1 /* 2 * Per core/cpu state 3 * 4 * Used to coordinate shared registers between HT threads or 5 * among events on a single PMU. 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/stddef.h> 11 #include <linux/types.h> 12 #include <linux/init.h> 13 #include <linux/slab.h> 14 #include <linux/export.h> 15 #include <linux/nmi.h> 16 17 #include <asm/cpufeature.h> 18 #include <asm/hardirq.h> 19 #include <asm/intel-family.h> 20 #include <asm/apic.h> 21 22 #include "../perf_event.h" 23 24 /* 25 * Intel PerfMon, used on Core and later. 26 */ 27 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly = 28 { 29 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c, 30 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0, 31 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e, 32 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e, 33 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4, 34 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5, 35 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c, 36 [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */ 37 }; 38 39 static struct event_constraint intel_core_event_constraints[] __read_mostly = 40 { 41 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */ 42 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */ 43 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */ 44 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */ 45 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */ 46 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */ 47 EVENT_CONSTRAINT_END 48 }; 49 50 static struct event_constraint intel_core2_event_constraints[] __read_mostly = 51 { 52 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 53 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 54 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 55 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */ 56 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */ 57 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */ 58 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */ 59 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */ 60 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */ 61 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */ 62 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */ 63 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */ 64 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */ 65 EVENT_CONSTRAINT_END 66 }; 67 68 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly = 69 { 70 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 71 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 72 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 73 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */ 74 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */ 75 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */ 76 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */ 77 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */ 78 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */ 79 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */ 80 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */ 81 EVENT_CONSTRAINT_END 82 }; 83 84 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly = 85 { 86 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 87 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0), 88 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b), 89 EVENT_EXTRA_END 90 }; 91 92 static struct event_constraint intel_westmere_event_constraints[] __read_mostly = 93 { 94 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 95 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 96 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 97 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */ 98 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */ 99 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */ 100 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */ 101 EVENT_CONSTRAINT_END 102 }; 103 104 static struct event_constraint intel_snb_event_constraints[] __read_mostly = 105 { 106 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 107 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 108 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 109 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */ 110 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */ 111 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ 112 INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */ 113 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */ 114 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */ 115 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */ 116 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */ 117 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ 118 119 /* 120 * When HT is off these events can only run on the bottom 4 counters 121 * When HT is on, they are impacted by the HT bug and require EXCL access 122 */ 123 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */ 124 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 125 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 126 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 127 128 EVENT_CONSTRAINT_END 129 }; 130 131 static struct event_constraint intel_ivb_event_constraints[] __read_mostly = 132 { 133 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 134 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 135 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 136 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */ 137 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */ 138 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */ 139 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */ 140 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */ 141 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */ 142 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */ 143 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ 144 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */ 145 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */ 146 147 /* 148 * When HT is off these events can only run on the bottom 4 counters 149 * When HT is on, they are impacted by the HT bug and require EXCL access 150 */ 151 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */ 152 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 153 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 154 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 155 156 EVENT_CONSTRAINT_END 157 }; 158 159 static struct extra_reg intel_westmere_extra_regs[] __read_mostly = 160 { 161 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 162 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0), 163 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1), 164 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b), 165 EVENT_EXTRA_END 166 }; 167 168 static struct event_constraint intel_v1_event_constraints[] __read_mostly = 169 { 170 EVENT_CONSTRAINT_END 171 }; 172 173 static struct event_constraint intel_gen_event_constraints[] __read_mostly = 174 { 175 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 176 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 177 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 178 EVENT_CONSTRAINT_END 179 }; 180 181 static struct event_constraint intel_slm_event_constraints[] __read_mostly = 182 { 183 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 184 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 185 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */ 186 EVENT_CONSTRAINT_END 187 }; 188 189 static struct event_constraint intel_skl_event_constraints[] = { 190 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 191 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 192 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 193 INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */ 194 195 /* 196 * when HT is off, these can only run on the bottom 4 counters 197 */ 198 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */ 199 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */ 200 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */ 201 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */ 202 INTEL_EVENT_CONSTRAINT(0xc6, 0xf), /* FRONTEND_RETIRED.* */ 203 204 EVENT_CONSTRAINT_END 205 }; 206 207 static struct extra_reg intel_knl_extra_regs[] __read_mostly = { 208 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0), 209 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1), 210 EVENT_EXTRA_END 211 }; 212 213 static struct extra_reg intel_snb_extra_regs[] __read_mostly = { 214 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 215 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0), 216 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1), 217 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), 218 EVENT_EXTRA_END 219 }; 220 221 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = { 222 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 223 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0), 224 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1), 225 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), 226 EVENT_EXTRA_END 227 }; 228 229 static struct extra_reg intel_skl_extra_regs[] __read_mostly = { 230 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0), 231 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1), 232 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), 233 /* 234 * Note the low 8 bits eventsel code is not a continuous field, containing 235 * some #GPing bits. These are masked out. 236 */ 237 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE), 238 EVENT_EXTRA_END 239 }; 240 241 EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3"); 242 EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3"); 243 EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2"); 244 245 static struct attribute *nhm_mem_events_attrs[] = { 246 EVENT_PTR(mem_ld_nhm), 247 NULL, 248 }; 249 250 /* 251 * topdown events for Intel Core CPUs. 252 * 253 * The events are all in slots, which is a free slot in a 4 wide 254 * pipeline. Some events are already reported in slots, for cycle 255 * events we multiply by the pipeline width (4). 256 * 257 * With Hyper Threading on, topdown metrics are either summed or averaged 258 * between the threads of a core: (count_t0 + count_t1). 259 * 260 * For the average case the metric is always scaled to pipeline width, 261 * so we use factor 2 ((count_t0 + count_t1) / 2 * 4) 262 */ 263 264 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots, 265 "event=0x3c,umask=0x0", /* cpu_clk_unhalted.thread */ 266 "event=0x3c,umask=0x0,any=1"); /* cpu_clk_unhalted.thread_any */ 267 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2"); 268 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued, 269 "event=0xe,umask=0x1"); /* uops_issued.any */ 270 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired, 271 "event=0xc2,umask=0x2"); /* uops_retired.retire_slots */ 272 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles, 273 "event=0x9c,umask=0x1"); /* idq_uops_not_delivered_core */ 274 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles, 275 "event=0xd,umask=0x3,cmask=1", /* int_misc.recovery_cycles */ 276 "event=0xd,umask=0x3,cmask=1,any=1"); /* int_misc.recovery_cycles_any */ 277 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale, 278 "4", "2"); 279 280 static struct attribute *snb_events_attrs[] = { 281 EVENT_PTR(td_slots_issued), 282 EVENT_PTR(td_slots_retired), 283 EVENT_PTR(td_fetch_bubbles), 284 EVENT_PTR(td_total_slots), 285 EVENT_PTR(td_total_slots_scale), 286 EVENT_PTR(td_recovery_bubbles), 287 EVENT_PTR(td_recovery_bubbles_scale), 288 NULL, 289 }; 290 291 static struct attribute *snb_mem_events_attrs[] = { 292 EVENT_PTR(mem_ld_snb), 293 EVENT_PTR(mem_st_snb), 294 NULL, 295 }; 296 297 static struct event_constraint intel_hsw_event_constraints[] = { 298 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 299 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 300 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 301 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */ 302 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */ 303 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */ 304 /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ 305 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), 306 /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */ 307 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), 308 /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */ 309 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), 310 311 /* 312 * When HT is off these events can only run on the bottom 4 counters 313 * When HT is on, they are impacted by the HT bug and require EXCL access 314 */ 315 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */ 316 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 317 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 318 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 319 320 EVENT_CONSTRAINT_END 321 }; 322 323 static struct event_constraint intel_bdw_event_constraints[] = { 324 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 325 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 326 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 327 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */ 328 INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */ 329 /* 330 * when HT is off, these can only run on the bottom 4 counters 331 */ 332 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */ 333 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */ 334 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */ 335 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */ 336 EVENT_CONSTRAINT_END 337 }; 338 339 static u64 intel_pmu_event_map(int hw_event) 340 { 341 return intel_perfmon_event_map[hw_event]; 342 } 343 344 /* 345 * Notes on the events: 346 * - data reads do not include code reads (comparable to earlier tables) 347 * - data counts include speculative execution (except L1 write, dtlb, bpu) 348 * - remote node access includes remote memory, remote cache, remote mmio. 349 * - prefetches are not included in the counts. 350 * - icache miss does not include decoded icache 351 */ 352 353 #define SKL_DEMAND_DATA_RD BIT_ULL(0) 354 #define SKL_DEMAND_RFO BIT_ULL(1) 355 #define SKL_ANY_RESPONSE BIT_ULL(16) 356 #define SKL_SUPPLIER_NONE BIT_ULL(17) 357 #define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26) 358 #define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27) 359 #define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28) 360 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29) 361 #define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \ 362 SKL_L3_MISS_REMOTE_HOP0_DRAM| \ 363 SKL_L3_MISS_REMOTE_HOP1_DRAM| \ 364 SKL_L3_MISS_REMOTE_HOP2P_DRAM) 365 #define SKL_SPL_HIT BIT_ULL(30) 366 #define SKL_SNOOP_NONE BIT_ULL(31) 367 #define SKL_SNOOP_NOT_NEEDED BIT_ULL(32) 368 #define SKL_SNOOP_MISS BIT_ULL(33) 369 #define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34) 370 #define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35) 371 #define SKL_SNOOP_HITM BIT_ULL(36) 372 #define SKL_SNOOP_NON_DRAM BIT_ULL(37) 373 #define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \ 374 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \ 375 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \ 376 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM) 377 #define SKL_DEMAND_READ SKL_DEMAND_DATA_RD 378 #define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \ 379 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \ 380 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \ 381 SKL_SNOOP_HITM|SKL_SPL_HIT) 382 #define SKL_DEMAND_WRITE SKL_DEMAND_RFO 383 #define SKL_LLC_ACCESS SKL_ANY_RESPONSE 384 #define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \ 385 SKL_L3_MISS_REMOTE_HOP1_DRAM| \ 386 SKL_L3_MISS_REMOTE_HOP2P_DRAM) 387 388 static __initconst const u64 skl_hw_cache_event_ids 389 [PERF_COUNT_HW_CACHE_MAX] 390 [PERF_COUNT_HW_CACHE_OP_MAX] 391 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 392 { 393 [ C(L1D ) ] = { 394 [ C(OP_READ) ] = { 395 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */ 396 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */ 397 }, 398 [ C(OP_WRITE) ] = { 399 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */ 400 [ C(RESULT_MISS) ] = 0x0, 401 }, 402 [ C(OP_PREFETCH) ] = { 403 [ C(RESULT_ACCESS) ] = 0x0, 404 [ C(RESULT_MISS) ] = 0x0, 405 }, 406 }, 407 [ C(L1I ) ] = { 408 [ C(OP_READ) ] = { 409 [ C(RESULT_ACCESS) ] = 0x0, 410 [ C(RESULT_MISS) ] = 0x283, /* ICACHE_64B.MISS */ 411 }, 412 [ C(OP_WRITE) ] = { 413 [ C(RESULT_ACCESS) ] = -1, 414 [ C(RESULT_MISS) ] = -1, 415 }, 416 [ C(OP_PREFETCH) ] = { 417 [ C(RESULT_ACCESS) ] = 0x0, 418 [ C(RESULT_MISS) ] = 0x0, 419 }, 420 }, 421 [ C(LL ) ] = { 422 [ C(OP_READ) ] = { 423 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 424 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 425 }, 426 [ C(OP_WRITE) ] = { 427 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 428 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 429 }, 430 [ C(OP_PREFETCH) ] = { 431 [ C(RESULT_ACCESS) ] = 0x0, 432 [ C(RESULT_MISS) ] = 0x0, 433 }, 434 }, 435 [ C(DTLB) ] = { 436 [ C(OP_READ) ] = { 437 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */ 438 [ C(RESULT_MISS) ] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */ 439 }, 440 [ C(OP_WRITE) ] = { 441 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */ 442 [ C(RESULT_MISS) ] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */ 443 }, 444 [ C(OP_PREFETCH) ] = { 445 [ C(RESULT_ACCESS) ] = 0x0, 446 [ C(RESULT_MISS) ] = 0x0, 447 }, 448 }, 449 [ C(ITLB) ] = { 450 [ C(OP_READ) ] = { 451 [ C(RESULT_ACCESS) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */ 452 [ C(RESULT_MISS) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */ 453 }, 454 [ C(OP_WRITE) ] = { 455 [ C(RESULT_ACCESS) ] = -1, 456 [ C(RESULT_MISS) ] = -1, 457 }, 458 [ C(OP_PREFETCH) ] = { 459 [ C(RESULT_ACCESS) ] = -1, 460 [ C(RESULT_MISS) ] = -1, 461 }, 462 }, 463 [ C(BPU ) ] = { 464 [ C(OP_READ) ] = { 465 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */ 466 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */ 467 }, 468 [ C(OP_WRITE) ] = { 469 [ C(RESULT_ACCESS) ] = -1, 470 [ C(RESULT_MISS) ] = -1, 471 }, 472 [ C(OP_PREFETCH) ] = { 473 [ C(RESULT_ACCESS) ] = -1, 474 [ C(RESULT_MISS) ] = -1, 475 }, 476 }, 477 [ C(NODE) ] = { 478 [ C(OP_READ) ] = { 479 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 480 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 481 }, 482 [ C(OP_WRITE) ] = { 483 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 484 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 485 }, 486 [ C(OP_PREFETCH) ] = { 487 [ C(RESULT_ACCESS) ] = 0x0, 488 [ C(RESULT_MISS) ] = 0x0, 489 }, 490 }, 491 }; 492 493 static __initconst const u64 skl_hw_cache_extra_regs 494 [PERF_COUNT_HW_CACHE_MAX] 495 [PERF_COUNT_HW_CACHE_OP_MAX] 496 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 497 { 498 [ C(LL ) ] = { 499 [ C(OP_READ) ] = { 500 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ| 501 SKL_LLC_ACCESS|SKL_ANY_SNOOP, 502 [ C(RESULT_MISS) ] = SKL_DEMAND_READ| 503 SKL_L3_MISS|SKL_ANY_SNOOP| 504 SKL_SUPPLIER_NONE, 505 }, 506 [ C(OP_WRITE) ] = { 507 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE| 508 SKL_LLC_ACCESS|SKL_ANY_SNOOP, 509 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE| 510 SKL_L3_MISS|SKL_ANY_SNOOP| 511 SKL_SUPPLIER_NONE, 512 }, 513 [ C(OP_PREFETCH) ] = { 514 [ C(RESULT_ACCESS) ] = 0x0, 515 [ C(RESULT_MISS) ] = 0x0, 516 }, 517 }, 518 [ C(NODE) ] = { 519 [ C(OP_READ) ] = { 520 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ| 521 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM, 522 [ C(RESULT_MISS) ] = SKL_DEMAND_READ| 523 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM, 524 }, 525 [ C(OP_WRITE) ] = { 526 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE| 527 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM, 528 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE| 529 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM, 530 }, 531 [ C(OP_PREFETCH) ] = { 532 [ C(RESULT_ACCESS) ] = 0x0, 533 [ C(RESULT_MISS) ] = 0x0, 534 }, 535 }, 536 }; 537 538 #define SNB_DMND_DATA_RD (1ULL << 0) 539 #define SNB_DMND_RFO (1ULL << 1) 540 #define SNB_DMND_IFETCH (1ULL << 2) 541 #define SNB_DMND_WB (1ULL << 3) 542 #define SNB_PF_DATA_RD (1ULL << 4) 543 #define SNB_PF_RFO (1ULL << 5) 544 #define SNB_PF_IFETCH (1ULL << 6) 545 #define SNB_LLC_DATA_RD (1ULL << 7) 546 #define SNB_LLC_RFO (1ULL << 8) 547 #define SNB_LLC_IFETCH (1ULL << 9) 548 #define SNB_BUS_LOCKS (1ULL << 10) 549 #define SNB_STRM_ST (1ULL << 11) 550 #define SNB_OTHER (1ULL << 15) 551 #define SNB_RESP_ANY (1ULL << 16) 552 #define SNB_NO_SUPP (1ULL << 17) 553 #define SNB_LLC_HITM (1ULL << 18) 554 #define SNB_LLC_HITE (1ULL << 19) 555 #define SNB_LLC_HITS (1ULL << 20) 556 #define SNB_LLC_HITF (1ULL << 21) 557 #define SNB_LOCAL (1ULL << 22) 558 #define SNB_REMOTE (0xffULL << 23) 559 #define SNB_SNP_NONE (1ULL << 31) 560 #define SNB_SNP_NOT_NEEDED (1ULL << 32) 561 #define SNB_SNP_MISS (1ULL << 33) 562 #define SNB_NO_FWD (1ULL << 34) 563 #define SNB_SNP_FWD (1ULL << 35) 564 #define SNB_HITM (1ULL << 36) 565 #define SNB_NON_DRAM (1ULL << 37) 566 567 #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD) 568 #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO) 569 #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO) 570 571 #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \ 572 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \ 573 SNB_HITM) 574 575 #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY) 576 #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY) 577 578 #define SNB_L3_ACCESS SNB_RESP_ANY 579 #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM) 580 581 static __initconst const u64 snb_hw_cache_extra_regs 582 [PERF_COUNT_HW_CACHE_MAX] 583 [PERF_COUNT_HW_CACHE_OP_MAX] 584 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 585 { 586 [ C(LL ) ] = { 587 [ C(OP_READ) ] = { 588 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS, 589 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS, 590 }, 591 [ C(OP_WRITE) ] = { 592 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS, 593 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS, 594 }, 595 [ C(OP_PREFETCH) ] = { 596 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS, 597 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS, 598 }, 599 }, 600 [ C(NODE) ] = { 601 [ C(OP_READ) ] = { 602 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY, 603 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE, 604 }, 605 [ C(OP_WRITE) ] = { 606 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY, 607 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE, 608 }, 609 [ C(OP_PREFETCH) ] = { 610 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY, 611 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE, 612 }, 613 }, 614 }; 615 616 static __initconst const u64 snb_hw_cache_event_ids 617 [PERF_COUNT_HW_CACHE_MAX] 618 [PERF_COUNT_HW_CACHE_OP_MAX] 619 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 620 { 621 [ C(L1D) ] = { 622 [ C(OP_READ) ] = { 623 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */ 624 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */ 625 }, 626 [ C(OP_WRITE) ] = { 627 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */ 628 [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */ 629 }, 630 [ C(OP_PREFETCH) ] = { 631 [ C(RESULT_ACCESS) ] = 0x0, 632 [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */ 633 }, 634 }, 635 [ C(L1I ) ] = { 636 [ C(OP_READ) ] = { 637 [ C(RESULT_ACCESS) ] = 0x0, 638 [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */ 639 }, 640 [ C(OP_WRITE) ] = { 641 [ C(RESULT_ACCESS) ] = -1, 642 [ C(RESULT_MISS) ] = -1, 643 }, 644 [ C(OP_PREFETCH) ] = { 645 [ C(RESULT_ACCESS) ] = 0x0, 646 [ C(RESULT_MISS) ] = 0x0, 647 }, 648 }, 649 [ C(LL ) ] = { 650 [ C(OP_READ) ] = { 651 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ 652 [ C(RESULT_ACCESS) ] = 0x01b7, 653 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ 654 [ C(RESULT_MISS) ] = 0x01b7, 655 }, 656 [ C(OP_WRITE) ] = { 657 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ 658 [ C(RESULT_ACCESS) ] = 0x01b7, 659 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ 660 [ C(RESULT_MISS) ] = 0x01b7, 661 }, 662 [ C(OP_PREFETCH) ] = { 663 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ 664 [ C(RESULT_ACCESS) ] = 0x01b7, 665 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ 666 [ C(RESULT_MISS) ] = 0x01b7, 667 }, 668 }, 669 [ C(DTLB) ] = { 670 [ C(OP_READ) ] = { 671 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */ 672 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */ 673 }, 674 [ C(OP_WRITE) ] = { 675 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */ 676 [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */ 677 }, 678 [ C(OP_PREFETCH) ] = { 679 [ C(RESULT_ACCESS) ] = 0x0, 680 [ C(RESULT_MISS) ] = 0x0, 681 }, 682 }, 683 [ C(ITLB) ] = { 684 [ C(OP_READ) ] = { 685 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */ 686 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */ 687 }, 688 [ C(OP_WRITE) ] = { 689 [ C(RESULT_ACCESS) ] = -1, 690 [ C(RESULT_MISS) ] = -1, 691 }, 692 [ C(OP_PREFETCH) ] = { 693 [ C(RESULT_ACCESS) ] = -1, 694 [ C(RESULT_MISS) ] = -1, 695 }, 696 }, 697 [ C(BPU ) ] = { 698 [ C(OP_READ) ] = { 699 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ 700 [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */ 701 }, 702 [ C(OP_WRITE) ] = { 703 [ C(RESULT_ACCESS) ] = -1, 704 [ C(RESULT_MISS) ] = -1, 705 }, 706 [ C(OP_PREFETCH) ] = { 707 [ C(RESULT_ACCESS) ] = -1, 708 [ C(RESULT_MISS) ] = -1, 709 }, 710 }, 711 [ C(NODE) ] = { 712 [ C(OP_READ) ] = { 713 [ C(RESULT_ACCESS) ] = 0x01b7, 714 [ C(RESULT_MISS) ] = 0x01b7, 715 }, 716 [ C(OP_WRITE) ] = { 717 [ C(RESULT_ACCESS) ] = 0x01b7, 718 [ C(RESULT_MISS) ] = 0x01b7, 719 }, 720 [ C(OP_PREFETCH) ] = { 721 [ C(RESULT_ACCESS) ] = 0x01b7, 722 [ C(RESULT_MISS) ] = 0x01b7, 723 }, 724 }, 725 726 }; 727 728 /* 729 * Notes on the events: 730 * - data reads do not include code reads (comparable to earlier tables) 731 * - data counts include speculative execution (except L1 write, dtlb, bpu) 732 * - remote node access includes remote memory, remote cache, remote mmio. 733 * - prefetches are not included in the counts because they are not 734 * reliably counted. 735 */ 736 737 #define HSW_DEMAND_DATA_RD BIT_ULL(0) 738 #define HSW_DEMAND_RFO BIT_ULL(1) 739 #define HSW_ANY_RESPONSE BIT_ULL(16) 740 #define HSW_SUPPLIER_NONE BIT_ULL(17) 741 #define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22) 742 #define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27) 743 #define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28) 744 #define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29) 745 #define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \ 746 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \ 747 HSW_L3_MISS_REMOTE_HOP2P) 748 #define HSW_SNOOP_NONE BIT_ULL(31) 749 #define HSW_SNOOP_NOT_NEEDED BIT_ULL(32) 750 #define HSW_SNOOP_MISS BIT_ULL(33) 751 #define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34) 752 #define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35) 753 #define HSW_SNOOP_HITM BIT_ULL(36) 754 #define HSW_SNOOP_NON_DRAM BIT_ULL(37) 755 #define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \ 756 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \ 757 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \ 758 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM) 759 #define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM) 760 #define HSW_DEMAND_READ HSW_DEMAND_DATA_RD 761 #define HSW_DEMAND_WRITE HSW_DEMAND_RFO 762 #define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\ 763 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P) 764 #define HSW_LLC_ACCESS HSW_ANY_RESPONSE 765 766 #define BDW_L3_MISS_LOCAL BIT(26) 767 #define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \ 768 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \ 769 HSW_L3_MISS_REMOTE_HOP2P) 770 771 772 static __initconst const u64 hsw_hw_cache_event_ids 773 [PERF_COUNT_HW_CACHE_MAX] 774 [PERF_COUNT_HW_CACHE_OP_MAX] 775 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 776 { 777 [ C(L1D ) ] = { 778 [ C(OP_READ) ] = { 779 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 780 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */ 781 }, 782 [ C(OP_WRITE) ] = { 783 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 784 [ C(RESULT_MISS) ] = 0x0, 785 }, 786 [ C(OP_PREFETCH) ] = { 787 [ C(RESULT_ACCESS) ] = 0x0, 788 [ C(RESULT_MISS) ] = 0x0, 789 }, 790 }, 791 [ C(L1I ) ] = { 792 [ C(OP_READ) ] = { 793 [ C(RESULT_ACCESS) ] = 0x0, 794 [ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */ 795 }, 796 [ C(OP_WRITE) ] = { 797 [ C(RESULT_ACCESS) ] = -1, 798 [ C(RESULT_MISS) ] = -1, 799 }, 800 [ C(OP_PREFETCH) ] = { 801 [ C(RESULT_ACCESS) ] = 0x0, 802 [ C(RESULT_MISS) ] = 0x0, 803 }, 804 }, 805 [ C(LL ) ] = { 806 [ C(OP_READ) ] = { 807 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 808 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 809 }, 810 [ C(OP_WRITE) ] = { 811 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 812 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 813 }, 814 [ C(OP_PREFETCH) ] = { 815 [ C(RESULT_ACCESS) ] = 0x0, 816 [ C(RESULT_MISS) ] = 0x0, 817 }, 818 }, 819 [ C(DTLB) ] = { 820 [ C(OP_READ) ] = { 821 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 822 [ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */ 823 }, 824 [ C(OP_WRITE) ] = { 825 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 826 [ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */ 827 }, 828 [ C(OP_PREFETCH) ] = { 829 [ C(RESULT_ACCESS) ] = 0x0, 830 [ C(RESULT_MISS) ] = 0x0, 831 }, 832 }, 833 [ C(ITLB) ] = { 834 [ C(OP_READ) ] = { 835 [ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */ 836 [ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */ 837 }, 838 [ C(OP_WRITE) ] = { 839 [ C(RESULT_ACCESS) ] = -1, 840 [ C(RESULT_MISS) ] = -1, 841 }, 842 [ C(OP_PREFETCH) ] = { 843 [ C(RESULT_ACCESS) ] = -1, 844 [ C(RESULT_MISS) ] = -1, 845 }, 846 }, 847 [ C(BPU ) ] = { 848 [ C(OP_READ) ] = { 849 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */ 850 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */ 851 }, 852 [ C(OP_WRITE) ] = { 853 [ C(RESULT_ACCESS) ] = -1, 854 [ C(RESULT_MISS) ] = -1, 855 }, 856 [ C(OP_PREFETCH) ] = { 857 [ C(RESULT_ACCESS) ] = -1, 858 [ C(RESULT_MISS) ] = -1, 859 }, 860 }, 861 [ C(NODE) ] = { 862 [ C(OP_READ) ] = { 863 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 864 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 865 }, 866 [ C(OP_WRITE) ] = { 867 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 868 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 869 }, 870 [ C(OP_PREFETCH) ] = { 871 [ C(RESULT_ACCESS) ] = 0x0, 872 [ C(RESULT_MISS) ] = 0x0, 873 }, 874 }, 875 }; 876 877 static __initconst const u64 hsw_hw_cache_extra_regs 878 [PERF_COUNT_HW_CACHE_MAX] 879 [PERF_COUNT_HW_CACHE_OP_MAX] 880 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 881 { 882 [ C(LL ) ] = { 883 [ C(OP_READ) ] = { 884 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ| 885 HSW_LLC_ACCESS, 886 [ C(RESULT_MISS) ] = HSW_DEMAND_READ| 887 HSW_L3_MISS|HSW_ANY_SNOOP, 888 }, 889 [ C(OP_WRITE) ] = { 890 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE| 891 HSW_LLC_ACCESS, 892 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE| 893 HSW_L3_MISS|HSW_ANY_SNOOP, 894 }, 895 [ C(OP_PREFETCH) ] = { 896 [ C(RESULT_ACCESS) ] = 0x0, 897 [ C(RESULT_MISS) ] = 0x0, 898 }, 899 }, 900 [ C(NODE) ] = { 901 [ C(OP_READ) ] = { 902 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ| 903 HSW_L3_MISS_LOCAL_DRAM| 904 HSW_SNOOP_DRAM, 905 [ C(RESULT_MISS) ] = HSW_DEMAND_READ| 906 HSW_L3_MISS_REMOTE| 907 HSW_SNOOP_DRAM, 908 }, 909 [ C(OP_WRITE) ] = { 910 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE| 911 HSW_L3_MISS_LOCAL_DRAM| 912 HSW_SNOOP_DRAM, 913 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE| 914 HSW_L3_MISS_REMOTE| 915 HSW_SNOOP_DRAM, 916 }, 917 [ C(OP_PREFETCH) ] = { 918 [ C(RESULT_ACCESS) ] = 0x0, 919 [ C(RESULT_MISS) ] = 0x0, 920 }, 921 }, 922 }; 923 924 static __initconst const u64 westmere_hw_cache_event_ids 925 [PERF_COUNT_HW_CACHE_MAX] 926 [PERF_COUNT_HW_CACHE_OP_MAX] 927 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 928 { 929 [ C(L1D) ] = { 930 [ C(OP_READ) ] = { 931 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ 932 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */ 933 }, 934 [ C(OP_WRITE) ] = { 935 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ 936 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */ 937 }, 938 [ C(OP_PREFETCH) ] = { 939 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */ 940 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */ 941 }, 942 }, 943 [ C(L1I ) ] = { 944 [ C(OP_READ) ] = { 945 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ 946 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ 947 }, 948 [ C(OP_WRITE) ] = { 949 [ C(RESULT_ACCESS) ] = -1, 950 [ C(RESULT_MISS) ] = -1, 951 }, 952 [ C(OP_PREFETCH) ] = { 953 [ C(RESULT_ACCESS) ] = 0x0, 954 [ C(RESULT_MISS) ] = 0x0, 955 }, 956 }, 957 [ C(LL ) ] = { 958 [ C(OP_READ) ] = { 959 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ 960 [ C(RESULT_ACCESS) ] = 0x01b7, 961 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ 962 [ C(RESULT_MISS) ] = 0x01b7, 963 }, 964 /* 965 * Use RFO, not WRITEBACK, because a write miss would typically occur 966 * on RFO. 967 */ 968 [ C(OP_WRITE) ] = { 969 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ 970 [ C(RESULT_ACCESS) ] = 0x01b7, 971 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ 972 [ C(RESULT_MISS) ] = 0x01b7, 973 }, 974 [ C(OP_PREFETCH) ] = { 975 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ 976 [ C(RESULT_ACCESS) ] = 0x01b7, 977 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ 978 [ C(RESULT_MISS) ] = 0x01b7, 979 }, 980 }, 981 [ C(DTLB) ] = { 982 [ C(OP_READ) ] = { 983 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ 984 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */ 985 }, 986 [ C(OP_WRITE) ] = { 987 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ 988 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */ 989 }, 990 [ C(OP_PREFETCH) ] = { 991 [ C(RESULT_ACCESS) ] = 0x0, 992 [ C(RESULT_MISS) ] = 0x0, 993 }, 994 }, 995 [ C(ITLB) ] = { 996 [ C(OP_READ) ] = { 997 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */ 998 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */ 999 }, 1000 [ C(OP_WRITE) ] = { 1001 [ C(RESULT_ACCESS) ] = -1, 1002 [ C(RESULT_MISS) ] = -1, 1003 }, 1004 [ C(OP_PREFETCH) ] = { 1005 [ C(RESULT_ACCESS) ] = -1, 1006 [ C(RESULT_MISS) ] = -1, 1007 }, 1008 }, 1009 [ C(BPU ) ] = { 1010 [ C(OP_READ) ] = { 1011 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ 1012 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */ 1013 }, 1014 [ C(OP_WRITE) ] = { 1015 [ C(RESULT_ACCESS) ] = -1, 1016 [ C(RESULT_MISS) ] = -1, 1017 }, 1018 [ C(OP_PREFETCH) ] = { 1019 [ C(RESULT_ACCESS) ] = -1, 1020 [ C(RESULT_MISS) ] = -1, 1021 }, 1022 }, 1023 [ C(NODE) ] = { 1024 [ C(OP_READ) ] = { 1025 [ C(RESULT_ACCESS) ] = 0x01b7, 1026 [ C(RESULT_MISS) ] = 0x01b7, 1027 }, 1028 [ C(OP_WRITE) ] = { 1029 [ C(RESULT_ACCESS) ] = 0x01b7, 1030 [ C(RESULT_MISS) ] = 0x01b7, 1031 }, 1032 [ C(OP_PREFETCH) ] = { 1033 [ C(RESULT_ACCESS) ] = 0x01b7, 1034 [ C(RESULT_MISS) ] = 0x01b7, 1035 }, 1036 }, 1037 }; 1038 1039 /* 1040 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits; 1041 * See IA32 SDM Vol 3B 30.6.1.3 1042 */ 1043 1044 #define NHM_DMND_DATA_RD (1 << 0) 1045 #define NHM_DMND_RFO (1 << 1) 1046 #define NHM_DMND_IFETCH (1 << 2) 1047 #define NHM_DMND_WB (1 << 3) 1048 #define NHM_PF_DATA_RD (1 << 4) 1049 #define NHM_PF_DATA_RFO (1 << 5) 1050 #define NHM_PF_IFETCH (1 << 6) 1051 #define NHM_OFFCORE_OTHER (1 << 7) 1052 #define NHM_UNCORE_HIT (1 << 8) 1053 #define NHM_OTHER_CORE_HIT_SNP (1 << 9) 1054 #define NHM_OTHER_CORE_HITM (1 << 10) 1055 /* reserved */ 1056 #define NHM_REMOTE_CACHE_FWD (1 << 12) 1057 #define NHM_REMOTE_DRAM (1 << 13) 1058 #define NHM_LOCAL_DRAM (1 << 14) 1059 #define NHM_NON_DRAM (1 << 15) 1060 1061 #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD) 1062 #define NHM_REMOTE (NHM_REMOTE_DRAM) 1063 1064 #define NHM_DMND_READ (NHM_DMND_DATA_RD) 1065 #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB) 1066 #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO) 1067 1068 #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM) 1069 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD) 1070 #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS) 1071 1072 static __initconst const u64 nehalem_hw_cache_extra_regs 1073 [PERF_COUNT_HW_CACHE_MAX] 1074 [PERF_COUNT_HW_CACHE_OP_MAX] 1075 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1076 { 1077 [ C(LL ) ] = { 1078 [ C(OP_READ) ] = { 1079 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS, 1080 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS, 1081 }, 1082 [ C(OP_WRITE) ] = { 1083 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS, 1084 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS, 1085 }, 1086 [ C(OP_PREFETCH) ] = { 1087 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS, 1088 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS, 1089 }, 1090 }, 1091 [ C(NODE) ] = { 1092 [ C(OP_READ) ] = { 1093 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE, 1094 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE, 1095 }, 1096 [ C(OP_WRITE) ] = { 1097 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE, 1098 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE, 1099 }, 1100 [ C(OP_PREFETCH) ] = { 1101 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE, 1102 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE, 1103 }, 1104 }, 1105 }; 1106 1107 static __initconst const u64 nehalem_hw_cache_event_ids 1108 [PERF_COUNT_HW_CACHE_MAX] 1109 [PERF_COUNT_HW_CACHE_OP_MAX] 1110 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1111 { 1112 [ C(L1D) ] = { 1113 [ C(OP_READ) ] = { 1114 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ 1115 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */ 1116 }, 1117 [ C(OP_WRITE) ] = { 1118 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ 1119 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */ 1120 }, 1121 [ C(OP_PREFETCH) ] = { 1122 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */ 1123 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */ 1124 }, 1125 }, 1126 [ C(L1I ) ] = { 1127 [ C(OP_READ) ] = { 1128 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ 1129 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ 1130 }, 1131 [ C(OP_WRITE) ] = { 1132 [ C(RESULT_ACCESS) ] = -1, 1133 [ C(RESULT_MISS) ] = -1, 1134 }, 1135 [ C(OP_PREFETCH) ] = { 1136 [ C(RESULT_ACCESS) ] = 0x0, 1137 [ C(RESULT_MISS) ] = 0x0, 1138 }, 1139 }, 1140 [ C(LL ) ] = { 1141 [ C(OP_READ) ] = { 1142 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ 1143 [ C(RESULT_ACCESS) ] = 0x01b7, 1144 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ 1145 [ C(RESULT_MISS) ] = 0x01b7, 1146 }, 1147 /* 1148 * Use RFO, not WRITEBACK, because a write miss would typically occur 1149 * on RFO. 1150 */ 1151 [ C(OP_WRITE) ] = { 1152 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ 1153 [ C(RESULT_ACCESS) ] = 0x01b7, 1154 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ 1155 [ C(RESULT_MISS) ] = 0x01b7, 1156 }, 1157 [ C(OP_PREFETCH) ] = { 1158 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ 1159 [ C(RESULT_ACCESS) ] = 0x01b7, 1160 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ 1161 [ C(RESULT_MISS) ] = 0x01b7, 1162 }, 1163 }, 1164 [ C(DTLB) ] = { 1165 [ C(OP_READ) ] = { 1166 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */ 1167 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */ 1168 }, 1169 [ C(OP_WRITE) ] = { 1170 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */ 1171 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */ 1172 }, 1173 [ C(OP_PREFETCH) ] = { 1174 [ C(RESULT_ACCESS) ] = 0x0, 1175 [ C(RESULT_MISS) ] = 0x0, 1176 }, 1177 }, 1178 [ C(ITLB) ] = { 1179 [ C(OP_READ) ] = { 1180 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */ 1181 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */ 1182 }, 1183 [ C(OP_WRITE) ] = { 1184 [ C(RESULT_ACCESS) ] = -1, 1185 [ C(RESULT_MISS) ] = -1, 1186 }, 1187 [ C(OP_PREFETCH) ] = { 1188 [ C(RESULT_ACCESS) ] = -1, 1189 [ C(RESULT_MISS) ] = -1, 1190 }, 1191 }, 1192 [ C(BPU ) ] = { 1193 [ C(OP_READ) ] = { 1194 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ 1195 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */ 1196 }, 1197 [ C(OP_WRITE) ] = { 1198 [ C(RESULT_ACCESS) ] = -1, 1199 [ C(RESULT_MISS) ] = -1, 1200 }, 1201 [ C(OP_PREFETCH) ] = { 1202 [ C(RESULT_ACCESS) ] = -1, 1203 [ C(RESULT_MISS) ] = -1, 1204 }, 1205 }, 1206 [ C(NODE) ] = { 1207 [ C(OP_READ) ] = { 1208 [ C(RESULT_ACCESS) ] = 0x01b7, 1209 [ C(RESULT_MISS) ] = 0x01b7, 1210 }, 1211 [ C(OP_WRITE) ] = { 1212 [ C(RESULT_ACCESS) ] = 0x01b7, 1213 [ C(RESULT_MISS) ] = 0x01b7, 1214 }, 1215 [ C(OP_PREFETCH) ] = { 1216 [ C(RESULT_ACCESS) ] = 0x01b7, 1217 [ C(RESULT_MISS) ] = 0x01b7, 1218 }, 1219 }, 1220 }; 1221 1222 static __initconst const u64 core2_hw_cache_event_ids 1223 [PERF_COUNT_HW_CACHE_MAX] 1224 [PERF_COUNT_HW_CACHE_OP_MAX] 1225 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1226 { 1227 [ C(L1D) ] = { 1228 [ C(OP_READ) ] = { 1229 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */ 1230 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */ 1231 }, 1232 [ C(OP_WRITE) ] = { 1233 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */ 1234 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */ 1235 }, 1236 [ C(OP_PREFETCH) ] = { 1237 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */ 1238 [ C(RESULT_MISS) ] = 0, 1239 }, 1240 }, 1241 [ C(L1I ) ] = { 1242 [ C(OP_READ) ] = { 1243 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */ 1244 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */ 1245 }, 1246 [ C(OP_WRITE) ] = { 1247 [ C(RESULT_ACCESS) ] = -1, 1248 [ C(RESULT_MISS) ] = -1, 1249 }, 1250 [ C(OP_PREFETCH) ] = { 1251 [ C(RESULT_ACCESS) ] = 0, 1252 [ C(RESULT_MISS) ] = 0, 1253 }, 1254 }, 1255 [ C(LL ) ] = { 1256 [ C(OP_READ) ] = { 1257 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */ 1258 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */ 1259 }, 1260 [ C(OP_WRITE) ] = { 1261 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */ 1262 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */ 1263 }, 1264 [ C(OP_PREFETCH) ] = { 1265 [ C(RESULT_ACCESS) ] = 0, 1266 [ C(RESULT_MISS) ] = 0, 1267 }, 1268 }, 1269 [ C(DTLB) ] = { 1270 [ C(OP_READ) ] = { 1271 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */ 1272 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */ 1273 }, 1274 [ C(OP_WRITE) ] = { 1275 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */ 1276 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */ 1277 }, 1278 [ C(OP_PREFETCH) ] = { 1279 [ C(RESULT_ACCESS) ] = 0, 1280 [ C(RESULT_MISS) ] = 0, 1281 }, 1282 }, 1283 [ C(ITLB) ] = { 1284 [ C(OP_READ) ] = { 1285 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ 1286 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */ 1287 }, 1288 [ C(OP_WRITE) ] = { 1289 [ C(RESULT_ACCESS) ] = -1, 1290 [ C(RESULT_MISS) ] = -1, 1291 }, 1292 [ C(OP_PREFETCH) ] = { 1293 [ C(RESULT_ACCESS) ] = -1, 1294 [ C(RESULT_MISS) ] = -1, 1295 }, 1296 }, 1297 [ C(BPU ) ] = { 1298 [ C(OP_READ) ] = { 1299 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ 1300 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ 1301 }, 1302 [ C(OP_WRITE) ] = { 1303 [ C(RESULT_ACCESS) ] = -1, 1304 [ C(RESULT_MISS) ] = -1, 1305 }, 1306 [ C(OP_PREFETCH) ] = { 1307 [ C(RESULT_ACCESS) ] = -1, 1308 [ C(RESULT_MISS) ] = -1, 1309 }, 1310 }, 1311 }; 1312 1313 static __initconst const u64 atom_hw_cache_event_ids 1314 [PERF_COUNT_HW_CACHE_MAX] 1315 [PERF_COUNT_HW_CACHE_OP_MAX] 1316 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1317 { 1318 [ C(L1D) ] = { 1319 [ C(OP_READ) ] = { 1320 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */ 1321 [ C(RESULT_MISS) ] = 0, 1322 }, 1323 [ C(OP_WRITE) ] = { 1324 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */ 1325 [ C(RESULT_MISS) ] = 0, 1326 }, 1327 [ C(OP_PREFETCH) ] = { 1328 [ C(RESULT_ACCESS) ] = 0x0, 1329 [ C(RESULT_MISS) ] = 0, 1330 }, 1331 }, 1332 [ C(L1I ) ] = { 1333 [ C(OP_READ) ] = { 1334 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ 1335 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ 1336 }, 1337 [ C(OP_WRITE) ] = { 1338 [ C(RESULT_ACCESS) ] = -1, 1339 [ C(RESULT_MISS) ] = -1, 1340 }, 1341 [ C(OP_PREFETCH) ] = { 1342 [ C(RESULT_ACCESS) ] = 0, 1343 [ C(RESULT_MISS) ] = 0, 1344 }, 1345 }, 1346 [ C(LL ) ] = { 1347 [ C(OP_READ) ] = { 1348 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */ 1349 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */ 1350 }, 1351 [ C(OP_WRITE) ] = { 1352 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */ 1353 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */ 1354 }, 1355 [ C(OP_PREFETCH) ] = { 1356 [ C(RESULT_ACCESS) ] = 0, 1357 [ C(RESULT_MISS) ] = 0, 1358 }, 1359 }, 1360 [ C(DTLB) ] = { 1361 [ C(OP_READ) ] = { 1362 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */ 1363 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */ 1364 }, 1365 [ C(OP_WRITE) ] = { 1366 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */ 1367 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */ 1368 }, 1369 [ C(OP_PREFETCH) ] = { 1370 [ C(RESULT_ACCESS) ] = 0, 1371 [ C(RESULT_MISS) ] = 0, 1372 }, 1373 }, 1374 [ C(ITLB) ] = { 1375 [ C(OP_READ) ] = { 1376 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ 1377 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */ 1378 }, 1379 [ C(OP_WRITE) ] = { 1380 [ C(RESULT_ACCESS) ] = -1, 1381 [ C(RESULT_MISS) ] = -1, 1382 }, 1383 [ C(OP_PREFETCH) ] = { 1384 [ C(RESULT_ACCESS) ] = -1, 1385 [ C(RESULT_MISS) ] = -1, 1386 }, 1387 }, 1388 [ C(BPU ) ] = { 1389 [ C(OP_READ) ] = { 1390 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ 1391 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ 1392 }, 1393 [ C(OP_WRITE) ] = { 1394 [ C(RESULT_ACCESS) ] = -1, 1395 [ C(RESULT_MISS) ] = -1, 1396 }, 1397 [ C(OP_PREFETCH) ] = { 1398 [ C(RESULT_ACCESS) ] = -1, 1399 [ C(RESULT_MISS) ] = -1, 1400 }, 1401 }, 1402 }; 1403 1404 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c"); 1405 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2"); 1406 /* no_alloc_cycles.not_delivered */ 1407 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm, 1408 "event=0xca,umask=0x50"); 1409 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2"); 1410 /* uops_retired.all */ 1411 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm, 1412 "event=0xc2,umask=0x10"); 1413 /* uops_retired.all */ 1414 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm, 1415 "event=0xc2,umask=0x10"); 1416 1417 static struct attribute *slm_events_attrs[] = { 1418 EVENT_PTR(td_total_slots_slm), 1419 EVENT_PTR(td_total_slots_scale_slm), 1420 EVENT_PTR(td_fetch_bubbles_slm), 1421 EVENT_PTR(td_fetch_bubbles_scale_slm), 1422 EVENT_PTR(td_slots_issued_slm), 1423 EVENT_PTR(td_slots_retired_slm), 1424 NULL 1425 }; 1426 1427 static struct extra_reg intel_slm_extra_regs[] __read_mostly = 1428 { 1429 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 1430 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0), 1431 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1), 1432 EVENT_EXTRA_END 1433 }; 1434 1435 #define SLM_DMND_READ SNB_DMND_DATA_RD 1436 #define SLM_DMND_WRITE SNB_DMND_RFO 1437 #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO) 1438 1439 #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM) 1440 #define SLM_LLC_ACCESS SNB_RESP_ANY 1441 #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM) 1442 1443 static __initconst const u64 slm_hw_cache_extra_regs 1444 [PERF_COUNT_HW_CACHE_MAX] 1445 [PERF_COUNT_HW_CACHE_OP_MAX] 1446 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1447 { 1448 [ C(LL ) ] = { 1449 [ C(OP_READ) ] = { 1450 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS, 1451 [ C(RESULT_MISS) ] = 0, 1452 }, 1453 [ C(OP_WRITE) ] = { 1454 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS, 1455 [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS, 1456 }, 1457 [ C(OP_PREFETCH) ] = { 1458 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS, 1459 [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS, 1460 }, 1461 }, 1462 }; 1463 1464 static __initconst const u64 slm_hw_cache_event_ids 1465 [PERF_COUNT_HW_CACHE_MAX] 1466 [PERF_COUNT_HW_CACHE_OP_MAX] 1467 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1468 { 1469 [ C(L1D) ] = { 1470 [ C(OP_READ) ] = { 1471 [ C(RESULT_ACCESS) ] = 0, 1472 [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */ 1473 }, 1474 [ C(OP_WRITE) ] = { 1475 [ C(RESULT_ACCESS) ] = 0, 1476 [ C(RESULT_MISS) ] = 0, 1477 }, 1478 [ C(OP_PREFETCH) ] = { 1479 [ C(RESULT_ACCESS) ] = 0, 1480 [ C(RESULT_MISS) ] = 0, 1481 }, 1482 }, 1483 [ C(L1I ) ] = { 1484 [ C(OP_READ) ] = { 1485 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */ 1486 [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */ 1487 }, 1488 [ C(OP_WRITE) ] = { 1489 [ C(RESULT_ACCESS) ] = -1, 1490 [ C(RESULT_MISS) ] = -1, 1491 }, 1492 [ C(OP_PREFETCH) ] = { 1493 [ C(RESULT_ACCESS) ] = 0, 1494 [ C(RESULT_MISS) ] = 0, 1495 }, 1496 }, 1497 [ C(LL ) ] = { 1498 [ C(OP_READ) ] = { 1499 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ 1500 [ C(RESULT_ACCESS) ] = 0x01b7, 1501 [ C(RESULT_MISS) ] = 0, 1502 }, 1503 [ C(OP_WRITE) ] = { 1504 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ 1505 [ C(RESULT_ACCESS) ] = 0x01b7, 1506 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ 1507 [ C(RESULT_MISS) ] = 0x01b7, 1508 }, 1509 [ C(OP_PREFETCH) ] = { 1510 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ 1511 [ C(RESULT_ACCESS) ] = 0x01b7, 1512 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ 1513 [ C(RESULT_MISS) ] = 0x01b7, 1514 }, 1515 }, 1516 [ C(DTLB) ] = { 1517 [ C(OP_READ) ] = { 1518 [ C(RESULT_ACCESS) ] = 0, 1519 [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */ 1520 }, 1521 [ C(OP_WRITE) ] = { 1522 [ C(RESULT_ACCESS) ] = 0, 1523 [ C(RESULT_MISS) ] = 0, 1524 }, 1525 [ C(OP_PREFETCH) ] = { 1526 [ C(RESULT_ACCESS) ] = 0, 1527 [ C(RESULT_MISS) ] = 0, 1528 }, 1529 }, 1530 [ C(ITLB) ] = { 1531 [ C(OP_READ) ] = { 1532 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ 1533 [ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */ 1534 }, 1535 [ C(OP_WRITE) ] = { 1536 [ C(RESULT_ACCESS) ] = -1, 1537 [ C(RESULT_MISS) ] = -1, 1538 }, 1539 [ C(OP_PREFETCH) ] = { 1540 [ C(RESULT_ACCESS) ] = -1, 1541 [ C(RESULT_MISS) ] = -1, 1542 }, 1543 }, 1544 [ C(BPU ) ] = { 1545 [ C(OP_READ) ] = { 1546 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ 1547 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ 1548 }, 1549 [ C(OP_WRITE) ] = { 1550 [ C(RESULT_ACCESS) ] = -1, 1551 [ C(RESULT_MISS) ] = -1, 1552 }, 1553 [ C(OP_PREFETCH) ] = { 1554 [ C(RESULT_ACCESS) ] = -1, 1555 [ C(RESULT_MISS) ] = -1, 1556 }, 1557 }, 1558 }; 1559 1560 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c"); 1561 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3"); 1562 /* UOPS_NOT_DELIVERED.ANY */ 1563 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c"); 1564 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */ 1565 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02"); 1566 /* UOPS_RETIRED.ANY */ 1567 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2"); 1568 /* UOPS_ISSUED.ANY */ 1569 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e"); 1570 1571 static struct attribute *glm_events_attrs[] = { 1572 EVENT_PTR(td_total_slots_glm), 1573 EVENT_PTR(td_total_slots_scale_glm), 1574 EVENT_PTR(td_fetch_bubbles_glm), 1575 EVENT_PTR(td_recovery_bubbles_glm), 1576 EVENT_PTR(td_slots_issued_glm), 1577 EVENT_PTR(td_slots_retired_glm), 1578 NULL 1579 }; 1580 1581 static struct extra_reg intel_glm_extra_regs[] __read_mostly = { 1582 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 1583 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0), 1584 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1), 1585 EVENT_EXTRA_END 1586 }; 1587 1588 #define GLM_DEMAND_DATA_RD BIT_ULL(0) 1589 #define GLM_DEMAND_RFO BIT_ULL(1) 1590 #define GLM_ANY_RESPONSE BIT_ULL(16) 1591 #define GLM_SNP_NONE_OR_MISS BIT_ULL(33) 1592 #define GLM_DEMAND_READ GLM_DEMAND_DATA_RD 1593 #define GLM_DEMAND_WRITE GLM_DEMAND_RFO 1594 #define GLM_DEMAND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO) 1595 #define GLM_LLC_ACCESS GLM_ANY_RESPONSE 1596 #define GLM_SNP_ANY (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM) 1597 #define GLM_LLC_MISS (GLM_SNP_ANY|SNB_NON_DRAM) 1598 1599 static __initconst const u64 glm_hw_cache_event_ids 1600 [PERF_COUNT_HW_CACHE_MAX] 1601 [PERF_COUNT_HW_CACHE_OP_MAX] 1602 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1603 [C(L1D)] = { 1604 [C(OP_READ)] = { 1605 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 1606 [C(RESULT_MISS)] = 0x0, 1607 }, 1608 [C(OP_WRITE)] = { 1609 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 1610 [C(RESULT_MISS)] = 0x0, 1611 }, 1612 [C(OP_PREFETCH)] = { 1613 [C(RESULT_ACCESS)] = 0x0, 1614 [C(RESULT_MISS)] = 0x0, 1615 }, 1616 }, 1617 [C(L1I)] = { 1618 [C(OP_READ)] = { 1619 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */ 1620 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */ 1621 }, 1622 [C(OP_WRITE)] = { 1623 [C(RESULT_ACCESS)] = -1, 1624 [C(RESULT_MISS)] = -1, 1625 }, 1626 [C(OP_PREFETCH)] = { 1627 [C(RESULT_ACCESS)] = 0x0, 1628 [C(RESULT_MISS)] = 0x0, 1629 }, 1630 }, 1631 [C(LL)] = { 1632 [C(OP_READ)] = { 1633 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1634 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1635 }, 1636 [C(OP_WRITE)] = { 1637 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1638 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1639 }, 1640 [C(OP_PREFETCH)] = { 1641 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1642 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1643 }, 1644 }, 1645 [C(DTLB)] = { 1646 [C(OP_READ)] = { 1647 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 1648 [C(RESULT_MISS)] = 0x0, 1649 }, 1650 [C(OP_WRITE)] = { 1651 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 1652 [C(RESULT_MISS)] = 0x0, 1653 }, 1654 [C(OP_PREFETCH)] = { 1655 [C(RESULT_ACCESS)] = 0x0, 1656 [C(RESULT_MISS)] = 0x0, 1657 }, 1658 }, 1659 [C(ITLB)] = { 1660 [C(OP_READ)] = { 1661 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */ 1662 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */ 1663 }, 1664 [C(OP_WRITE)] = { 1665 [C(RESULT_ACCESS)] = -1, 1666 [C(RESULT_MISS)] = -1, 1667 }, 1668 [C(OP_PREFETCH)] = { 1669 [C(RESULT_ACCESS)] = -1, 1670 [C(RESULT_MISS)] = -1, 1671 }, 1672 }, 1673 [C(BPU)] = { 1674 [C(OP_READ)] = { 1675 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ 1676 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */ 1677 }, 1678 [C(OP_WRITE)] = { 1679 [C(RESULT_ACCESS)] = -1, 1680 [C(RESULT_MISS)] = -1, 1681 }, 1682 [C(OP_PREFETCH)] = { 1683 [C(RESULT_ACCESS)] = -1, 1684 [C(RESULT_MISS)] = -1, 1685 }, 1686 }, 1687 }; 1688 1689 static __initconst const u64 glm_hw_cache_extra_regs 1690 [PERF_COUNT_HW_CACHE_MAX] 1691 [PERF_COUNT_HW_CACHE_OP_MAX] 1692 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1693 [C(LL)] = { 1694 [C(OP_READ)] = { 1695 [C(RESULT_ACCESS)] = GLM_DEMAND_READ| 1696 GLM_LLC_ACCESS, 1697 [C(RESULT_MISS)] = GLM_DEMAND_READ| 1698 GLM_LLC_MISS, 1699 }, 1700 [C(OP_WRITE)] = { 1701 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE| 1702 GLM_LLC_ACCESS, 1703 [C(RESULT_MISS)] = GLM_DEMAND_WRITE| 1704 GLM_LLC_MISS, 1705 }, 1706 [C(OP_PREFETCH)] = { 1707 [C(RESULT_ACCESS)] = GLM_DEMAND_PREFETCH| 1708 GLM_LLC_ACCESS, 1709 [C(RESULT_MISS)] = GLM_DEMAND_PREFETCH| 1710 GLM_LLC_MISS, 1711 }, 1712 }, 1713 }; 1714 1715 static __initconst const u64 glp_hw_cache_event_ids 1716 [PERF_COUNT_HW_CACHE_MAX] 1717 [PERF_COUNT_HW_CACHE_OP_MAX] 1718 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1719 [C(L1D)] = { 1720 [C(OP_READ)] = { 1721 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 1722 [C(RESULT_MISS)] = 0x0, 1723 }, 1724 [C(OP_WRITE)] = { 1725 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 1726 [C(RESULT_MISS)] = 0x0, 1727 }, 1728 [C(OP_PREFETCH)] = { 1729 [C(RESULT_ACCESS)] = 0x0, 1730 [C(RESULT_MISS)] = 0x0, 1731 }, 1732 }, 1733 [C(L1I)] = { 1734 [C(OP_READ)] = { 1735 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */ 1736 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */ 1737 }, 1738 [C(OP_WRITE)] = { 1739 [C(RESULT_ACCESS)] = -1, 1740 [C(RESULT_MISS)] = -1, 1741 }, 1742 [C(OP_PREFETCH)] = { 1743 [C(RESULT_ACCESS)] = 0x0, 1744 [C(RESULT_MISS)] = 0x0, 1745 }, 1746 }, 1747 [C(LL)] = { 1748 [C(OP_READ)] = { 1749 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1750 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1751 }, 1752 [C(OP_WRITE)] = { 1753 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1754 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1755 }, 1756 [C(OP_PREFETCH)] = { 1757 [C(RESULT_ACCESS)] = 0x0, 1758 [C(RESULT_MISS)] = 0x0, 1759 }, 1760 }, 1761 [C(DTLB)] = { 1762 [C(OP_READ)] = { 1763 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 1764 [C(RESULT_MISS)] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */ 1765 }, 1766 [C(OP_WRITE)] = { 1767 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 1768 [C(RESULT_MISS)] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */ 1769 }, 1770 [C(OP_PREFETCH)] = { 1771 [C(RESULT_ACCESS)] = 0x0, 1772 [C(RESULT_MISS)] = 0x0, 1773 }, 1774 }, 1775 [C(ITLB)] = { 1776 [C(OP_READ)] = { 1777 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */ 1778 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */ 1779 }, 1780 [C(OP_WRITE)] = { 1781 [C(RESULT_ACCESS)] = -1, 1782 [C(RESULT_MISS)] = -1, 1783 }, 1784 [C(OP_PREFETCH)] = { 1785 [C(RESULT_ACCESS)] = -1, 1786 [C(RESULT_MISS)] = -1, 1787 }, 1788 }, 1789 [C(BPU)] = { 1790 [C(OP_READ)] = { 1791 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ 1792 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */ 1793 }, 1794 [C(OP_WRITE)] = { 1795 [C(RESULT_ACCESS)] = -1, 1796 [C(RESULT_MISS)] = -1, 1797 }, 1798 [C(OP_PREFETCH)] = { 1799 [C(RESULT_ACCESS)] = -1, 1800 [C(RESULT_MISS)] = -1, 1801 }, 1802 }, 1803 }; 1804 1805 static __initconst const u64 glp_hw_cache_extra_regs 1806 [PERF_COUNT_HW_CACHE_MAX] 1807 [PERF_COUNT_HW_CACHE_OP_MAX] 1808 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1809 [C(LL)] = { 1810 [C(OP_READ)] = { 1811 [C(RESULT_ACCESS)] = GLM_DEMAND_READ| 1812 GLM_LLC_ACCESS, 1813 [C(RESULT_MISS)] = GLM_DEMAND_READ| 1814 GLM_LLC_MISS, 1815 }, 1816 [C(OP_WRITE)] = { 1817 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE| 1818 GLM_LLC_ACCESS, 1819 [C(RESULT_MISS)] = GLM_DEMAND_WRITE| 1820 GLM_LLC_MISS, 1821 }, 1822 [C(OP_PREFETCH)] = { 1823 [C(RESULT_ACCESS)] = 0x0, 1824 [C(RESULT_MISS)] = 0x0, 1825 }, 1826 }, 1827 }; 1828 1829 #define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */ 1830 #define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */ 1831 #define KNL_MCDRAM_LOCAL BIT_ULL(21) 1832 #define KNL_MCDRAM_FAR BIT_ULL(22) 1833 #define KNL_DDR_LOCAL BIT_ULL(23) 1834 #define KNL_DDR_FAR BIT_ULL(24) 1835 #define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \ 1836 KNL_DDR_LOCAL | KNL_DDR_FAR) 1837 #define KNL_L2_READ SLM_DMND_READ 1838 #define KNL_L2_WRITE SLM_DMND_WRITE 1839 #define KNL_L2_PREFETCH SLM_DMND_PREFETCH 1840 #define KNL_L2_ACCESS SLM_LLC_ACCESS 1841 #define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \ 1842 KNL_DRAM_ANY | SNB_SNP_ANY | \ 1843 SNB_NON_DRAM) 1844 1845 static __initconst const u64 knl_hw_cache_extra_regs 1846 [PERF_COUNT_HW_CACHE_MAX] 1847 [PERF_COUNT_HW_CACHE_OP_MAX] 1848 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1849 [C(LL)] = { 1850 [C(OP_READ)] = { 1851 [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS, 1852 [C(RESULT_MISS)] = 0, 1853 }, 1854 [C(OP_WRITE)] = { 1855 [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS, 1856 [C(RESULT_MISS)] = KNL_L2_WRITE | KNL_L2_MISS, 1857 }, 1858 [C(OP_PREFETCH)] = { 1859 [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS, 1860 [C(RESULT_MISS)] = KNL_L2_PREFETCH | KNL_L2_MISS, 1861 }, 1862 }, 1863 }; 1864 1865 /* 1866 * Used from PMIs where the LBRs are already disabled. 1867 * 1868 * This function could be called consecutively. It is required to remain in 1869 * disabled state if called consecutively. 1870 * 1871 * During consecutive calls, the same disable value will be written to related 1872 * registers, so the PMU state remains unchanged. 1873 * 1874 * intel_bts events don't coexist with intel PMU's BTS events because of 1875 * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them 1876 * disabled around intel PMU's event batching etc, only inside the PMI handler. 1877 */ 1878 static void __intel_pmu_disable_all(void) 1879 { 1880 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1881 1882 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0); 1883 1884 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) 1885 intel_pmu_disable_bts(); 1886 1887 intel_pmu_pebs_disable_all(); 1888 } 1889 1890 static void intel_pmu_disable_all(void) 1891 { 1892 __intel_pmu_disable_all(); 1893 intel_pmu_lbr_disable_all(); 1894 } 1895 1896 static void __intel_pmu_enable_all(int added, bool pmi) 1897 { 1898 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1899 1900 intel_pmu_pebs_enable_all(); 1901 intel_pmu_lbr_enable_all(pmi); 1902 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 1903 x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask); 1904 1905 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) { 1906 struct perf_event *event = 1907 cpuc->events[INTEL_PMC_IDX_FIXED_BTS]; 1908 1909 if (WARN_ON_ONCE(!event)) 1910 return; 1911 1912 intel_pmu_enable_bts(event->hw.config); 1913 } 1914 } 1915 1916 static void intel_pmu_enable_all(int added) 1917 { 1918 __intel_pmu_enable_all(added, false); 1919 } 1920 1921 /* 1922 * Workaround for: 1923 * Intel Errata AAK100 (model 26) 1924 * Intel Errata AAP53 (model 30) 1925 * Intel Errata BD53 (model 44) 1926 * 1927 * The official story: 1928 * These chips need to be 'reset' when adding counters by programming the 1929 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either 1930 * in sequence on the same PMC or on different PMCs. 1931 * 1932 * In practise it appears some of these events do in fact count, and 1933 * we need to programm all 4 events. 1934 */ 1935 static void intel_pmu_nhm_workaround(void) 1936 { 1937 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1938 static const unsigned long nhm_magic[4] = { 1939 0x4300B5, 1940 0x4300D2, 1941 0x4300B1, 1942 0x4300B1 1943 }; 1944 struct perf_event *event; 1945 int i; 1946 1947 /* 1948 * The Errata requires below steps: 1949 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL; 1950 * 2) Configure 4 PERFEVTSELx with the magic events and clear 1951 * the corresponding PMCx; 1952 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL; 1953 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL; 1954 * 5) Clear 4 pairs of ERFEVTSELx and PMCx; 1955 */ 1956 1957 /* 1958 * The real steps we choose are a little different from above. 1959 * A) To reduce MSR operations, we don't run step 1) as they 1960 * are already cleared before this function is called; 1961 * B) Call x86_perf_event_update to save PMCx before configuring 1962 * PERFEVTSELx with magic number; 1963 * C) With step 5), we do clear only when the PERFEVTSELx is 1964 * not used currently. 1965 * D) Call x86_perf_event_set_period to restore PMCx; 1966 */ 1967 1968 /* We always operate 4 pairs of PERF Counters */ 1969 for (i = 0; i < 4; i++) { 1970 event = cpuc->events[i]; 1971 if (event) 1972 x86_perf_event_update(event); 1973 } 1974 1975 for (i = 0; i < 4; i++) { 1976 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]); 1977 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0); 1978 } 1979 1980 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf); 1981 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0); 1982 1983 for (i = 0; i < 4; i++) { 1984 event = cpuc->events[i]; 1985 1986 if (event) { 1987 x86_perf_event_set_period(event); 1988 __x86_pmu_enable_event(&event->hw, 1989 ARCH_PERFMON_EVENTSEL_ENABLE); 1990 } else 1991 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0); 1992 } 1993 } 1994 1995 static void intel_pmu_nhm_enable_all(int added) 1996 { 1997 if (added) 1998 intel_pmu_nhm_workaround(); 1999 intel_pmu_enable_all(added); 2000 } 2001 2002 static void enable_counter_freeze(void) 2003 { 2004 update_debugctlmsr(get_debugctlmsr() | 2005 DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI); 2006 } 2007 2008 static void disable_counter_freeze(void) 2009 { 2010 update_debugctlmsr(get_debugctlmsr() & 2011 ~DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI); 2012 } 2013 2014 static inline u64 intel_pmu_get_status(void) 2015 { 2016 u64 status; 2017 2018 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); 2019 2020 return status; 2021 } 2022 2023 static inline void intel_pmu_ack_status(u64 ack) 2024 { 2025 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack); 2026 } 2027 2028 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc) 2029 { 2030 int idx = hwc->idx - INTEL_PMC_IDX_FIXED; 2031 u64 ctrl_val, mask; 2032 2033 mask = 0xfULL << (idx * 4); 2034 2035 rdmsrl(hwc->config_base, ctrl_val); 2036 ctrl_val &= ~mask; 2037 wrmsrl(hwc->config_base, ctrl_val); 2038 } 2039 2040 static inline bool event_is_checkpointed(struct perf_event *event) 2041 { 2042 return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0; 2043 } 2044 2045 static void intel_pmu_disable_event(struct perf_event *event) 2046 { 2047 struct hw_perf_event *hwc = &event->hw; 2048 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2049 2050 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) { 2051 intel_pmu_disable_bts(); 2052 intel_pmu_drain_bts_buffer(); 2053 return; 2054 } 2055 2056 cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx); 2057 cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx); 2058 cpuc->intel_cp_status &= ~(1ull << hwc->idx); 2059 2060 if (unlikely(event->attr.precise_ip)) 2061 intel_pmu_pebs_disable(event); 2062 2063 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) { 2064 intel_pmu_disable_fixed(hwc); 2065 return; 2066 } 2067 2068 x86_pmu_disable_event(event); 2069 } 2070 2071 static void intel_pmu_del_event(struct perf_event *event) 2072 { 2073 if (needs_branch_stack(event)) 2074 intel_pmu_lbr_del(event); 2075 if (event->attr.precise_ip) 2076 intel_pmu_pebs_del(event); 2077 } 2078 2079 static void intel_pmu_read_event(struct perf_event *event) 2080 { 2081 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD) 2082 intel_pmu_auto_reload_read(event); 2083 else 2084 x86_perf_event_update(event); 2085 } 2086 2087 static void intel_pmu_enable_fixed(struct perf_event *event) 2088 { 2089 struct hw_perf_event *hwc = &event->hw; 2090 int idx = hwc->idx - INTEL_PMC_IDX_FIXED; 2091 u64 ctrl_val, mask, bits = 0; 2092 2093 /* 2094 * Enable IRQ generation (0x8), if not PEBS, 2095 * and enable ring-3 counting (0x2) and ring-0 counting (0x1) 2096 * if requested: 2097 */ 2098 if (!event->attr.precise_ip) 2099 bits |= 0x8; 2100 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR) 2101 bits |= 0x2; 2102 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS) 2103 bits |= 0x1; 2104 2105 /* 2106 * ANY bit is supported in v3 and up 2107 */ 2108 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY) 2109 bits |= 0x4; 2110 2111 bits <<= (idx * 4); 2112 mask = 0xfULL << (idx * 4); 2113 2114 rdmsrl(hwc->config_base, ctrl_val); 2115 ctrl_val &= ~mask; 2116 ctrl_val |= bits; 2117 wrmsrl(hwc->config_base, ctrl_val); 2118 } 2119 2120 static void intel_pmu_enable_event(struct perf_event *event) 2121 { 2122 struct hw_perf_event *hwc = &event->hw; 2123 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2124 2125 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) { 2126 if (!__this_cpu_read(cpu_hw_events.enabled)) 2127 return; 2128 2129 intel_pmu_enable_bts(hwc->config); 2130 return; 2131 } 2132 2133 if (event->attr.exclude_host) 2134 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx); 2135 if (event->attr.exclude_guest) 2136 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx); 2137 2138 if (unlikely(event_is_checkpointed(event))) 2139 cpuc->intel_cp_status |= (1ull << hwc->idx); 2140 2141 if (unlikely(event->attr.precise_ip)) 2142 intel_pmu_pebs_enable(event); 2143 2144 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) { 2145 intel_pmu_enable_fixed(event); 2146 return; 2147 } 2148 2149 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); 2150 } 2151 2152 static void intel_pmu_add_event(struct perf_event *event) 2153 { 2154 if (event->attr.precise_ip) 2155 intel_pmu_pebs_add(event); 2156 if (needs_branch_stack(event)) 2157 intel_pmu_lbr_add(event); 2158 } 2159 2160 /* 2161 * Save and restart an expired event. Called by NMI contexts, 2162 * so it has to be careful about preempting normal event ops: 2163 */ 2164 int intel_pmu_save_and_restart(struct perf_event *event) 2165 { 2166 x86_perf_event_update(event); 2167 /* 2168 * For a checkpointed counter always reset back to 0. This 2169 * avoids a situation where the counter overflows, aborts the 2170 * transaction and is then set back to shortly before the 2171 * overflow, and overflows and aborts again. 2172 */ 2173 if (unlikely(event_is_checkpointed(event))) { 2174 /* No race with NMIs because the counter should not be armed */ 2175 wrmsrl(event->hw.event_base, 0); 2176 local64_set(&event->hw.prev_count, 0); 2177 } 2178 return x86_perf_event_set_period(event); 2179 } 2180 2181 static void intel_pmu_reset(void) 2182 { 2183 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds); 2184 unsigned long flags; 2185 int idx; 2186 2187 if (!x86_pmu.num_counters) 2188 return; 2189 2190 local_irq_save(flags); 2191 2192 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id()); 2193 2194 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 2195 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull); 2196 wrmsrl_safe(x86_pmu_event_addr(idx), 0ull); 2197 } 2198 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) 2199 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull); 2200 2201 if (ds) 2202 ds->bts_index = ds->bts_buffer_base; 2203 2204 /* Ack all overflows and disable fixed counters */ 2205 if (x86_pmu.version >= 2) { 2206 intel_pmu_ack_status(intel_pmu_get_status()); 2207 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0); 2208 } 2209 2210 /* Reset LBRs and LBR freezing */ 2211 if (x86_pmu.lbr_nr) { 2212 update_debugctlmsr(get_debugctlmsr() & 2213 ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR)); 2214 } 2215 2216 local_irq_restore(flags); 2217 } 2218 2219 static int handle_pmi_common(struct pt_regs *regs, u64 status) 2220 { 2221 struct perf_sample_data data; 2222 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2223 int bit; 2224 int handled = 0; 2225 2226 inc_irq_stat(apic_perf_irqs); 2227 2228 /* 2229 * Ignore a range of extra bits in status that do not indicate 2230 * overflow by themselves. 2231 */ 2232 status &= ~(GLOBAL_STATUS_COND_CHG | 2233 GLOBAL_STATUS_ASIF | 2234 GLOBAL_STATUS_LBRS_FROZEN); 2235 if (!status) 2236 return 0; 2237 /* 2238 * In case multiple PEBS events are sampled at the same time, 2239 * it is possible to have GLOBAL_STATUS bit 62 set indicating 2240 * PEBS buffer overflow and also seeing at most 3 PEBS counters 2241 * having their bits set in the status register. This is a sign 2242 * that there was at least one PEBS record pending at the time 2243 * of the PMU interrupt. PEBS counters must only be processed 2244 * via the drain_pebs() calls and not via the regular sample 2245 * processing loop coming after that the function, otherwise 2246 * phony regular samples may be generated in the sampling buffer 2247 * not marked with the EXACT tag. Another possibility is to have 2248 * one PEBS event and at least one non-PEBS event whic hoverflows 2249 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will 2250 * not be set, yet the overflow status bit for the PEBS counter will 2251 * be on Skylake. 2252 * 2253 * To avoid this problem, we systematically ignore the PEBS-enabled 2254 * counters from the GLOBAL_STATUS mask and we always process PEBS 2255 * events via drain_pebs(). 2256 */ 2257 if (x86_pmu.flags & PMU_FL_PEBS_ALL) 2258 status &= ~cpuc->pebs_enabled; 2259 else 2260 status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK); 2261 2262 /* 2263 * PEBS overflow sets bit 62 in the global status register 2264 */ 2265 if (__test_and_clear_bit(62, (unsigned long *)&status)) { 2266 handled++; 2267 x86_pmu.drain_pebs(regs); 2268 status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI; 2269 } 2270 2271 /* 2272 * Intel PT 2273 */ 2274 if (__test_and_clear_bit(55, (unsigned long *)&status)) { 2275 handled++; 2276 intel_pt_interrupt(); 2277 } 2278 2279 /* 2280 * Checkpointed counters can lead to 'spurious' PMIs because the 2281 * rollback caused by the PMI will have cleared the overflow status 2282 * bit. Therefore always force probe these counters. 2283 */ 2284 status |= cpuc->intel_cp_status; 2285 2286 for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) { 2287 struct perf_event *event = cpuc->events[bit]; 2288 2289 handled++; 2290 2291 if (!test_bit(bit, cpuc->active_mask)) 2292 continue; 2293 2294 if (!intel_pmu_save_and_restart(event)) 2295 continue; 2296 2297 perf_sample_data_init(&data, 0, event->hw.last_period); 2298 2299 if (has_branch_stack(event)) 2300 data.br_stack = &cpuc->lbr_stack; 2301 2302 if (perf_event_overflow(event, &data, regs)) 2303 x86_pmu_stop(event, 0); 2304 } 2305 2306 return handled; 2307 } 2308 2309 static bool disable_counter_freezing; 2310 static int __init intel_perf_counter_freezing_setup(char *s) 2311 { 2312 disable_counter_freezing = true; 2313 pr_info("Intel PMU Counter freezing feature disabled\n"); 2314 return 1; 2315 } 2316 __setup("disable_counter_freezing", intel_perf_counter_freezing_setup); 2317 2318 /* 2319 * Simplified handler for Arch Perfmon v4: 2320 * - We rely on counter freezing/unfreezing to enable/disable the PMU. 2321 * This is done automatically on PMU ack. 2322 * - Ack the PMU only after the APIC. 2323 */ 2324 2325 static int intel_pmu_handle_irq_v4(struct pt_regs *regs) 2326 { 2327 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2328 int handled = 0; 2329 bool bts = false; 2330 u64 status; 2331 int pmu_enabled = cpuc->enabled; 2332 int loops = 0; 2333 2334 /* PMU has been disabled because of counter freezing */ 2335 cpuc->enabled = 0; 2336 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) { 2337 bts = true; 2338 intel_bts_disable_local(); 2339 handled = intel_pmu_drain_bts_buffer(); 2340 handled += intel_bts_interrupt(); 2341 } 2342 status = intel_pmu_get_status(); 2343 if (!status) 2344 goto done; 2345 again: 2346 intel_pmu_lbr_read(); 2347 if (++loops > 100) { 2348 static bool warned; 2349 2350 if (!warned) { 2351 WARN(1, "perfevents: irq loop stuck!\n"); 2352 perf_event_print_debug(); 2353 warned = true; 2354 } 2355 intel_pmu_reset(); 2356 goto done; 2357 } 2358 2359 2360 handled += handle_pmi_common(regs, status); 2361 done: 2362 /* Ack the PMI in the APIC */ 2363 apic_write(APIC_LVTPC, APIC_DM_NMI); 2364 2365 /* 2366 * The counters start counting immediately while ack the status. 2367 * Make it as close as possible to IRET. This avoids bogus 2368 * freezing on Skylake CPUs. 2369 */ 2370 if (status) { 2371 intel_pmu_ack_status(status); 2372 } else { 2373 /* 2374 * CPU may issues two PMIs very close to each other. 2375 * When the PMI handler services the first one, the 2376 * GLOBAL_STATUS is already updated to reflect both. 2377 * When it IRETs, the second PMI is immediately 2378 * handled and it sees clear status. At the meantime, 2379 * there may be a third PMI, because the freezing bit 2380 * isn't set since the ack in first PMI handlers. 2381 * Double check if there is more work to be done. 2382 */ 2383 status = intel_pmu_get_status(); 2384 if (status) 2385 goto again; 2386 } 2387 2388 if (bts) 2389 intel_bts_enable_local(); 2390 cpuc->enabled = pmu_enabled; 2391 return handled; 2392 } 2393 2394 /* 2395 * This handler is triggered by the local APIC, so the APIC IRQ handling 2396 * rules apply: 2397 */ 2398 static int intel_pmu_handle_irq(struct pt_regs *regs) 2399 { 2400 struct cpu_hw_events *cpuc; 2401 int loops; 2402 u64 status; 2403 int handled; 2404 int pmu_enabled; 2405 2406 cpuc = this_cpu_ptr(&cpu_hw_events); 2407 2408 /* 2409 * Save the PMU state. 2410 * It needs to be restored when leaving the handler. 2411 */ 2412 pmu_enabled = cpuc->enabled; 2413 /* 2414 * No known reason to not always do late ACK, 2415 * but just in case do it opt-in. 2416 */ 2417 if (!x86_pmu.late_ack) 2418 apic_write(APIC_LVTPC, APIC_DM_NMI); 2419 intel_bts_disable_local(); 2420 cpuc->enabled = 0; 2421 __intel_pmu_disable_all(); 2422 handled = intel_pmu_drain_bts_buffer(); 2423 handled += intel_bts_interrupt(); 2424 status = intel_pmu_get_status(); 2425 if (!status) 2426 goto done; 2427 2428 loops = 0; 2429 again: 2430 intel_pmu_lbr_read(); 2431 intel_pmu_ack_status(status); 2432 if (++loops > 100) { 2433 static bool warned; 2434 2435 if (!warned) { 2436 WARN(1, "perfevents: irq loop stuck!\n"); 2437 perf_event_print_debug(); 2438 warned = true; 2439 } 2440 intel_pmu_reset(); 2441 goto done; 2442 } 2443 2444 handled += handle_pmi_common(regs, status); 2445 2446 /* 2447 * Repeat if there is more work to be done: 2448 */ 2449 status = intel_pmu_get_status(); 2450 if (status) 2451 goto again; 2452 2453 done: 2454 /* Only restore PMU state when it's active. See x86_pmu_disable(). */ 2455 cpuc->enabled = pmu_enabled; 2456 if (pmu_enabled) 2457 __intel_pmu_enable_all(0, true); 2458 intel_bts_enable_local(); 2459 2460 /* 2461 * Only unmask the NMI after the overflow counters 2462 * have been reset. This avoids spurious NMIs on 2463 * Haswell CPUs. 2464 */ 2465 if (x86_pmu.late_ack) 2466 apic_write(APIC_LVTPC, APIC_DM_NMI); 2467 return handled; 2468 } 2469 2470 static struct event_constraint * 2471 intel_bts_constraints(struct perf_event *event) 2472 { 2473 struct hw_perf_event *hwc = &event->hw; 2474 unsigned int hw_event, bts_event; 2475 2476 if (event->attr.freq) 2477 return NULL; 2478 2479 hw_event = hwc->config & INTEL_ARCH_EVENT_MASK; 2480 bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 2481 2482 if (unlikely(hw_event == bts_event && hwc->sample_period == 1)) 2483 return &bts_constraint; 2484 2485 return NULL; 2486 } 2487 2488 static int intel_alt_er(int idx, u64 config) 2489 { 2490 int alt_idx = idx; 2491 2492 if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1)) 2493 return idx; 2494 2495 if (idx == EXTRA_REG_RSP_0) 2496 alt_idx = EXTRA_REG_RSP_1; 2497 2498 if (idx == EXTRA_REG_RSP_1) 2499 alt_idx = EXTRA_REG_RSP_0; 2500 2501 if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask) 2502 return idx; 2503 2504 return alt_idx; 2505 } 2506 2507 static void intel_fixup_er(struct perf_event *event, int idx) 2508 { 2509 event->hw.extra_reg.idx = idx; 2510 2511 if (idx == EXTRA_REG_RSP_0) { 2512 event->hw.config &= ~INTEL_ARCH_EVENT_MASK; 2513 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event; 2514 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0; 2515 } else if (idx == EXTRA_REG_RSP_1) { 2516 event->hw.config &= ~INTEL_ARCH_EVENT_MASK; 2517 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event; 2518 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1; 2519 } 2520 } 2521 2522 /* 2523 * manage allocation of shared extra msr for certain events 2524 * 2525 * sharing can be: 2526 * per-cpu: to be shared between the various events on a single PMU 2527 * per-core: per-cpu + shared by HT threads 2528 */ 2529 static struct event_constraint * 2530 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc, 2531 struct perf_event *event, 2532 struct hw_perf_event_extra *reg) 2533 { 2534 struct event_constraint *c = &emptyconstraint; 2535 struct er_account *era; 2536 unsigned long flags; 2537 int idx = reg->idx; 2538 2539 /* 2540 * reg->alloc can be set due to existing state, so for fake cpuc we 2541 * need to ignore this, otherwise we might fail to allocate proper fake 2542 * state for this extra reg constraint. Also see the comment below. 2543 */ 2544 if (reg->alloc && !cpuc->is_fake) 2545 return NULL; /* call x86_get_event_constraint() */ 2546 2547 again: 2548 era = &cpuc->shared_regs->regs[idx]; 2549 /* 2550 * we use spin_lock_irqsave() to avoid lockdep issues when 2551 * passing a fake cpuc 2552 */ 2553 raw_spin_lock_irqsave(&era->lock, flags); 2554 2555 if (!atomic_read(&era->ref) || era->config == reg->config) { 2556 2557 /* 2558 * If its a fake cpuc -- as per validate_{group,event}() we 2559 * shouldn't touch event state and we can avoid doing so 2560 * since both will only call get_event_constraints() once 2561 * on each event, this avoids the need for reg->alloc. 2562 * 2563 * Not doing the ER fixup will only result in era->reg being 2564 * wrong, but since we won't actually try and program hardware 2565 * this isn't a problem either. 2566 */ 2567 if (!cpuc->is_fake) { 2568 if (idx != reg->idx) 2569 intel_fixup_er(event, idx); 2570 2571 /* 2572 * x86_schedule_events() can call get_event_constraints() 2573 * multiple times on events in the case of incremental 2574 * scheduling(). reg->alloc ensures we only do the ER 2575 * allocation once. 2576 */ 2577 reg->alloc = 1; 2578 } 2579 2580 /* lock in msr value */ 2581 era->config = reg->config; 2582 era->reg = reg->reg; 2583 2584 /* one more user */ 2585 atomic_inc(&era->ref); 2586 2587 /* 2588 * need to call x86_get_event_constraint() 2589 * to check if associated event has constraints 2590 */ 2591 c = NULL; 2592 } else { 2593 idx = intel_alt_er(idx, reg->config); 2594 if (idx != reg->idx) { 2595 raw_spin_unlock_irqrestore(&era->lock, flags); 2596 goto again; 2597 } 2598 } 2599 raw_spin_unlock_irqrestore(&era->lock, flags); 2600 2601 return c; 2602 } 2603 2604 static void 2605 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc, 2606 struct hw_perf_event_extra *reg) 2607 { 2608 struct er_account *era; 2609 2610 /* 2611 * Only put constraint if extra reg was actually allocated. Also takes 2612 * care of event which do not use an extra shared reg. 2613 * 2614 * Also, if this is a fake cpuc we shouldn't touch any event state 2615 * (reg->alloc) and we don't care about leaving inconsistent cpuc state 2616 * either since it'll be thrown out. 2617 */ 2618 if (!reg->alloc || cpuc->is_fake) 2619 return; 2620 2621 era = &cpuc->shared_regs->regs[reg->idx]; 2622 2623 /* one fewer user */ 2624 atomic_dec(&era->ref); 2625 2626 /* allocate again next time */ 2627 reg->alloc = 0; 2628 } 2629 2630 static struct event_constraint * 2631 intel_shared_regs_constraints(struct cpu_hw_events *cpuc, 2632 struct perf_event *event) 2633 { 2634 struct event_constraint *c = NULL, *d; 2635 struct hw_perf_event_extra *xreg, *breg; 2636 2637 xreg = &event->hw.extra_reg; 2638 if (xreg->idx != EXTRA_REG_NONE) { 2639 c = __intel_shared_reg_get_constraints(cpuc, event, xreg); 2640 if (c == &emptyconstraint) 2641 return c; 2642 } 2643 breg = &event->hw.branch_reg; 2644 if (breg->idx != EXTRA_REG_NONE) { 2645 d = __intel_shared_reg_get_constraints(cpuc, event, breg); 2646 if (d == &emptyconstraint) { 2647 __intel_shared_reg_put_constraints(cpuc, xreg); 2648 c = d; 2649 } 2650 } 2651 return c; 2652 } 2653 2654 struct event_constraint * 2655 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 2656 struct perf_event *event) 2657 { 2658 struct event_constraint *c; 2659 2660 if (x86_pmu.event_constraints) { 2661 for_each_event_constraint(c, x86_pmu.event_constraints) { 2662 if ((event->hw.config & c->cmask) == c->code) { 2663 event->hw.flags |= c->flags; 2664 return c; 2665 } 2666 } 2667 } 2668 2669 return &unconstrained; 2670 } 2671 2672 static struct event_constraint * 2673 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 2674 struct perf_event *event) 2675 { 2676 struct event_constraint *c; 2677 2678 c = intel_bts_constraints(event); 2679 if (c) 2680 return c; 2681 2682 c = intel_shared_regs_constraints(cpuc, event); 2683 if (c) 2684 return c; 2685 2686 c = intel_pebs_constraints(event); 2687 if (c) 2688 return c; 2689 2690 return x86_get_event_constraints(cpuc, idx, event); 2691 } 2692 2693 static void 2694 intel_start_scheduling(struct cpu_hw_events *cpuc) 2695 { 2696 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 2697 struct intel_excl_states *xl; 2698 int tid = cpuc->excl_thread_id; 2699 2700 /* 2701 * nothing needed if in group validation mode 2702 */ 2703 if (cpuc->is_fake || !is_ht_workaround_enabled()) 2704 return; 2705 2706 /* 2707 * no exclusion needed 2708 */ 2709 if (WARN_ON_ONCE(!excl_cntrs)) 2710 return; 2711 2712 xl = &excl_cntrs->states[tid]; 2713 2714 xl->sched_started = true; 2715 /* 2716 * lock shared state until we are done scheduling 2717 * in stop_event_scheduling() 2718 * makes scheduling appear as a transaction 2719 */ 2720 raw_spin_lock(&excl_cntrs->lock); 2721 } 2722 2723 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr) 2724 { 2725 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 2726 struct event_constraint *c = cpuc->event_constraint[idx]; 2727 struct intel_excl_states *xl; 2728 int tid = cpuc->excl_thread_id; 2729 2730 if (cpuc->is_fake || !is_ht_workaround_enabled()) 2731 return; 2732 2733 if (WARN_ON_ONCE(!excl_cntrs)) 2734 return; 2735 2736 if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) 2737 return; 2738 2739 xl = &excl_cntrs->states[tid]; 2740 2741 lockdep_assert_held(&excl_cntrs->lock); 2742 2743 if (c->flags & PERF_X86_EVENT_EXCL) 2744 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE; 2745 else 2746 xl->state[cntr] = INTEL_EXCL_SHARED; 2747 } 2748 2749 static void 2750 intel_stop_scheduling(struct cpu_hw_events *cpuc) 2751 { 2752 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 2753 struct intel_excl_states *xl; 2754 int tid = cpuc->excl_thread_id; 2755 2756 /* 2757 * nothing needed if in group validation mode 2758 */ 2759 if (cpuc->is_fake || !is_ht_workaround_enabled()) 2760 return; 2761 /* 2762 * no exclusion needed 2763 */ 2764 if (WARN_ON_ONCE(!excl_cntrs)) 2765 return; 2766 2767 xl = &excl_cntrs->states[tid]; 2768 2769 xl->sched_started = false; 2770 /* 2771 * release shared state lock (acquired in intel_start_scheduling()) 2772 */ 2773 raw_spin_unlock(&excl_cntrs->lock); 2774 } 2775 2776 static struct event_constraint * 2777 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event, 2778 int idx, struct event_constraint *c) 2779 { 2780 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 2781 struct intel_excl_states *xlo; 2782 int tid = cpuc->excl_thread_id; 2783 int is_excl, i; 2784 2785 /* 2786 * validating a group does not require 2787 * enforcing cross-thread exclusion 2788 */ 2789 if (cpuc->is_fake || !is_ht_workaround_enabled()) 2790 return c; 2791 2792 /* 2793 * no exclusion needed 2794 */ 2795 if (WARN_ON_ONCE(!excl_cntrs)) 2796 return c; 2797 2798 /* 2799 * because we modify the constraint, we need 2800 * to make a copy. Static constraints come 2801 * from static const tables. 2802 * 2803 * only needed when constraint has not yet 2804 * been cloned (marked dynamic) 2805 */ 2806 if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) { 2807 struct event_constraint *cx; 2808 2809 /* 2810 * grab pre-allocated constraint entry 2811 */ 2812 cx = &cpuc->constraint_list[idx]; 2813 2814 /* 2815 * initialize dynamic constraint 2816 * with static constraint 2817 */ 2818 *cx = *c; 2819 2820 /* 2821 * mark constraint as dynamic, so we 2822 * can free it later on 2823 */ 2824 cx->flags |= PERF_X86_EVENT_DYNAMIC; 2825 c = cx; 2826 } 2827 2828 /* 2829 * From here on, the constraint is dynamic. 2830 * Either it was just allocated above, or it 2831 * was allocated during a earlier invocation 2832 * of this function 2833 */ 2834 2835 /* 2836 * state of sibling HT 2837 */ 2838 xlo = &excl_cntrs->states[tid ^ 1]; 2839 2840 /* 2841 * event requires exclusive counter access 2842 * across HT threads 2843 */ 2844 is_excl = c->flags & PERF_X86_EVENT_EXCL; 2845 if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) { 2846 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT; 2847 if (!cpuc->n_excl++) 2848 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1); 2849 } 2850 2851 /* 2852 * Modify static constraint with current dynamic 2853 * state of thread 2854 * 2855 * EXCLUSIVE: sibling counter measuring exclusive event 2856 * SHARED : sibling counter measuring non-exclusive event 2857 * UNUSED : sibling counter unused 2858 */ 2859 for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) { 2860 /* 2861 * exclusive event in sibling counter 2862 * our corresponding counter cannot be used 2863 * regardless of our event 2864 */ 2865 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) 2866 __clear_bit(i, c->idxmsk); 2867 /* 2868 * if measuring an exclusive event, sibling 2869 * measuring non-exclusive, then counter cannot 2870 * be used 2871 */ 2872 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) 2873 __clear_bit(i, c->idxmsk); 2874 } 2875 2876 /* 2877 * recompute actual bit weight for scheduling algorithm 2878 */ 2879 c->weight = hweight64(c->idxmsk64); 2880 2881 /* 2882 * if we return an empty mask, then switch 2883 * back to static empty constraint to avoid 2884 * the cost of freeing later on 2885 */ 2886 if (c->weight == 0) 2887 c = &emptyconstraint; 2888 2889 return c; 2890 } 2891 2892 static struct event_constraint * 2893 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 2894 struct perf_event *event) 2895 { 2896 struct event_constraint *c1 = NULL; 2897 struct event_constraint *c2; 2898 2899 if (idx >= 0) /* fake does < 0 */ 2900 c1 = cpuc->event_constraint[idx]; 2901 2902 /* 2903 * first time only 2904 * - static constraint: no change across incremental scheduling calls 2905 * - dynamic constraint: handled by intel_get_excl_constraints() 2906 */ 2907 c2 = __intel_get_event_constraints(cpuc, idx, event); 2908 if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) { 2909 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX); 2910 c1->weight = c2->weight; 2911 c2 = c1; 2912 } 2913 2914 if (cpuc->excl_cntrs) 2915 return intel_get_excl_constraints(cpuc, event, idx, c2); 2916 2917 return c2; 2918 } 2919 2920 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc, 2921 struct perf_event *event) 2922 { 2923 struct hw_perf_event *hwc = &event->hw; 2924 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 2925 int tid = cpuc->excl_thread_id; 2926 struct intel_excl_states *xl; 2927 2928 /* 2929 * nothing needed if in group validation mode 2930 */ 2931 if (cpuc->is_fake) 2932 return; 2933 2934 if (WARN_ON_ONCE(!excl_cntrs)) 2935 return; 2936 2937 if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) { 2938 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT; 2939 if (!--cpuc->n_excl) 2940 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0); 2941 } 2942 2943 /* 2944 * If event was actually assigned, then mark the counter state as 2945 * unused now. 2946 */ 2947 if (hwc->idx >= 0) { 2948 xl = &excl_cntrs->states[tid]; 2949 2950 /* 2951 * put_constraint may be called from x86_schedule_events() 2952 * which already has the lock held so here make locking 2953 * conditional. 2954 */ 2955 if (!xl->sched_started) 2956 raw_spin_lock(&excl_cntrs->lock); 2957 2958 xl->state[hwc->idx] = INTEL_EXCL_UNUSED; 2959 2960 if (!xl->sched_started) 2961 raw_spin_unlock(&excl_cntrs->lock); 2962 } 2963 } 2964 2965 static void 2966 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc, 2967 struct perf_event *event) 2968 { 2969 struct hw_perf_event_extra *reg; 2970 2971 reg = &event->hw.extra_reg; 2972 if (reg->idx != EXTRA_REG_NONE) 2973 __intel_shared_reg_put_constraints(cpuc, reg); 2974 2975 reg = &event->hw.branch_reg; 2976 if (reg->idx != EXTRA_REG_NONE) 2977 __intel_shared_reg_put_constraints(cpuc, reg); 2978 } 2979 2980 static void intel_put_event_constraints(struct cpu_hw_events *cpuc, 2981 struct perf_event *event) 2982 { 2983 intel_put_shared_regs_event_constraints(cpuc, event); 2984 2985 /* 2986 * is PMU has exclusive counter restrictions, then 2987 * all events are subject to and must call the 2988 * put_excl_constraints() routine 2989 */ 2990 if (cpuc->excl_cntrs) 2991 intel_put_excl_constraints(cpuc, event); 2992 } 2993 2994 static void intel_pebs_aliases_core2(struct perf_event *event) 2995 { 2996 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) { 2997 /* 2998 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P 2999 * (0x003c) so that we can use it with PEBS. 3000 * 3001 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't 3002 * PEBS capable. However we can use INST_RETIRED.ANY_P 3003 * (0x00c0), which is a PEBS capable event, to get the same 3004 * count. 3005 * 3006 * INST_RETIRED.ANY_P counts the number of cycles that retires 3007 * CNTMASK instructions. By setting CNTMASK to a value (16) 3008 * larger than the maximum number of instructions that can be 3009 * retired per cycle (4) and then inverting the condition, we 3010 * count all cycles that retire 16 or less instructions, which 3011 * is every cycle. 3012 * 3013 * Thereby we gain a PEBS capable cycle counter. 3014 */ 3015 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16); 3016 3017 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK); 3018 event->hw.config = alt_config; 3019 } 3020 } 3021 3022 static void intel_pebs_aliases_snb(struct perf_event *event) 3023 { 3024 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) { 3025 /* 3026 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P 3027 * (0x003c) so that we can use it with PEBS. 3028 * 3029 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't 3030 * PEBS capable. However we can use UOPS_RETIRED.ALL 3031 * (0x01c2), which is a PEBS capable event, to get the same 3032 * count. 3033 * 3034 * UOPS_RETIRED.ALL counts the number of cycles that retires 3035 * CNTMASK micro-ops. By setting CNTMASK to a value (16) 3036 * larger than the maximum number of micro-ops that can be 3037 * retired per cycle (4) and then inverting the condition, we 3038 * count all cycles that retire 16 or less micro-ops, which 3039 * is every cycle. 3040 * 3041 * Thereby we gain a PEBS capable cycle counter. 3042 */ 3043 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16); 3044 3045 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK); 3046 event->hw.config = alt_config; 3047 } 3048 } 3049 3050 static void intel_pebs_aliases_precdist(struct perf_event *event) 3051 { 3052 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) { 3053 /* 3054 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P 3055 * (0x003c) so that we can use it with PEBS. 3056 * 3057 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't 3058 * PEBS capable. However we can use INST_RETIRED.PREC_DIST 3059 * (0x01c0), which is a PEBS capable event, to get the same 3060 * count. 3061 * 3062 * The PREC_DIST event has special support to minimize sample 3063 * shadowing effects. One drawback is that it can be 3064 * only programmed on counter 1, but that seems like an 3065 * acceptable trade off. 3066 */ 3067 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16); 3068 3069 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK); 3070 event->hw.config = alt_config; 3071 } 3072 } 3073 3074 static void intel_pebs_aliases_ivb(struct perf_event *event) 3075 { 3076 if (event->attr.precise_ip < 3) 3077 return intel_pebs_aliases_snb(event); 3078 return intel_pebs_aliases_precdist(event); 3079 } 3080 3081 static void intel_pebs_aliases_skl(struct perf_event *event) 3082 { 3083 if (event->attr.precise_ip < 3) 3084 return intel_pebs_aliases_core2(event); 3085 return intel_pebs_aliases_precdist(event); 3086 } 3087 3088 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event) 3089 { 3090 unsigned long flags = x86_pmu.large_pebs_flags; 3091 3092 if (event->attr.use_clockid) 3093 flags &= ~PERF_SAMPLE_TIME; 3094 if (!event->attr.exclude_kernel) 3095 flags &= ~PERF_SAMPLE_REGS_USER; 3096 if (event->attr.sample_regs_user & ~PEBS_REGS) 3097 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR); 3098 return flags; 3099 } 3100 3101 static int intel_pmu_hw_config(struct perf_event *event) 3102 { 3103 int ret = x86_pmu_hw_config(event); 3104 3105 if (ret) 3106 return ret; 3107 3108 if (event->attr.precise_ip) { 3109 if (!event->attr.freq) { 3110 event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD; 3111 if (!(event->attr.sample_type & 3112 ~intel_pmu_large_pebs_flags(event))) 3113 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS; 3114 } 3115 if (x86_pmu.pebs_aliases) 3116 x86_pmu.pebs_aliases(event); 3117 3118 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 3119 event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY; 3120 } 3121 3122 if (needs_branch_stack(event)) { 3123 ret = intel_pmu_setup_lbr_filter(event); 3124 if (ret) 3125 return ret; 3126 3127 /* 3128 * BTS is set up earlier in this path, so don't account twice 3129 */ 3130 if (!intel_pmu_has_bts(event)) { 3131 /* disallow lbr if conflicting events are present */ 3132 if (x86_add_exclusive(x86_lbr_exclusive_lbr)) 3133 return -EBUSY; 3134 3135 event->destroy = hw_perf_lbr_event_destroy; 3136 } 3137 } 3138 3139 if (event->attr.type != PERF_TYPE_RAW) 3140 return 0; 3141 3142 if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY)) 3143 return 0; 3144 3145 if (x86_pmu.version < 3) 3146 return -EINVAL; 3147 3148 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3149 return -EACCES; 3150 3151 event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY; 3152 3153 return 0; 3154 } 3155 3156 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr) 3157 { 3158 if (x86_pmu.guest_get_msrs) 3159 return x86_pmu.guest_get_msrs(nr); 3160 *nr = 0; 3161 return NULL; 3162 } 3163 EXPORT_SYMBOL_GPL(perf_guest_get_msrs); 3164 3165 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr) 3166 { 3167 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 3168 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs; 3169 3170 arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL; 3171 arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask; 3172 arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask; 3173 /* 3174 * If PMU counter has PEBS enabled it is not enough to disable counter 3175 * on a guest entry since PEBS memory write can overshoot guest entry 3176 * and corrupt guest memory. Disabling PEBS solves the problem. 3177 */ 3178 arr[1].msr = MSR_IA32_PEBS_ENABLE; 3179 arr[1].host = cpuc->pebs_enabled; 3180 arr[1].guest = 0; 3181 3182 *nr = 2; 3183 return arr; 3184 } 3185 3186 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr) 3187 { 3188 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 3189 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs; 3190 int idx; 3191 3192 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 3193 struct perf_event *event = cpuc->events[idx]; 3194 3195 arr[idx].msr = x86_pmu_config_addr(idx); 3196 arr[idx].host = arr[idx].guest = 0; 3197 3198 if (!test_bit(idx, cpuc->active_mask)) 3199 continue; 3200 3201 arr[idx].host = arr[idx].guest = 3202 event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE; 3203 3204 if (event->attr.exclude_host) 3205 arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE; 3206 else if (event->attr.exclude_guest) 3207 arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE; 3208 } 3209 3210 *nr = x86_pmu.num_counters; 3211 return arr; 3212 } 3213 3214 static void core_pmu_enable_event(struct perf_event *event) 3215 { 3216 if (!event->attr.exclude_host) 3217 x86_pmu_enable_event(event); 3218 } 3219 3220 static void core_pmu_enable_all(int added) 3221 { 3222 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 3223 int idx; 3224 3225 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 3226 struct hw_perf_event *hwc = &cpuc->events[idx]->hw; 3227 3228 if (!test_bit(idx, cpuc->active_mask) || 3229 cpuc->events[idx]->attr.exclude_host) 3230 continue; 3231 3232 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); 3233 } 3234 } 3235 3236 static int hsw_hw_config(struct perf_event *event) 3237 { 3238 int ret = intel_pmu_hw_config(event); 3239 3240 if (ret) 3241 return ret; 3242 if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE)) 3243 return 0; 3244 event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED); 3245 3246 /* 3247 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with 3248 * PEBS or in ANY thread mode. Since the results are non-sensical forbid 3249 * this combination. 3250 */ 3251 if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) && 3252 ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) || 3253 event->attr.precise_ip > 0)) 3254 return -EOPNOTSUPP; 3255 3256 if (event_is_checkpointed(event)) { 3257 /* 3258 * Sampling of checkpointed events can cause situations where 3259 * the CPU constantly aborts because of a overflow, which is 3260 * then checkpointed back and ignored. Forbid checkpointing 3261 * for sampling. 3262 * 3263 * But still allow a long sampling period, so that perf stat 3264 * from KVM works. 3265 */ 3266 if (event->attr.sample_period > 0 && 3267 event->attr.sample_period < 0x7fffffff) 3268 return -EOPNOTSUPP; 3269 } 3270 return 0; 3271 } 3272 3273 static struct event_constraint counter0_constraint = 3274 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1); 3275 3276 static struct event_constraint counter2_constraint = 3277 EVENT_CONSTRAINT(0, 0x4, 0); 3278 3279 static struct event_constraint * 3280 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 3281 struct perf_event *event) 3282 { 3283 struct event_constraint *c; 3284 3285 c = intel_get_event_constraints(cpuc, idx, event); 3286 3287 /* Handle special quirk on in_tx_checkpointed only in counter 2 */ 3288 if (event->hw.config & HSW_IN_TX_CHECKPOINTED) { 3289 if (c->idxmsk64 & (1U << 2)) 3290 return &counter2_constraint; 3291 return &emptyconstraint; 3292 } 3293 3294 return c; 3295 } 3296 3297 static struct event_constraint * 3298 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 3299 struct perf_event *event) 3300 { 3301 struct event_constraint *c; 3302 3303 /* :ppp means to do reduced skid PEBS which is PMC0 only. */ 3304 if (event->attr.precise_ip == 3) 3305 return &counter0_constraint; 3306 3307 c = intel_get_event_constraints(cpuc, idx, event); 3308 3309 return c; 3310 } 3311 3312 /* 3313 * Broadwell: 3314 * 3315 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared 3316 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine 3317 * the two to enforce a minimum period of 128 (the smallest value that has bits 3318 * 0-5 cleared and >= 100). 3319 * 3320 * Because of how the code in x86_perf_event_set_period() works, the truncation 3321 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period 3322 * to make up for the 'lost' events due to carrying the 'error' in period_left. 3323 * 3324 * Therefore the effective (average) period matches the requested period, 3325 * despite coarser hardware granularity. 3326 */ 3327 static u64 bdw_limit_period(struct perf_event *event, u64 left) 3328 { 3329 if ((event->hw.config & INTEL_ARCH_EVENT_MASK) == 3330 X86_CONFIG(.event=0xc0, .umask=0x01)) { 3331 if (left < 128) 3332 left = 128; 3333 left &= ~0x3fULL; 3334 } 3335 return left; 3336 } 3337 3338 PMU_FORMAT_ATTR(event, "config:0-7" ); 3339 PMU_FORMAT_ATTR(umask, "config:8-15" ); 3340 PMU_FORMAT_ATTR(edge, "config:18" ); 3341 PMU_FORMAT_ATTR(pc, "config:19" ); 3342 PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */ 3343 PMU_FORMAT_ATTR(inv, "config:23" ); 3344 PMU_FORMAT_ATTR(cmask, "config:24-31" ); 3345 PMU_FORMAT_ATTR(in_tx, "config:32"); 3346 PMU_FORMAT_ATTR(in_tx_cp, "config:33"); 3347 3348 static struct attribute *intel_arch_formats_attr[] = { 3349 &format_attr_event.attr, 3350 &format_attr_umask.attr, 3351 &format_attr_edge.attr, 3352 &format_attr_pc.attr, 3353 &format_attr_inv.attr, 3354 &format_attr_cmask.attr, 3355 NULL, 3356 }; 3357 3358 ssize_t intel_event_sysfs_show(char *page, u64 config) 3359 { 3360 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT); 3361 3362 return x86_event_sysfs_show(page, config, event); 3363 } 3364 3365 struct intel_shared_regs *allocate_shared_regs(int cpu) 3366 { 3367 struct intel_shared_regs *regs; 3368 int i; 3369 3370 regs = kzalloc_node(sizeof(struct intel_shared_regs), 3371 GFP_KERNEL, cpu_to_node(cpu)); 3372 if (regs) { 3373 /* 3374 * initialize the locks to keep lockdep happy 3375 */ 3376 for (i = 0; i < EXTRA_REG_MAX; i++) 3377 raw_spin_lock_init(®s->regs[i].lock); 3378 3379 regs->core_id = -1; 3380 } 3381 return regs; 3382 } 3383 3384 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu) 3385 { 3386 struct intel_excl_cntrs *c; 3387 3388 c = kzalloc_node(sizeof(struct intel_excl_cntrs), 3389 GFP_KERNEL, cpu_to_node(cpu)); 3390 if (c) { 3391 raw_spin_lock_init(&c->lock); 3392 c->core_id = -1; 3393 } 3394 return c; 3395 } 3396 3397 static int intel_pmu_cpu_prepare(int cpu) 3398 { 3399 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 3400 3401 if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) { 3402 cpuc->shared_regs = allocate_shared_regs(cpu); 3403 if (!cpuc->shared_regs) 3404 goto err; 3405 } 3406 3407 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) { 3408 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint); 3409 3410 cpuc->constraint_list = kzalloc(sz, GFP_KERNEL); 3411 if (!cpuc->constraint_list) 3412 goto err_shared_regs; 3413 3414 cpuc->excl_cntrs = allocate_excl_cntrs(cpu); 3415 if (!cpuc->excl_cntrs) 3416 goto err_constraint_list; 3417 3418 cpuc->excl_thread_id = 0; 3419 } 3420 3421 return 0; 3422 3423 err_constraint_list: 3424 kfree(cpuc->constraint_list); 3425 cpuc->constraint_list = NULL; 3426 3427 err_shared_regs: 3428 kfree(cpuc->shared_regs); 3429 cpuc->shared_regs = NULL; 3430 3431 err: 3432 return -ENOMEM; 3433 } 3434 3435 static void flip_smm_bit(void *data) 3436 { 3437 unsigned long set = *(unsigned long *)data; 3438 3439 if (set > 0) { 3440 msr_set_bit(MSR_IA32_DEBUGCTLMSR, 3441 DEBUGCTLMSR_FREEZE_IN_SMM_BIT); 3442 } else { 3443 msr_clear_bit(MSR_IA32_DEBUGCTLMSR, 3444 DEBUGCTLMSR_FREEZE_IN_SMM_BIT); 3445 } 3446 } 3447 3448 static void intel_pmu_cpu_starting(int cpu) 3449 { 3450 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 3451 int core_id = topology_core_id(cpu); 3452 int i; 3453 3454 init_debug_store_on_cpu(cpu); 3455 /* 3456 * Deal with CPUs that don't clear their LBRs on power-up. 3457 */ 3458 intel_pmu_lbr_reset(); 3459 3460 cpuc->lbr_sel = NULL; 3461 3462 if (x86_pmu.version > 1) 3463 flip_smm_bit(&x86_pmu.attr_freeze_on_smi); 3464 3465 if (x86_pmu.counter_freezing) 3466 enable_counter_freeze(); 3467 3468 if (!cpuc->shared_regs) 3469 return; 3470 3471 if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) { 3472 for_each_cpu(i, topology_sibling_cpumask(cpu)) { 3473 struct intel_shared_regs *pc; 3474 3475 pc = per_cpu(cpu_hw_events, i).shared_regs; 3476 if (pc && pc->core_id == core_id) { 3477 cpuc->kfree_on_online[0] = cpuc->shared_regs; 3478 cpuc->shared_regs = pc; 3479 break; 3480 } 3481 } 3482 cpuc->shared_regs->core_id = core_id; 3483 cpuc->shared_regs->refcnt++; 3484 } 3485 3486 if (x86_pmu.lbr_sel_map) 3487 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR]; 3488 3489 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) { 3490 for_each_cpu(i, topology_sibling_cpumask(cpu)) { 3491 struct cpu_hw_events *sibling; 3492 struct intel_excl_cntrs *c; 3493 3494 sibling = &per_cpu(cpu_hw_events, i); 3495 c = sibling->excl_cntrs; 3496 if (c && c->core_id == core_id) { 3497 cpuc->kfree_on_online[1] = cpuc->excl_cntrs; 3498 cpuc->excl_cntrs = c; 3499 if (!sibling->excl_thread_id) 3500 cpuc->excl_thread_id = 1; 3501 break; 3502 } 3503 } 3504 cpuc->excl_cntrs->core_id = core_id; 3505 cpuc->excl_cntrs->refcnt++; 3506 } 3507 } 3508 3509 static void free_excl_cntrs(int cpu) 3510 { 3511 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 3512 struct intel_excl_cntrs *c; 3513 3514 c = cpuc->excl_cntrs; 3515 if (c) { 3516 if (c->core_id == -1 || --c->refcnt == 0) 3517 kfree(c); 3518 cpuc->excl_cntrs = NULL; 3519 kfree(cpuc->constraint_list); 3520 cpuc->constraint_list = NULL; 3521 } 3522 } 3523 3524 static void intel_pmu_cpu_dying(int cpu) 3525 { 3526 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 3527 struct intel_shared_regs *pc; 3528 3529 pc = cpuc->shared_regs; 3530 if (pc) { 3531 if (pc->core_id == -1 || --pc->refcnt == 0) 3532 kfree(pc); 3533 cpuc->shared_regs = NULL; 3534 } 3535 3536 free_excl_cntrs(cpu); 3537 3538 fini_debug_store_on_cpu(cpu); 3539 3540 if (x86_pmu.counter_freezing) 3541 disable_counter_freeze(); 3542 } 3543 3544 static void intel_pmu_sched_task(struct perf_event_context *ctx, 3545 bool sched_in) 3546 { 3547 intel_pmu_pebs_sched_task(ctx, sched_in); 3548 intel_pmu_lbr_sched_task(ctx, sched_in); 3549 } 3550 3551 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63"); 3552 3553 PMU_FORMAT_ATTR(ldlat, "config1:0-15"); 3554 3555 PMU_FORMAT_ATTR(frontend, "config1:0-23"); 3556 3557 static struct attribute *intel_arch3_formats_attr[] = { 3558 &format_attr_event.attr, 3559 &format_attr_umask.attr, 3560 &format_attr_edge.attr, 3561 &format_attr_pc.attr, 3562 &format_attr_any.attr, 3563 &format_attr_inv.attr, 3564 &format_attr_cmask.attr, 3565 NULL, 3566 }; 3567 3568 static struct attribute *hsw_format_attr[] = { 3569 &format_attr_in_tx.attr, 3570 &format_attr_in_tx_cp.attr, 3571 &format_attr_offcore_rsp.attr, 3572 &format_attr_ldlat.attr, 3573 NULL 3574 }; 3575 3576 static struct attribute *nhm_format_attr[] = { 3577 &format_attr_offcore_rsp.attr, 3578 &format_attr_ldlat.attr, 3579 NULL 3580 }; 3581 3582 static struct attribute *slm_format_attr[] = { 3583 &format_attr_offcore_rsp.attr, 3584 NULL 3585 }; 3586 3587 static struct attribute *skl_format_attr[] = { 3588 &format_attr_frontend.attr, 3589 NULL, 3590 }; 3591 3592 static __initconst const struct x86_pmu core_pmu = { 3593 .name = "core", 3594 .handle_irq = x86_pmu_handle_irq, 3595 .disable_all = x86_pmu_disable_all, 3596 .enable_all = core_pmu_enable_all, 3597 .enable = core_pmu_enable_event, 3598 .disable = x86_pmu_disable_event, 3599 .hw_config = x86_pmu_hw_config, 3600 .schedule_events = x86_schedule_events, 3601 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0, 3602 .perfctr = MSR_ARCH_PERFMON_PERFCTR0, 3603 .event_map = intel_pmu_event_map, 3604 .max_events = ARRAY_SIZE(intel_perfmon_event_map), 3605 .apic = 1, 3606 .large_pebs_flags = LARGE_PEBS_FLAGS, 3607 3608 /* 3609 * Intel PMCs cannot be accessed sanely above 32-bit width, 3610 * so we install an artificial 1<<31 period regardless of 3611 * the generic event period: 3612 */ 3613 .max_period = (1ULL<<31) - 1, 3614 .get_event_constraints = intel_get_event_constraints, 3615 .put_event_constraints = intel_put_event_constraints, 3616 .event_constraints = intel_core_event_constraints, 3617 .guest_get_msrs = core_guest_get_msrs, 3618 .format_attrs = intel_arch_formats_attr, 3619 .events_sysfs_show = intel_event_sysfs_show, 3620 3621 /* 3622 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs 3623 * together with PMU version 1 and thus be using core_pmu with 3624 * shared_regs. We need following callbacks here to allocate 3625 * it properly. 3626 */ 3627 .cpu_prepare = intel_pmu_cpu_prepare, 3628 .cpu_starting = intel_pmu_cpu_starting, 3629 .cpu_dying = intel_pmu_cpu_dying, 3630 }; 3631 3632 static struct attribute *intel_pmu_attrs[]; 3633 3634 static __initconst const struct x86_pmu intel_pmu = { 3635 .name = "Intel", 3636 .handle_irq = intel_pmu_handle_irq, 3637 .disable_all = intel_pmu_disable_all, 3638 .enable_all = intel_pmu_enable_all, 3639 .enable = intel_pmu_enable_event, 3640 .disable = intel_pmu_disable_event, 3641 .add = intel_pmu_add_event, 3642 .del = intel_pmu_del_event, 3643 .read = intel_pmu_read_event, 3644 .hw_config = intel_pmu_hw_config, 3645 .schedule_events = x86_schedule_events, 3646 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0, 3647 .perfctr = MSR_ARCH_PERFMON_PERFCTR0, 3648 .event_map = intel_pmu_event_map, 3649 .max_events = ARRAY_SIZE(intel_perfmon_event_map), 3650 .apic = 1, 3651 .large_pebs_flags = LARGE_PEBS_FLAGS, 3652 /* 3653 * Intel PMCs cannot be accessed sanely above 32 bit width, 3654 * so we install an artificial 1<<31 period regardless of 3655 * the generic event period: 3656 */ 3657 .max_period = (1ULL << 31) - 1, 3658 .get_event_constraints = intel_get_event_constraints, 3659 .put_event_constraints = intel_put_event_constraints, 3660 .pebs_aliases = intel_pebs_aliases_core2, 3661 3662 .format_attrs = intel_arch3_formats_attr, 3663 .events_sysfs_show = intel_event_sysfs_show, 3664 3665 .attrs = intel_pmu_attrs, 3666 3667 .cpu_prepare = intel_pmu_cpu_prepare, 3668 .cpu_starting = intel_pmu_cpu_starting, 3669 .cpu_dying = intel_pmu_cpu_dying, 3670 .guest_get_msrs = intel_guest_get_msrs, 3671 .sched_task = intel_pmu_sched_task, 3672 }; 3673 3674 static __init void intel_clovertown_quirk(void) 3675 { 3676 /* 3677 * PEBS is unreliable due to: 3678 * 3679 * AJ67 - PEBS may experience CPL leaks 3680 * AJ68 - PEBS PMI may be delayed by one event 3681 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12] 3682 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS 3683 * 3684 * AJ67 could be worked around by restricting the OS/USR flags. 3685 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI. 3686 * 3687 * AJ106 could possibly be worked around by not allowing LBR 3688 * usage from PEBS, including the fixup. 3689 * AJ68 could possibly be worked around by always programming 3690 * a pebs_event_reset[0] value and coping with the lost events. 3691 * 3692 * But taken together it might just make sense to not enable PEBS on 3693 * these chips. 3694 */ 3695 pr_warn("PEBS disabled due to CPU errata\n"); 3696 x86_pmu.pebs = 0; 3697 x86_pmu.pebs_constraints = NULL; 3698 } 3699 3700 static int intel_snb_pebs_broken(int cpu) 3701 { 3702 u32 rev = UINT_MAX; /* default to broken for unknown models */ 3703 3704 switch (cpu_data(cpu).x86_model) { 3705 case INTEL_FAM6_SANDYBRIDGE: 3706 rev = 0x28; 3707 break; 3708 3709 case INTEL_FAM6_SANDYBRIDGE_X: 3710 switch (cpu_data(cpu).x86_stepping) { 3711 case 6: rev = 0x618; break; 3712 case 7: rev = 0x70c; break; 3713 } 3714 } 3715 3716 return (cpu_data(cpu).microcode < rev); 3717 } 3718 3719 static void intel_snb_check_microcode(void) 3720 { 3721 int pebs_broken = 0; 3722 int cpu; 3723 3724 for_each_online_cpu(cpu) { 3725 if ((pebs_broken = intel_snb_pebs_broken(cpu))) 3726 break; 3727 } 3728 3729 if (pebs_broken == x86_pmu.pebs_broken) 3730 return; 3731 3732 /* 3733 * Serialized by the microcode lock.. 3734 */ 3735 if (x86_pmu.pebs_broken) { 3736 pr_info("PEBS enabled due to microcode update\n"); 3737 x86_pmu.pebs_broken = 0; 3738 } else { 3739 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n"); 3740 x86_pmu.pebs_broken = 1; 3741 } 3742 } 3743 3744 static bool is_lbr_from(unsigned long msr) 3745 { 3746 unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr; 3747 3748 return x86_pmu.lbr_from <= msr && msr < lbr_from_nr; 3749 } 3750 3751 /* 3752 * Under certain circumstances, access certain MSR may cause #GP. 3753 * The function tests if the input MSR can be safely accessed. 3754 */ 3755 static bool check_msr(unsigned long msr, u64 mask) 3756 { 3757 u64 val_old, val_new, val_tmp; 3758 3759 /* 3760 * Read the current value, change it and read it back to see if it 3761 * matches, this is needed to detect certain hardware emulators 3762 * (qemu/kvm) that don't trap on the MSR access and always return 0s. 3763 */ 3764 if (rdmsrl_safe(msr, &val_old)) 3765 return false; 3766 3767 /* 3768 * Only change the bits which can be updated by wrmsrl. 3769 */ 3770 val_tmp = val_old ^ mask; 3771 3772 if (is_lbr_from(msr)) 3773 val_tmp = lbr_from_signext_quirk_wr(val_tmp); 3774 3775 if (wrmsrl_safe(msr, val_tmp) || 3776 rdmsrl_safe(msr, &val_new)) 3777 return false; 3778 3779 /* 3780 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value 3781 * should equal rdmsrl()'s even with the quirk. 3782 */ 3783 if (val_new != val_tmp) 3784 return false; 3785 3786 if (is_lbr_from(msr)) 3787 val_old = lbr_from_signext_quirk_wr(val_old); 3788 3789 /* Here it's sure that the MSR can be safely accessed. 3790 * Restore the old value and return. 3791 */ 3792 wrmsrl(msr, val_old); 3793 3794 return true; 3795 } 3796 3797 static __init void intel_sandybridge_quirk(void) 3798 { 3799 x86_pmu.check_microcode = intel_snb_check_microcode; 3800 cpus_read_lock(); 3801 intel_snb_check_microcode(); 3802 cpus_read_unlock(); 3803 } 3804 3805 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = { 3806 { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" }, 3807 { PERF_COUNT_HW_INSTRUCTIONS, "instructions" }, 3808 { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" }, 3809 { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" }, 3810 { PERF_COUNT_HW_CACHE_MISSES, "cache misses" }, 3811 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" }, 3812 { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" }, 3813 }; 3814 3815 static __init void intel_arch_events_quirk(void) 3816 { 3817 int bit; 3818 3819 /* disable event that reported as not presend by cpuid */ 3820 for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) { 3821 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0; 3822 pr_warn("CPUID marked event: \'%s\' unavailable\n", 3823 intel_arch_events_map[bit].name); 3824 } 3825 } 3826 3827 static __init void intel_nehalem_quirk(void) 3828 { 3829 union cpuid10_ebx ebx; 3830 3831 ebx.full = x86_pmu.events_maskl; 3832 if (ebx.split.no_branch_misses_retired) { 3833 /* 3834 * Erratum AAJ80 detected, we work it around by using 3835 * the BR_MISP_EXEC.ANY event. This will over-count 3836 * branch-misses, but it's still much better than the 3837 * architectural event which is often completely bogus: 3838 */ 3839 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89; 3840 ebx.split.no_branch_misses_retired = 0; 3841 x86_pmu.events_maskl = ebx.full; 3842 pr_info("CPU erratum AAJ80 worked around\n"); 3843 } 3844 } 3845 3846 static bool intel_glp_counter_freezing_broken(int cpu) 3847 { 3848 u32 rev = UINT_MAX; /* default to broken for unknown stepping */ 3849 3850 switch (cpu_data(cpu).x86_stepping) { 3851 case 1: 3852 rev = 0x28; 3853 break; 3854 case 8: 3855 rev = 0x6; 3856 break; 3857 } 3858 3859 return (cpu_data(cpu).microcode < rev); 3860 } 3861 3862 static __init void intel_glp_counter_freezing_quirk(void) 3863 { 3864 /* Check if it's already disabled */ 3865 if (disable_counter_freezing) 3866 return; 3867 3868 /* 3869 * If the system starts with the wrong ucode, leave the 3870 * counter-freezing feature permanently disabled. 3871 */ 3872 if (intel_glp_counter_freezing_broken(raw_smp_processor_id())) { 3873 pr_info("PMU counter freezing disabled due to CPU errata," 3874 "please upgrade microcode\n"); 3875 x86_pmu.counter_freezing = false; 3876 x86_pmu.handle_irq = intel_pmu_handle_irq; 3877 } 3878 } 3879 3880 /* 3881 * enable software workaround for errata: 3882 * SNB: BJ122 3883 * IVB: BV98 3884 * HSW: HSD29 3885 * 3886 * Only needed when HT is enabled. However detecting 3887 * if HT is enabled is difficult (model specific). So instead, 3888 * we enable the workaround in the early boot, and verify if 3889 * it is needed in a later initcall phase once we have valid 3890 * topology information to check if HT is actually enabled 3891 */ 3892 static __init void intel_ht_bug(void) 3893 { 3894 x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED; 3895 3896 x86_pmu.start_scheduling = intel_start_scheduling; 3897 x86_pmu.commit_scheduling = intel_commit_scheduling; 3898 x86_pmu.stop_scheduling = intel_stop_scheduling; 3899 } 3900 3901 EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3"); 3902 EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82") 3903 3904 /* Haswell special events */ 3905 EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1"); 3906 EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2"); 3907 EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4"); 3908 EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2"); 3909 EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1"); 3910 EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1"); 3911 EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2"); 3912 EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4"); 3913 EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2"); 3914 EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1"); 3915 EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1"); 3916 EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1"); 3917 3918 static struct attribute *hsw_events_attrs[] = { 3919 EVENT_PTR(td_slots_issued), 3920 EVENT_PTR(td_slots_retired), 3921 EVENT_PTR(td_fetch_bubbles), 3922 EVENT_PTR(td_total_slots), 3923 EVENT_PTR(td_total_slots_scale), 3924 EVENT_PTR(td_recovery_bubbles), 3925 EVENT_PTR(td_recovery_bubbles_scale), 3926 NULL 3927 }; 3928 3929 static struct attribute *hsw_mem_events_attrs[] = { 3930 EVENT_PTR(mem_ld_hsw), 3931 EVENT_PTR(mem_st_hsw), 3932 NULL, 3933 }; 3934 3935 static struct attribute *hsw_tsx_events_attrs[] = { 3936 EVENT_PTR(tx_start), 3937 EVENT_PTR(tx_commit), 3938 EVENT_PTR(tx_abort), 3939 EVENT_PTR(tx_capacity), 3940 EVENT_PTR(tx_conflict), 3941 EVENT_PTR(el_start), 3942 EVENT_PTR(el_commit), 3943 EVENT_PTR(el_abort), 3944 EVENT_PTR(el_capacity), 3945 EVENT_PTR(el_conflict), 3946 EVENT_PTR(cycles_t), 3947 EVENT_PTR(cycles_ct), 3948 NULL 3949 }; 3950 3951 static ssize_t freeze_on_smi_show(struct device *cdev, 3952 struct device_attribute *attr, 3953 char *buf) 3954 { 3955 return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi); 3956 } 3957 3958 static DEFINE_MUTEX(freeze_on_smi_mutex); 3959 3960 static ssize_t freeze_on_smi_store(struct device *cdev, 3961 struct device_attribute *attr, 3962 const char *buf, size_t count) 3963 { 3964 unsigned long val; 3965 ssize_t ret; 3966 3967 ret = kstrtoul(buf, 0, &val); 3968 if (ret) 3969 return ret; 3970 3971 if (val > 1) 3972 return -EINVAL; 3973 3974 mutex_lock(&freeze_on_smi_mutex); 3975 3976 if (x86_pmu.attr_freeze_on_smi == val) 3977 goto done; 3978 3979 x86_pmu.attr_freeze_on_smi = val; 3980 3981 get_online_cpus(); 3982 on_each_cpu(flip_smm_bit, &val, 1); 3983 put_online_cpus(); 3984 done: 3985 mutex_unlock(&freeze_on_smi_mutex); 3986 3987 return count; 3988 } 3989 3990 static DEVICE_ATTR_RW(freeze_on_smi); 3991 3992 static ssize_t branches_show(struct device *cdev, 3993 struct device_attribute *attr, 3994 char *buf) 3995 { 3996 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr); 3997 } 3998 3999 static DEVICE_ATTR_RO(branches); 4000 4001 static struct attribute *lbr_attrs[] = { 4002 &dev_attr_branches.attr, 4003 NULL 4004 }; 4005 4006 static char pmu_name_str[30]; 4007 4008 static ssize_t pmu_name_show(struct device *cdev, 4009 struct device_attribute *attr, 4010 char *buf) 4011 { 4012 return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str); 4013 } 4014 4015 static DEVICE_ATTR_RO(pmu_name); 4016 4017 static struct attribute *intel_pmu_caps_attrs[] = { 4018 &dev_attr_pmu_name.attr, 4019 NULL 4020 }; 4021 4022 static struct attribute *intel_pmu_attrs[] = { 4023 &dev_attr_freeze_on_smi.attr, 4024 NULL, 4025 }; 4026 4027 static __init struct attribute ** 4028 get_events_attrs(struct attribute **base, 4029 struct attribute **mem, 4030 struct attribute **tsx) 4031 { 4032 struct attribute **attrs = base; 4033 struct attribute **old; 4034 4035 if (mem && x86_pmu.pebs) 4036 attrs = merge_attr(attrs, mem); 4037 4038 if (tsx && boot_cpu_has(X86_FEATURE_RTM)) { 4039 old = attrs; 4040 attrs = merge_attr(attrs, tsx); 4041 if (old != base) 4042 kfree(old); 4043 } 4044 4045 return attrs; 4046 } 4047 4048 __init int intel_pmu_init(void) 4049 { 4050 struct attribute **extra_attr = NULL; 4051 struct attribute **mem_attr = NULL; 4052 struct attribute **tsx_attr = NULL; 4053 struct attribute **to_free = NULL; 4054 union cpuid10_edx edx; 4055 union cpuid10_eax eax; 4056 union cpuid10_ebx ebx; 4057 struct event_constraint *c; 4058 unsigned int unused; 4059 struct extra_reg *er; 4060 int version, i; 4061 char *name; 4062 4063 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) { 4064 switch (boot_cpu_data.x86) { 4065 case 0x6: 4066 return p6_pmu_init(); 4067 case 0xb: 4068 return knc_pmu_init(); 4069 case 0xf: 4070 return p4_pmu_init(); 4071 } 4072 return -ENODEV; 4073 } 4074 4075 /* 4076 * Check whether the Architectural PerfMon supports 4077 * Branch Misses Retired hw_event or not. 4078 */ 4079 cpuid(10, &eax.full, &ebx.full, &unused, &edx.full); 4080 if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT) 4081 return -ENODEV; 4082 4083 version = eax.split.version_id; 4084 if (version < 2) 4085 x86_pmu = core_pmu; 4086 else 4087 x86_pmu = intel_pmu; 4088 4089 x86_pmu.version = version; 4090 x86_pmu.num_counters = eax.split.num_counters; 4091 x86_pmu.cntval_bits = eax.split.bit_width; 4092 x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1; 4093 4094 x86_pmu.events_maskl = ebx.full; 4095 x86_pmu.events_mask_len = eax.split.mask_length; 4096 4097 x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters); 4098 4099 /* 4100 * Quirk: v2 perfmon does not report fixed-purpose events, so 4101 * assume at least 3 events, when not running in a hypervisor: 4102 */ 4103 if (version > 1) { 4104 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR); 4105 4106 x86_pmu.num_counters_fixed = 4107 max((int)edx.split.num_counters_fixed, assume); 4108 } 4109 4110 if (version >= 4) 4111 x86_pmu.counter_freezing = !disable_counter_freezing; 4112 4113 if (boot_cpu_has(X86_FEATURE_PDCM)) { 4114 u64 capabilities; 4115 4116 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities); 4117 x86_pmu.intel_cap.capabilities = capabilities; 4118 } 4119 4120 intel_ds_init(); 4121 4122 x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */ 4123 4124 /* 4125 * Install the hw-cache-events table: 4126 */ 4127 switch (boot_cpu_data.x86_model) { 4128 case INTEL_FAM6_CORE_YONAH: 4129 pr_cont("Core events, "); 4130 name = "core"; 4131 break; 4132 4133 case INTEL_FAM6_CORE2_MEROM: 4134 x86_add_quirk(intel_clovertown_quirk); 4135 case INTEL_FAM6_CORE2_MEROM_L: 4136 case INTEL_FAM6_CORE2_PENRYN: 4137 case INTEL_FAM6_CORE2_DUNNINGTON: 4138 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids, 4139 sizeof(hw_cache_event_ids)); 4140 4141 intel_pmu_lbr_init_core(); 4142 4143 x86_pmu.event_constraints = intel_core2_event_constraints; 4144 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints; 4145 pr_cont("Core2 events, "); 4146 name = "core2"; 4147 break; 4148 4149 case INTEL_FAM6_NEHALEM: 4150 case INTEL_FAM6_NEHALEM_EP: 4151 case INTEL_FAM6_NEHALEM_EX: 4152 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids, 4153 sizeof(hw_cache_event_ids)); 4154 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs, 4155 sizeof(hw_cache_extra_regs)); 4156 4157 intel_pmu_lbr_init_nhm(); 4158 4159 x86_pmu.event_constraints = intel_nehalem_event_constraints; 4160 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints; 4161 x86_pmu.enable_all = intel_pmu_nhm_enable_all; 4162 x86_pmu.extra_regs = intel_nehalem_extra_regs; 4163 4164 mem_attr = nhm_mem_events_attrs; 4165 4166 /* UOPS_ISSUED.STALLED_CYCLES */ 4167 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 4168 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); 4169 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */ 4170 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 4171 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1); 4172 4173 intel_pmu_pebs_data_source_nhm(); 4174 x86_add_quirk(intel_nehalem_quirk); 4175 x86_pmu.pebs_no_tlb = 1; 4176 extra_attr = nhm_format_attr; 4177 4178 pr_cont("Nehalem events, "); 4179 name = "nehalem"; 4180 break; 4181 4182 case INTEL_FAM6_ATOM_BONNELL: 4183 case INTEL_FAM6_ATOM_BONNELL_MID: 4184 case INTEL_FAM6_ATOM_SALTWELL: 4185 case INTEL_FAM6_ATOM_SALTWELL_MID: 4186 case INTEL_FAM6_ATOM_SALTWELL_TABLET: 4187 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids, 4188 sizeof(hw_cache_event_ids)); 4189 4190 intel_pmu_lbr_init_atom(); 4191 4192 x86_pmu.event_constraints = intel_gen_event_constraints; 4193 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints; 4194 x86_pmu.pebs_aliases = intel_pebs_aliases_core2; 4195 pr_cont("Atom events, "); 4196 name = "bonnell"; 4197 break; 4198 4199 case INTEL_FAM6_ATOM_SILVERMONT: 4200 case INTEL_FAM6_ATOM_SILVERMONT_X: 4201 case INTEL_FAM6_ATOM_SILVERMONT_MID: 4202 case INTEL_FAM6_ATOM_AIRMONT: 4203 case INTEL_FAM6_ATOM_AIRMONT_MID: 4204 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids, 4205 sizeof(hw_cache_event_ids)); 4206 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs, 4207 sizeof(hw_cache_extra_regs)); 4208 4209 intel_pmu_lbr_init_slm(); 4210 4211 x86_pmu.event_constraints = intel_slm_event_constraints; 4212 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints; 4213 x86_pmu.extra_regs = intel_slm_extra_regs; 4214 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4215 x86_pmu.cpu_events = slm_events_attrs; 4216 extra_attr = slm_format_attr; 4217 pr_cont("Silvermont events, "); 4218 name = "silvermont"; 4219 break; 4220 4221 case INTEL_FAM6_ATOM_GOLDMONT: 4222 case INTEL_FAM6_ATOM_GOLDMONT_X: 4223 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids, 4224 sizeof(hw_cache_event_ids)); 4225 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs, 4226 sizeof(hw_cache_extra_regs)); 4227 4228 intel_pmu_lbr_init_skl(); 4229 4230 x86_pmu.event_constraints = intel_slm_event_constraints; 4231 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints; 4232 x86_pmu.extra_regs = intel_glm_extra_regs; 4233 /* 4234 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS 4235 * for precise cycles. 4236 * :pp is identical to :ppp 4237 */ 4238 x86_pmu.pebs_aliases = NULL; 4239 x86_pmu.pebs_prec_dist = true; 4240 x86_pmu.lbr_pt_coexist = true; 4241 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4242 x86_pmu.cpu_events = glm_events_attrs; 4243 extra_attr = slm_format_attr; 4244 pr_cont("Goldmont events, "); 4245 name = "goldmont"; 4246 break; 4247 4248 case INTEL_FAM6_ATOM_GOLDMONT_PLUS: 4249 x86_add_quirk(intel_glp_counter_freezing_quirk); 4250 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids, 4251 sizeof(hw_cache_event_ids)); 4252 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs, 4253 sizeof(hw_cache_extra_regs)); 4254 4255 intel_pmu_lbr_init_skl(); 4256 4257 x86_pmu.event_constraints = intel_slm_event_constraints; 4258 x86_pmu.extra_regs = intel_glm_extra_regs; 4259 /* 4260 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS 4261 * for precise cycles. 4262 */ 4263 x86_pmu.pebs_aliases = NULL; 4264 x86_pmu.pebs_prec_dist = true; 4265 x86_pmu.lbr_pt_coexist = true; 4266 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4267 x86_pmu.flags |= PMU_FL_PEBS_ALL; 4268 x86_pmu.get_event_constraints = glp_get_event_constraints; 4269 x86_pmu.cpu_events = glm_events_attrs; 4270 /* Goldmont Plus has 4-wide pipeline */ 4271 event_attr_td_total_slots_scale_glm.event_str = "4"; 4272 extra_attr = slm_format_attr; 4273 pr_cont("Goldmont plus events, "); 4274 name = "goldmont_plus"; 4275 break; 4276 4277 case INTEL_FAM6_WESTMERE: 4278 case INTEL_FAM6_WESTMERE_EP: 4279 case INTEL_FAM6_WESTMERE_EX: 4280 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids, 4281 sizeof(hw_cache_event_ids)); 4282 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs, 4283 sizeof(hw_cache_extra_regs)); 4284 4285 intel_pmu_lbr_init_nhm(); 4286 4287 x86_pmu.event_constraints = intel_westmere_event_constraints; 4288 x86_pmu.enable_all = intel_pmu_nhm_enable_all; 4289 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints; 4290 x86_pmu.extra_regs = intel_westmere_extra_regs; 4291 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4292 4293 mem_attr = nhm_mem_events_attrs; 4294 4295 /* UOPS_ISSUED.STALLED_CYCLES */ 4296 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 4297 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); 4298 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */ 4299 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 4300 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1); 4301 4302 intel_pmu_pebs_data_source_nhm(); 4303 extra_attr = nhm_format_attr; 4304 pr_cont("Westmere events, "); 4305 name = "westmere"; 4306 break; 4307 4308 case INTEL_FAM6_SANDYBRIDGE: 4309 case INTEL_FAM6_SANDYBRIDGE_X: 4310 x86_add_quirk(intel_sandybridge_quirk); 4311 x86_add_quirk(intel_ht_bug); 4312 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids, 4313 sizeof(hw_cache_event_ids)); 4314 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs, 4315 sizeof(hw_cache_extra_regs)); 4316 4317 intel_pmu_lbr_init_snb(); 4318 4319 x86_pmu.event_constraints = intel_snb_event_constraints; 4320 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints; 4321 x86_pmu.pebs_aliases = intel_pebs_aliases_snb; 4322 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X) 4323 x86_pmu.extra_regs = intel_snbep_extra_regs; 4324 else 4325 x86_pmu.extra_regs = intel_snb_extra_regs; 4326 4327 4328 /* all extra regs are per-cpu when HT is on */ 4329 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4330 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 4331 4332 x86_pmu.cpu_events = snb_events_attrs; 4333 mem_attr = snb_mem_events_attrs; 4334 4335 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */ 4336 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 4337 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); 4338 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/ 4339 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 4340 X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1); 4341 4342 extra_attr = nhm_format_attr; 4343 4344 pr_cont("SandyBridge events, "); 4345 name = "sandybridge"; 4346 break; 4347 4348 case INTEL_FAM6_IVYBRIDGE: 4349 case INTEL_FAM6_IVYBRIDGE_X: 4350 x86_add_quirk(intel_ht_bug); 4351 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids, 4352 sizeof(hw_cache_event_ids)); 4353 /* dTLB-load-misses on IVB is different than SNB */ 4354 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */ 4355 4356 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs, 4357 sizeof(hw_cache_extra_regs)); 4358 4359 intel_pmu_lbr_init_snb(); 4360 4361 x86_pmu.event_constraints = intel_ivb_event_constraints; 4362 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints; 4363 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb; 4364 x86_pmu.pebs_prec_dist = true; 4365 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X) 4366 x86_pmu.extra_regs = intel_snbep_extra_regs; 4367 else 4368 x86_pmu.extra_regs = intel_snb_extra_regs; 4369 /* all extra regs are per-cpu when HT is on */ 4370 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4371 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 4372 4373 x86_pmu.cpu_events = snb_events_attrs; 4374 mem_attr = snb_mem_events_attrs; 4375 4376 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */ 4377 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 4378 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); 4379 4380 extra_attr = nhm_format_attr; 4381 4382 pr_cont("IvyBridge events, "); 4383 name = "ivybridge"; 4384 break; 4385 4386 4387 case INTEL_FAM6_HASWELL_CORE: 4388 case INTEL_FAM6_HASWELL_X: 4389 case INTEL_FAM6_HASWELL_ULT: 4390 case INTEL_FAM6_HASWELL_GT3E: 4391 x86_add_quirk(intel_ht_bug); 4392 x86_pmu.late_ack = true; 4393 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 4394 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); 4395 4396 intel_pmu_lbr_init_hsw(); 4397 4398 x86_pmu.event_constraints = intel_hsw_event_constraints; 4399 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints; 4400 x86_pmu.extra_regs = intel_snbep_extra_regs; 4401 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb; 4402 x86_pmu.pebs_prec_dist = true; 4403 /* all extra regs are per-cpu when HT is on */ 4404 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4405 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 4406 4407 x86_pmu.hw_config = hsw_hw_config; 4408 x86_pmu.get_event_constraints = hsw_get_event_constraints; 4409 x86_pmu.cpu_events = hsw_events_attrs; 4410 x86_pmu.lbr_double_abort = true; 4411 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? 4412 hsw_format_attr : nhm_format_attr; 4413 mem_attr = hsw_mem_events_attrs; 4414 tsx_attr = hsw_tsx_events_attrs; 4415 pr_cont("Haswell events, "); 4416 name = "haswell"; 4417 break; 4418 4419 case INTEL_FAM6_BROADWELL_CORE: 4420 case INTEL_FAM6_BROADWELL_XEON_D: 4421 case INTEL_FAM6_BROADWELL_GT3E: 4422 case INTEL_FAM6_BROADWELL_X: 4423 x86_pmu.late_ack = true; 4424 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 4425 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); 4426 4427 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */ 4428 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ | 4429 BDW_L3_MISS|HSW_SNOOP_DRAM; 4430 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS| 4431 HSW_SNOOP_DRAM; 4432 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ| 4433 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM; 4434 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE| 4435 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM; 4436 4437 intel_pmu_lbr_init_hsw(); 4438 4439 x86_pmu.event_constraints = intel_bdw_event_constraints; 4440 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints; 4441 x86_pmu.extra_regs = intel_snbep_extra_regs; 4442 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb; 4443 x86_pmu.pebs_prec_dist = true; 4444 /* all extra regs are per-cpu when HT is on */ 4445 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4446 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 4447 4448 x86_pmu.hw_config = hsw_hw_config; 4449 x86_pmu.get_event_constraints = hsw_get_event_constraints; 4450 x86_pmu.cpu_events = hsw_events_attrs; 4451 x86_pmu.limit_period = bdw_limit_period; 4452 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? 4453 hsw_format_attr : nhm_format_attr; 4454 mem_attr = hsw_mem_events_attrs; 4455 tsx_attr = hsw_tsx_events_attrs; 4456 pr_cont("Broadwell events, "); 4457 name = "broadwell"; 4458 break; 4459 4460 case INTEL_FAM6_XEON_PHI_KNL: 4461 case INTEL_FAM6_XEON_PHI_KNM: 4462 memcpy(hw_cache_event_ids, 4463 slm_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 4464 memcpy(hw_cache_extra_regs, 4465 knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); 4466 intel_pmu_lbr_init_knl(); 4467 4468 x86_pmu.event_constraints = intel_slm_event_constraints; 4469 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints; 4470 x86_pmu.extra_regs = intel_knl_extra_regs; 4471 4472 /* all extra regs are per-cpu when HT is on */ 4473 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4474 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 4475 extra_attr = slm_format_attr; 4476 pr_cont("Knights Landing/Mill events, "); 4477 name = "knights-landing"; 4478 break; 4479 4480 case INTEL_FAM6_SKYLAKE_MOBILE: 4481 case INTEL_FAM6_SKYLAKE_DESKTOP: 4482 case INTEL_FAM6_SKYLAKE_X: 4483 case INTEL_FAM6_KABYLAKE_MOBILE: 4484 case INTEL_FAM6_KABYLAKE_DESKTOP: 4485 x86_pmu.late_ack = true; 4486 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 4487 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); 4488 intel_pmu_lbr_init_skl(); 4489 4490 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */ 4491 event_attr_td_recovery_bubbles.event_str_noht = 4492 "event=0xd,umask=0x1,cmask=1"; 4493 event_attr_td_recovery_bubbles.event_str_ht = 4494 "event=0xd,umask=0x1,cmask=1,any=1"; 4495 4496 x86_pmu.event_constraints = intel_skl_event_constraints; 4497 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints; 4498 x86_pmu.extra_regs = intel_skl_extra_regs; 4499 x86_pmu.pebs_aliases = intel_pebs_aliases_skl; 4500 x86_pmu.pebs_prec_dist = true; 4501 /* all extra regs are per-cpu when HT is on */ 4502 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4503 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 4504 4505 x86_pmu.hw_config = hsw_hw_config; 4506 x86_pmu.get_event_constraints = hsw_get_event_constraints; 4507 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? 4508 hsw_format_attr : nhm_format_attr; 4509 extra_attr = merge_attr(extra_attr, skl_format_attr); 4510 to_free = extra_attr; 4511 x86_pmu.cpu_events = hsw_events_attrs; 4512 mem_attr = hsw_mem_events_attrs; 4513 tsx_attr = hsw_tsx_events_attrs; 4514 intel_pmu_pebs_data_source_skl( 4515 boot_cpu_data.x86_model == INTEL_FAM6_SKYLAKE_X); 4516 pr_cont("Skylake events, "); 4517 name = "skylake"; 4518 break; 4519 4520 default: 4521 switch (x86_pmu.version) { 4522 case 1: 4523 x86_pmu.event_constraints = intel_v1_event_constraints; 4524 pr_cont("generic architected perfmon v1, "); 4525 name = "generic_arch_v1"; 4526 break; 4527 default: 4528 /* 4529 * default constraints for v2 and up 4530 */ 4531 x86_pmu.event_constraints = intel_gen_event_constraints; 4532 pr_cont("generic architected perfmon, "); 4533 name = "generic_arch_v2+"; 4534 break; 4535 } 4536 } 4537 4538 snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name); 4539 4540 if (version >= 2 && extra_attr) { 4541 x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr, 4542 extra_attr); 4543 WARN_ON(!x86_pmu.format_attrs); 4544 } 4545 4546 x86_pmu.cpu_events = get_events_attrs(x86_pmu.cpu_events, 4547 mem_attr, tsx_attr); 4548 4549 if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) { 4550 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!", 4551 x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC); 4552 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC; 4553 } 4554 x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1; 4555 4556 if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) { 4557 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!", 4558 x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED); 4559 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED; 4560 } 4561 4562 x86_pmu.intel_ctrl |= 4563 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED; 4564 4565 if (x86_pmu.event_constraints) { 4566 /* 4567 * event on fixed counter2 (REF_CYCLES) only works on this 4568 * counter, so do not extend mask to generic counters 4569 */ 4570 for_each_event_constraint(c, x86_pmu.event_constraints) { 4571 if (c->cmask == FIXED_EVENT_FLAGS 4572 && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) { 4573 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1; 4574 } 4575 c->idxmsk64 &= 4576 ~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed)); 4577 c->weight = hweight64(c->idxmsk64); 4578 } 4579 } 4580 4581 /* 4582 * Access LBR MSR may cause #GP under certain circumstances. 4583 * E.g. KVM doesn't support LBR MSR 4584 * Check all LBT MSR here. 4585 * Disable LBR access if any LBR MSRs can not be accessed. 4586 */ 4587 if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL)) 4588 x86_pmu.lbr_nr = 0; 4589 for (i = 0; i < x86_pmu.lbr_nr; i++) { 4590 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) && 4591 check_msr(x86_pmu.lbr_to + i, 0xffffUL))) 4592 x86_pmu.lbr_nr = 0; 4593 } 4594 4595 x86_pmu.caps_attrs = intel_pmu_caps_attrs; 4596 4597 if (x86_pmu.lbr_nr) { 4598 x86_pmu.caps_attrs = merge_attr(x86_pmu.caps_attrs, lbr_attrs); 4599 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr); 4600 } 4601 4602 /* 4603 * Access extra MSR may cause #GP under certain circumstances. 4604 * E.g. KVM doesn't support offcore event 4605 * Check all extra_regs here. 4606 */ 4607 if (x86_pmu.extra_regs) { 4608 for (er = x86_pmu.extra_regs; er->msr; er++) { 4609 er->extra_msr_access = check_msr(er->msr, 0x11UL); 4610 /* Disable LBR select mapping */ 4611 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access) 4612 x86_pmu.lbr_sel_map = NULL; 4613 } 4614 } 4615 4616 /* Support full width counters using alternative MSR range */ 4617 if (x86_pmu.intel_cap.full_width_write) { 4618 x86_pmu.max_period = x86_pmu.cntval_mask >> 1; 4619 x86_pmu.perfctr = MSR_IA32_PMC0; 4620 pr_cont("full-width counters, "); 4621 } 4622 4623 /* 4624 * For arch perfmon 4 use counter freezing to avoid 4625 * several MSR accesses in the PMI. 4626 */ 4627 if (x86_pmu.counter_freezing) 4628 x86_pmu.handle_irq = intel_pmu_handle_irq_v4; 4629 4630 kfree(to_free); 4631 return 0; 4632 } 4633 4634 /* 4635 * HT bug: phase 2 init 4636 * Called once we have valid topology information to check 4637 * whether or not HT is enabled 4638 * If HT is off, then we disable the workaround 4639 */ 4640 static __init int fixup_ht_bug(void) 4641 { 4642 int c; 4643 /* 4644 * problem not present on this CPU model, nothing to do 4645 */ 4646 if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED)) 4647 return 0; 4648 4649 if (topology_max_smt_threads() > 1) { 4650 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n"); 4651 return 0; 4652 } 4653 4654 cpus_read_lock(); 4655 4656 hardlockup_detector_perf_stop(); 4657 4658 x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED); 4659 4660 x86_pmu.start_scheduling = NULL; 4661 x86_pmu.commit_scheduling = NULL; 4662 x86_pmu.stop_scheduling = NULL; 4663 4664 hardlockup_detector_perf_restart(); 4665 4666 for_each_online_cpu(c) 4667 free_excl_cntrs(c); 4668 4669 cpus_read_unlock(); 4670 pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n"); 4671 return 0; 4672 } 4673 subsys_initcall(fixup_ht_bug) 4674