_attrs;
4595 	union cpuid10_edx edx;
4596 	union cpuid10_eax eax;
4597 	union cpuid10_ebx ebx;
4598 	struct event_constraint *c;
4599 	unsigned int unused;
4600 	struct extra_reg *er;
4601 	bool pmem = false;
4602 	int version, i;
4603 	char *name;
4604 
4605 	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
4606 		switch (boot_cpu_data.x86) {
4607 		case 0x6:
4608 			return p6_pmu_init();
4609 		case 0xb:
4610 			return knc_pmu_init();
4611 		case 0xf:
4612 			return p4_pmu_init();
4613 		}
4614 		return -ENODEV;
4615 	}
4616 
4617 	/*
4618 	 * Check whether the Architectural PerfMon supports
4619 	 * Branch Misses Retired hw_event or not.
4620 	 */
4621 	cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
4622 	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
4623 		return -ENODEV;
4624 
4625 	version = eax.split.version_id;
4626 	if (version < 2)
4627 		x86_pmu = core_pmu;
4628 	else
4629 		x86_pmu = intel_pmu;
4630 
4631 	x86_pmu.version			= version;
4632 	x86_pmu.num_counters		= eax.split.num_counters;
4633 	x86_pmu.cntval_bits		= eax.split.bit_width;
4634 	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
4635 
4636 	x86_pmu.events_maskl		= ebx.full;
4637 	x86_pmu.events_mask_len		= eax.split.mask_length;
4638 
4639 	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
4640 
4641 	/*
4642 	 * Quirk: v2 perfmon does not report fixed-purpose events, so
4643 	 * assume at least 3 events, when not running in a hypervisor:
4644 	 */
4645 	if (version > 1) {
4646 		int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
4647 
4648 		x86_pmu.num_counters_fixed =
4649 			max((int)edx.split.num_counters_fixed, assume);
4650 	}
4651 
4652 	if (version >= 4)
4653 		x86_pmu.counter_freezing = !disable_counter_freezing;
4654 
4655 	if (boot_cpu_has(X86_FEATURE_PDCM)) {
4656 		u64 capabilities;
4657 
4658 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
4659 		x86_pmu.intel_cap.capabilities = capabilities;
4660 	}
4661 
4662 	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
4663 		x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
4664 		x86_pmu.lbr_read = intel_pmu_lbr_read_32;
4665 	}
4666 
4667 	if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
4668 		intel_pmu_arch_lbr_init();
4669 
4670 	intel_ds_init();
4671 
4672 	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
4673 
4674 	/*
4675 	 * Install the hw-cache-events table:
4676 	 */
4677 	switch (boot_cpu_data.x86_model) {
4678 	case INTEL_FAM6_CORE_YONAH:
4679 		pr_cont("Core events, ");
4680 		name = "core";
4681 		break;
4682 
4683 	case INTEL_FAM6_CORE2_MEROM:
4684 		x86_add_quirk(intel_clovertown_quirk);
4685 		fallthrough;
4686 
4687 	case INTEL_FAM6_CORE2_MEROM_L:
4688 	case INTEL_FAM6_CORE2_PENRYN:
4689 	case INTEL_FAM6_CORE2_DUNNINGTON:
4690 		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
4691 		       sizeof(hw_cache_event_ids));
4692 
4693 		intel_pmu_lbr_init_core();
4694 
4695 		x86_pmu.event_constraints = intel_core2_event_constraints;
4696 		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
4697 		pr_cont("Core2 events, ");
4698 		name = "core2";
4699 		break;
4700 
4701 	case INTEL_FAM6_NEHALEM:
4702 	case INTEL_FAM6_NEHALEM_EP:
4703 	case INTEL_FAM6_NEHALEM_EX:
4704 		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
4705 		       sizeof(hw_cache_event_ids));
4706 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
4707 		       sizeof(hw_cache_extra_regs));
4708 
4709 		intel_pmu_lbr_init_nhm();
4710 
4711 		x86_pmu.event_constraints = intel_nehalem_event_constraints;
4712 		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
4713 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
4714 		x86_pmu.extra_regs = intel_nehalem_extra_regs;
4715 		x86_pmu.limit_period = nhm_limit_period;
4716 
4717 		mem_attr = nhm_mem_events_attrs;
4718 
4719 		/* UOPS_ISSUED.STALLED_CYCLES */
4720 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4721 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4722 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4723 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4724 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
4725 
4726 		intel_pmu_pebs_data_source_nhm();
4727 		x86_add_quirk(intel_nehalem_quirk);
4728 		x86_pmu.pebs_no_tlb = 1;
4729 		extra_attr = nhm_format_attr;
4730 
4731 		pr_cont("Nehalem events, ");
4732 		name = "nehalem";
4733 		break;
4734 
4735 	case INTEL_FAM6_ATOM_BONNELL:
4736 	case INTEL_FAM6_ATOM_BONNELL_MID:
4737 	case INTEL_FAM6_ATOM_SALTWELL:
4738 	case INTEL_FAM6_ATOM_SALTWELL_MID:
4739 	case INTEL_FAM6_ATOM_SALTWELL_TABLET:
4740 		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
4741 		       sizeof(hw_cache_event_ids));
4742 
4743 		intel_pmu_lbr_init_atom();
4744 
4745 		x86_pmu.event_constraints = intel_gen_event_constraints;
4746 		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
4747 		x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
4748 		pr_cont("Atom events, ");
4749 		name = "bonnell";
4750 		break;
4751 
4752 	case INTEL_FAM6_ATOM_SILVERMONT:
4753 	case INTEL_FAM6_ATOM_SILVERMONT_D:
4754 	case INTEL_FAM6_ATOM_SILVERMONT_MID:
4755 	case INTEL_FAM6_ATOM_AIRMONT:
4756 	case INTEL_FAM6_ATOM_AIRMONT_MID:
4757 		memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
4758 			sizeof(hw_cache_event_ids));
4759 		memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
4760 		       sizeof(hw_cache_extra_regs));
4761 
4762 		intel_pmu_lbr_init_slm();
4763 
4764 		x86_pmu.event_constraints = intel_slm_event_constraints;
4765 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4766 		x86_pmu.extra_regs = intel_slm_extra_regs;
4767 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4768 		td_attr = slm_events_attrs;
4769 		extra_attr = slm_format_attr;
4770 		pr_cont("Silvermont events, ");
4771 		name = "silvermont";
4772 		break;
4773 
4774 	case INTEL_FAM6_ATOM_GOLDMONT:
4775 	case INTEL_FAM6_ATOM_GOLDMONT_D:
4776 		x86_add_quirk(intel_counter_freezing_quirk);
4777 		memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
4778 		       sizeof(hw_cache_event_ids));
4779 		memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
4780 		       sizeof(hw_cache_extra_regs));
4781 
4782 		intel_pmu_lbr_init_skl();
4783 
4784 		x86_pmu.event_constraints = intel_slm_event_constraints;
4785 		x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
4786 		x86_pmu.extra_regs = intel_glm_extra_regs;
4787 		/*
4788 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4789 		 * for precise cycles.
4790 		 * :pp is identical to :ppp
4791 		 */
4792 		x86_pmu.pebs_aliases = NULL;
4793 		x86_pmu.pebs_prec_dist = true;
4794 		x86_pmu.lbr_pt_coexist = true;
4795 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4796 		td_attr = glm_events_attrs;
4797 		extra_attr = slm_format_attr;
4798 		pr_cont("Goldmont events, ");
4799 		name = "goldmont";
4800 		break;
4801 
4802 	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
4803 		x86_add_quirk(intel_counter_freezing_quirk);
4804 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
4805 		       sizeof(hw_cache_event_ids));
4806 		memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
4807 		       sizeof(hw_cache_extra_regs));
4808 
4809 		intel_pmu_lbr_init_skl();
4810 
4811 		x86_pmu.event_constraints = intel_slm_event_constraints;
4812 		x86_pmu.extra_regs = intel_glm_extra_regs;
4813 		/*
4814 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4815 		 * for precise cycles.
4816 		 */
4817 		x86_pmu.pebs_aliases = NULL;
4818 		x86_pmu.pebs_prec_dist = true;
4819 		x86_pmu.lbr_pt_coexist = true;
4820 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4821 		x86_pmu.flags |= PMU_FL_PEBS_ALL;
4822 		x86_pmu.get_event_constraints = glp_get_event_constraints;
4823 		td_attr = glm_events_attrs;
4824 		/* Goldmont Plus has 4-wide pipeline */
4825 		event_attr_td_total_slots_scale_glm.event_str = "4";
4826 		extra_attr = slm_format_attr;
4827 		pr_cont("Goldmont plus events, ");
4828 		name = "goldmont_plus";
4829 		break;
4830 
4831 	case INTEL_FAM6_ATOM_TREMONT_D:
4832 	case INTEL_FAM6_ATOM_TREMONT:
4833 		x86_pmu.late_ack = true;
4834 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
4835 		       sizeof(hw_cache_event_ids));
4836 		memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
4837 		       sizeof(hw_cache_extra_regs));
4838 		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
4839 
4840 		intel_pmu_lbr_init_skl();
4841 
4842 		x86_pmu.event_constraints = intel_slm_event_constraints;
4843 		x86_pmu.extra_regs = intel_tnt_extra_regs;
4844 		/*
4845 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4846 		 * for precise cycles.
4847 		 */
4848 		x86_pmu.pebs_aliases = NULL;
4849 		x86_pmu.pebs_prec_dist = true;
4850 		x86_pmu.lbr_pt_coexist = true;
4851 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4852 		x86_pmu.get_event_constraints = tnt_get_event_constraints;
4853 		extra_attr = slm_format_attr;
4854 		pr_cont("Tremont events, ");
4855 		name = "Tremont";
4856 		break;
4857 
4858 	case INTEL_FAM6_WESTMERE:
4859 	case INTEL_FAM6_WESTMERE_EP:
4860 	case INTEL_FAM6_WESTMERE_EX:
4861 		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
4862 		       sizeof(hw_cache_event_ids));
4863 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
4864 		       sizeof(hw_cache_extra_regs));
4865 
4866 		intel_pmu_lbr_init_nhm();
4867 
4868 		x86_pmu.event_constraints = intel_westmere_event_constraints;
4869 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
4870 		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
4871 		x86_pmu.extra_regs = intel_westmere_extra_regs;
4872 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4873 
4874 		mem_attr = nhm_mem_events_attrs;
4875 
4876 		/* UOPS_ISSUED.STALLED_CYCLES */
4877 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4878 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4879 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4880 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4881 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
4882 
4883 		intel_pmu_pebs_data_source_nhm();
4884 		extra_attr = nhm_format_attr;
4885 		pr_cont("Westmere events, ");
4886 		name = "westmere";
4887 		break;
4888 
4889 	case INTEL_FAM6_SANDYBRIDGE:
4890 	case INTEL_FAM6_SANDYBRIDGE_X:
4891 		x86_add_quirk(intel_sandybridge_quirk);
4892 		x86_add_quirk(intel_ht_bug);
4893 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4894 		       sizeof(hw_cache_event_ids));
4895 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4896 		       sizeof(hw_cache_extra_regs));
4897 
4898 		intel_pmu_lbr_init_snb();
4899 
4900 		x86_pmu.event_constraints = intel_snb_event_constraints;
4901 		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
4902 		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
4903 		if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
4904 			x86_pmu.extra_regs = intel_snbep_extra_regs;
4905 		else
4906 			x86_pmu.extra_regs = intel_snb_extra_regs;
4907 
4908 
4909 		/* all extra regs are per-cpu when HT is on */
4910 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4911 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4912 
4913 		td_attr  = snb_events_attrs;
4914 		mem_attr = snb_mem_events_attrs;
4915 
4916 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4917 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4918 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4919 		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
4920 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4921 			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
4922 
4923 		extra_attr = nhm_format_attr;
4924 
4925 		pr_cont("SandyBridge events, ");
4926 		name = "sandybridge";
4927 		break;
4928 
4929 	case INTEL_FAM6_IVYBRIDGE:
4930 	case INTEL_FAM6_IVYBRIDGE_X:
4931 		x86_add_quirk(intel_ht_bug);
4932 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4933 		       sizeof(hw_cache_event_ids));
4934 		/* dTLB-load-misses on IVB is different than SNB */
4935 		hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
4936 
4937 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4938 		       sizeof(hw_cache_extra_regs));
4939 
4940 		intel_pmu_lbr_init_snb();
4941 
4942 		x86_pmu.event_constraints = intel_ivb_event_constraints;
4943 		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
4944 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4945 		x86_pmu.pebs_prec_dist = true;
4946 		if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
4947 			x86_pmu.extra_regs = intel_snbep_extra_regs;
4948 		else
4949 			x86_pmu.extra_regs = intel_snb_extra_regs;
4950 		/* all extra regs are per-cpu when HT is on */
4951 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4952 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4953 
4954 		td_attr  = snb_events_attrs;
4955 		mem_attr = snb_mem_events_attrs;
4956 
4957 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4958 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4959 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4960 
4961 		extra_attr = nhm_format_attr;
4962 
4963 		pr_cont("IvyBridge events, ");
4964 		name = "ivybridge";
4965 		break;
4966 
4967 
4968 	case INTEL_FAM6_HASWELL:
4969 	case INTEL_FAM6_HASWELL_X:
4970 	case INTEL_FAM6_HASWELL_L:
4971 	case INTEL_FAM6_HASWELL_G:
4972 		x86_add_quirk(intel_ht_bug);
4973 		x86_add_quirk(intel_pebs_isolation_quirk);
4974 		x86_pmu.late_ack = true;
4975 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4976 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4977 
4978 		intel_pmu_lbr_init_hsw();
4979 
4980 		x86_pmu.event_constraints = intel_hsw_event_constraints;
4981 		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
4982 		x86_pmu.extra_regs = intel_snbep_extra_regs;
4983 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4984 		x86_pmu.pebs_prec_dist = true;
4985 		/* all extra regs are per-cpu when HT is on */
4986 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4987 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4988 
4989 		x86_pmu.hw_config = hsw_hw_config;
4990 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
4991 		x86_pmu.lbr_double_abort = true;
4992 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4993 			hsw_format_attr : nhm_format_attr;
4994 		td_attr  = hsw_events_attrs;
4995 		mem_attr = hsw_mem_events_attrs;
4996 		tsx_attr = hsw_tsx_events_attrs;
4997 		pr_cont("Haswell events, ");
4998 		name = "haswell";
4999 		break;
5000 
5001 	case INTEL_FAM6_BROADWELL:
5002 	case INTEL_FAM6_BROADWELL_D:
5003 	case INTEL_FAM6_BROADWELL_G:
5004 	case INTEL_FAM6_BROADWELL_X:
5005 		x86_add_quirk(intel_pebs_isolation_quirk);
5006 		x86_pmu.late_ack = true;
5007 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5008 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5009 
5010 		/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
5011 		hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
5012 									 BDW_L3_MISS|HSW_SNOOP_DRAM;
5013 		hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
5014 									  HSW_SNOOP_DRAM;
5015 		hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
5016 									     BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
5017 		hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
5018 									      BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
5019 
5020 		intel_pmu_lbr_init_hsw();
5021 
5022 		x86_pmu.event_constraints = intel_bdw_event_constraints;
5023 		x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
5024 		x86_pmu.extra_regs = intel_snbep_extra_regs;
5025 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5026 		x86_pmu.pebs_prec_dist = true;
5027 		/* all extra regs are per-cpu when HT is on */
5028 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5029 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5030 
5031 		x86_pmu.hw_config = hsw_hw_config;
5032 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
5033 		x86_pmu.limit_period = bdw_limit_period;
5034 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5035 			hsw_format_attr : nhm_format_attr;
5036 		td_attr  = hsw_events_attrs;
5037 		mem_attr = hsw_mem_events_attrs;
5038 		tsx_attr = hsw_tsx_events_attrs;
5039 		pr_cont("Broadwell events, ");
5040 		name = "broadwell";
5041 		break;
5042 
5043 	case INTEL_FAM6_XEON_PHI_KNL:
5044 	case INTEL_FAM6_XEON_PHI_KNM:
5045 		memcpy(hw_cache_event_ids,
5046 		       slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5047 		memcpy(hw_cache_extra_regs,
5048 		       knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5049 		intel_pmu_lbr_init_knl();
5050 
5051 		x86_pmu.event_constraints = intel_slm_event_constraints;
5052 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
5053 		x86_pmu.extra_regs = intel_knl_extra_regs;
5054 
5055 		/* all extra regs are per-cpu when HT is on */
5056 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5057 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5058 		extra_attr = slm_format_attr;
5059 		pr_cont("Knights Landing/Mill events, ");
5060 		name = "knights-landing";
5061 		break;
5062 
5063 	case INTEL_FAM6_SKYLAKE_X:
5064 		pmem = true;
5065 		fallthrough;
5066 	case INTEL_FAM6_SKYLAKE_L:
5067 	case INTEL_FAM6_SKYLAKE:
5068 	case INTEL_FAM6_KABYLAKE_L:
5069 	case INTEL_FAM6_KABYLAKE:
5070 	case INTEL_FAM6_COMETLAKE_L:
5071 	case INTEL_FAM6_COMETLAKE:
5072 		x86_add_quirk(intel_pebs_isolation_quirk);
5073 		x86_pmu.late_ack = true;
5074 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5075 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5076 		intel_pmu_lbr_init_skl();
5077 
5078 		/* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
5079 		event_attr_td_recovery_bubbles.event_str_noht =
5080 			"event=0xd,umask=0x1,cmask=1";
5081 		event_attr_td_recovery_bubbles.event_str_ht =
5082 			"event=0xd,umask=0x1,cmask=1,any=1";
5083 
5084 		x86_pmu.event_constraints = intel_skl_event_constraints;
5085 		x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
5086 		x86_pmu.extra_regs = intel_skl_extra_regs;
5087 		x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
5088 		x86_pmu.pebs_prec_dist = true;
5089 		/* all extra regs are per-cpu when HT is on */
5090 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5091 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5092 
5093 		x86_pmu.hw_config = hsw_hw_config;
5094 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
5095 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5096 			hsw_format_attr : nhm_format_attr;
5097 		extra_skl_attr = skl_format_attr;
5098 		td_attr  = hsw_events_attrs;
5099 		mem_attr = hsw_mem_events_attrs;
5100 		tsx_attr = hsw_tsx_events_attrs;
5101 		intel_pmu_pebs_data_source_skl(pmem);
5102 
5103 		if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT)) {
5104 			x86_pmu.flags |= PMU_FL_TFA;
5105 			x86_pmu.get_event_constraints = tfa_get_event_constraints;
5106 			x86_pmu.enable_all = intel_tfa_pmu_enable_all;
5107 			x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
5108 		}
5109 
5110 		pr_cont("Skylake events, ");
5111 		name = "skylake";
5112 		break;
5113 
5114 	case INTEL_FAM6_ICELAKE_X:
5115 	case INTEL_FAM6_ICELAKE_D:
5116 		pmem = true;
5117 		fallthrough;
5118 	case INTEL_FAM6_ICELAKE_L:
5119 	case INTEL_FAM6_ICELAKE:
5120 	case INTEL_FAM6_TIGERLAKE_L:
5121 	case INTEL_FAM6_TIGERLAKE:
5122 		x86_pmu.late_ack = true;
5123 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5124 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5125 		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
5126 		intel_pmu_lbr_init_skl();
5127 
5128 		x86_pmu.event_constraints = intel_icl_event_constraints;
5129 		x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
5130 		x86_pmu.extra_regs = intel_icl_extra_regs;
5131 		x86_pmu.pebs_aliases = NULL;
5132 		x86_pmu.pebs_prec_dist = true;
5133 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5134 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5135 
5136 		x86_pmu.hw_config = hsw_hw_config;
5137 		x86_pmu.get_event_constraints = icl_get_event_constraints;
5138 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5139 			hsw_format_attr : nhm_format_attr;
5140 		extra_skl_attr = skl_format_attr;
5141 		mem_attr = icl_events_attrs;
5142 		tsx_attr = icl_tsx_events_attrs;
5143 		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xca, .umask=0x02);
5144 		x86_pmu.lbr_pt_coexist = true;
5145 		intel_pmu_pebs_data_source_skl(pmem);
5146 		pr_cont("Icelake events, ");
5147 		name = "icelake";
5148 		break;
5149 
5150 	default:
5151 		switch (x86_pmu.version) {
5152 		case 1:
5153 			x86_pmu.event_constraints = intel_v1_event_constraints;
5154 			pr_cont("generic architected perfmon v1, ");
5155 			name = "generic_arch_v1";
5156 			break;
5157 		default:
5158 			/*
5159 			 * default constraints for v2 and up
5160 			 */
5161 			x86_pmu.event_constraints = intel_gen_event_constraints;
5162 			pr_cont("generic architected perfmon, ");
5163 			name = "generic_arch_v2+";
5164 			break;
5165 		}
5166 	}
5167 
5168 	snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
5169 
5170 
5171 	group_events_td.attrs  = td_attr;
5172 	group_events_mem.attrs = mem_attr;
5173 	group_events_tsx.attrs = tsx_attr;
5174 	group_format_extra.attrs = extra_attr;
5175 	group_format_extra_skl.attrs = extra_skl_attr;
5176 
5177 	x86_pmu.attr_update = attr_update;
5178 
5179 	if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
5180 		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5181 		     x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
5182 		x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
5183 	}
5184 	x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1;
5185 
5186 	if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
5187 		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5188 		     x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
5189 		x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
5190 	}
5191 
5192 	x86_pmu.intel_ctrl |=
5193 		((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
5194 
5195 	if (x86_pmu.event_constraints) {
5196 		/*
5197 		 * event on fixed counter2 (REF_CYCLES) only works on this
5198 		 * counter, so do not extend mask to generic counters
5199 		 */
5200 		for_each_event_constraint(c, x86_pmu.event_constraints) {
5201 			if (c->cmask == FIXED_EVENT_FLAGS
5202 			    && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
5203 				c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
5204 			}
5205 			c->idxmsk64 &=
5206 				~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
5207 			c->weight = hweight64(c->idxmsk64);
5208 		}
5209 	}
5210 
5211 	/*
5212 	 * Access LBR MSR may cause #GP under certain circumstances.
5213 	 * E.g. KVM doesn't support LBR MSR
5214 	 * Check all LBT MSR here.
5215 	 * Disable LBR access if any LBR MSRs can not be accessed.
5216 	 */
5217 	if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
5218 		x86_pmu.lbr_nr = 0;
5219 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
5220 		if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
5221 		      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
5222 			x86_pmu.lbr_nr = 0;
5223 	}
5224 
5225 	if (x86_pmu.lbr_nr)
5226 		pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
5227 
5228 	/*
5229 	 * Access extra MSR may cause #GP under certain circumstances.
5230 	 * E.g. KVM doesn't support offcore event
5231 	 * Check all extra_regs here.
5232 	 */
5233 	if (x86_pmu.extra_regs) {
5234 		for (er = x86_pmu.extra_regs; er->msr; er++) {
5235 			er->extra_msr_access = check_msr(er->msr, 0x11UL);
5236 			/* Disable LBR select mapping */
5237 			if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
5238 				x86_pmu.lbr_sel_map = NULL;
5239 		}
5240 	}
5241 
5242 	/* Support full width counters using alternative MSR range */
5243 	if (x86_pmu.intel_cap.full_width_write) {
5244 		x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
5245 		x86_pmu.perfctr = MSR_IA32_PMC0;
5246 		pr_cont("full-width counters, ");
5247 	}
5248 
5249 	/*
5250 	 * For arch perfmon 4 use counter freezing to avoid
5251 	 * several MSR accesses in the PMI.
5252 	 */
5253 	if (x86_pmu.counter_freezing)
5254 		x86_pmu.handle_irq = intel_pmu_handle_irq_v4;
5255 
5256 	return 0;
5257 }
5258 
5259 /*
5260  * HT bug: phase 2 init
5261  * Called once we have valid topology information to check
5262  * whether or not HT is enabled
5263  * If HT is off, then we disable the workaround
5264  */
5265 static __init int fixup_ht_bug(void)
5266 {
5267 	int c;
5268 	/*
5269 	 * problem not present on this CPU model, nothing to do
5270 	 */
5271 	if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
5272 		return 0;
5273 
5274 	if (topology_max_smt_threads() > 1) {
5275 		pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
5276 		return 0;
5277 	}
5278 
5279 	cpus_read_lock();
5280 
5281 	hardlockup_detector_perf_stop();
5282 
5283 	x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
5284 
5285 	x86_pmu.start_scheduling = NULL;
5286 	x86_pmu.commit_scheduling = NULL;
5287 	x86_pmu.stop_scheduling = NULL;
5288 
5289 	hardlockup_detector_perf_restart();
5290 
5291 	for_each_online_cpu(c)
5292 		free_excl_cntrs(&per_cpu(cpu_hw_events, c));
5293 
5294 	cpus_read_unlock();
5295 	pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
5296 	return 0;
5297 }
5298 subsys_initcall(fixup_ht_bug)
5299