xref: /openbmc/linux/arch/x86/events/intel/core.c (revision 8e694cd2)
1 /*
2  * Per core/cpu state
3  *
4  * Used to coordinate shared registers between HT threads or
5  * among events on a single PMU.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/nmi.h>
16 
17 #include <asm/cpufeature.h>
18 #include <asm/hardirq.h>
19 #include <asm/apic.h>
20 
21 #include "../perf_event.h"
22 
23 /*
24  * Intel PerfMon, used on Core and later.
25  */
26 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
27 {
28 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
29 	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
30 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
31 	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
32 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
33 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
34 	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
35 	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
36 };
37 
38 static struct event_constraint intel_core_event_constraints[] __read_mostly =
39 {
40 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
41 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
42 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
43 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
44 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
45 	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
46 	EVENT_CONSTRAINT_END
47 };
48 
49 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
50 {
51 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
52 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
53 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
54 	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
55 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
56 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
57 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
58 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
59 	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
60 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
61 	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
62 	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
63 	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
64 	EVENT_CONSTRAINT_END
65 };
66 
67 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
68 {
69 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
70 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
71 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
72 	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
73 	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
74 	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
75 	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
76 	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
77 	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
78 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
79 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
80 	EVENT_CONSTRAINT_END
81 };
82 
83 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
84 {
85 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
86 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
87 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
88 	EVENT_EXTRA_END
89 };
90 
91 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
92 {
93 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
94 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
95 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
96 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
97 	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
98 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
99 	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
100 	EVENT_CONSTRAINT_END
101 };
102 
103 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
104 {
105 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
106 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
107 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
108 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
109 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
110 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
111 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
112 	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
113 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
114 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
115 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
116 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
117 
118 	/*
119 	 * When HT is off these events can only run on the bottom 4 counters
120 	 * When HT is on, they are impacted by the HT bug and require EXCL access
121 	 */
122 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
123 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
124 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
125 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
126 
127 	EVENT_CONSTRAINT_END
128 };
129 
130 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
131 {
132 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
133 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
134 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
135 	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
136 	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
137 	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
138 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
139 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
140 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
141 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
142 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
143 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
144 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
145 
146 	/*
147 	 * When HT is off these events can only run on the bottom 4 counters
148 	 * When HT is on, they are impacted by the HT bug and require EXCL access
149 	 */
150 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
151 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
152 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
153 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
154 
155 	EVENT_CONSTRAINT_END
156 };
157 
158 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
159 {
160 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
161 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
162 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
163 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
164 	EVENT_EXTRA_END
165 };
166 
167 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
168 {
169 	EVENT_CONSTRAINT_END
170 };
171 
172 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
173 {
174 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
175 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
176 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
177 	EVENT_CONSTRAINT_END
178 };
179 
180 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
181 {
182 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
183 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
184 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
185 	EVENT_CONSTRAINT_END
186 };
187 
188 struct event_constraint intel_skl_event_constraints[] = {
189 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
190 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
191 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
192 	INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
193 
194 	/*
195 	 * when HT is off, these can only run on the bottom 4 counters
196 	 */
197 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
198 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
199 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
200 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
201 	INTEL_EVENT_CONSTRAINT(0xc6, 0xf),	/* FRONTEND_RETIRED.* */
202 
203 	EVENT_CONSTRAINT_END
204 };
205 
206 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
207 	INTEL_UEVENT_EXTRA_REG(0x01b7,
208 			       MSR_OFFCORE_RSP_0, 0x7f9ffbffffull, RSP_0),
209 	INTEL_UEVENT_EXTRA_REG(0x02b7,
210 			       MSR_OFFCORE_RSP_1, 0x3f9ffbffffull, RSP_1),
211 	EVENT_EXTRA_END
212 };
213 
214 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
215 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
216 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
217 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
218 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
219 	EVENT_EXTRA_END
220 };
221 
222 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
223 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
224 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
225 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
226 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
227 	EVENT_EXTRA_END
228 };
229 
230 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
231 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
232 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
233 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
234 	/*
235 	 * Note the low 8 bits eventsel code is not a continuous field, containing
236 	 * some #GPing bits. These are masked out.
237 	 */
238 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
239 	EVENT_EXTRA_END
240 };
241 
242 EVENT_ATTR_STR(mem-loads,	mem_ld_nhm,	"event=0x0b,umask=0x10,ldlat=3");
243 EVENT_ATTR_STR(mem-loads,	mem_ld_snb,	"event=0xcd,umask=0x1,ldlat=3");
244 EVENT_ATTR_STR(mem-stores,	mem_st_snb,	"event=0xcd,umask=0x2");
245 
246 struct attribute *nhm_events_attrs[] = {
247 	EVENT_PTR(mem_ld_nhm),
248 	NULL,
249 };
250 
251 struct attribute *snb_events_attrs[] = {
252 	EVENT_PTR(mem_ld_snb),
253 	EVENT_PTR(mem_st_snb),
254 	NULL,
255 };
256 
257 static struct event_constraint intel_hsw_event_constraints[] = {
258 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
259 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
260 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
261 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
262 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
263 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
264 	/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
265 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
266 	/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
267 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
268 	/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
269 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
270 
271 	/*
272 	 * When HT is off these events can only run on the bottom 4 counters
273 	 * When HT is on, they are impacted by the HT bug and require EXCL access
274 	 */
275 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
276 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
277 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
278 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
279 
280 	EVENT_CONSTRAINT_END
281 };
282 
283 struct event_constraint intel_bdw_event_constraints[] = {
284 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
285 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
286 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
287 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
288 	INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),	/* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
289 	/*
290 	 * when HT is off, these can only run on the bottom 4 counters
291 	 */
292 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
293 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
294 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
295 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
296 	EVENT_CONSTRAINT_END
297 };
298 
299 static u64 intel_pmu_event_map(int hw_event)
300 {
301 	return intel_perfmon_event_map[hw_event];
302 }
303 
304 /*
305  * Notes on the events:
306  * - data reads do not include code reads (comparable to earlier tables)
307  * - data counts include speculative execution (except L1 write, dtlb, bpu)
308  * - remote node access includes remote memory, remote cache, remote mmio.
309  * - prefetches are not included in the counts.
310  * - icache miss does not include decoded icache
311  */
312 
313 #define SKL_DEMAND_DATA_RD		BIT_ULL(0)
314 #define SKL_DEMAND_RFO			BIT_ULL(1)
315 #define SKL_ANY_RESPONSE		BIT_ULL(16)
316 #define SKL_SUPPLIER_NONE		BIT_ULL(17)
317 #define SKL_L3_MISS_LOCAL_DRAM		BIT_ULL(26)
318 #define SKL_L3_MISS_REMOTE_HOP0_DRAM	BIT_ULL(27)
319 #define SKL_L3_MISS_REMOTE_HOP1_DRAM	BIT_ULL(28)
320 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM	BIT_ULL(29)
321 #define SKL_L3_MISS			(SKL_L3_MISS_LOCAL_DRAM| \
322 					 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
323 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
324 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
325 #define SKL_SPL_HIT			BIT_ULL(30)
326 #define SKL_SNOOP_NONE			BIT_ULL(31)
327 #define SKL_SNOOP_NOT_NEEDED		BIT_ULL(32)
328 #define SKL_SNOOP_MISS			BIT_ULL(33)
329 #define SKL_SNOOP_HIT_NO_FWD		BIT_ULL(34)
330 #define SKL_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
331 #define SKL_SNOOP_HITM			BIT_ULL(36)
332 #define SKL_SNOOP_NON_DRAM		BIT_ULL(37)
333 #define SKL_ANY_SNOOP			(SKL_SPL_HIT|SKL_SNOOP_NONE| \
334 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
335 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
336 					 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
337 #define SKL_DEMAND_READ			SKL_DEMAND_DATA_RD
338 #define SKL_SNOOP_DRAM			(SKL_SNOOP_NONE| \
339 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
340 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
341 					 SKL_SNOOP_HITM|SKL_SPL_HIT)
342 #define SKL_DEMAND_WRITE		SKL_DEMAND_RFO
343 #define SKL_LLC_ACCESS			SKL_ANY_RESPONSE
344 #define SKL_L3_MISS_REMOTE		(SKL_L3_MISS_REMOTE_HOP0_DRAM| \
345 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
346 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
347 
348 static __initconst const u64 skl_hw_cache_event_ids
349 				[PERF_COUNT_HW_CACHE_MAX]
350 				[PERF_COUNT_HW_CACHE_OP_MAX]
351 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
352 {
353  [ C(L1D ) ] = {
354 	[ C(OP_READ) ] = {
355 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
356 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
357 	},
358 	[ C(OP_WRITE) ] = {
359 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
360 		[ C(RESULT_MISS)   ] = 0x0,
361 	},
362 	[ C(OP_PREFETCH) ] = {
363 		[ C(RESULT_ACCESS) ] = 0x0,
364 		[ C(RESULT_MISS)   ] = 0x0,
365 	},
366  },
367  [ C(L1I ) ] = {
368 	[ C(OP_READ) ] = {
369 		[ C(RESULT_ACCESS) ] = 0x0,
370 		[ C(RESULT_MISS)   ] = 0x283,	/* ICACHE_64B.MISS */
371 	},
372 	[ C(OP_WRITE) ] = {
373 		[ C(RESULT_ACCESS) ] = -1,
374 		[ C(RESULT_MISS)   ] = -1,
375 	},
376 	[ C(OP_PREFETCH) ] = {
377 		[ C(RESULT_ACCESS) ] = 0x0,
378 		[ C(RESULT_MISS)   ] = 0x0,
379 	},
380  },
381  [ C(LL  ) ] = {
382 	[ C(OP_READ) ] = {
383 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
384 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
385 	},
386 	[ C(OP_WRITE) ] = {
387 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
388 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
389 	},
390 	[ C(OP_PREFETCH) ] = {
391 		[ C(RESULT_ACCESS) ] = 0x0,
392 		[ C(RESULT_MISS)   ] = 0x0,
393 	},
394  },
395  [ C(DTLB) ] = {
396 	[ C(OP_READ) ] = {
397 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
398 		[ C(RESULT_MISS)   ] = 0x608,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
399 	},
400 	[ C(OP_WRITE) ] = {
401 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
402 		[ C(RESULT_MISS)   ] = 0x649,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
403 	},
404 	[ C(OP_PREFETCH) ] = {
405 		[ C(RESULT_ACCESS) ] = 0x0,
406 		[ C(RESULT_MISS)   ] = 0x0,
407 	},
408  },
409  [ C(ITLB) ] = {
410 	[ C(OP_READ) ] = {
411 		[ C(RESULT_ACCESS) ] = 0x2085,	/* ITLB_MISSES.STLB_HIT */
412 		[ C(RESULT_MISS)   ] = 0xe85,	/* ITLB_MISSES.WALK_COMPLETED */
413 	},
414 	[ C(OP_WRITE) ] = {
415 		[ C(RESULT_ACCESS) ] = -1,
416 		[ C(RESULT_MISS)   ] = -1,
417 	},
418 	[ C(OP_PREFETCH) ] = {
419 		[ C(RESULT_ACCESS) ] = -1,
420 		[ C(RESULT_MISS)   ] = -1,
421 	},
422  },
423  [ C(BPU ) ] = {
424 	[ C(OP_READ) ] = {
425 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
426 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
427 	},
428 	[ C(OP_WRITE) ] = {
429 		[ C(RESULT_ACCESS) ] = -1,
430 		[ C(RESULT_MISS)   ] = -1,
431 	},
432 	[ C(OP_PREFETCH) ] = {
433 		[ C(RESULT_ACCESS) ] = -1,
434 		[ C(RESULT_MISS)   ] = -1,
435 	},
436  },
437  [ C(NODE) ] = {
438 	[ C(OP_READ) ] = {
439 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
440 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
441 	},
442 	[ C(OP_WRITE) ] = {
443 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
444 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
445 	},
446 	[ C(OP_PREFETCH) ] = {
447 		[ C(RESULT_ACCESS) ] = 0x0,
448 		[ C(RESULT_MISS)   ] = 0x0,
449 	},
450  },
451 };
452 
453 static __initconst const u64 skl_hw_cache_extra_regs
454 				[PERF_COUNT_HW_CACHE_MAX]
455 				[PERF_COUNT_HW_CACHE_OP_MAX]
456 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
457 {
458  [ C(LL  ) ] = {
459 	[ C(OP_READ) ] = {
460 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
461 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
462 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
463 				       SKL_L3_MISS|SKL_ANY_SNOOP|
464 				       SKL_SUPPLIER_NONE,
465 	},
466 	[ C(OP_WRITE) ] = {
467 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
468 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
469 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
470 				       SKL_L3_MISS|SKL_ANY_SNOOP|
471 				       SKL_SUPPLIER_NONE,
472 	},
473 	[ C(OP_PREFETCH) ] = {
474 		[ C(RESULT_ACCESS) ] = 0x0,
475 		[ C(RESULT_MISS)   ] = 0x0,
476 	},
477  },
478  [ C(NODE) ] = {
479 	[ C(OP_READ) ] = {
480 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
481 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
482 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
483 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
484 	},
485 	[ C(OP_WRITE) ] = {
486 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
487 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
488 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
489 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
490 	},
491 	[ C(OP_PREFETCH) ] = {
492 		[ C(RESULT_ACCESS) ] = 0x0,
493 		[ C(RESULT_MISS)   ] = 0x0,
494 	},
495  },
496 };
497 
498 #define SNB_DMND_DATA_RD	(1ULL << 0)
499 #define SNB_DMND_RFO		(1ULL << 1)
500 #define SNB_DMND_IFETCH		(1ULL << 2)
501 #define SNB_DMND_WB		(1ULL << 3)
502 #define SNB_PF_DATA_RD		(1ULL << 4)
503 #define SNB_PF_RFO		(1ULL << 5)
504 #define SNB_PF_IFETCH		(1ULL << 6)
505 #define SNB_LLC_DATA_RD		(1ULL << 7)
506 #define SNB_LLC_RFO		(1ULL << 8)
507 #define SNB_LLC_IFETCH		(1ULL << 9)
508 #define SNB_BUS_LOCKS		(1ULL << 10)
509 #define SNB_STRM_ST		(1ULL << 11)
510 #define SNB_OTHER		(1ULL << 15)
511 #define SNB_RESP_ANY		(1ULL << 16)
512 #define SNB_NO_SUPP		(1ULL << 17)
513 #define SNB_LLC_HITM		(1ULL << 18)
514 #define SNB_LLC_HITE		(1ULL << 19)
515 #define SNB_LLC_HITS		(1ULL << 20)
516 #define SNB_LLC_HITF		(1ULL << 21)
517 #define SNB_LOCAL		(1ULL << 22)
518 #define SNB_REMOTE		(0xffULL << 23)
519 #define SNB_SNP_NONE		(1ULL << 31)
520 #define SNB_SNP_NOT_NEEDED	(1ULL << 32)
521 #define SNB_SNP_MISS		(1ULL << 33)
522 #define SNB_NO_FWD		(1ULL << 34)
523 #define SNB_SNP_FWD		(1ULL << 35)
524 #define SNB_HITM		(1ULL << 36)
525 #define SNB_NON_DRAM		(1ULL << 37)
526 
527 #define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
528 #define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
529 #define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
530 
531 #define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
532 				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
533 				 SNB_HITM)
534 
535 #define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
536 #define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)
537 
538 #define SNB_L3_ACCESS		SNB_RESP_ANY
539 #define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)
540 
541 static __initconst const u64 snb_hw_cache_extra_regs
542 				[PERF_COUNT_HW_CACHE_MAX]
543 				[PERF_COUNT_HW_CACHE_OP_MAX]
544 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
545 {
546  [ C(LL  ) ] = {
547 	[ C(OP_READ) ] = {
548 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
549 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
550 	},
551 	[ C(OP_WRITE) ] = {
552 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
553 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
554 	},
555 	[ C(OP_PREFETCH) ] = {
556 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
557 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
558 	},
559  },
560  [ C(NODE) ] = {
561 	[ C(OP_READ) ] = {
562 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
563 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
564 	},
565 	[ C(OP_WRITE) ] = {
566 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
567 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
568 	},
569 	[ C(OP_PREFETCH) ] = {
570 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
571 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
572 	},
573  },
574 };
575 
576 static __initconst const u64 snb_hw_cache_event_ids
577 				[PERF_COUNT_HW_CACHE_MAX]
578 				[PERF_COUNT_HW_CACHE_OP_MAX]
579 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
580 {
581  [ C(L1D) ] = {
582 	[ C(OP_READ) ] = {
583 		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
584 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
585 	},
586 	[ C(OP_WRITE) ] = {
587 		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
588 		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
589 	},
590 	[ C(OP_PREFETCH) ] = {
591 		[ C(RESULT_ACCESS) ] = 0x0,
592 		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
593 	},
594  },
595  [ C(L1I ) ] = {
596 	[ C(OP_READ) ] = {
597 		[ C(RESULT_ACCESS) ] = 0x0,
598 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
599 	},
600 	[ C(OP_WRITE) ] = {
601 		[ C(RESULT_ACCESS) ] = -1,
602 		[ C(RESULT_MISS)   ] = -1,
603 	},
604 	[ C(OP_PREFETCH) ] = {
605 		[ C(RESULT_ACCESS) ] = 0x0,
606 		[ C(RESULT_MISS)   ] = 0x0,
607 	},
608  },
609  [ C(LL  ) ] = {
610 	[ C(OP_READ) ] = {
611 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
612 		[ C(RESULT_ACCESS) ] = 0x01b7,
613 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
614 		[ C(RESULT_MISS)   ] = 0x01b7,
615 	},
616 	[ C(OP_WRITE) ] = {
617 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
618 		[ C(RESULT_ACCESS) ] = 0x01b7,
619 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
620 		[ C(RESULT_MISS)   ] = 0x01b7,
621 	},
622 	[ C(OP_PREFETCH) ] = {
623 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
624 		[ C(RESULT_ACCESS) ] = 0x01b7,
625 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
626 		[ C(RESULT_MISS)   ] = 0x01b7,
627 	},
628  },
629  [ C(DTLB) ] = {
630 	[ C(OP_READ) ] = {
631 		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
632 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
633 	},
634 	[ C(OP_WRITE) ] = {
635 		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
636 		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
637 	},
638 	[ C(OP_PREFETCH) ] = {
639 		[ C(RESULT_ACCESS) ] = 0x0,
640 		[ C(RESULT_MISS)   ] = 0x0,
641 	},
642  },
643  [ C(ITLB) ] = {
644 	[ C(OP_READ) ] = {
645 		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
646 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
647 	},
648 	[ C(OP_WRITE) ] = {
649 		[ C(RESULT_ACCESS) ] = -1,
650 		[ C(RESULT_MISS)   ] = -1,
651 	},
652 	[ C(OP_PREFETCH) ] = {
653 		[ C(RESULT_ACCESS) ] = -1,
654 		[ C(RESULT_MISS)   ] = -1,
655 	},
656  },
657  [ C(BPU ) ] = {
658 	[ C(OP_READ) ] = {
659 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
660 		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
661 	},
662 	[ C(OP_WRITE) ] = {
663 		[ C(RESULT_ACCESS) ] = -1,
664 		[ C(RESULT_MISS)   ] = -1,
665 	},
666 	[ C(OP_PREFETCH) ] = {
667 		[ C(RESULT_ACCESS) ] = -1,
668 		[ C(RESULT_MISS)   ] = -1,
669 	},
670  },
671  [ C(NODE) ] = {
672 	[ C(OP_READ) ] = {
673 		[ C(RESULT_ACCESS) ] = 0x01b7,
674 		[ C(RESULT_MISS)   ] = 0x01b7,
675 	},
676 	[ C(OP_WRITE) ] = {
677 		[ C(RESULT_ACCESS) ] = 0x01b7,
678 		[ C(RESULT_MISS)   ] = 0x01b7,
679 	},
680 	[ C(OP_PREFETCH) ] = {
681 		[ C(RESULT_ACCESS) ] = 0x01b7,
682 		[ C(RESULT_MISS)   ] = 0x01b7,
683 	},
684  },
685 
686 };
687 
688 /*
689  * Notes on the events:
690  * - data reads do not include code reads (comparable to earlier tables)
691  * - data counts include speculative execution (except L1 write, dtlb, bpu)
692  * - remote node access includes remote memory, remote cache, remote mmio.
693  * - prefetches are not included in the counts because they are not
694  *   reliably counted.
695  */
696 
697 #define HSW_DEMAND_DATA_RD		BIT_ULL(0)
698 #define HSW_DEMAND_RFO			BIT_ULL(1)
699 #define HSW_ANY_RESPONSE		BIT_ULL(16)
700 #define HSW_SUPPLIER_NONE		BIT_ULL(17)
701 #define HSW_L3_MISS_LOCAL_DRAM		BIT_ULL(22)
702 #define HSW_L3_MISS_REMOTE_HOP0		BIT_ULL(27)
703 #define HSW_L3_MISS_REMOTE_HOP1		BIT_ULL(28)
704 #define HSW_L3_MISS_REMOTE_HOP2P	BIT_ULL(29)
705 #define HSW_L3_MISS			(HSW_L3_MISS_LOCAL_DRAM| \
706 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
707 					 HSW_L3_MISS_REMOTE_HOP2P)
708 #define HSW_SNOOP_NONE			BIT_ULL(31)
709 #define HSW_SNOOP_NOT_NEEDED		BIT_ULL(32)
710 #define HSW_SNOOP_MISS			BIT_ULL(33)
711 #define HSW_SNOOP_HIT_NO_FWD		BIT_ULL(34)
712 #define HSW_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
713 #define HSW_SNOOP_HITM			BIT_ULL(36)
714 #define HSW_SNOOP_NON_DRAM		BIT_ULL(37)
715 #define HSW_ANY_SNOOP			(HSW_SNOOP_NONE| \
716 					 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
717 					 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
718 					 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
719 #define HSW_SNOOP_DRAM			(HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
720 #define HSW_DEMAND_READ			HSW_DEMAND_DATA_RD
721 #define HSW_DEMAND_WRITE		HSW_DEMAND_RFO
722 #define HSW_L3_MISS_REMOTE		(HSW_L3_MISS_REMOTE_HOP0|\
723 					 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
724 #define HSW_LLC_ACCESS			HSW_ANY_RESPONSE
725 
726 #define BDW_L3_MISS_LOCAL		BIT(26)
727 #define BDW_L3_MISS			(BDW_L3_MISS_LOCAL| \
728 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
729 					 HSW_L3_MISS_REMOTE_HOP2P)
730 
731 
732 static __initconst const u64 hsw_hw_cache_event_ids
733 				[PERF_COUNT_HW_CACHE_MAX]
734 				[PERF_COUNT_HW_CACHE_OP_MAX]
735 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
736 {
737  [ C(L1D ) ] = {
738 	[ C(OP_READ) ] = {
739 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
740 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
741 	},
742 	[ C(OP_WRITE) ] = {
743 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
744 		[ C(RESULT_MISS)   ] = 0x0,
745 	},
746 	[ C(OP_PREFETCH) ] = {
747 		[ C(RESULT_ACCESS) ] = 0x0,
748 		[ C(RESULT_MISS)   ] = 0x0,
749 	},
750  },
751  [ C(L1I ) ] = {
752 	[ C(OP_READ) ] = {
753 		[ C(RESULT_ACCESS) ] = 0x0,
754 		[ C(RESULT_MISS)   ] = 0x280,	/* ICACHE.MISSES */
755 	},
756 	[ C(OP_WRITE) ] = {
757 		[ C(RESULT_ACCESS) ] = -1,
758 		[ C(RESULT_MISS)   ] = -1,
759 	},
760 	[ C(OP_PREFETCH) ] = {
761 		[ C(RESULT_ACCESS) ] = 0x0,
762 		[ C(RESULT_MISS)   ] = 0x0,
763 	},
764  },
765  [ C(LL  ) ] = {
766 	[ C(OP_READ) ] = {
767 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
768 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
769 	},
770 	[ C(OP_WRITE) ] = {
771 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
772 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
773 	},
774 	[ C(OP_PREFETCH) ] = {
775 		[ C(RESULT_ACCESS) ] = 0x0,
776 		[ C(RESULT_MISS)   ] = 0x0,
777 	},
778  },
779  [ C(DTLB) ] = {
780 	[ C(OP_READ) ] = {
781 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
782 		[ C(RESULT_MISS)   ] = 0x108,	/* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
783 	},
784 	[ C(OP_WRITE) ] = {
785 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
786 		[ C(RESULT_MISS)   ] = 0x149,	/* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
787 	},
788 	[ C(OP_PREFETCH) ] = {
789 		[ C(RESULT_ACCESS) ] = 0x0,
790 		[ C(RESULT_MISS)   ] = 0x0,
791 	},
792  },
793  [ C(ITLB) ] = {
794 	[ C(OP_READ) ] = {
795 		[ C(RESULT_ACCESS) ] = 0x6085,	/* ITLB_MISSES.STLB_HIT */
796 		[ C(RESULT_MISS)   ] = 0x185,	/* ITLB_MISSES.MISS_CAUSES_A_WALK */
797 	},
798 	[ C(OP_WRITE) ] = {
799 		[ C(RESULT_ACCESS) ] = -1,
800 		[ C(RESULT_MISS)   ] = -1,
801 	},
802 	[ C(OP_PREFETCH) ] = {
803 		[ C(RESULT_ACCESS) ] = -1,
804 		[ C(RESULT_MISS)   ] = -1,
805 	},
806  },
807  [ C(BPU ) ] = {
808 	[ C(OP_READ) ] = {
809 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
810 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
811 	},
812 	[ C(OP_WRITE) ] = {
813 		[ C(RESULT_ACCESS) ] = -1,
814 		[ C(RESULT_MISS)   ] = -1,
815 	},
816 	[ C(OP_PREFETCH) ] = {
817 		[ C(RESULT_ACCESS) ] = -1,
818 		[ C(RESULT_MISS)   ] = -1,
819 	},
820  },
821  [ C(NODE) ] = {
822 	[ C(OP_READ) ] = {
823 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
824 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
825 	},
826 	[ C(OP_WRITE) ] = {
827 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
828 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
829 	},
830 	[ C(OP_PREFETCH) ] = {
831 		[ C(RESULT_ACCESS) ] = 0x0,
832 		[ C(RESULT_MISS)   ] = 0x0,
833 	},
834  },
835 };
836 
837 static __initconst const u64 hsw_hw_cache_extra_regs
838 				[PERF_COUNT_HW_CACHE_MAX]
839 				[PERF_COUNT_HW_CACHE_OP_MAX]
840 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
841 {
842  [ C(LL  ) ] = {
843 	[ C(OP_READ) ] = {
844 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
845 				       HSW_LLC_ACCESS,
846 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
847 				       HSW_L3_MISS|HSW_ANY_SNOOP,
848 	},
849 	[ C(OP_WRITE) ] = {
850 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
851 				       HSW_LLC_ACCESS,
852 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
853 				       HSW_L3_MISS|HSW_ANY_SNOOP,
854 	},
855 	[ C(OP_PREFETCH) ] = {
856 		[ C(RESULT_ACCESS) ] = 0x0,
857 		[ C(RESULT_MISS)   ] = 0x0,
858 	},
859  },
860  [ C(NODE) ] = {
861 	[ C(OP_READ) ] = {
862 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
863 				       HSW_L3_MISS_LOCAL_DRAM|
864 				       HSW_SNOOP_DRAM,
865 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
866 				       HSW_L3_MISS_REMOTE|
867 				       HSW_SNOOP_DRAM,
868 	},
869 	[ C(OP_WRITE) ] = {
870 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
871 				       HSW_L3_MISS_LOCAL_DRAM|
872 				       HSW_SNOOP_DRAM,
873 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
874 				       HSW_L3_MISS_REMOTE|
875 				       HSW_SNOOP_DRAM,
876 	},
877 	[ C(OP_PREFETCH) ] = {
878 		[ C(RESULT_ACCESS) ] = 0x0,
879 		[ C(RESULT_MISS)   ] = 0x0,
880 	},
881  },
882 };
883 
884 static __initconst const u64 westmere_hw_cache_event_ids
885 				[PERF_COUNT_HW_CACHE_MAX]
886 				[PERF_COUNT_HW_CACHE_OP_MAX]
887 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
888 {
889  [ C(L1D) ] = {
890 	[ C(OP_READ) ] = {
891 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
892 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
893 	},
894 	[ C(OP_WRITE) ] = {
895 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
896 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
897 	},
898 	[ C(OP_PREFETCH) ] = {
899 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
900 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
901 	},
902  },
903  [ C(L1I ) ] = {
904 	[ C(OP_READ) ] = {
905 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
906 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
907 	},
908 	[ C(OP_WRITE) ] = {
909 		[ C(RESULT_ACCESS) ] = -1,
910 		[ C(RESULT_MISS)   ] = -1,
911 	},
912 	[ C(OP_PREFETCH) ] = {
913 		[ C(RESULT_ACCESS) ] = 0x0,
914 		[ C(RESULT_MISS)   ] = 0x0,
915 	},
916  },
917  [ C(LL  ) ] = {
918 	[ C(OP_READ) ] = {
919 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
920 		[ C(RESULT_ACCESS) ] = 0x01b7,
921 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
922 		[ C(RESULT_MISS)   ] = 0x01b7,
923 	},
924 	/*
925 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
926 	 * on RFO.
927 	 */
928 	[ C(OP_WRITE) ] = {
929 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
930 		[ C(RESULT_ACCESS) ] = 0x01b7,
931 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
932 		[ C(RESULT_MISS)   ] = 0x01b7,
933 	},
934 	[ C(OP_PREFETCH) ] = {
935 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
936 		[ C(RESULT_ACCESS) ] = 0x01b7,
937 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
938 		[ C(RESULT_MISS)   ] = 0x01b7,
939 	},
940  },
941  [ C(DTLB) ] = {
942 	[ C(OP_READ) ] = {
943 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
944 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
945 	},
946 	[ C(OP_WRITE) ] = {
947 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
948 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
949 	},
950 	[ C(OP_PREFETCH) ] = {
951 		[ C(RESULT_ACCESS) ] = 0x0,
952 		[ C(RESULT_MISS)   ] = 0x0,
953 	},
954  },
955  [ C(ITLB) ] = {
956 	[ C(OP_READ) ] = {
957 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
958 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
959 	},
960 	[ C(OP_WRITE) ] = {
961 		[ C(RESULT_ACCESS) ] = -1,
962 		[ C(RESULT_MISS)   ] = -1,
963 	},
964 	[ C(OP_PREFETCH) ] = {
965 		[ C(RESULT_ACCESS) ] = -1,
966 		[ C(RESULT_MISS)   ] = -1,
967 	},
968  },
969  [ C(BPU ) ] = {
970 	[ C(OP_READ) ] = {
971 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
972 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
973 	},
974 	[ C(OP_WRITE) ] = {
975 		[ C(RESULT_ACCESS) ] = -1,
976 		[ C(RESULT_MISS)   ] = -1,
977 	},
978 	[ C(OP_PREFETCH) ] = {
979 		[ C(RESULT_ACCESS) ] = -1,
980 		[ C(RESULT_MISS)   ] = -1,
981 	},
982  },
983  [ C(NODE) ] = {
984 	[ C(OP_READ) ] = {
985 		[ C(RESULT_ACCESS) ] = 0x01b7,
986 		[ C(RESULT_MISS)   ] = 0x01b7,
987 	},
988 	[ C(OP_WRITE) ] = {
989 		[ C(RESULT_ACCESS) ] = 0x01b7,
990 		[ C(RESULT_MISS)   ] = 0x01b7,
991 	},
992 	[ C(OP_PREFETCH) ] = {
993 		[ C(RESULT_ACCESS) ] = 0x01b7,
994 		[ C(RESULT_MISS)   ] = 0x01b7,
995 	},
996  },
997 };
998 
999 /*
1000  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1001  * See IA32 SDM Vol 3B 30.6.1.3
1002  */
1003 
1004 #define NHM_DMND_DATA_RD	(1 << 0)
1005 #define NHM_DMND_RFO		(1 << 1)
1006 #define NHM_DMND_IFETCH		(1 << 2)
1007 #define NHM_DMND_WB		(1 << 3)
1008 #define NHM_PF_DATA_RD		(1 << 4)
1009 #define NHM_PF_DATA_RFO		(1 << 5)
1010 #define NHM_PF_IFETCH		(1 << 6)
1011 #define NHM_OFFCORE_OTHER	(1 << 7)
1012 #define NHM_UNCORE_HIT		(1 << 8)
1013 #define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
1014 #define NHM_OTHER_CORE_HITM	(1 << 10)
1015         			/* reserved */
1016 #define NHM_REMOTE_CACHE_FWD	(1 << 12)
1017 #define NHM_REMOTE_DRAM		(1 << 13)
1018 #define NHM_LOCAL_DRAM		(1 << 14)
1019 #define NHM_NON_DRAM		(1 << 15)
1020 
1021 #define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1022 #define NHM_REMOTE		(NHM_REMOTE_DRAM)
1023 
1024 #define NHM_DMND_READ		(NHM_DMND_DATA_RD)
1025 #define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
1026 #define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1027 
1028 #define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1029 #define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1030 #define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
1031 
1032 static __initconst const u64 nehalem_hw_cache_extra_regs
1033 				[PERF_COUNT_HW_CACHE_MAX]
1034 				[PERF_COUNT_HW_CACHE_OP_MAX]
1035 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1036 {
1037  [ C(LL  ) ] = {
1038 	[ C(OP_READ) ] = {
1039 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1040 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1041 	},
1042 	[ C(OP_WRITE) ] = {
1043 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1044 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1045 	},
1046 	[ C(OP_PREFETCH) ] = {
1047 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1048 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1049 	},
1050  },
1051  [ C(NODE) ] = {
1052 	[ C(OP_READ) ] = {
1053 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1054 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1055 	},
1056 	[ C(OP_WRITE) ] = {
1057 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1058 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1059 	},
1060 	[ C(OP_PREFETCH) ] = {
1061 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1062 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1063 	},
1064  },
1065 };
1066 
1067 static __initconst const u64 nehalem_hw_cache_event_ids
1068 				[PERF_COUNT_HW_CACHE_MAX]
1069 				[PERF_COUNT_HW_CACHE_OP_MAX]
1070 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1071 {
1072  [ C(L1D) ] = {
1073 	[ C(OP_READ) ] = {
1074 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1075 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1076 	},
1077 	[ C(OP_WRITE) ] = {
1078 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1079 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1080 	},
1081 	[ C(OP_PREFETCH) ] = {
1082 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1083 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1084 	},
1085  },
1086  [ C(L1I ) ] = {
1087 	[ C(OP_READ) ] = {
1088 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1089 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1090 	},
1091 	[ C(OP_WRITE) ] = {
1092 		[ C(RESULT_ACCESS) ] = -1,
1093 		[ C(RESULT_MISS)   ] = -1,
1094 	},
1095 	[ C(OP_PREFETCH) ] = {
1096 		[ C(RESULT_ACCESS) ] = 0x0,
1097 		[ C(RESULT_MISS)   ] = 0x0,
1098 	},
1099  },
1100  [ C(LL  ) ] = {
1101 	[ C(OP_READ) ] = {
1102 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1103 		[ C(RESULT_ACCESS) ] = 0x01b7,
1104 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1105 		[ C(RESULT_MISS)   ] = 0x01b7,
1106 	},
1107 	/*
1108 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1109 	 * on RFO.
1110 	 */
1111 	[ C(OP_WRITE) ] = {
1112 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1113 		[ C(RESULT_ACCESS) ] = 0x01b7,
1114 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1115 		[ C(RESULT_MISS)   ] = 0x01b7,
1116 	},
1117 	[ C(OP_PREFETCH) ] = {
1118 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1119 		[ C(RESULT_ACCESS) ] = 0x01b7,
1120 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1121 		[ C(RESULT_MISS)   ] = 0x01b7,
1122 	},
1123  },
1124  [ C(DTLB) ] = {
1125 	[ C(OP_READ) ] = {
1126 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1127 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1128 	},
1129 	[ C(OP_WRITE) ] = {
1130 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1131 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1132 	},
1133 	[ C(OP_PREFETCH) ] = {
1134 		[ C(RESULT_ACCESS) ] = 0x0,
1135 		[ C(RESULT_MISS)   ] = 0x0,
1136 	},
1137  },
1138  [ C(ITLB) ] = {
1139 	[ C(OP_READ) ] = {
1140 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1141 		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1142 	},
1143 	[ C(OP_WRITE) ] = {
1144 		[ C(RESULT_ACCESS) ] = -1,
1145 		[ C(RESULT_MISS)   ] = -1,
1146 	},
1147 	[ C(OP_PREFETCH) ] = {
1148 		[ C(RESULT_ACCESS) ] = -1,
1149 		[ C(RESULT_MISS)   ] = -1,
1150 	},
1151  },
1152  [ C(BPU ) ] = {
1153 	[ C(OP_READ) ] = {
1154 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1155 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1156 	},
1157 	[ C(OP_WRITE) ] = {
1158 		[ C(RESULT_ACCESS) ] = -1,
1159 		[ C(RESULT_MISS)   ] = -1,
1160 	},
1161 	[ C(OP_PREFETCH) ] = {
1162 		[ C(RESULT_ACCESS) ] = -1,
1163 		[ C(RESULT_MISS)   ] = -1,
1164 	},
1165  },
1166  [ C(NODE) ] = {
1167 	[ C(OP_READ) ] = {
1168 		[ C(RESULT_ACCESS) ] = 0x01b7,
1169 		[ C(RESULT_MISS)   ] = 0x01b7,
1170 	},
1171 	[ C(OP_WRITE) ] = {
1172 		[ C(RESULT_ACCESS) ] = 0x01b7,
1173 		[ C(RESULT_MISS)   ] = 0x01b7,
1174 	},
1175 	[ C(OP_PREFETCH) ] = {
1176 		[ C(RESULT_ACCESS) ] = 0x01b7,
1177 		[ C(RESULT_MISS)   ] = 0x01b7,
1178 	},
1179  },
1180 };
1181 
1182 static __initconst const u64 core2_hw_cache_event_ids
1183 				[PERF_COUNT_HW_CACHE_MAX]
1184 				[PERF_COUNT_HW_CACHE_OP_MAX]
1185 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1186 {
1187  [ C(L1D) ] = {
1188 	[ C(OP_READ) ] = {
1189 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1190 		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1191 	},
1192 	[ C(OP_WRITE) ] = {
1193 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1194 		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1195 	},
1196 	[ C(OP_PREFETCH) ] = {
1197 		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1198 		[ C(RESULT_MISS)   ] = 0,
1199 	},
1200  },
1201  [ C(L1I ) ] = {
1202 	[ C(OP_READ) ] = {
1203 		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1204 		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1205 	},
1206 	[ C(OP_WRITE) ] = {
1207 		[ C(RESULT_ACCESS) ] = -1,
1208 		[ C(RESULT_MISS)   ] = -1,
1209 	},
1210 	[ C(OP_PREFETCH) ] = {
1211 		[ C(RESULT_ACCESS) ] = 0,
1212 		[ C(RESULT_MISS)   ] = 0,
1213 	},
1214  },
1215  [ C(LL  ) ] = {
1216 	[ C(OP_READ) ] = {
1217 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1218 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1219 	},
1220 	[ C(OP_WRITE) ] = {
1221 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1222 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1223 	},
1224 	[ C(OP_PREFETCH) ] = {
1225 		[ C(RESULT_ACCESS) ] = 0,
1226 		[ C(RESULT_MISS)   ] = 0,
1227 	},
1228  },
1229  [ C(DTLB) ] = {
1230 	[ C(OP_READ) ] = {
1231 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1232 		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1233 	},
1234 	[ C(OP_WRITE) ] = {
1235 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1236 		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1237 	},
1238 	[ C(OP_PREFETCH) ] = {
1239 		[ C(RESULT_ACCESS) ] = 0,
1240 		[ C(RESULT_MISS)   ] = 0,
1241 	},
1242  },
1243  [ C(ITLB) ] = {
1244 	[ C(OP_READ) ] = {
1245 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1246 		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1247 	},
1248 	[ C(OP_WRITE) ] = {
1249 		[ C(RESULT_ACCESS) ] = -1,
1250 		[ C(RESULT_MISS)   ] = -1,
1251 	},
1252 	[ C(OP_PREFETCH) ] = {
1253 		[ C(RESULT_ACCESS) ] = -1,
1254 		[ C(RESULT_MISS)   ] = -1,
1255 	},
1256  },
1257  [ C(BPU ) ] = {
1258 	[ C(OP_READ) ] = {
1259 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1260 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1261 	},
1262 	[ C(OP_WRITE) ] = {
1263 		[ C(RESULT_ACCESS) ] = -1,
1264 		[ C(RESULT_MISS)   ] = -1,
1265 	},
1266 	[ C(OP_PREFETCH) ] = {
1267 		[ C(RESULT_ACCESS) ] = -1,
1268 		[ C(RESULT_MISS)   ] = -1,
1269 	},
1270  },
1271 };
1272 
1273 static __initconst const u64 atom_hw_cache_event_ids
1274 				[PERF_COUNT_HW_CACHE_MAX]
1275 				[PERF_COUNT_HW_CACHE_OP_MAX]
1276 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1277 {
1278  [ C(L1D) ] = {
1279 	[ C(OP_READ) ] = {
1280 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1281 		[ C(RESULT_MISS)   ] = 0,
1282 	},
1283 	[ C(OP_WRITE) ] = {
1284 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1285 		[ C(RESULT_MISS)   ] = 0,
1286 	},
1287 	[ C(OP_PREFETCH) ] = {
1288 		[ C(RESULT_ACCESS) ] = 0x0,
1289 		[ C(RESULT_MISS)   ] = 0,
1290 	},
1291  },
1292  [ C(L1I ) ] = {
1293 	[ C(OP_READ) ] = {
1294 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1295 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1296 	},
1297 	[ C(OP_WRITE) ] = {
1298 		[ C(RESULT_ACCESS) ] = -1,
1299 		[ C(RESULT_MISS)   ] = -1,
1300 	},
1301 	[ C(OP_PREFETCH) ] = {
1302 		[ C(RESULT_ACCESS) ] = 0,
1303 		[ C(RESULT_MISS)   ] = 0,
1304 	},
1305  },
1306  [ C(LL  ) ] = {
1307 	[ C(OP_READ) ] = {
1308 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1309 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1310 	},
1311 	[ C(OP_WRITE) ] = {
1312 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1313 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1314 	},
1315 	[ C(OP_PREFETCH) ] = {
1316 		[ C(RESULT_ACCESS) ] = 0,
1317 		[ C(RESULT_MISS)   ] = 0,
1318 	},
1319  },
1320  [ C(DTLB) ] = {
1321 	[ C(OP_READ) ] = {
1322 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1323 		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1324 	},
1325 	[ C(OP_WRITE) ] = {
1326 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1327 		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1328 	},
1329 	[ C(OP_PREFETCH) ] = {
1330 		[ C(RESULT_ACCESS) ] = 0,
1331 		[ C(RESULT_MISS)   ] = 0,
1332 	},
1333  },
1334  [ C(ITLB) ] = {
1335 	[ C(OP_READ) ] = {
1336 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1337 		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1338 	},
1339 	[ C(OP_WRITE) ] = {
1340 		[ C(RESULT_ACCESS) ] = -1,
1341 		[ C(RESULT_MISS)   ] = -1,
1342 	},
1343 	[ C(OP_PREFETCH) ] = {
1344 		[ C(RESULT_ACCESS) ] = -1,
1345 		[ C(RESULT_MISS)   ] = -1,
1346 	},
1347  },
1348  [ C(BPU ) ] = {
1349 	[ C(OP_READ) ] = {
1350 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1351 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1352 	},
1353 	[ C(OP_WRITE) ] = {
1354 		[ C(RESULT_ACCESS) ] = -1,
1355 		[ C(RESULT_MISS)   ] = -1,
1356 	},
1357 	[ C(OP_PREFETCH) ] = {
1358 		[ C(RESULT_ACCESS) ] = -1,
1359 		[ C(RESULT_MISS)   ] = -1,
1360 	},
1361  },
1362 };
1363 
1364 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1365 {
1366 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1367 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1368 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1369 	EVENT_EXTRA_END
1370 };
1371 
1372 #define SLM_DMND_READ		SNB_DMND_DATA_RD
1373 #define SLM_DMND_WRITE		SNB_DMND_RFO
1374 #define SLM_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
1375 
1376 #define SLM_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1377 #define SLM_LLC_ACCESS		SNB_RESP_ANY
1378 #define SLM_LLC_MISS		(SLM_SNP_ANY|SNB_NON_DRAM)
1379 
1380 static __initconst const u64 slm_hw_cache_extra_regs
1381 				[PERF_COUNT_HW_CACHE_MAX]
1382 				[PERF_COUNT_HW_CACHE_OP_MAX]
1383 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1384 {
1385  [ C(LL  ) ] = {
1386 	[ C(OP_READ) ] = {
1387 		[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1388 		[ C(RESULT_MISS)   ] = 0,
1389 	},
1390 	[ C(OP_WRITE) ] = {
1391 		[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1392 		[ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1393 	},
1394 	[ C(OP_PREFETCH) ] = {
1395 		[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1396 		[ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1397 	},
1398  },
1399 };
1400 
1401 static __initconst const u64 slm_hw_cache_event_ids
1402 				[PERF_COUNT_HW_CACHE_MAX]
1403 				[PERF_COUNT_HW_CACHE_OP_MAX]
1404 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1405 {
1406  [ C(L1D) ] = {
1407 	[ C(OP_READ) ] = {
1408 		[ C(RESULT_ACCESS) ] = 0,
1409 		[ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1410 	},
1411 	[ C(OP_WRITE) ] = {
1412 		[ C(RESULT_ACCESS) ] = 0,
1413 		[ C(RESULT_MISS)   ] = 0,
1414 	},
1415 	[ C(OP_PREFETCH) ] = {
1416 		[ C(RESULT_ACCESS) ] = 0,
1417 		[ C(RESULT_MISS)   ] = 0,
1418 	},
1419  },
1420  [ C(L1I ) ] = {
1421 	[ C(OP_READ) ] = {
1422 		[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1423 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1424 	},
1425 	[ C(OP_WRITE) ] = {
1426 		[ C(RESULT_ACCESS) ] = -1,
1427 		[ C(RESULT_MISS)   ] = -1,
1428 	},
1429 	[ C(OP_PREFETCH) ] = {
1430 		[ C(RESULT_ACCESS) ] = 0,
1431 		[ C(RESULT_MISS)   ] = 0,
1432 	},
1433  },
1434  [ C(LL  ) ] = {
1435 	[ C(OP_READ) ] = {
1436 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1437 		[ C(RESULT_ACCESS) ] = 0x01b7,
1438 		[ C(RESULT_MISS)   ] = 0,
1439 	},
1440 	[ C(OP_WRITE) ] = {
1441 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1442 		[ C(RESULT_ACCESS) ] = 0x01b7,
1443 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1444 		[ C(RESULT_MISS)   ] = 0x01b7,
1445 	},
1446 	[ C(OP_PREFETCH) ] = {
1447 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1448 		[ C(RESULT_ACCESS) ] = 0x01b7,
1449 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1450 		[ C(RESULT_MISS)   ] = 0x01b7,
1451 	},
1452  },
1453  [ C(DTLB) ] = {
1454 	[ C(OP_READ) ] = {
1455 		[ C(RESULT_ACCESS) ] = 0,
1456 		[ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1457 	},
1458 	[ C(OP_WRITE) ] = {
1459 		[ C(RESULT_ACCESS) ] = 0,
1460 		[ C(RESULT_MISS)   ] = 0,
1461 	},
1462 	[ C(OP_PREFETCH) ] = {
1463 		[ C(RESULT_ACCESS) ] = 0,
1464 		[ C(RESULT_MISS)   ] = 0,
1465 	},
1466  },
1467  [ C(ITLB) ] = {
1468 	[ C(OP_READ) ] = {
1469 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1470 		[ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1471 	},
1472 	[ C(OP_WRITE) ] = {
1473 		[ C(RESULT_ACCESS) ] = -1,
1474 		[ C(RESULT_MISS)   ] = -1,
1475 	},
1476 	[ C(OP_PREFETCH) ] = {
1477 		[ C(RESULT_ACCESS) ] = -1,
1478 		[ C(RESULT_MISS)   ] = -1,
1479 	},
1480  },
1481  [ C(BPU ) ] = {
1482 	[ C(OP_READ) ] = {
1483 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1484 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1485 	},
1486 	[ C(OP_WRITE) ] = {
1487 		[ C(RESULT_ACCESS) ] = -1,
1488 		[ C(RESULT_MISS)   ] = -1,
1489 	},
1490 	[ C(OP_PREFETCH) ] = {
1491 		[ C(RESULT_ACCESS) ] = -1,
1492 		[ C(RESULT_MISS)   ] = -1,
1493 	},
1494  },
1495 };
1496 
1497 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1498 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1499 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1500 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1501 	EVENT_EXTRA_END
1502 };
1503 
1504 #define GLM_DEMAND_DATA_RD		BIT_ULL(0)
1505 #define GLM_DEMAND_RFO			BIT_ULL(1)
1506 #define GLM_ANY_RESPONSE		BIT_ULL(16)
1507 #define GLM_SNP_NONE_OR_MISS		BIT_ULL(33)
1508 #define GLM_DEMAND_READ			GLM_DEMAND_DATA_RD
1509 #define GLM_DEMAND_WRITE		GLM_DEMAND_RFO
1510 #define GLM_DEMAND_PREFETCH		(SNB_PF_DATA_RD|SNB_PF_RFO)
1511 #define GLM_LLC_ACCESS			GLM_ANY_RESPONSE
1512 #define GLM_SNP_ANY			(GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1513 #define GLM_LLC_MISS			(GLM_SNP_ANY|SNB_NON_DRAM)
1514 
1515 static __initconst const u64 glm_hw_cache_event_ids
1516 				[PERF_COUNT_HW_CACHE_MAX]
1517 				[PERF_COUNT_HW_CACHE_OP_MAX]
1518 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1519 	[C(L1D)] = {
1520 		[C(OP_READ)] = {
1521 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1522 			[C(RESULT_MISS)]	= 0x0,
1523 		},
1524 		[C(OP_WRITE)] = {
1525 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1526 			[C(RESULT_MISS)]	= 0x0,
1527 		},
1528 		[C(OP_PREFETCH)] = {
1529 			[C(RESULT_ACCESS)]	= 0x0,
1530 			[C(RESULT_MISS)]	= 0x0,
1531 		},
1532 	},
1533 	[C(L1I)] = {
1534 		[C(OP_READ)] = {
1535 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1536 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1537 		},
1538 		[C(OP_WRITE)] = {
1539 			[C(RESULT_ACCESS)]	= -1,
1540 			[C(RESULT_MISS)]	= -1,
1541 		},
1542 		[C(OP_PREFETCH)] = {
1543 			[C(RESULT_ACCESS)]	= 0x0,
1544 			[C(RESULT_MISS)]	= 0x0,
1545 		},
1546 	},
1547 	[C(LL)] = {
1548 		[C(OP_READ)] = {
1549 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1550 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1551 		},
1552 		[C(OP_WRITE)] = {
1553 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1554 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1555 		},
1556 		[C(OP_PREFETCH)] = {
1557 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1558 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1559 		},
1560 	},
1561 	[C(DTLB)] = {
1562 		[C(OP_READ)] = {
1563 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1564 			[C(RESULT_MISS)]	= 0x0,
1565 		},
1566 		[C(OP_WRITE)] = {
1567 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1568 			[C(RESULT_MISS)]	= 0x0,
1569 		},
1570 		[C(OP_PREFETCH)] = {
1571 			[C(RESULT_ACCESS)]	= 0x0,
1572 			[C(RESULT_MISS)]	= 0x0,
1573 		},
1574 	},
1575 	[C(ITLB)] = {
1576 		[C(OP_READ)] = {
1577 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1578 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1579 		},
1580 		[C(OP_WRITE)] = {
1581 			[C(RESULT_ACCESS)]	= -1,
1582 			[C(RESULT_MISS)]	= -1,
1583 		},
1584 		[C(OP_PREFETCH)] = {
1585 			[C(RESULT_ACCESS)]	= -1,
1586 			[C(RESULT_MISS)]	= -1,
1587 		},
1588 	},
1589 	[C(BPU)] = {
1590 		[C(OP_READ)] = {
1591 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1592 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1593 		},
1594 		[C(OP_WRITE)] = {
1595 			[C(RESULT_ACCESS)]	= -1,
1596 			[C(RESULT_MISS)]	= -1,
1597 		},
1598 		[C(OP_PREFETCH)] = {
1599 			[C(RESULT_ACCESS)]	= -1,
1600 			[C(RESULT_MISS)]	= -1,
1601 		},
1602 	},
1603 };
1604 
1605 static __initconst const u64 glm_hw_cache_extra_regs
1606 				[PERF_COUNT_HW_CACHE_MAX]
1607 				[PERF_COUNT_HW_CACHE_OP_MAX]
1608 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1609 	[C(LL)] = {
1610 		[C(OP_READ)] = {
1611 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
1612 						  GLM_LLC_ACCESS,
1613 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
1614 						  GLM_LLC_MISS,
1615 		},
1616 		[C(OP_WRITE)] = {
1617 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
1618 						  GLM_LLC_ACCESS,
1619 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
1620 						  GLM_LLC_MISS,
1621 		},
1622 		[C(OP_PREFETCH)] = {
1623 			[C(RESULT_ACCESS)]	= GLM_DEMAND_PREFETCH|
1624 						  GLM_LLC_ACCESS,
1625 			[C(RESULT_MISS)]	= GLM_DEMAND_PREFETCH|
1626 						  GLM_LLC_MISS,
1627 		},
1628 	},
1629 };
1630 
1631 #define KNL_OT_L2_HITE		BIT_ULL(19) /* Other Tile L2 Hit */
1632 #define KNL_OT_L2_HITF		BIT_ULL(20) /* Other Tile L2 Hit */
1633 #define KNL_MCDRAM_LOCAL	BIT_ULL(21)
1634 #define KNL_MCDRAM_FAR		BIT_ULL(22)
1635 #define KNL_DDR_LOCAL		BIT_ULL(23)
1636 #define KNL_DDR_FAR		BIT_ULL(24)
1637 #define KNL_DRAM_ANY		(KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1638 				    KNL_DDR_LOCAL | KNL_DDR_FAR)
1639 #define KNL_L2_READ		SLM_DMND_READ
1640 #define KNL_L2_WRITE		SLM_DMND_WRITE
1641 #define KNL_L2_PREFETCH		SLM_DMND_PREFETCH
1642 #define KNL_L2_ACCESS		SLM_LLC_ACCESS
1643 #define KNL_L2_MISS		(KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1644 				   KNL_DRAM_ANY | SNB_SNP_ANY | \
1645 						  SNB_NON_DRAM)
1646 
1647 static __initconst const u64 knl_hw_cache_extra_regs
1648 				[PERF_COUNT_HW_CACHE_MAX]
1649 				[PERF_COUNT_HW_CACHE_OP_MAX]
1650 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1651 	[C(LL)] = {
1652 		[C(OP_READ)] = {
1653 			[C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1654 			[C(RESULT_MISS)]   = 0,
1655 		},
1656 		[C(OP_WRITE)] = {
1657 			[C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1658 			[C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
1659 		},
1660 		[C(OP_PREFETCH)] = {
1661 			[C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1662 			[C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
1663 		},
1664 	},
1665 };
1666 
1667 /*
1668  * Used from PMIs where the LBRs are already disabled.
1669  *
1670  * This function could be called consecutively. It is required to remain in
1671  * disabled state if called consecutively.
1672  *
1673  * During consecutive calls, the same disable value will be written to related
1674  * registers, so the PMU state remains unchanged. hw.state in
1675  * intel_bts_disable_local will remain PERF_HES_STOPPED too in consecutive
1676  * calls.
1677  */
1678 static void __intel_pmu_disable_all(void)
1679 {
1680 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1681 
1682 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1683 
1684 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1685 		intel_pmu_disable_bts();
1686 	else
1687 		intel_bts_disable_local();
1688 
1689 	intel_pmu_pebs_disable_all();
1690 }
1691 
1692 static void intel_pmu_disable_all(void)
1693 {
1694 	__intel_pmu_disable_all();
1695 	intel_pmu_lbr_disable_all();
1696 }
1697 
1698 static void __intel_pmu_enable_all(int added, bool pmi)
1699 {
1700 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1701 
1702 	intel_pmu_pebs_enable_all();
1703 	intel_pmu_lbr_enable_all(pmi);
1704 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1705 			x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1706 
1707 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1708 		struct perf_event *event =
1709 			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1710 
1711 		if (WARN_ON_ONCE(!event))
1712 			return;
1713 
1714 		intel_pmu_enable_bts(event->hw.config);
1715 	} else
1716 		intel_bts_enable_local();
1717 }
1718 
1719 static void intel_pmu_enable_all(int added)
1720 {
1721 	__intel_pmu_enable_all(added, false);
1722 }
1723 
1724 /*
1725  * Workaround for:
1726  *   Intel Errata AAK100 (model 26)
1727  *   Intel Errata AAP53  (model 30)
1728  *   Intel Errata BD53   (model 44)
1729  *
1730  * The official story:
1731  *   These chips need to be 'reset' when adding counters by programming the
1732  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1733  *   in sequence on the same PMC or on different PMCs.
1734  *
1735  * In practise it appears some of these events do in fact count, and
1736  * we need to programm all 4 events.
1737  */
1738 static void intel_pmu_nhm_workaround(void)
1739 {
1740 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1741 	static const unsigned long nhm_magic[4] = {
1742 		0x4300B5,
1743 		0x4300D2,
1744 		0x4300B1,
1745 		0x4300B1
1746 	};
1747 	struct perf_event *event;
1748 	int i;
1749 
1750 	/*
1751 	 * The Errata requires below steps:
1752 	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1753 	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
1754 	 *    the corresponding PMCx;
1755 	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1756 	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1757 	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1758 	 */
1759 
1760 	/*
1761 	 * The real steps we choose are a little different from above.
1762 	 * A) To reduce MSR operations, we don't run step 1) as they
1763 	 *    are already cleared before this function is called;
1764 	 * B) Call x86_perf_event_update to save PMCx before configuring
1765 	 *    PERFEVTSELx with magic number;
1766 	 * C) With step 5), we do clear only when the PERFEVTSELx is
1767 	 *    not used currently.
1768 	 * D) Call x86_perf_event_set_period to restore PMCx;
1769 	 */
1770 
1771 	/* We always operate 4 pairs of PERF Counters */
1772 	for (i = 0; i < 4; i++) {
1773 		event = cpuc->events[i];
1774 		if (event)
1775 			x86_perf_event_update(event);
1776 	}
1777 
1778 	for (i = 0; i < 4; i++) {
1779 		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1780 		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1781 	}
1782 
1783 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1784 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1785 
1786 	for (i = 0; i < 4; i++) {
1787 		event = cpuc->events[i];
1788 
1789 		if (event) {
1790 			x86_perf_event_set_period(event);
1791 			__x86_pmu_enable_event(&event->hw,
1792 					ARCH_PERFMON_EVENTSEL_ENABLE);
1793 		} else
1794 			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1795 	}
1796 }
1797 
1798 static void intel_pmu_nhm_enable_all(int added)
1799 {
1800 	if (added)
1801 		intel_pmu_nhm_workaround();
1802 	intel_pmu_enable_all(added);
1803 }
1804 
1805 static inline u64 intel_pmu_get_status(void)
1806 {
1807 	u64 status;
1808 
1809 	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1810 
1811 	return status;
1812 }
1813 
1814 static inline void intel_pmu_ack_status(u64 ack)
1815 {
1816 	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1817 }
1818 
1819 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
1820 {
1821 	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1822 	u64 ctrl_val, mask;
1823 
1824 	mask = 0xfULL << (idx * 4);
1825 
1826 	rdmsrl(hwc->config_base, ctrl_val);
1827 	ctrl_val &= ~mask;
1828 	wrmsrl(hwc->config_base, ctrl_val);
1829 }
1830 
1831 static inline bool event_is_checkpointed(struct perf_event *event)
1832 {
1833 	return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
1834 }
1835 
1836 static void intel_pmu_disable_event(struct perf_event *event)
1837 {
1838 	struct hw_perf_event *hwc = &event->hw;
1839 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1840 
1841 	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1842 		intel_pmu_disable_bts();
1843 		intel_pmu_drain_bts_buffer();
1844 		return;
1845 	}
1846 
1847 	cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
1848 	cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
1849 	cpuc->intel_cp_status &= ~(1ull << hwc->idx);
1850 
1851 	/*
1852 	 * must disable before any actual event
1853 	 * because any event may be combined with LBR
1854 	 */
1855 	if (needs_branch_stack(event))
1856 		intel_pmu_lbr_disable(event);
1857 
1858 	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1859 		intel_pmu_disable_fixed(hwc);
1860 		return;
1861 	}
1862 
1863 	x86_pmu_disable_event(event);
1864 
1865 	if (unlikely(event->attr.precise_ip))
1866 		intel_pmu_pebs_disable(event);
1867 }
1868 
1869 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
1870 {
1871 	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1872 	u64 ctrl_val, bits, mask;
1873 
1874 	/*
1875 	 * Enable IRQ generation (0x8),
1876 	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1877 	 * if requested:
1878 	 */
1879 	bits = 0x8ULL;
1880 	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1881 		bits |= 0x2;
1882 	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1883 		bits |= 0x1;
1884 
1885 	/*
1886 	 * ANY bit is supported in v3 and up
1887 	 */
1888 	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1889 		bits |= 0x4;
1890 
1891 	bits <<= (idx * 4);
1892 	mask = 0xfULL << (idx * 4);
1893 
1894 	rdmsrl(hwc->config_base, ctrl_val);
1895 	ctrl_val &= ~mask;
1896 	ctrl_val |= bits;
1897 	wrmsrl(hwc->config_base, ctrl_val);
1898 }
1899 
1900 static void intel_pmu_enable_event(struct perf_event *event)
1901 {
1902 	struct hw_perf_event *hwc = &event->hw;
1903 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1904 
1905 	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1906 		if (!__this_cpu_read(cpu_hw_events.enabled))
1907 			return;
1908 
1909 		intel_pmu_enable_bts(hwc->config);
1910 		return;
1911 	}
1912 	/*
1913 	 * must enabled before any actual event
1914 	 * because any event may be combined with LBR
1915 	 */
1916 	if (needs_branch_stack(event))
1917 		intel_pmu_lbr_enable(event);
1918 
1919 	if (event->attr.exclude_host)
1920 		cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1921 	if (event->attr.exclude_guest)
1922 		cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1923 
1924 	if (unlikely(event_is_checkpointed(event)))
1925 		cpuc->intel_cp_status |= (1ull << hwc->idx);
1926 
1927 	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1928 		intel_pmu_enable_fixed(hwc);
1929 		return;
1930 	}
1931 
1932 	if (unlikely(event->attr.precise_ip))
1933 		intel_pmu_pebs_enable(event);
1934 
1935 	__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1936 }
1937 
1938 /*
1939  * Save and restart an expired event. Called by NMI contexts,
1940  * so it has to be careful about preempting normal event ops:
1941  */
1942 int intel_pmu_save_and_restart(struct perf_event *event)
1943 {
1944 	x86_perf_event_update(event);
1945 	/*
1946 	 * For a checkpointed counter always reset back to 0.  This
1947 	 * avoids a situation where the counter overflows, aborts the
1948 	 * transaction and is then set back to shortly before the
1949 	 * overflow, and overflows and aborts again.
1950 	 */
1951 	if (unlikely(event_is_checkpointed(event))) {
1952 		/* No race with NMIs because the counter should not be armed */
1953 		wrmsrl(event->hw.event_base, 0);
1954 		local64_set(&event->hw.prev_count, 0);
1955 	}
1956 	return x86_perf_event_set_period(event);
1957 }
1958 
1959 static void intel_pmu_reset(void)
1960 {
1961 	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1962 	unsigned long flags;
1963 	int idx;
1964 
1965 	if (!x86_pmu.num_counters)
1966 		return;
1967 
1968 	local_irq_save(flags);
1969 
1970 	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
1971 
1972 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1973 		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
1974 		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
1975 	}
1976 	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
1977 		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1978 
1979 	if (ds)
1980 		ds->bts_index = ds->bts_buffer_base;
1981 
1982 	/* Ack all overflows and disable fixed counters */
1983 	if (x86_pmu.version >= 2) {
1984 		intel_pmu_ack_status(intel_pmu_get_status());
1985 		wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1986 	}
1987 
1988 	/* Reset LBRs and LBR freezing */
1989 	if (x86_pmu.lbr_nr) {
1990 		update_debugctlmsr(get_debugctlmsr() &
1991 			~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
1992 	}
1993 
1994 	local_irq_restore(flags);
1995 }
1996 
1997 /*
1998  * This handler is triggered by the local APIC, so the APIC IRQ handling
1999  * rules apply:
2000  */
2001 static int intel_pmu_handle_irq(struct pt_regs *regs)
2002 {
2003 	struct perf_sample_data data;
2004 	struct cpu_hw_events *cpuc;
2005 	int bit, loops;
2006 	u64 status;
2007 	int handled;
2008 
2009 	cpuc = this_cpu_ptr(&cpu_hw_events);
2010 
2011 	/*
2012 	 * No known reason to not always do late ACK,
2013 	 * but just in case do it opt-in.
2014 	 */
2015 	if (!x86_pmu.late_ack)
2016 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2017 	__intel_pmu_disable_all();
2018 	handled = intel_pmu_drain_bts_buffer();
2019 	handled += intel_bts_interrupt();
2020 	status = intel_pmu_get_status();
2021 	if (!status)
2022 		goto done;
2023 
2024 	loops = 0;
2025 again:
2026 	intel_pmu_lbr_read();
2027 	intel_pmu_ack_status(status);
2028 	if (++loops > 100) {
2029 		static bool warned = false;
2030 		if (!warned) {
2031 			WARN(1, "perfevents: irq loop stuck!\n");
2032 			perf_event_print_debug();
2033 			warned = true;
2034 		}
2035 		intel_pmu_reset();
2036 		goto done;
2037 	}
2038 
2039 	inc_irq_stat(apic_perf_irqs);
2040 
2041 
2042 	/*
2043 	 * Ignore a range of extra bits in status that do not indicate
2044 	 * overflow by themselves.
2045 	 */
2046 	status &= ~(GLOBAL_STATUS_COND_CHG |
2047 		    GLOBAL_STATUS_ASIF |
2048 		    GLOBAL_STATUS_LBRS_FROZEN);
2049 	if (!status)
2050 		goto done;
2051 
2052 	/*
2053 	 * PEBS overflow sets bit 62 in the global status register
2054 	 */
2055 	if (__test_and_clear_bit(62, (unsigned long *)&status)) {
2056 		handled++;
2057 		x86_pmu.drain_pebs(regs);
2058 		/*
2059 		 * There are cases where, even though, the PEBS ovfl bit is set
2060 		 * in GLOBAL_OVF_STATUS, the PEBS events may also have their
2061 		 * overflow bits set for their counters. We must clear them
2062 		 * here because they have been processed as exact samples in
2063 		 * the drain_pebs() routine. They must not be processed again
2064 		 * in the for_each_bit_set() loop for regular samples below.
2065 		 */
2066 		status &= ~cpuc->pebs_enabled;
2067 		status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2068 	}
2069 
2070 	/*
2071 	 * Intel PT
2072 	 */
2073 	if (__test_and_clear_bit(55, (unsigned long *)&status)) {
2074 		handled++;
2075 		intel_pt_interrupt();
2076 	}
2077 
2078 	/*
2079 	 * Checkpointed counters can lead to 'spurious' PMIs because the
2080 	 * rollback caused by the PMI will have cleared the overflow status
2081 	 * bit. Therefore always force probe these counters.
2082 	 */
2083 	status |= cpuc->intel_cp_status;
2084 
2085 	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2086 		struct perf_event *event = cpuc->events[bit];
2087 
2088 		handled++;
2089 
2090 		if (!test_bit(bit, cpuc->active_mask))
2091 			continue;
2092 
2093 		if (!intel_pmu_save_and_restart(event))
2094 			continue;
2095 
2096 		perf_sample_data_init(&data, 0, event->hw.last_period);
2097 
2098 		if (has_branch_stack(event))
2099 			data.br_stack = &cpuc->lbr_stack;
2100 
2101 		if (perf_event_overflow(event, &data, regs))
2102 			x86_pmu_stop(event, 0);
2103 	}
2104 
2105 	/*
2106 	 * Repeat if there is more work to be done:
2107 	 */
2108 	status = intel_pmu_get_status();
2109 	if (status)
2110 		goto again;
2111 
2112 done:
2113 	/* Only restore PMU state when it's active. See x86_pmu_disable(). */
2114 	if (cpuc->enabled)
2115 		__intel_pmu_enable_all(0, true);
2116 
2117 	/*
2118 	 * Only unmask the NMI after the overflow counters
2119 	 * have been reset. This avoids spurious NMIs on
2120 	 * Haswell CPUs.
2121 	 */
2122 	if (x86_pmu.late_ack)
2123 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2124 	return handled;
2125 }
2126 
2127 static struct event_constraint *
2128 intel_bts_constraints(struct perf_event *event)
2129 {
2130 	struct hw_perf_event *hwc = &event->hw;
2131 	unsigned int hw_event, bts_event;
2132 
2133 	if (event->attr.freq)
2134 		return NULL;
2135 
2136 	hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
2137 	bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
2138 
2139 	if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
2140 		return &bts_constraint;
2141 
2142 	return NULL;
2143 }
2144 
2145 static int intel_alt_er(int idx, u64 config)
2146 {
2147 	int alt_idx = idx;
2148 
2149 	if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2150 		return idx;
2151 
2152 	if (idx == EXTRA_REG_RSP_0)
2153 		alt_idx = EXTRA_REG_RSP_1;
2154 
2155 	if (idx == EXTRA_REG_RSP_1)
2156 		alt_idx = EXTRA_REG_RSP_0;
2157 
2158 	if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2159 		return idx;
2160 
2161 	return alt_idx;
2162 }
2163 
2164 static void intel_fixup_er(struct perf_event *event, int idx)
2165 {
2166 	event->hw.extra_reg.idx = idx;
2167 
2168 	if (idx == EXTRA_REG_RSP_0) {
2169 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2170 		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2171 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2172 	} else if (idx == EXTRA_REG_RSP_1) {
2173 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2174 		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2175 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2176 	}
2177 }
2178 
2179 /*
2180  * manage allocation of shared extra msr for certain events
2181  *
2182  * sharing can be:
2183  * per-cpu: to be shared between the various events on a single PMU
2184  * per-core: per-cpu + shared by HT threads
2185  */
2186 static struct event_constraint *
2187 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2188 				   struct perf_event *event,
2189 				   struct hw_perf_event_extra *reg)
2190 {
2191 	struct event_constraint *c = &emptyconstraint;
2192 	struct er_account *era;
2193 	unsigned long flags;
2194 	int idx = reg->idx;
2195 
2196 	/*
2197 	 * reg->alloc can be set due to existing state, so for fake cpuc we
2198 	 * need to ignore this, otherwise we might fail to allocate proper fake
2199 	 * state for this extra reg constraint. Also see the comment below.
2200 	 */
2201 	if (reg->alloc && !cpuc->is_fake)
2202 		return NULL; /* call x86_get_event_constraint() */
2203 
2204 again:
2205 	era = &cpuc->shared_regs->regs[idx];
2206 	/*
2207 	 * we use spin_lock_irqsave() to avoid lockdep issues when
2208 	 * passing a fake cpuc
2209 	 */
2210 	raw_spin_lock_irqsave(&era->lock, flags);
2211 
2212 	if (!atomic_read(&era->ref) || era->config == reg->config) {
2213 
2214 		/*
2215 		 * If its a fake cpuc -- as per validate_{group,event}() we
2216 		 * shouldn't touch event state and we can avoid doing so
2217 		 * since both will only call get_event_constraints() once
2218 		 * on each event, this avoids the need for reg->alloc.
2219 		 *
2220 		 * Not doing the ER fixup will only result in era->reg being
2221 		 * wrong, but since we won't actually try and program hardware
2222 		 * this isn't a problem either.
2223 		 */
2224 		if (!cpuc->is_fake) {
2225 			if (idx != reg->idx)
2226 				intel_fixup_er(event, idx);
2227 
2228 			/*
2229 			 * x86_schedule_events() can call get_event_constraints()
2230 			 * multiple times on events in the case of incremental
2231 			 * scheduling(). reg->alloc ensures we only do the ER
2232 			 * allocation once.
2233 			 */
2234 			reg->alloc = 1;
2235 		}
2236 
2237 		/* lock in msr value */
2238 		era->config = reg->config;
2239 		era->reg = reg->reg;
2240 
2241 		/* one more user */
2242 		atomic_inc(&era->ref);
2243 
2244 		/*
2245 		 * need to call x86_get_event_constraint()
2246 		 * to check if associated event has constraints
2247 		 */
2248 		c = NULL;
2249 	} else {
2250 		idx = intel_alt_er(idx, reg->config);
2251 		if (idx != reg->idx) {
2252 			raw_spin_unlock_irqrestore(&era->lock, flags);
2253 			goto again;
2254 		}
2255 	}
2256 	raw_spin_unlock_irqrestore(&era->lock, flags);
2257 
2258 	return c;
2259 }
2260 
2261 static void
2262 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2263 				   struct hw_perf_event_extra *reg)
2264 {
2265 	struct er_account *era;
2266 
2267 	/*
2268 	 * Only put constraint if extra reg was actually allocated. Also takes
2269 	 * care of event which do not use an extra shared reg.
2270 	 *
2271 	 * Also, if this is a fake cpuc we shouldn't touch any event state
2272 	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2273 	 * either since it'll be thrown out.
2274 	 */
2275 	if (!reg->alloc || cpuc->is_fake)
2276 		return;
2277 
2278 	era = &cpuc->shared_regs->regs[reg->idx];
2279 
2280 	/* one fewer user */
2281 	atomic_dec(&era->ref);
2282 
2283 	/* allocate again next time */
2284 	reg->alloc = 0;
2285 }
2286 
2287 static struct event_constraint *
2288 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2289 			      struct perf_event *event)
2290 {
2291 	struct event_constraint *c = NULL, *d;
2292 	struct hw_perf_event_extra *xreg, *breg;
2293 
2294 	xreg = &event->hw.extra_reg;
2295 	if (xreg->idx != EXTRA_REG_NONE) {
2296 		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2297 		if (c == &emptyconstraint)
2298 			return c;
2299 	}
2300 	breg = &event->hw.branch_reg;
2301 	if (breg->idx != EXTRA_REG_NONE) {
2302 		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2303 		if (d == &emptyconstraint) {
2304 			__intel_shared_reg_put_constraints(cpuc, xreg);
2305 			c = d;
2306 		}
2307 	}
2308 	return c;
2309 }
2310 
2311 struct event_constraint *
2312 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2313 			  struct perf_event *event)
2314 {
2315 	struct event_constraint *c;
2316 
2317 	if (x86_pmu.event_constraints) {
2318 		for_each_event_constraint(c, x86_pmu.event_constraints) {
2319 			if ((event->hw.config & c->cmask) == c->code) {
2320 				event->hw.flags |= c->flags;
2321 				return c;
2322 			}
2323 		}
2324 	}
2325 
2326 	return &unconstrained;
2327 }
2328 
2329 static struct event_constraint *
2330 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2331 			    struct perf_event *event)
2332 {
2333 	struct event_constraint *c;
2334 
2335 	c = intel_bts_constraints(event);
2336 	if (c)
2337 		return c;
2338 
2339 	c = intel_shared_regs_constraints(cpuc, event);
2340 	if (c)
2341 		return c;
2342 
2343 	c = intel_pebs_constraints(event);
2344 	if (c)
2345 		return c;
2346 
2347 	return x86_get_event_constraints(cpuc, idx, event);
2348 }
2349 
2350 static void
2351 intel_start_scheduling(struct cpu_hw_events *cpuc)
2352 {
2353 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2354 	struct intel_excl_states *xl;
2355 	int tid = cpuc->excl_thread_id;
2356 
2357 	/*
2358 	 * nothing needed if in group validation mode
2359 	 */
2360 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2361 		return;
2362 
2363 	/*
2364 	 * no exclusion needed
2365 	 */
2366 	if (WARN_ON_ONCE(!excl_cntrs))
2367 		return;
2368 
2369 	xl = &excl_cntrs->states[tid];
2370 
2371 	xl->sched_started = true;
2372 	/*
2373 	 * lock shared state until we are done scheduling
2374 	 * in stop_event_scheduling()
2375 	 * makes scheduling appear as a transaction
2376 	 */
2377 	raw_spin_lock(&excl_cntrs->lock);
2378 }
2379 
2380 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2381 {
2382 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2383 	struct event_constraint *c = cpuc->event_constraint[idx];
2384 	struct intel_excl_states *xl;
2385 	int tid = cpuc->excl_thread_id;
2386 
2387 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2388 		return;
2389 
2390 	if (WARN_ON_ONCE(!excl_cntrs))
2391 		return;
2392 
2393 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2394 		return;
2395 
2396 	xl = &excl_cntrs->states[tid];
2397 
2398 	lockdep_assert_held(&excl_cntrs->lock);
2399 
2400 	if (c->flags & PERF_X86_EVENT_EXCL)
2401 		xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2402 	else
2403 		xl->state[cntr] = INTEL_EXCL_SHARED;
2404 }
2405 
2406 static void
2407 intel_stop_scheduling(struct cpu_hw_events *cpuc)
2408 {
2409 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2410 	struct intel_excl_states *xl;
2411 	int tid = cpuc->excl_thread_id;
2412 
2413 	/*
2414 	 * nothing needed if in group validation mode
2415 	 */
2416 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2417 		return;
2418 	/*
2419 	 * no exclusion needed
2420 	 */
2421 	if (WARN_ON_ONCE(!excl_cntrs))
2422 		return;
2423 
2424 	xl = &excl_cntrs->states[tid];
2425 
2426 	xl->sched_started = false;
2427 	/*
2428 	 * release shared state lock (acquired in intel_start_scheduling())
2429 	 */
2430 	raw_spin_unlock(&excl_cntrs->lock);
2431 }
2432 
2433 static struct event_constraint *
2434 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2435 			   int idx, struct event_constraint *c)
2436 {
2437 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2438 	struct intel_excl_states *xlo;
2439 	int tid = cpuc->excl_thread_id;
2440 	int is_excl, i;
2441 
2442 	/*
2443 	 * validating a group does not require
2444 	 * enforcing cross-thread  exclusion
2445 	 */
2446 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2447 		return c;
2448 
2449 	/*
2450 	 * no exclusion needed
2451 	 */
2452 	if (WARN_ON_ONCE(!excl_cntrs))
2453 		return c;
2454 
2455 	/*
2456 	 * because we modify the constraint, we need
2457 	 * to make a copy. Static constraints come
2458 	 * from static const tables.
2459 	 *
2460 	 * only needed when constraint has not yet
2461 	 * been cloned (marked dynamic)
2462 	 */
2463 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2464 		struct event_constraint *cx;
2465 
2466 		/*
2467 		 * grab pre-allocated constraint entry
2468 		 */
2469 		cx = &cpuc->constraint_list[idx];
2470 
2471 		/*
2472 		 * initialize dynamic constraint
2473 		 * with static constraint
2474 		 */
2475 		*cx = *c;
2476 
2477 		/*
2478 		 * mark constraint as dynamic, so we
2479 		 * can free it later on
2480 		 */
2481 		cx->flags |= PERF_X86_EVENT_DYNAMIC;
2482 		c = cx;
2483 	}
2484 
2485 	/*
2486 	 * From here on, the constraint is dynamic.
2487 	 * Either it was just allocated above, or it
2488 	 * was allocated during a earlier invocation
2489 	 * of this function
2490 	 */
2491 
2492 	/*
2493 	 * state of sibling HT
2494 	 */
2495 	xlo = &excl_cntrs->states[tid ^ 1];
2496 
2497 	/*
2498 	 * event requires exclusive counter access
2499 	 * across HT threads
2500 	 */
2501 	is_excl = c->flags & PERF_X86_EVENT_EXCL;
2502 	if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2503 		event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2504 		if (!cpuc->n_excl++)
2505 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2506 	}
2507 
2508 	/*
2509 	 * Modify static constraint with current dynamic
2510 	 * state of thread
2511 	 *
2512 	 * EXCLUSIVE: sibling counter measuring exclusive event
2513 	 * SHARED   : sibling counter measuring non-exclusive event
2514 	 * UNUSED   : sibling counter unused
2515 	 */
2516 	for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2517 		/*
2518 		 * exclusive event in sibling counter
2519 		 * our corresponding counter cannot be used
2520 		 * regardless of our event
2521 		 */
2522 		if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
2523 			__clear_bit(i, c->idxmsk);
2524 		/*
2525 		 * if measuring an exclusive event, sibling
2526 		 * measuring non-exclusive, then counter cannot
2527 		 * be used
2528 		 */
2529 		if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
2530 			__clear_bit(i, c->idxmsk);
2531 	}
2532 
2533 	/*
2534 	 * recompute actual bit weight for scheduling algorithm
2535 	 */
2536 	c->weight = hweight64(c->idxmsk64);
2537 
2538 	/*
2539 	 * if we return an empty mask, then switch
2540 	 * back to static empty constraint to avoid
2541 	 * the cost of freeing later on
2542 	 */
2543 	if (c->weight == 0)
2544 		c = &emptyconstraint;
2545 
2546 	return c;
2547 }
2548 
2549 static struct event_constraint *
2550 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2551 			    struct perf_event *event)
2552 {
2553 	struct event_constraint *c1 = NULL;
2554 	struct event_constraint *c2;
2555 
2556 	if (idx >= 0) /* fake does < 0 */
2557 		c1 = cpuc->event_constraint[idx];
2558 
2559 	/*
2560 	 * first time only
2561 	 * - static constraint: no change across incremental scheduling calls
2562 	 * - dynamic constraint: handled by intel_get_excl_constraints()
2563 	 */
2564 	c2 = __intel_get_event_constraints(cpuc, idx, event);
2565 	if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2566 		bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2567 		c1->weight = c2->weight;
2568 		c2 = c1;
2569 	}
2570 
2571 	if (cpuc->excl_cntrs)
2572 		return intel_get_excl_constraints(cpuc, event, idx, c2);
2573 
2574 	return c2;
2575 }
2576 
2577 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2578 		struct perf_event *event)
2579 {
2580 	struct hw_perf_event *hwc = &event->hw;
2581 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2582 	int tid = cpuc->excl_thread_id;
2583 	struct intel_excl_states *xl;
2584 
2585 	/*
2586 	 * nothing needed if in group validation mode
2587 	 */
2588 	if (cpuc->is_fake)
2589 		return;
2590 
2591 	if (WARN_ON_ONCE(!excl_cntrs))
2592 		return;
2593 
2594 	if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
2595 		hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
2596 		if (!--cpuc->n_excl)
2597 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
2598 	}
2599 
2600 	/*
2601 	 * If event was actually assigned, then mark the counter state as
2602 	 * unused now.
2603 	 */
2604 	if (hwc->idx >= 0) {
2605 		xl = &excl_cntrs->states[tid];
2606 
2607 		/*
2608 		 * put_constraint may be called from x86_schedule_events()
2609 		 * which already has the lock held so here make locking
2610 		 * conditional.
2611 		 */
2612 		if (!xl->sched_started)
2613 			raw_spin_lock(&excl_cntrs->lock);
2614 
2615 		xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
2616 
2617 		if (!xl->sched_started)
2618 			raw_spin_unlock(&excl_cntrs->lock);
2619 	}
2620 }
2621 
2622 static void
2623 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
2624 					struct perf_event *event)
2625 {
2626 	struct hw_perf_event_extra *reg;
2627 
2628 	reg = &event->hw.extra_reg;
2629 	if (reg->idx != EXTRA_REG_NONE)
2630 		__intel_shared_reg_put_constraints(cpuc, reg);
2631 
2632 	reg = &event->hw.branch_reg;
2633 	if (reg->idx != EXTRA_REG_NONE)
2634 		__intel_shared_reg_put_constraints(cpuc, reg);
2635 }
2636 
2637 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
2638 					struct perf_event *event)
2639 {
2640 	intel_put_shared_regs_event_constraints(cpuc, event);
2641 
2642 	/*
2643 	 * is PMU has exclusive counter restrictions, then
2644 	 * all events are subject to and must call the
2645 	 * put_excl_constraints() routine
2646 	 */
2647 	if (cpuc->excl_cntrs)
2648 		intel_put_excl_constraints(cpuc, event);
2649 }
2650 
2651 static void intel_pebs_aliases_core2(struct perf_event *event)
2652 {
2653 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2654 		/*
2655 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2656 		 * (0x003c) so that we can use it with PEBS.
2657 		 *
2658 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2659 		 * PEBS capable. However we can use INST_RETIRED.ANY_P
2660 		 * (0x00c0), which is a PEBS capable event, to get the same
2661 		 * count.
2662 		 *
2663 		 * INST_RETIRED.ANY_P counts the number of cycles that retires
2664 		 * CNTMASK instructions. By setting CNTMASK to a value (16)
2665 		 * larger than the maximum number of instructions that can be
2666 		 * retired per cycle (4) and then inverting the condition, we
2667 		 * count all cycles that retire 16 or less instructions, which
2668 		 * is every cycle.
2669 		 *
2670 		 * Thereby we gain a PEBS capable cycle counter.
2671 		 */
2672 		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
2673 
2674 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2675 		event->hw.config = alt_config;
2676 	}
2677 }
2678 
2679 static void intel_pebs_aliases_snb(struct perf_event *event)
2680 {
2681 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2682 		/*
2683 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2684 		 * (0x003c) so that we can use it with PEBS.
2685 		 *
2686 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2687 		 * PEBS capable. However we can use UOPS_RETIRED.ALL
2688 		 * (0x01c2), which is a PEBS capable event, to get the same
2689 		 * count.
2690 		 *
2691 		 * UOPS_RETIRED.ALL counts the number of cycles that retires
2692 		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
2693 		 * larger than the maximum number of micro-ops that can be
2694 		 * retired per cycle (4) and then inverting the condition, we
2695 		 * count all cycles that retire 16 or less micro-ops, which
2696 		 * is every cycle.
2697 		 *
2698 		 * Thereby we gain a PEBS capable cycle counter.
2699 		 */
2700 		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
2701 
2702 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2703 		event->hw.config = alt_config;
2704 	}
2705 }
2706 
2707 static void intel_pebs_aliases_precdist(struct perf_event *event)
2708 {
2709 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2710 		/*
2711 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2712 		 * (0x003c) so that we can use it with PEBS.
2713 		 *
2714 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2715 		 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
2716 		 * (0x01c0), which is a PEBS capable event, to get the same
2717 		 * count.
2718 		 *
2719 		 * The PREC_DIST event has special support to minimize sample
2720 		 * shadowing effects. One drawback is that it can be
2721 		 * only programmed on counter 1, but that seems like an
2722 		 * acceptable trade off.
2723 		 */
2724 		u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
2725 
2726 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2727 		event->hw.config = alt_config;
2728 	}
2729 }
2730 
2731 static void intel_pebs_aliases_ivb(struct perf_event *event)
2732 {
2733 	if (event->attr.precise_ip < 3)
2734 		return intel_pebs_aliases_snb(event);
2735 	return intel_pebs_aliases_precdist(event);
2736 }
2737 
2738 static void intel_pebs_aliases_skl(struct perf_event *event)
2739 {
2740 	if (event->attr.precise_ip < 3)
2741 		return intel_pebs_aliases_core2(event);
2742 	return intel_pebs_aliases_precdist(event);
2743 }
2744 
2745 static unsigned long intel_pmu_free_running_flags(struct perf_event *event)
2746 {
2747 	unsigned long flags = x86_pmu.free_running_flags;
2748 
2749 	if (event->attr.use_clockid)
2750 		flags &= ~PERF_SAMPLE_TIME;
2751 	return flags;
2752 }
2753 
2754 static int intel_pmu_hw_config(struct perf_event *event)
2755 {
2756 	int ret = x86_pmu_hw_config(event);
2757 
2758 	if (ret)
2759 		return ret;
2760 
2761 	if (event->attr.precise_ip) {
2762 		if (!event->attr.freq) {
2763 			event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
2764 			if (!(event->attr.sample_type &
2765 			      ~intel_pmu_free_running_flags(event)))
2766 				event->hw.flags |= PERF_X86_EVENT_FREERUNNING;
2767 		}
2768 		if (x86_pmu.pebs_aliases)
2769 			x86_pmu.pebs_aliases(event);
2770 	}
2771 
2772 	if (needs_branch_stack(event)) {
2773 		ret = intel_pmu_setup_lbr_filter(event);
2774 		if (ret)
2775 			return ret;
2776 
2777 		/*
2778 		 * BTS is set up earlier in this path, so don't account twice
2779 		 */
2780 		if (!intel_pmu_has_bts(event)) {
2781 			/* disallow lbr if conflicting events are present */
2782 			if (x86_add_exclusive(x86_lbr_exclusive_lbr))
2783 				return -EBUSY;
2784 
2785 			event->destroy = hw_perf_lbr_event_destroy;
2786 		}
2787 	}
2788 
2789 	if (event->attr.type != PERF_TYPE_RAW)
2790 		return 0;
2791 
2792 	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
2793 		return 0;
2794 
2795 	if (x86_pmu.version < 3)
2796 		return -EINVAL;
2797 
2798 	if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2799 		return -EACCES;
2800 
2801 	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
2802 
2803 	return 0;
2804 }
2805 
2806 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
2807 {
2808 	if (x86_pmu.guest_get_msrs)
2809 		return x86_pmu.guest_get_msrs(nr);
2810 	*nr = 0;
2811 	return NULL;
2812 }
2813 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
2814 
2815 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
2816 {
2817 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2818 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2819 
2820 	arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
2821 	arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
2822 	arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
2823 	/*
2824 	 * If PMU counter has PEBS enabled it is not enough to disable counter
2825 	 * on a guest entry since PEBS memory write can overshoot guest entry
2826 	 * and corrupt guest memory. Disabling PEBS solves the problem.
2827 	 */
2828 	arr[1].msr = MSR_IA32_PEBS_ENABLE;
2829 	arr[1].host = cpuc->pebs_enabled;
2830 	arr[1].guest = 0;
2831 
2832 	*nr = 2;
2833 	return arr;
2834 }
2835 
2836 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
2837 {
2838 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2839 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2840 	int idx;
2841 
2842 	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
2843 		struct perf_event *event = cpuc->events[idx];
2844 
2845 		arr[idx].msr = x86_pmu_config_addr(idx);
2846 		arr[idx].host = arr[idx].guest = 0;
2847 
2848 		if (!test_bit(idx, cpuc->active_mask))
2849 			continue;
2850 
2851 		arr[idx].host = arr[idx].guest =
2852 			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
2853 
2854 		if (event->attr.exclude_host)
2855 			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2856 		else if (event->attr.exclude_guest)
2857 			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2858 	}
2859 
2860 	*nr = x86_pmu.num_counters;
2861 	return arr;
2862 }
2863 
2864 static void core_pmu_enable_event(struct perf_event *event)
2865 {
2866 	if (!event->attr.exclude_host)
2867 		x86_pmu_enable_event(event);
2868 }
2869 
2870 static void core_pmu_enable_all(int added)
2871 {
2872 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2873 	int idx;
2874 
2875 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2876 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
2877 
2878 		if (!test_bit(idx, cpuc->active_mask) ||
2879 				cpuc->events[idx]->attr.exclude_host)
2880 			continue;
2881 
2882 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2883 	}
2884 }
2885 
2886 static int hsw_hw_config(struct perf_event *event)
2887 {
2888 	int ret = intel_pmu_hw_config(event);
2889 
2890 	if (ret)
2891 		return ret;
2892 	if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
2893 		return 0;
2894 	event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
2895 
2896 	/*
2897 	 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
2898 	 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
2899 	 * this combination.
2900 	 */
2901 	if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
2902 	     ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
2903 	      event->attr.precise_ip > 0))
2904 		return -EOPNOTSUPP;
2905 
2906 	if (event_is_checkpointed(event)) {
2907 		/*
2908 		 * Sampling of checkpointed events can cause situations where
2909 		 * the CPU constantly aborts because of a overflow, which is
2910 		 * then checkpointed back and ignored. Forbid checkpointing
2911 		 * for sampling.
2912 		 *
2913 		 * But still allow a long sampling period, so that perf stat
2914 		 * from KVM works.
2915 		 */
2916 		if (event->attr.sample_period > 0 &&
2917 		    event->attr.sample_period < 0x7fffffff)
2918 			return -EOPNOTSUPP;
2919 	}
2920 	return 0;
2921 }
2922 
2923 static struct event_constraint counter2_constraint =
2924 			EVENT_CONSTRAINT(0, 0x4, 0);
2925 
2926 static struct event_constraint *
2927 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2928 			  struct perf_event *event)
2929 {
2930 	struct event_constraint *c;
2931 
2932 	c = intel_get_event_constraints(cpuc, idx, event);
2933 
2934 	/* Handle special quirk on in_tx_checkpointed only in counter 2 */
2935 	if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
2936 		if (c->idxmsk64 & (1U << 2))
2937 			return &counter2_constraint;
2938 		return &emptyconstraint;
2939 	}
2940 
2941 	return c;
2942 }
2943 
2944 /*
2945  * Broadwell:
2946  *
2947  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
2948  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
2949  * the two to enforce a minimum period of 128 (the smallest value that has bits
2950  * 0-5 cleared and >= 100).
2951  *
2952  * Because of how the code in x86_perf_event_set_period() works, the truncation
2953  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
2954  * to make up for the 'lost' events due to carrying the 'error' in period_left.
2955  *
2956  * Therefore the effective (average) period matches the requested period,
2957  * despite coarser hardware granularity.
2958  */
2959 static unsigned bdw_limit_period(struct perf_event *event, unsigned left)
2960 {
2961 	if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
2962 			X86_CONFIG(.event=0xc0, .umask=0x01)) {
2963 		if (left < 128)
2964 			left = 128;
2965 		left &= ~0x3fu;
2966 	}
2967 	return left;
2968 }
2969 
2970 PMU_FORMAT_ATTR(event,	"config:0-7"	);
2971 PMU_FORMAT_ATTR(umask,	"config:8-15"	);
2972 PMU_FORMAT_ATTR(edge,	"config:18"	);
2973 PMU_FORMAT_ATTR(pc,	"config:19"	);
2974 PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
2975 PMU_FORMAT_ATTR(inv,	"config:23"	);
2976 PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
2977 PMU_FORMAT_ATTR(in_tx,  "config:32");
2978 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
2979 
2980 static struct attribute *intel_arch_formats_attr[] = {
2981 	&format_attr_event.attr,
2982 	&format_attr_umask.attr,
2983 	&format_attr_edge.attr,
2984 	&format_attr_pc.attr,
2985 	&format_attr_inv.attr,
2986 	&format_attr_cmask.attr,
2987 	NULL,
2988 };
2989 
2990 ssize_t intel_event_sysfs_show(char *page, u64 config)
2991 {
2992 	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
2993 
2994 	return x86_event_sysfs_show(page, config, event);
2995 }
2996 
2997 struct intel_shared_regs *allocate_shared_regs(int cpu)
2998 {
2999 	struct intel_shared_regs *regs;
3000 	int i;
3001 
3002 	regs = kzalloc_node(sizeof(struct intel_shared_regs),
3003 			    GFP_KERNEL, cpu_to_node(cpu));
3004 	if (regs) {
3005 		/*
3006 		 * initialize the locks to keep lockdep happy
3007 		 */
3008 		for (i = 0; i < EXTRA_REG_MAX; i++)
3009 			raw_spin_lock_init(&regs->regs[i].lock);
3010 
3011 		regs->core_id = -1;
3012 	}
3013 	return regs;
3014 }
3015 
3016 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
3017 {
3018 	struct intel_excl_cntrs *c;
3019 
3020 	c = kzalloc_node(sizeof(struct intel_excl_cntrs),
3021 			 GFP_KERNEL, cpu_to_node(cpu));
3022 	if (c) {
3023 		raw_spin_lock_init(&c->lock);
3024 		c->core_id = -1;
3025 	}
3026 	return c;
3027 }
3028 
3029 static int intel_pmu_cpu_prepare(int cpu)
3030 {
3031 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3032 
3033 	if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
3034 		cpuc->shared_regs = allocate_shared_regs(cpu);
3035 		if (!cpuc->shared_regs)
3036 			goto err;
3037 	}
3038 
3039 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3040 		size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
3041 
3042 		cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
3043 		if (!cpuc->constraint_list)
3044 			goto err_shared_regs;
3045 
3046 		cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
3047 		if (!cpuc->excl_cntrs)
3048 			goto err_constraint_list;
3049 
3050 		cpuc->excl_thread_id = 0;
3051 	}
3052 
3053 	return NOTIFY_OK;
3054 
3055 err_constraint_list:
3056 	kfree(cpuc->constraint_list);
3057 	cpuc->constraint_list = NULL;
3058 
3059 err_shared_regs:
3060 	kfree(cpuc->shared_regs);
3061 	cpuc->shared_regs = NULL;
3062 
3063 err:
3064 	return NOTIFY_BAD;
3065 }
3066 
3067 static void intel_pmu_cpu_starting(int cpu)
3068 {
3069 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3070 	int core_id = topology_core_id(cpu);
3071 	int i;
3072 
3073 	init_debug_store_on_cpu(cpu);
3074 	/*
3075 	 * Deal with CPUs that don't clear their LBRs on power-up.
3076 	 */
3077 	intel_pmu_lbr_reset();
3078 
3079 	cpuc->lbr_sel = NULL;
3080 
3081 	if (!cpuc->shared_regs)
3082 		return;
3083 
3084 	if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
3085 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3086 			struct intel_shared_regs *pc;
3087 
3088 			pc = per_cpu(cpu_hw_events, i).shared_regs;
3089 			if (pc && pc->core_id == core_id) {
3090 				cpuc->kfree_on_online[0] = cpuc->shared_regs;
3091 				cpuc->shared_regs = pc;
3092 				break;
3093 			}
3094 		}
3095 		cpuc->shared_regs->core_id = core_id;
3096 		cpuc->shared_regs->refcnt++;
3097 	}
3098 
3099 	if (x86_pmu.lbr_sel_map)
3100 		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
3101 
3102 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3103 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3104 			struct intel_excl_cntrs *c;
3105 
3106 			c = per_cpu(cpu_hw_events, i).excl_cntrs;
3107 			if (c && c->core_id == core_id) {
3108 				cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
3109 				cpuc->excl_cntrs = c;
3110 				cpuc->excl_thread_id = 1;
3111 				break;
3112 			}
3113 		}
3114 		cpuc->excl_cntrs->core_id = core_id;
3115 		cpuc->excl_cntrs->refcnt++;
3116 	}
3117 }
3118 
3119 static void free_excl_cntrs(int cpu)
3120 {
3121 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3122 	struct intel_excl_cntrs *c;
3123 
3124 	c = cpuc->excl_cntrs;
3125 	if (c) {
3126 		if (c->core_id == -1 || --c->refcnt == 0)
3127 			kfree(c);
3128 		cpuc->excl_cntrs = NULL;
3129 		kfree(cpuc->constraint_list);
3130 		cpuc->constraint_list = NULL;
3131 	}
3132 }
3133 
3134 static void intel_pmu_cpu_dying(int cpu)
3135 {
3136 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3137 	struct intel_shared_regs *pc;
3138 
3139 	pc = cpuc->shared_regs;
3140 	if (pc) {
3141 		if (pc->core_id == -1 || --pc->refcnt == 0)
3142 			kfree(pc);
3143 		cpuc->shared_regs = NULL;
3144 	}
3145 
3146 	free_excl_cntrs(cpu);
3147 
3148 	fini_debug_store_on_cpu(cpu);
3149 }
3150 
3151 static void intel_pmu_sched_task(struct perf_event_context *ctx,
3152 				 bool sched_in)
3153 {
3154 	if (x86_pmu.pebs_active)
3155 		intel_pmu_pebs_sched_task(ctx, sched_in);
3156 	if (x86_pmu.lbr_nr)
3157 		intel_pmu_lbr_sched_task(ctx, sched_in);
3158 }
3159 
3160 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
3161 
3162 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
3163 
3164 PMU_FORMAT_ATTR(frontend, "config1:0-23");
3165 
3166 static struct attribute *intel_arch3_formats_attr[] = {
3167 	&format_attr_event.attr,
3168 	&format_attr_umask.attr,
3169 	&format_attr_edge.attr,
3170 	&format_attr_pc.attr,
3171 	&format_attr_any.attr,
3172 	&format_attr_inv.attr,
3173 	&format_attr_cmask.attr,
3174 	&format_attr_in_tx.attr,
3175 	&format_attr_in_tx_cp.attr,
3176 
3177 	&format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
3178 	&format_attr_ldlat.attr, /* PEBS load latency */
3179 	NULL,
3180 };
3181 
3182 static struct attribute *skl_format_attr[] = {
3183 	&format_attr_frontend.attr,
3184 	NULL,
3185 };
3186 
3187 static __initconst const struct x86_pmu core_pmu = {
3188 	.name			= "core",
3189 	.handle_irq		= x86_pmu_handle_irq,
3190 	.disable_all		= x86_pmu_disable_all,
3191 	.enable_all		= core_pmu_enable_all,
3192 	.enable			= core_pmu_enable_event,
3193 	.disable		= x86_pmu_disable_event,
3194 	.hw_config		= x86_pmu_hw_config,
3195 	.schedule_events	= x86_schedule_events,
3196 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
3197 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
3198 	.event_map		= intel_pmu_event_map,
3199 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
3200 	.apic			= 1,
3201 	.free_running_flags	= PEBS_FREERUNNING_FLAGS,
3202 
3203 	/*
3204 	 * Intel PMCs cannot be accessed sanely above 32-bit width,
3205 	 * so we install an artificial 1<<31 period regardless of
3206 	 * the generic event period:
3207 	 */
3208 	.max_period		= (1ULL<<31) - 1,
3209 	.get_event_constraints	= intel_get_event_constraints,
3210 	.put_event_constraints	= intel_put_event_constraints,
3211 	.event_constraints	= intel_core_event_constraints,
3212 	.guest_get_msrs		= core_guest_get_msrs,
3213 	.format_attrs		= intel_arch_formats_attr,
3214 	.events_sysfs_show	= intel_event_sysfs_show,
3215 
3216 	/*
3217 	 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
3218 	 * together with PMU version 1 and thus be using core_pmu with
3219 	 * shared_regs. We need following callbacks here to allocate
3220 	 * it properly.
3221 	 */
3222 	.cpu_prepare		= intel_pmu_cpu_prepare,
3223 	.cpu_starting		= intel_pmu_cpu_starting,
3224 	.cpu_dying		= intel_pmu_cpu_dying,
3225 };
3226 
3227 static __initconst const struct x86_pmu intel_pmu = {
3228 	.name			= "Intel",
3229 	.handle_irq		= intel_pmu_handle_irq,
3230 	.disable_all		= intel_pmu_disable_all,
3231 	.enable_all		= intel_pmu_enable_all,
3232 	.enable			= intel_pmu_enable_event,
3233 	.disable		= intel_pmu_disable_event,
3234 	.hw_config		= intel_pmu_hw_config,
3235 	.schedule_events	= x86_schedule_events,
3236 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
3237 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
3238 	.event_map		= intel_pmu_event_map,
3239 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
3240 	.apic			= 1,
3241 	.free_running_flags	= PEBS_FREERUNNING_FLAGS,
3242 	/*
3243 	 * Intel PMCs cannot be accessed sanely above 32 bit width,
3244 	 * so we install an artificial 1<<31 period regardless of
3245 	 * the generic event period:
3246 	 */
3247 	.max_period		= (1ULL << 31) - 1,
3248 	.get_event_constraints	= intel_get_event_constraints,
3249 	.put_event_constraints	= intel_put_event_constraints,
3250 	.pebs_aliases		= intel_pebs_aliases_core2,
3251 
3252 	.format_attrs		= intel_arch3_formats_attr,
3253 	.events_sysfs_show	= intel_event_sysfs_show,
3254 
3255 	.cpu_prepare		= intel_pmu_cpu_prepare,
3256 	.cpu_starting		= intel_pmu_cpu_starting,
3257 	.cpu_dying		= intel_pmu_cpu_dying,
3258 	.guest_get_msrs		= intel_guest_get_msrs,
3259 	.sched_task		= intel_pmu_sched_task,
3260 };
3261 
3262 static __init void intel_clovertown_quirk(void)
3263 {
3264 	/*
3265 	 * PEBS is unreliable due to:
3266 	 *
3267 	 *   AJ67  - PEBS may experience CPL leaks
3268 	 *   AJ68  - PEBS PMI may be delayed by one event
3269 	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
3270 	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
3271 	 *
3272 	 * AJ67 could be worked around by restricting the OS/USR flags.
3273 	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
3274 	 *
3275 	 * AJ106 could possibly be worked around by not allowing LBR
3276 	 *       usage from PEBS, including the fixup.
3277 	 * AJ68  could possibly be worked around by always programming
3278 	 *	 a pebs_event_reset[0] value and coping with the lost events.
3279 	 *
3280 	 * But taken together it might just make sense to not enable PEBS on
3281 	 * these chips.
3282 	 */
3283 	pr_warn("PEBS disabled due to CPU errata\n");
3284 	x86_pmu.pebs = 0;
3285 	x86_pmu.pebs_constraints = NULL;
3286 }
3287 
3288 static int intel_snb_pebs_broken(int cpu)
3289 {
3290 	u32 rev = UINT_MAX; /* default to broken for unknown models */
3291 
3292 	switch (cpu_data(cpu).x86_model) {
3293 	case 42: /* SNB */
3294 		rev = 0x28;
3295 		break;
3296 
3297 	case 45: /* SNB-EP */
3298 		switch (cpu_data(cpu).x86_mask) {
3299 		case 6: rev = 0x618; break;
3300 		case 7: rev = 0x70c; break;
3301 		}
3302 	}
3303 
3304 	return (cpu_data(cpu).microcode < rev);
3305 }
3306 
3307 static void intel_snb_check_microcode(void)
3308 {
3309 	int pebs_broken = 0;
3310 	int cpu;
3311 
3312 	get_online_cpus();
3313 	for_each_online_cpu(cpu) {
3314 		if ((pebs_broken = intel_snb_pebs_broken(cpu)))
3315 			break;
3316 	}
3317 	put_online_cpus();
3318 
3319 	if (pebs_broken == x86_pmu.pebs_broken)
3320 		return;
3321 
3322 	/*
3323 	 * Serialized by the microcode lock..
3324 	 */
3325 	if (x86_pmu.pebs_broken) {
3326 		pr_info("PEBS enabled due to microcode update\n");
3327 		x86_pmu.pebs_broken = 0;
3328 	} else {
3329 		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
3330 		x86_pmu.pebs_broken = 1;
3331 	}
3332 }
3333 
3334 /*
3335  * Under certain circumstances, access certain MSR may cause #GP.
3336  * The function tests if the input MSR can be safely accessed.
3337  */
3338 static bool check_msr(unsigned long msr, u64 mask)
3339 {
3340 	u64 val_old, val_new, val_tmp;
3341 
3342 	/*
3343 	 * Read the current value, change it and read it back to see if it
3344 	 * matches, this is needed to detect certain hardware emulators
3345 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
3346 	 */
3347 	if (rdmsrl_safe(msr, &val_old))
3348 		return false;
3349 
3350 	/*
3351 	 * Only change the bits which can be updated by wrmsrl.
3352 	 */
3353 	val_tmp = val_old ^ mask;
3354 	if (wrmsrl_safe(msr, val_tmp) ||
3355 	    rdmsrl_safe(msr, &val_new))
3356 		return false;
3357 
3358 	if (val_new != val_tmp)
3359 		return false;
3360 
3361 	/* Here it's sure that the MSR can be safely accessed.
3362 	 * Restore the old value and return.
3363 	 */
3364 	wrmsrl(msr, val_old);
3365 
3366 	return true;
3367 }
3368 
3369 static __init void intel_sandybridge_quirk(void)
3370 {
3371 	x86_pmu.check_microcode = intel_snb_check_microcode;
3372 	intel_snb_check_microcode();
3373 }
3374 
3375 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
3376 	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
3377 	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
3378 	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
3379 	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
3380 	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
3381 	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
3382 	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
3383 };
3384 
3385 static __init void intel_arch_events_quirk(void)
3386 {
3387 	int bit;
3388 
3389 	/* disable event that reported as not presend by cpuid */
3390 	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
3391 		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
3392 		pr_warn("CPUID marked event: \'%s\' unavailable\n",
3393 			intel_arch_events_map[bit].name);
3394 	}
3395 }
3396 
3397 static __init void intel_nehalem_quirk(void)
3398 {
3399 	union cpuid10_ebx ebx;
3400 
3401 	ebx.full = x86_pmu.events_maskl;
3402 	if (ebx.split.no_branch_misses_retired) {
3403 		/*
3404 		 * Erratum AAJ80 detected, we work it around by using
3405 		 * the BR_MISP_EXEC.ANY event. This will over-count
3406 		 * branch-misses, but it's still much better than the
3407 		 * architectural event which is often completely bogus:
3408 		 */
3409 		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
3410 		ebx.split.no_branch_misses_retired = 0;
3411 		x86_pmu.events_maskl = ebx.full;
3412 		pr_info("CPU erratum AAJ80 worked around\n");
3413 	}
3414 }
3415 
3416 /*
3417  * enable software workaround for errata:
3418  * SNB: BJ122
3419  * IVB: BV98
3420  * HSW: HSD29
3421  *
3422  * Only needed when HT is enabled. However detecting
3423  * if HT is enabled is difficult (model specific). So instead,
3424  * we enable the workaround in the early boot, and verify if
3425  * it is needed in a later initcall phase once we have valid
3426  * topology information to check if HT is actually enabled
3427  */
3428 static __init void intel_ht_bug(void)
3429 {
3430 	x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
3431 
3432 	x86_pmu.start_scheduling = intel_start_scheduling;
3433 	x86_pmu.commit_scheduling = intel_commit_scheduling;
3434 	x86_pmu.stop_scheduling = intel_stop_scheduling;
3435 }
3436 
3437 EVENT_ATTR_STR(mem-loads,	mem_ld_hsw,	"event=0xcd,umask=0x1,ldlat=3");
3438 EVENT_ATTR_STR(mem-stores,	mem_st_hsw,	"event=0xd0,umask=0x82")
3439 
3440 /* Haswell special events */
3441 EVENT_ATTR_STR(tx-start,	tx_start,	"event=0xc9,umask=0x1");
3442 EVENT_ATTR_STR(tx-commit,	tx_commit,	"event=0xc9,umask=0x2");
3443 EVENT_ATTR_STR(tx-abort,	tx_abort,	"event=0xc9,umask=0x4");
3444 EVENT_ATTR_STR(tx-capacity,	tx_capacity,	"event=0x54,umask=0x2");
3445 EVENT_ATTR_STR(tx-conflict,	tx_conflict,	"event=0x54,umask=0x1");
3446 EVENT_ATTR_STR(el-start,	el_start,	"event=0xc8,umask=0x1");
3447 EVENT_ATTR_STR(el-commit,	el_commit,	"event=0xc8,umask=0x2");
3448 EVENT_ATTR_STR(el-abort,	el_abort,	"event=0xc8,umask=0x4");
3449 EVENT_ATTR_STR(el-capacity,	el_capacity,	"event=0x54,umask=0x2");
3450 EVENT_ATTR_STR(el-conflict,	el_conflict,	"event=0x54,umask=0x1");
3451 EVENT_ATTR_STR(cycles-t,	cycles_t,	"event=0x3c,in_tx=1");
3452 EVENT_ATTR_STR(cycles-ct,	cycles_ct,	"event=0x3c,in_tx=1,in_tx_cp=1");
3453 
3454 static struct attribute *hsw_events_attrs[] = {
3455 	EVENT_PTR(tx_start),
3456 	EVENT_PTR(tx_commit),
3457 	EVENT_PTR(tx_abort),
3458 	EVENT_PTR(tx_capacity),
3459 	EVENT_PTR(tx_conflict),
3460 	EVENT_PTR(el_start),
3461 	EVENT_PTR(el_commit),
3462 	EVENT_PTR(el_abort),
3463 	EVENT_PTR(el_capacity),
3464 	EVENT_PTR(el_conflict),
3465 	EVENT_PTR(cycles_t),
3466 	EVENT_PTR(cycles_ct),
3467 	EVENT_PTR(mem_ld_hsw),
3468 	EVENT_PTR(mem_st_hsw),
3469 	NULL
3470 };
3471 
3472 __init int intel_pmu_init(void)
3473 {
3474 	union cpuid10_edx edx;
3475 	union cpuid10_eax eax;
3476 	union cpuid10_ebx ebx;
3477 	struct event_constraint *c;
3478 	unsigned int unused;
3479 	struct extra_reg *er;
3480 	int version, i;
3481 
3482 	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
3483 		switch (boot_cpu_data.x86) {
3484 		case 0x6:
3485 			return p6_pmu_init();
3486 		case 0xb:
3487 			return knc_pmu_init();
3488 		case 0xf:
3489 			return p4_pmu_init();
3490 		}
3491 		return -ENODEV;
3492 	}
3493 
3494 	/*
3495 	 * Check whether the Architectural PerfMon supports
3496 	 * Branch Misses Retired hw_event or not.
3497 	 */
3498 	cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
3499 	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
3500 		return -ENODEV;
3501 
3502 	version = eax.split.version_id;
3503 	if (version < 2)
3504 		x86_pmu = core_pmu;
3505 	else
3506 		x86_pmu = intel_pmu;
3507 
3508 	x86_pmu.version			= version;
3509 	x86_pmu.num_counters		= eax.split.num_counters;
3510 	x86_pmu.cntval_bits		= eax.split.bit_width;
3511 	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
3512 
3513 	x86_pmu.events_maskl		= ebx.full;
3514 	x86_pmu.events_mask_len		= eax.split.mask_length;
3515 
3516 	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
3517 
3518 	/*
3519 	 * Quirk: v2 perfmon does not report fixed-purpose events, so
3520 	 * assume at least 3 events:
3521 	 */
3522 	if (version > 1)
3523 		x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
3524 
3525 	if (boot_cpu_has(X86_FEATURE_PDCM)) {
3526 		u64 capabilities;
3527 
3528 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
3529 		x86_pmu.intel_cap.capabilities = capabilities;
3530 	}
3531 
3532 	intel_ds_init();
3533 
3534 	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
3535 
3536 	/*
3537 	 * Install the hw-cache-events table:
3538 	 */
3539 	switch (boot_cpu_data.x86_model) {
3540 	case 14: /* 65nm Core "Yonah" */
3541 		pr_cont("Core events, ");
3542 		break;
3543 
3544 	case 15: /* 65nm Core2 "Merom"          */
3545 		x86_add_quirk(intel_clovertown_quirk);
3546 	case 22: /* 65nm Core2 "Merom-L"        */
3547 	case 23: /* 45nm Core2 "Penryn"         */
3548 	case 29: /* 45nm Core2 "Dunnington (MP) */
3549 		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
3550 		       sizeof(hw_cache_event_ids));
3551 
3552 		intel_pmu_lbr_init_core();
3553 
3554 		x86_pmu.event_constraints = intel_core2_event_constraints;
3555 		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
3556 		pr_cont("Core2 events, ");
3557 		break;
3558 
3559 	case 30: /* 45nm Nehalem    */
3560 	case 26: /* 45nm Nehalem-EP */
3561 	case 46: /* 45nm Nehalem-EX */
3562 		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
3563 		       sizeof(hw_cache_event_ids));
3564 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3565 		       sizeof(hw_cache_extra_regs));
3566 
3567 		intel_pmu_lbr_init_nhm();
3568 
3569 		x86_pmu.event_constraints = intel_nehalem_event_constraints;
3570 		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
3571 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3572 		x86_pmu.extra_regs = intel_nehalem_extra_regs;
3573 
3574 		x86_pmu.cpu_events = nhm_events_attrs;
3575 
3576 		/* UOPS_ISSUED.STALLED_CYCLES */
3577 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3578 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3579 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3580 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3581 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3582 
3583 		intel_pmu_pebs_data_source_nhm();
3584 		x86_add_quirk(intel_nehalem_quirk);
3585 
3586 		pr_cont("Nehalem events, ");
3587 		break;
3588 
3589 	case 28: /* 45nm Atom "Pineview"   */
3590 	case 38: /* 45nm Atom "Lincroft"   */
3591 	case 39: /* 32nm Atom "Penwell"    */
3592 	case 53: /* 32nm Atom "Cloverview" */
3593 	case 54: /* 32nm Atom "Cedarview"  */
3594 		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
3595 		       sizeof(hw_cache_event_ids));
3596 
3597 		intel_pmu_lbr_init_atom();
3598 
3599 		x86_pmu.event_constraints = intel_gen_event_constraints;
3600 		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
3601 		x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
3602 		pr_cont("Atom events, ");
3603 		break;
3604 
3605 	case 55: /* 22nm Atom "Silvermont"                */
3606 	case 76: /* 14nm Atom "Airmont"                   */
3607 	case 77: /* 22nm Atom "Silvermont Avoton/Rangely" */
3608 		memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
3609 			sizeof(hw_cache_event_ids));
3610 		memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
3611 		       sizeof(hw_cache_extra_regs));
3612 
3613 		intel_pmu_lbr_init_slm();
3614 
3615 		x86_pmu.event_constraints = intel_slm_event_constraints;
3616 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
3617 		x86_pmu.extra_regs = intel_slm_extra_regs;
3618 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3619 		pr_cont("Silvermont events, ");
3620 		break;
3621 
3622 	case 92: /* 14nm Atom "Goldmont" */
3623 	case 95: /* 14nm Atom "Goldmont Denverton" */
3624 		memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
3625 		       sizeof(hw_cache_event_ids));
3626 		memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
3627 		       sizeof(hw_cache_extra_regs));
3628 
3629 		intel_pmu_lbr_init_skl();
3630 
3631 		x86_pmu.event_constraints = intel_slm_event_constraints;
3632 		x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
3633 		x86_pmu.extra_regs = intel_glm_extra_regs;
3634 		/*
3635 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
3636 		 * for precise cycles.
3637 		 * :pp is identical to :ppp
3638 		 */
3639 		x86_pmu.pebs_aliases = NULL;
3640 		x86_pmu.pebs_prec_dist = true;
3641 		x86_pmu.lbr_pt_coexist = true;
3642 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3643 		pr_cont("Goldmont events, ");
3644 		break;
3645 
3646 	case 37: /* 32nm Westmere    */
3647 	case 44: /* 32nm Westmere-EP */
3648 	case 47: /* 32nm Westmere-EX */
3649 		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
3650 		       sizeof(hw_cache_event_ids));
3651 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3652 		       sizeof(hw_cache_extra_regs));
3653 
3654 		intel_pmu_lbr_init_nhm();
3655 
3656 		x86_pmu.event_constraints = intel_westmere_event_constraints;
3657 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3658 		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
3659 		x86_pmu.extra_regs = intel_westmere_extra_regs;
3660 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3661 
3662 		x86_pmu.cpu_events = nhm_events_attrs;
3663 
3664 		/* UOPS_ISSUED.STALLED_CYCLES */
3665 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3666 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3667 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3668 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3669 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3670 
3671 		intel_pmu_pebs_data_source_nhm();
3672 		pr_cont("Westmere events, ");
3673 		break;
3674 
3675 	case 42: /* 32nm SandyBridge         */
3676 	case 45: /* 32nm SandyBridge-E/EN/EP */
3677 		x86_add_quirk(intel_sandybridge_quirk);
3678 		x86_add_quirk(intel_ht_bug);
3679 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3680 		       sizeof(hw_cache_event_ids));
3681 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3682 		       sizeof(hw_cache_extra_regs));
3683 
3684 		intel_pmu_lbr_init_snb();
3685 
3686 		x86_pmu.event_constraints = intel_snb_event_constraints;
3687 		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
3688 		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3689 		if (boot_cpu_data.x86_model == 45)
3690 			x86_pmu.extra_regs = intel_snbep_extra_regs;
3691 		else
3692 			x86_pmu.extra_regs = intel_snb_extra_regs;
3693 
3694 
3695 		/* all extra regs are per-cpu when HT is on */
3696 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3697 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3698 
3699 		x86_pmu.cpu_events = snb_events_attrs;
3700 
3701 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3702 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3703 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3704 		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
3705 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3706 			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
3707 
3708 		pr_cont("SandyBridge events, ");
3709 		break;
3710 
3711 	case 58: /* 22nm IvyBridge       */
3712 	case 62: /* 22nm IvyBridge-EP/EX */
3713 		x86_add_quirk(intel_ht_bug);
3714 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3715 		       sizeof(hw_cache_event_ids));
3716 		/* dTLB-load-misses on IVB is different than SNB */
3717 		hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
3718 
3719 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3720 		       sizeof(hw_cache_extra_regs));
3721 
3722 		intel_pmu_lbr_init_snb();
3723 
3724 		x86_pmu.event_constraints = intel_ivb_event_constraints;
3725 		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
3726 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
3727 		x86_pmu.pebs_prec_dist = true;
3728 		if (boot_cpu_data.x86_model == 62)
3729 			x86_pmu.extra_regs = intel_snbep_extra_regs;
3730 		else
3731 			x86_pmu.extra_regs = intel_snb_extra_regs;
3732 		/* all extra regs are per-cpu when HT is on */
3733 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3734 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3735 
3736 		x86_pmu.cpu_events = snb_events_attrs;
3737 
3738 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3739 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3740 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3741 
3742 		pr_cont("IvyBridge events, ");
3743 		break;
3744 
3745 
3746 	case 60: /* 22nm Haswell Core */
3747 	case 63: /* 22nm Haswell Server */
3748 	case 69: /* 22nm Haswell ULT */
3749 	case 70: /* 22nm Haswell + GT3e (Intel Iris Pro graphics) */
3750 		x86_add_quirk(intel_ht_bug);
3751 		x86_pmu.late_ack = true;
3752 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3753 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3754 
3755 		intel_pmu_lbr_init_hsw();
3756 
3757 		x86_pmu.event_constraints = intel_hsw_event_constraints;
3758 		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
3759 		x86_pmu.extra_regs = intel_snbep_extra_regs;
3760 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
3761 		x86_pmu.pebs_prec_dist = true;
3762 		/* all extra regs are per-cpu when HT is on */
3763 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3764 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3765 
3766 		x86_pmu.hw_config = hsw_hw_config;
3767 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
3768 		x86_pmu.cpu_events = hsw_events_attrs;
3769 		x86_pmu.lbr_double_abort = true;
3770 		pr_cont("Haswell events, ");
3771 		break;
3772 
3773 	case 61: /* 14nm Broadwell Core-M */
3774 	case 86: /* 14nm Broadwell Xeon D */
3775 	case 71: /* 14nm Broadwell + GT3e (Intel Iris Pro graphics) */
3776 	case 79: /* 14nm Broadwell Server */
3777 		x86_pmu.late_ack = true;
3778 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3779 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3780 
3781 		/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
3782 		hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
3783 									 BDW_L3_MISS|HSW_SNOOP_DRAM;
3784 		hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
3785 									  HSW_SNOOP_DRAM;
3786 		hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
3787 									     BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3788 		hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
3789 									      BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3790 
3791 		intel_pmu_lbr_init_hsw();
3792 
3793 		x86_pmu.event_constraints = intel_bdw_event_constraints;
3794 		x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
3795 		x86_pmu.extra_regs = intel_snbep_extra_regs;
3796 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
3797 		x86_pmu.pebs_prec_dist = true;
3798 		/* all extra regs are per-cpu when HT is on */
3799 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3800 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3801 
3802 		x86_pmu.hw_config = hsw_hw_config;
3803 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
3804 		x86_pmu.cpu_events = hsw_events_attrs;
3805 		x86_pmu.limit_period = bdw_limit_period;
3806 		pr_cont("Broadwell events, ");
3807 		break;
3808 
3809 	case 87: /* Knights Landing Xeon Phi */
3810 		memcpy(hw_cache_event_ids,
3811 		       slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3812 		memcpy(hw_cache_extra_regs,
3813 		       knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3814 		intel_pmu_lbr_init_knl();
3815 
3816 		x86_pmu.event_constraints = intel_slm_event_constraints;
3817 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
3818 		x86_pmu.extra_regs = intel_knl_extra_regs;
3819 
3820 		/* all extra regs are per-cpu when HT is on */
3821 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3822 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3823 
3824 		pr_cont("Knights Landing events, ");
3825 		break;
3826 
3827 	case 142: /* 14nm Kabylake Mobile */
3828 	case 158: /* 14nm Kabylake Desktop */
3829 	case 78: /* 14nm Skylake Mobile */
3830 	case 94: /* 14nm Skylake Desktop */
3831 	case 85: /* 14nm Skylake Server */
3832 		x86_pmu.late_ack = true;
3833 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3834 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3835 		intel_pmu_lbr_init_skl();
3836 
3837 		x86_pmu.event_constraints = intel_skl_event_constraints;
3838 		x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
3839 		x86_pmu.extra_regs = intel_skl_extra_regs;
3840 		x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
3841 		x86_pmu.pebs_prec_dist = true;
3842 		/* all extra regs are per-cpu when HT is on */
3843 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3844 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3845 
3846 		x86_pmu.hw_config = hsw_hw_config;
3847 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
3848 		x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr,
3849 						  skl_format_attr);
3850 		WARN_ON(!x86_pmu.format_attrs);
3851 		x86_pmu.cpu_events = hsw_events_attrs;
3852 		pr_cont("Skylake events, ");
3853 		break;
3854 
3855 	default:
3856 		switch (x86_pmu.version) {
3857 		case 1:
3858 			x86_pmu.event_constraints = intel_v1_event_constraints;
3859 			pr_cont("generic architected perfmon v1, ");
3860 			break;
3861 		default:
3862 			/*
3863 			 * default constraints for v2 and up
3864 			 */
3865 			x86_pmu.event_constraints = intel_gen_event_constraints;
3866 			pr_cont("generic architected perfmon, ");
3867 			break;
3868 		}
3869 	}
3870 
3871 	if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
3872 		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
3873 		     x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
3874 		x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
3875 	}
3876 	x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
3877 
3878 	if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
3879 		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
3880 		     x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
3881 		x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
3882 	}
3883 
3884 	x86_pmu.intel_ctrl |=
3885 		((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
3886 
3887 	if (x86_pmu.event_constraints) {
3888 		/*
3889 		 * event on fixed counter2 (REF_CYCLES) only works on this
3890 		 * counter, so do not extend mask to generic counters
3891 		 */
3892 		for_each_event_constraint(c, x86_pmu.event_constraints) {
3893 			if (c->cmask == FIXED_EVENT_FLAGS
3894 			    && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
3895 				c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
3896 			}
3897 			c->idxmsk64 &=
3898 				~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
3899 			c->weight = hweight64(c->idxmsk64);
3900 		}
3901 	}
3902 
3903 	/*
3904 	 * Access LBR MSR may cause #GP under certain circumstances.
3905 	 * E.g. KVM doesn't support LBR MSR
3906 	 * Check all LBT MSR here.
3907 	 * Disable LBR access if any LBR MSRs can not be accessed.
3908 	 */
3909 	if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
3910 		x86_pmu.lbr_nr = 0;
3911 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
3912 		if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
3913 		      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
3914 			x86_pmu.lbr_nr = 0;
3915 	}
3916 
3917 	/*
3918 	 * Access extra MSR may cause #GP under certain circumstances.
3919 	 * E.g. KVM doesn't support offcore event
3920 	 * Check all extra_regs here.
3921 	 */
3922 	if (x86_pmu.extra_regs) {
3923 		for (er = x86_pmu.extra_regs; er->msr; er++) {
3924 			er->extra_msr_access = check_msr(er->msr, 0x11UL);
3925 			/* Disable LBR select mapping */
3926 			if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
3927 				x86_pmu.lbr_sel_map = NULL;
3928 		}
3929 	}
3930 
3931 	/* Support full width counters using alternative MSR range */
3932 	if (x86_pmu.intel_cap.full_width_write) {
3933 		x86_pmu.max_period = x86_pmu.cntval_mask;
3934 		x86_pmu.perfctr = MSR_IA32_PMC0;
3935 		pr_cont("full-width counters, ");
3936 	}
3937 
3938 	return 0;
3939 }
3940 
3941 /*
3942  * HT bug: phase 2 init
3943  * Called once we have valid topology information to check
3944  * whether or not HT is enabled
3945  * If HT is off, then we disable the workaround
3946  */
3947 static __init int fixup_ht_bug(void)
3948 {
3949 	int cpu = smp_processor_id();
3950 	int w, c;
3951 	/*
3952 	 * problem not present on this CPU model, nothing to do
3953 	 */
3954 	if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
3955 		return 0;
3956 
3957 	w = cpumask_weight(topology_sibling_cpumask(cpu));
3958 	if (w > 1) {
3959 		pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
3960 		return 0;
3961 	}
3962 
3963 	if (lockup_detector_suspend() != 0) {
3964 		pr_debug("failed to disable PMU erratum BJ122, BV98, HSD29 workaround\n");
3965 		return 0;
3966 	}
3967 
3968 	x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
3969 
3970 	x86_pmu.start_scheduling = NULL;
3971 	x86_pmu.commit_scheduling = NULL;
3972 	x86_pmu.stop_scheduling = NULL;
3973 
3974 	lockup_detector_resume();
3975 
3976 	get_online_cpus();
3977 
3978 	for_each_online_cpu(c) {
3979 		free_excl_cntrs(c);
3980 	}
3981 
3982 	put_online_cpus();
3983 	pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
3984 	return 0;
3985 }
3986 subsys_initcall(fixup_ht_bug)
3987