1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Per core/cpu state 4 * 5 * Used to coordinate shared registers between HT threads or 6 * among events on a single PMU. 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/stddef.h> 12 #include <linux/types.h> 13 #include <linux/init.h> 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/nmi.h> 17 18 #include <asm/cpufeature.h> 19 #include <asm/hardirq.h> 20 #include <asm/intel-family.h> 21 #include <asm/intel_pt.h> 22 #include <asm/apic.h> 23 #include <asm/cpu_device_id.h> 24 25 #include "../perf_event.h" 26 27 /* 28 * Intel PerfMon, used on Core and later. 29 */ 30 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly = 31 { 32 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c, 33 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0, 34 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e, 35 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e, 36 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4, 37 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5, 38 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c, 39 [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */ 40 }; 41 42 static struct event_constraint intel_core_event_constraints[] __read_mostly = 43 { 44 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */ 45 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */ 46 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */ 47 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */ 48 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */ 49 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */ 50 EVENT_CONSTRAINT_END 51 }; 52 53 static struct event_constraint intel_core2_event_constraints[] __read_mostly = 54 { 55 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 56 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 57 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 58 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */ 59 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */ 60 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */ 61 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */ 62 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */ 63 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */ 64 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */ 65 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */ 66 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */ 67 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */ 68 EVENT_CONSTRAINT_END 69 }; 70 71 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly = 72 { 73 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 74 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 75 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 76 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */ 77 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */ 78 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */ 79 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */ 80 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */ 81 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */ 82 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */ 83 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */ 84 EVENT_CONSTRAINT_END 85 }; 86 87 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly = 88 { 89 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 90 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0), 91 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b), 92 EVENT_EXTRA_END 93 }; 94 95 static struct event_constraint intel_westmere_event_constraints[] __read_mostly = 96 { 97 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 98 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 99 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 100 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */ 101 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */ 102 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */ 103 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */ 104 EVENT_CONSTRAINT_END 105 }; 106 107 static struct event_constraint intel_snb_event_constraints[] __read_mostly = 108 { 109 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 110 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 111 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 112 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */ 113 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */ 114 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ 115 INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */ 116 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */ 117 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */ 118 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */ 119 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */ 120 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ 121 122 /* 123 * When HT is off these events can only run on the bottom 4 counters 124 * When HT is on, they are impacted by the HT bug and require EXCL access 125 */ 126 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */ 127 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 128 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 129 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 130 131 EVENT_CONSTRAINT_END 132 }; 133 134 static struct event_constraint intel_ivb_event_constraints[] __read_mostly = 135 { 136 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 137 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 138 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 139 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */ 140 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */ 141 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */ 142 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */ 143 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */ 144 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */ 145 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */ 146 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ 147 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */ 148 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */ 149 150 /* 151 * When HT is off these events can only run on the bottom 4 counters 152 * When HT is on, they are impacted by the HT bug and require EXCL access 153 */ 154 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */ 155 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 156 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 157 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 158 159 EVENT_CONSTRAINT_END 160 }; 161 162 static struct extra_reg intel_westmere_extra_regs[] __read_mostly = 163 { 164 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 165 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0), 166 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1), 167 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b), 168 EVENT_EXTRA_END 169 }; 170 171 static struct event_constraint intel_v1_event_constraints[] __read_mostly = 172 { 173 EVENT_CONSTRAINT_END 174 }; 175 176 static struct event_constraint intel_gen_event_constraints[] __read_mostly = 177 { 178 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 179 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 180 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 181 EVENT_CONSTRAINT_END 182 }; 183 184 static struct event_constraint intel_slm_event_constraints[] __read_mostly = 185 { 186 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 187 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 188 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */ 189 EVENT_CONSTRAINT_END 190 }; 191 192 static struct event_constraint intel_skl_event_constraints[] = { 193 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 194 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 195 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 196 INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */ 197 198 /* 199 * when HT is off, these can only run on the bottom 4 counters 200 */ 201 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */ 202 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */ 203 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */ 204 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */ 205 INTEL_EVENT_CONSTRAINT(0xc6, 0xf), /* FRONTEND_RETIRED.* */ 206 207 EVENT_CONSTRAINT_END 208 }; 209 210 static struct extra_reg intel_knl_extra_regs[] __read_mostly = { 211 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0), 212 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1), 213 EVENT_EXTRA_END 214 }; 215 216 static struct extra_reg intel_snb_extra_regs[] __read_mostly = { 217 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 218 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0), 219 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1), 220 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), 221 EVENT_EXTRA_END 222 }; 223 224 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = { 225 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 226 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0), 227 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1), 228 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), 229 EVENT_EXTRA_END 230 }; 231 232 static struct extra_reg intel_skl_extra_regs[] __read_mostly = { 233 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0), 234 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1), 235 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), 236 /* 237 * Note the low 8 bits eventsel code is not a continuous field, containing 238 * some #GPing bits. These are masked out. 239 */ 240 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE), 241 EVENT_EXTRA_END 242 }; 243 244 static struct event_constraint intel_icl_event_constraints[] = { 245 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 246 INTEL_UEVENT_CONSTRAINT(0x1c0, 0), /* INST_RETIRED.PREC_DIST */ 247 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 248 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 249 FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */ 250 INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf), 251 INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf), 252 INTEL_EVENT_CONSTRAINT(0x32, 0xf), /* SW_PREFETCH_ACCESS.* */ 253 INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x54, 0xf), 254 INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf), 255 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff), /* CYCLE_ACTIVITY.STALLS_TOTAL */ 256 INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff), /* CYCLE_ACTIVITY.STALLS_MEM_ANY */ 257 INTEL_EVENT_CONSTRAINT(0xa3, 0xf), /* CYCLE_ACTIVITY.* */ 258 INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf), 259 INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf), 260 INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf), 261 INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf), 262 EVENT_CONSTRAINT_END 263 }; 264 265 static struct extra_reg intel_icl_extra_regs[] __read_mostly = { 266 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0), 267 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1), 268 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), 269 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE), 270 EVENT_EXTRA_END 271 }; 272 273 EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3"); 274 EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3"); 275 EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2"); 276 277 static struct attribute *nhm_mem_events_attrs[] = { 278 EVENT_PTR(mem_ld_nhm), 279 NULL, 280 }; 281 282 /* 283 * topdown events for Intel Core CPUs. 284 * 285 * The events are all in slots, which is a free slot in a 4 wide 286 * pipeline. Some events are already reported in slots, for cycle 287 * events we multiply by the pipeline width (4). 288 * 289 * With Hyper Threading on, topdown metrics are either summed or averaged 290 * between the threads of a core: (count_t0 + count_t1). 291 * 292 * For the average case the metric is always scaled to pipeline width, 293 * so we use factor 2 ((count_t0 + count_t1) / 2 * 4) 294 */ 295 296 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots, 297 "event=0x3c,umask=0x0", /* cpu_clk_unhalted.thread */ 298 "event=0x3c,umask=0x0,any=1"); /* cpu_clk_unhalted.thread_any */ 299 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2"); 300 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued, 301 "event=0xe,umask=0x1"); /* uops_issued.any */ 302 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired, 303 "event=0xc2,umask=0x2"); /* uops_retired.retire_slots */ 304 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles, 305 "event=0x9c,umask=0x1"); /* idq_uops_not_delivered_core */ 306 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles, 307 "event=0xd,umask=0x3,cmask=1", /* int_misc.recovery_cycles */ 308 "event=0xd,umask=0x3,cmask=1,any=1"); /* int_misc.recovery_cycles_any */ 309 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale, 310 "4", "2"); 311 312 static struct attribute *snb_events_attrs[] = { 313 EVENT_PTR(td_slots_issued), 314 EVENT_PTR(td_slots_retired), 315 EVENT_PTR(td_fetch_bubbles), 316 EVENT_PTR(td_total_slots), 317 EVENT_PTR(td_total_slots_scale), 318 EVENT_PTR(td_recovery_bubbles), 319 EVENT_PTR(td_recovery_bubbles_scale), 320 NULL, 321 }; 322 323 static struct attribute *snb_mem_events_attrs[] = { 324 EVENT_PTR(mem_ld_snb), 325 EVENT_PTR(mem_st_snb), 326 NULL, 327 }; 328 329 static struct event_constraint intel_hsw_event_constraints[] = { 330 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 331 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 332 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 333 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */ 334 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */ 335 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */ 336 /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ 337 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), 338 /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */ 339 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), 340 /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */ 341 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), 342 343 /* 344 * When HT is off these events can only run on the bottom 4 counters 345 * When HT is on, they are impacted by the HT bug and require EXCL access 346 */ 347 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */ 348 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 349 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 350 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 351 352 EVENT_CONSTRAINT_END 353 }; 354 355 static struct event_constraint intel_bdw_event_constraints[] = { 356 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 357 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 358 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 359 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */ 360 INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */ 361 /* 362 * when HT is off, these can only run on the bottom 4 counters 363 */ 364 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */ 365 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */ 366 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */ 367 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */ 368 EVENT_CONSTRAINT_END 369 }; 370 371 static u64 intel_pmu_event_map(int hw_event) 372 { 373 return intel_perfmon_event_map[hw_event]; 374 } 375 376 /* 377 * Notes on the events: 378 * - data reads do not include code reads (comparable to earlier tables) 379 * - data counts include speculative execution (except L1 write, dtlb, bpu) 380 * - remote node access includes remote memory, remote cache, remote mmio. 381 * - prefetches are not included in the counts. 382 * - icache miss does not include decoded icache 383 */ 384 385 #define SKL_DEMAND_DATA_RD BIT_ULL(0) 386 #define SKL_DEMAND_RFO BIT_ULL(1) 387 #define SKL_ANY_RESPONSE BIT_ULL(16) 388 #define SKL_SUPPLIER_NONE BIT_ULL(17) 389 #define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26) 390 #define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27) 391 #define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28) 392 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29) 393 #define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \ 394 SKL_L3_MISS_REMOTE_HOP0_DRAM| \ 395 SKL_L3_MISS_REMOTE_HOP1_DRAM| \ 396 SKL_L3_MISS_REMOTE_HOP2P_DRAM) 397 #define SKL_SPL_HIT BIT_ULL(30) 398 #define SKL_SNOOP_NONE BIT_ULL(31) 399 #define SKL_SNOOP_NOT_NEEDED BIT_ULL(32) 400 #define SKL_SNOOP_MISS BIT_ULL(33) 401 #define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34) 402 #define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35) 403 #define SKL_SNOOP_HITM BIT_ULL(36) 404 #define SKL_SNOOP_NON_DRAM BIT_ULL(37) 405 #define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \ 406 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \ 407 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \ 408 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM) 409 #define SKL_DEMAND_READ SKL_DEMAND_DATA_RD 410 #define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \ 411 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \ 412 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \ 413 SKL_SNOOP_HITM|SKL_SPL_HIT) 414 #define SKL_DEMAND_WRITE SKL_DEMAND_RFO 415 #define SKL_LLC_ACCESS SKL_ANY_RESPONSE 416 #define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \ 417 SKL_L3_MISS_REMOTE_HOP1_DRAM| \ 418 SKL_L3_MISS_REMOTE_HOP2P_DRAM) 419 420 static __initconst const u64 skl_hw_cache_event_ids 421 [PERF_COUNT_HW_CACHE_MAX] 422 [PERF_COUNT_HW_CACHE_OP_MAX] 423 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 424 { 425 [ C(L1D ) ] = { 426 [ C(OP_READ) ] = { 427 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */ 428 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */ 429 }, 430 [ C(OP_WRITE) ] = { 431 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */ 432 [ C(RESULT_MISS) ] = 0x0, 433 }, 434 [ C(OP_PREFETCH) ] = { 435 [ C(RESULT_ACCESS) ] = 0x0, 436 [ C(RESULT_MISS) ] = 0x0, 437 }, 438 }, 439 [ C(L1I ) ] = { 440 [ C(OP_READ) ] = { 441 [ C(RESULT_ACCESS) ] = 0x0, 442 [ C(RESULT_MISS) ] = 0x283, /* ICACHE_64B.MISS */ 443 }, 444 [ C(OP_WRITE) ] = { 445 [ C(RESULT_ACCESS) ] = -1, 446 [ C(RESULT_MISS) ] = -1, 447 }, 448 [ C(OP_PREFETCH) ] = { 449 [ C(RESULT_ACCESS) ] = 0x0, 450 [ C(RESULT_MISS) ] = 0x0, 451 }, 452 }, 453 [ C(LL ) ] = { 454 [ C(OP_READ) ] = { 455 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 456 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 457 }, 458 [ C(OP_WRITE) ] = { 459 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 460 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 461 }, 462 [ C(OP_PREFETCH) ] = { 463 [ C(RESULT_ACCESS) ] = 0x0, 464 [ C(RESULT_MISS) ] = 0x0, 465 }, 466 }, 467 [ C(DTLB) ] = { 468 [ C(OP_READ) ] = { 469 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */ 470 [ C(RESULT_MISS) ] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */ 471 }, 472 [ C(OP_WRITE) ] = { 473 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */ 474 [ C(RESULT_MISS) ] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */ 475 }, 476 [ C(OP_PREFETCH) ] = { 477 [ C(RESULT_ACCESS) ] = 0x0, 478 [ C(RESULT_MISS) ] = 0x0, 479 }, 480 }, 481 [ C(ITLB) ] = { 482 [ C(OP_READ) ] = { 483 [ C(RESULT_ACCESS) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */ 484 [ C(RESULT_MISS) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */ 485 }, 486 [ C(OP_WRITE) ] = { 487 [ C(RESULT_ACCESS) ] = -1, 488 [ C(RESULT_MISS) ] = -1, 489 }, 490 [ C(OP_PREFETCH) ] = { 491 [ C(RESULT_ACCESS) ] = -1, 492 [ C(RESULT_MISS) ] = -1, 493 }, 494 }, 495 [ C(BPU ) ] = { 496 [ C(OP_READ) ] = { 497 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */ 498 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */ 499 }, 500 [ C(OP_WRITE) ] = { 501 [ C(RESULT_ACCESS) ] = -1, 502 [ C(RESULT_MISS) ] = -1, 503 }, 504 [ C(OP_PREFETCH) ] = { 505 [ C(RESULT_ACCESS) ] = -1, 506 [ C(RESULT_MISS) ] = -1, 507 }, 508 }, 509 [ C(NODE) ] = { 510 [ C(OP_READ) ] = { 511 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 512 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 513 }, 514 [ C(OP_WRITE) ] = { 515 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 516 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 517 }, 518 [ C(OP_PREFETCH) ] = { 519 [ C(RESULT_ACCESS) ] = 0x0, 520 [ C(RESULT_MISS) ] = 0x0, 521 }, 522 }, 523 }; 524 525 static __initconst const u64 skl_hw_cache_extra_regs 526 [PERF_COUNT_HW_CACHE_MAX] 527 [PERF_COUNT_HW_CACHE_OP_MAX] 528 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 529 { 530 [ C(LL ) ] = { 531 [ C(OP_READ) ] = { 532 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ| 533 SKL_LLC_ACCESS|SKL_ANY_SNOOP, 534 [ C(RESULT_MISS) ] = SKL_DEMAND_READ| 535 SKL_L3_MISS|SKL_ANY_SNOOP| 536 SKL_SUPPLIER_NONE, 537 }, 538 [ C(OP_WRITE) ] = { 539 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE| 540 SKL_LLC_ACCESS|SKL_ANY_SNOOP, 541 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE| 542 SKL_L3_MISS|SKL_ANY_SNOOP| 543 SKL_SUPPLIER_NONE, 544 }, 545 [ C(OP_PREFETCH) ] = { 546 [ C(RESULT_ACCESS) ] = 0x0, 547 [ C(RESULT_MISS) ] = 0x0, 548 }, 549 }, 550 [ C(NODE) ] = { 551 [ C(OP_READ) ] = { 552 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ| 553 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM, 554 [ C(RESULT_MISS) ] = SKL_DEMAND_READ| 555 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM, 556 }, 557 [ C(OP_WRITE) ] = { 558 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE| 559 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM, 560 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE| 561 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM, 562 }, 563 [ C(OP_PREFETCH) ] = { 564 [ C(RESULT_ACCESS) ] = 0x0, 565 [ C(RESULT_MISS) ] = 0x0, 566 }, 567 }, 568 }; 569 570 #define SNB_DMND_DATA_RD (1ULL << 0) 571 #define SNB_DMND_RFO (1ULL << 1) 572 #define SNB_DMND_IFETCH (1ULL << 2) 573 #define SNB_DMND_WB (1ULL << 3) 574 #define SNB_PF_DATA_RD (1ULL << 4) 575 #define SNB_PF_RFO (1ULL << 5) 576 #define SNB_PF_IFETCH (1ULL << 6) 577 #define SNB_LLC_DATA_RD (1ULL << 7) 578 #define SNB_LLC_RFO (1ULL << 8) 579 #define SNB_LLC_IFETCH (1ULL << 9) 580 #define SNB_BUS_LOCKS (1ULL << 10) 581 #define SNB_STRM_ST (1ULL << 11) 582 #define SNB_OTHER (1ULL << 15) 583 #define SNB_RESP_ANY (1ULL << 16) 584 #define SNB_NO_SUPP (1ULL << 17) 585 #define SNB_LLC_HITM (1ULL << 18) 586 #define SNB_LLC_HITE (1ULL << 19) 587 #define SNB_LLC_HITS (1ULL << 20) 588 #define SNB_LLC_HITF (1ULL << 21) 589 #define SNB_LOCAL (1ULL << 22) 590 #define SNB_REMOTE (0xffULL << 23) 591 #define SNB_SNP_NONE (1ULL << 31) 592 #define SNB_SNP_NOT_NEEDED (1ULL << 32) 593 #define SNB_SNP_MISS (1ULL << 33) 594 #define SNB_NO_FWD (1ULL << 34) 595 #define SNB_SNP_FWD (1ULL << 35) 596 #define SNB_HITM (1ULL << 36) 597 #define SNB_NON_DRAM (1ULL << 37) 598 599 #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD) 600 #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO) 601 #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO) 602 603 #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \ 604 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \ 605 SNB_HITM) 606 607 #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY) 608 #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY) 609 610 #define SNB_L3_ACCESS SNB_RESP_ANY 611 #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM) 612 613 static __initconst const u64 snb_hw_cache_extra_regs 614 [PERF_COUNT_HW_CACHE_MAX] 615 [PERF_COUNT_HW_CACHE_OP_MAX] 616 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 617 { 618 [ C(LL ) ] = { 619 [ C(OP_READ) ] = { 620 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS, 621 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS, 622 }, 623 [ C(OP_WRITE) ] = { 624 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS, 625 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS, 626 }, 627 [ C(OP_PREFETCH) ] = { 628 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS, 629 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS, 630 }, 631 }, 632 [ C(NODE) ] = { 633 [ C(OP_READ) ] = { 634 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY, 635 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE, 636 }, 637 [ C(OP_WRITE) ] = { 638 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY, 639 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE, 640 }, 641 [ C(OP_PREFETCH) ] = { 642 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY, 643 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE, 644 }, 645 }, 646 }; 647 648 static __initconst const u64 snb_hw_cache_event_ids 649 [PERF_COUNT_HW_CACHE_MAX] 650 [PERF_COUNT_HW_CACHE_OP_MAX] 651 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 652 { 653 [ C(L1D) ] = { 654 [ C(OP_READ) ] = { 655 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */ 656 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */ 657 }, 658 [ C(OP_WRITE) ] = { 659 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */ 660 [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */ 661 }, 662 [ C(OP_PREFETCH) ] = { 663 [ C(RESULT_ACCESS) ] = 0x0, 664 [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */ 665 }, 666 }, 667 [ C(L1I ) ] = { 668 [ C(OP_READ) ] = { 669 [ C(RESULT_ACCESS) ] = 0x0, 670 [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */ 671 }, 672 [ C(OP_WRITE) ] = { 673 [ C(RESULT_ACCESS) ] = -1, 674 [ C(RESULT_MISS) ] = -1, 675 }, 676 [ C(OP_PREFETCH) ] = { 677 [ C(RESULT_ACCESS) ] = 0x0, 678 [ C(RESULT_MISS) ] = 0x0, 679 }, 680 }, 681 [ C(LL ) ] = { 682 [ C(OP_READ) ] = { 683 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ 684 [ C(RESULT_ACCESS) ] = 0x01b7, 685 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ 686 [ C(RESULT_MISS) ] = 0x01b7, 687 }, 688 [ C(OP_WRITE) ] = { 689 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ 690 [ C(RESULT_ACCESS) ] = 0x01b7, 691 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ 692 [ C(RESULT_MISS) ] = 0x01b7, 693 }, 694 [ C(OP_PREFETCH) ] = { 695 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ 696 [ C(RESULT_ACCESS) ] = 0x01b7, 697 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ 698 [ C(RESULT_MISS) ] = 0x01b7, 699 }, 700 }, 701 [ C(DTLB) ] = { 702 [ C(OP_READ) ] = { 703 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */ 704 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */ 705 }, 706 [ C(OP_WRITE) ] = { 707 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */ 708 [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */ 709 }, 710 [ C(OP_PREFETCH) ] = { 711 [ C(RESULT_ACCESS) ] = 0x0, 712 [ C(RESULT_MISS) ] = 0x0, 713 }, 714 }, 715 [ C(ITLB) ] = { 716 [ C(OP_READ) ] = { 717 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */ 718 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */ 719 }, 720 [ C(OP_WRITE) ] = { 721 [ C(RESULT_ACCESS) ] = -1, 722 [ C(RESULT_MISS) ] = -1, 723 }, 724 [ C(OP_PREFETCH) ] = { 725 [ C(RESULT_ACCESS) ] = -1, 726 [ C(RESULT_MISS) ] = -1, 727 }, 728 }, 729 [ C(BPU ) ] = { 730 [ C(OP_READ) ] = { 731 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ 732 [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */ 733 }, 734 [ C(OP_WRITE) ] = { 735 [ C(RESULT_ACCESS) ] = -1, 736 [ C(RESULT_MISS) ] = -1, 737 }, 738 [ C(OP_PREFETCH) ] = { 739 [ C(RESULT_ACCESS) ] = -1, 740 [ C(RESULT_MISS) ] = -1, 741 }, 742 }, 743 [ C(NODE) ] = { 744 [ C(OP_READ) ] = { 745 [ C(RESULT_ACCESS) ] = 0x01b7, 746 [ C(RESULT_MISS) ] = 0x01b7, 747 }, 748 [ C(OP_WRITE) ] = { 749 [ C(RESULT_ACCESS) ] = 0x01b7, 750 [ C(RESULT_MISS) ] = 0x01b7, 751 }, 752 [ C(OP_PREFETCH) ] = { 753 [ C(RESULT_ACCESS) ] = 0x01b7, 754 [ C(RESULT_MISS) ] = 0x01b7, 755 }, 756 }, 757 758 }; 759 760 /* 761 * Notes on the events: 762 * - data reads do not include code reads (comparable to earlier tables) 763 * - data counts include speculative execution (except L1 write, dtlb, bpu) 764 * - remote node access includes remote memory, remote cache, remote mmio. 765 * - prefetches are not included in the counts because they are not 766 * reliably counted. 767 */ 768 769 #define HSW_DEMAND_DATA_RD BIT_ULL(0) 770 #define HSW_DEMAND_RFO BIT_ULL(1) 771 #define HSW_ANY_RESPONSE BIT_ULL(16) 772 #define HSW_SUPPLIER_NONE BIT_ULL(17) 773 #define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22) 774 #define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27) 775 #define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28) 776 #define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29) 777 #define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \ 778 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \ 779 HSW_L3_MISS_REMOTE_HOP2P) 780 #define HSW_SNOOP_NONE BIT_ULL(31) 781 #define HSW_SNOOP_NOT_NEEDED BIT_ULL(32) 782 #define HSW_SNOOP_MISS BIT_ULL(33) 783 #define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34) 784 #define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35) 785 #define HSW_SNOOP_HITM BIT_ULL(36) 786 #define HSW_SNOOP_NON_DRAM BIT_ULL(37) 787 #define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \ 788 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \ 789 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \ 790 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM) 791 #define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM) 792 #define HSW_DEMAND_READ HSW_DEMAND_DATA_RD 793 #define HSW_DEMAND_WRITE HSW_DEMAND_RFO 794 #define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\ 795 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P) 796 #define HSW_LLC_ACCESS HSW_ANY_RESPONSE 797 798 #define BDW_L3_MISS_LOCAL BIT(26) 799 #define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \ 800 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \ 801 HSW_L3_MISS_REMOTE_HOP2P) 802 803 804 static __initconst const u64 hsw_hw_cache_event_ids 805 [PERF_COUNT_HW_CACHE_MAX] 806 [PERF_COUNT_HW_CACHE_OP_MAX] 807 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 808 { 809 [ C(L1D ) ] = { 810 [ C(OP_READ) ] = { 811 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 812 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */ 813 }, 814 [ C(OP_WRITE) ] = { 815 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 816 [ C(RESULT_MISS) ] = 0x0, 817 }, 818 [ C(OP_PREFETCH) ] = { 819 [ C(RESULT_ACCESS) ] = 0x0, 820 [ C(RESULT_MISS) ] = 0x0, 821 }, 822 }, 823 [ C(L1I ) ] = { 824 [ C(OP_READ) ] = { 825 [ C(RESULT_ACCESS) ] = 0x0, 826 [ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */ 827 }, 828 [ C(OP_WRITE) ] = { 829 [ C(RESULT_ACCESS) ] = -1, 830 [ C(RESULT_MISS) ] = -1, 831 }, 832 [ C(OP_PREFETCH) ] = { 833 [ C(RESULT_ACCESS) ] = 0x0, 834 [ C(RESULT_MISS) ] = 0x0, 835 }, 836 }, 837 [ C(LL ) ] = { 838 [ C(OP_READ) ] = { 839 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 840 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 841 }, 842 [ C(OP_WRITE) ] = { 843 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 844 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 845 }, 846 [ C(OP_PREFETCH) ] = { 847 [ C(RESULT_ACCESS) ] = 0x0, 848 [ C(RESULT_MISS) ] = 0x0, 849 }, 850 }, 851 [ C(DTLB) ] = { 852 [ C(OP_READ) ] = { 853 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 854 [ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */ 855 }, 856 [ C(OP_WRITE) ] = { 857 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 858 [ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */ 859 }, 860 [ C(OP_PREFETCH) ] = { 861 [ C(RESULT_ACCESS) ] = 0x0, 862 [ C(RESULT_MISS) ] = 0x0, 863 }, 864 }, 865 [ C(ITLB) ] = { 866 [ C(OP_READ) ] = { 867 [ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */ 868 [ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */ 869 }, 870 [ C(OP_WRITE) ] = { 871 [ C(RESULT_ACCESS) ] = -1, 872 [ C(RESULT_MISS) ] = -1, 873 }, 874 [ C(OP_PREFETCH) ] = { 875 [ C(RESULT_ACCESS) ] = -1, 876 [ C(RESULT_MISS) ] = -1, 877 }, 878 }, 879 [ C(BPU ) ] = { 880 [ C(OP_READ) ] = { 881 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */ 882 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */ 883 }, 884 [ C(OP_WRITE) ] = { 885 [ C(RESULT_ACCESS) ] = -1, 886 [ C(RESULT_MISS) ] = -1, 887 }, 888 [ C(OP_PREFETCH) ] = { 889 [ C(RESULT_ACCESS) ] = -1, 890 [ C(RESULT_MISS) ] = -1, 891 }, 892 }, 893 [ C(NODE) ] = { 894 [ C(OP_READ) ] = { 895 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 896 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 897 }, 898 [ C(OP_WRITE) ] = { 899 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 900 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 901 }, 902 [ C(OP_PREFETCH) ] = { 903 [ C(RESULT_ACCESS) ] = 0x0, 904 [ C(RESULT_MISS) ] = 0x0, 905 }, 906 }, 907 }; 908 909 static __initconst const u64 hsw_hw_cache_extra_regs 910 [PERF_COUNT_HW_CACHE_MAX] 911 [PERF_COUNT_HW_CACHE_OP_MAX] 912 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 913 { 914 [ C(LL ) ] = { 915 [ C(OP_READ) ] = { 916 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ| 917 HSW_LLC_ACCESS, 918 [ C(RESULT_MISS) ] = HSW_DEMAND_READ| 919 HSW_L3_MISS|HSW_ANY_SNOOP, 920 }, 921 [ C(OP_WRITE) ] = { 922 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE| 923 HSW_LLC_ACCESS, 924 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE| 925 HSW_L3_MISS|HSW_ANY_SNOOP, 926 }, 927 [ C(OP_PREFETCH) ] = { 928 [ C(RESULT_ACCESS) ] = 0x0, 929 [ C(RESULT_MISS) ] = 0x0, 930 }, 931 }, 932 [ C(NODE) ] = { 933 [ C(OP_READ) ] = { 934 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ| 935 HSW_L3_MISS_LOCAL_DRAM| 936 HSW_SNOOP_DRAM, 937 [ C(RESULT_MISS) ] = HSW_DEMAND_READ| 938 HSW_L3_MISS_REMOTE| 939 HSW_SNOOP_DRAM, 940 }, 941 [ C(OP_WRITE) ] = { 942 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE| 943 HSW_L3_MISS_LOCAL_DRAM| 944 HSW_SNOOP_DRAM, 945 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE| 946 HSW_L3_MISS_REMOTE| 947 HSW_SNOOP_DRAM, 948 }, 949 [ C(OP_PREFETCH) ] = { 950 [ C(RESULT_ACCESS) ] = 0x0, 951 [ C(RESULT_MISS) ] = 0x0, 952 }, 953 }, 954 }; 955 956 static __initconst const u64 westmere_hw_cache_event_ids 957 [PERF_COUNT_HW_CACHE_MAX] 958 [PERF_COUNT_HW_CACHE_OP_MAX] 959 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 960 { 961 [ C(L1D) ] = { 962 [ C(OP_READ) ] = { 963 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ 964 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */ 965 }, 966 [ C(OP_WRITE) ] = { 967 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ 968 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */ 969 }, 970 [ C(OP_PREFETCH) ] = { 971 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */ 972 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */ 973 }, 974 }, 975 [ C(L1I ) ] = { 976 [ C(OP_READ) ] = { 977 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ 978 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ 979 }, 980 [ C(OP_WRITE) ] = { 981 [ C(RESULT_ACCESS) ] = -1, 982 [ C(RESULT_MISS) ] = -1, 983 }, 984 [ C(OP_PREFETCH) ] = { 985 [ C(RESULT_ACCESS) ] = 0x0, 986 [ C(RESULT_MISS) ] = 0x0, 987 }, 988 }, 989 [ C(LL ) ] = { 990 [ C(OP_READ) ] = { 991 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ 992 [ C(RESULT_ACCESS) ] = 0x01b7, 993 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ 994 [ C(RESULT_MISS) ] = 0x01b7, 995 }, 996 /* 997 * Use RFO, not WRITEBACK, because a write miss would typically occur 998 * on RFO. 999 */ 1000 [ C(OP_WRITE) ] = { 1001 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ 1002 [ C(RESULT_ACCESS) ] = 0x01b7, 1003 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ 1004 [ C(RESULT_MISS) ] = 0x01b7, 1005 }, 1006 [ C(OP_PREFETCH) ] = { 1007 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ 1008 [ C(RESULT_ACCESS) ] = 0x01b7, 1009 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ 1010 [ C(RESULT_MISS) ] = 0x01b7, 1011 }, 1012 }, 1013 [ C(DTLB) ] = { 1014 [ C(OP_READ) ] = { 1015 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ 1016 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */ 1017 }, 1018 [ C(OP_WRITE) ] = { 1019 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ 1020 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */ 1021 }, 1022 [ C(OP_PREFETCH) ] = { 1023 [ C(RESULT_ACCESS) ] = 0x0, 1024 [ C(RESULT_MISS) ] = 0x0, 1025 }, 1026 }, 1027 [ C(ITLB) ] = { 1028 [ C(OP_READ) ] = { 1029 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */ 1030 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */ 1031 }, 1032 [ C(OP_WRITE) ] = { 1033 [ C(RESULT_ACCESS) ] = -1, 1034 [ C(RESULT_MISS) ] = -1, 1035 }, 1036 [ C(OP_PREFETCH) ] = { 1037 [ C(RESULT_ACCESS) ] = -1, 1038 [ C(RESULT_MISS) ] = -1, 1039 }, 1040 }, 1041 [ C(BPU ) ] = { 1042 [ C(OP_READ) ] = { 1043 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ 1044 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */ 1045 }, 1046 [ C(OP_WRITE) ] = { 1047 [ C(RESULT_ACCESS) ] = -1, 1048 [ C(RESULT_MISS) ] = -1, 1049 }, 1050 [ C(OP_PREFETCH) ] = { 1051 [ C(RESULT_ACCESS) ] = -1, 1052 [ C(RESULT_MISS) ] = -1, 1053 }, 1054 }, 1055 [ C(NODE) ] = { 1056 [ C(OP_READ) ] = { 1057 [ C(RESULT_ACCESS) ] = 0x01b7, 1058 [ C(RESULT_MISS) ] = 0x01b7, 1059 }, 1060 [ C(OP_WRITE) ] = { 1061 [ C(RESULT_ACCESS) ] = 0x01b7, 1062 [ C(RESULT_MISS) ] = 0x01b7, 1063 }, 1064 [ C(OP_PREFETCH) ] = { 1065 [ C(RESULT_ACCESS) ] = 0x01b7, 1066 [ C(RESULT_MISS) ] = 0x01b7, 1067 }, 1068 }, 1069 }; 1070 1071 /* 1072 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits; 1073 * See IA32 SDM Vol 3B 30.6.1.3 1074 */ 1075 1076 #define NHM_DMND_DATA_RD (1 << 0) 1077 #define NHM_DMND_RFO (1 << 1) 1078 #define NHM_DMND_IFETCH (1 << 2) 1079 #define NHM_DMND_WB (1 << 3) 1080 #define NHM_PF_DATA_RD (1 << 4) 1081 #define NHM_PF_DATA_RFO (1 << 5) 1082 #define NHM_PF_IFETCH (1 << 6) 1083 #define NHM_OFFCORE_OTHER (1 << 7) 1084 #define NHM_UNCORE_HIT (1 << 8) 1085 #define NHM_OTHER_CORE_HIT_SNP (1 << 9) 1086 #define NHM_OTHER_CORE_HITM (1 << 10) 1087 /* reserved */ 1088 #define NHM_REMOTE_CACHE_FWD (1 << 12) 1089 #define NHM_REMOTE_DRAM (1 << 13) 1090 #define NHM_LOCAL_DRAM (1 << 14) 1091 #define NHM_NON_DRAM (1 << 15) 1092 1093 #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD) 1094 #define NHM_REMOTE (NHM_REMOTE_DRAM) 1095 1096 #define NHM_DMND_READ (NHM_DMND_DATA_RD) 1097 #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB) 1098 #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO) 1099 1100 #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM) 1101 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD) 1102 #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS) 1103 1104 static __initconst const u64 nehalem_hw_cache_extra_regs 1105 [PERF_COUNT_HW_CACHE_MAX] 1106 [PERF_COUNT_HW_CACHE_OP_MAX] 1107 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1108 { 1109 [ C(LL ) ] = { 1110 [ C(OP_READ) ] = { 1111 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS, 1112 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS, 1113 }, 1114 [ C(OP_WRITE) ] = { 1115 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS, 1116 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS, 1117 }, 1118 [ C(OP_PREFETCH) ] = { 1119 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS, 1120 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS, 1121 }, 1122 }, 1123 [ C(NODE) ] = { 1124 [ C(OP_READ) ] = { 1125 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE, 1126 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE, 1127 }, 1128 [ C(OP_WRITE) ] = { 1129 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE, 1130 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE, 1131 }, 1132 [ C(OP_PREFETCH) ] = { 1133 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE, 1134 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE, 1135 }, 1136 }, 1137 }; 1138 1139 static __initconst const u64 nehalem_hw_cache_event_ids 1140 [PERF_COUNT_HW_CACHE_MAX] 1141 [PERF_COUNT_HW_CACHE_OP_MAX] 1142 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1143 { 1144 [ C(L1D) ] = { 1145 [ C(OP_READ) ] = { 1146 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ 1147 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */ 1148 }, 1149 [ C(OP_WRITE) ] = { 1150 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ 1151 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */ 1152 }, 1153 [ C(OP_PREFETCH) ] = { 1154 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */ 1155 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */ 1156 }, 1157 }, 1158 [ C(L1I ) ] = { 1159 [ C(OP_READ) ] = { 1160 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ 1161 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ 1162 }, 1163 [ C(OP_WRITE) ] = { 1164 [ C(RESULT_ACCESS) ] = -1, 1165 [ C(RESULT_MISS) ] = -1, 1166 }, 1167 [ C(OP_PREFETCH) ] = { 1168 [ C(RESULT_ACCESS) ] = 0x0, 1169 [ C(RESULT_MISS) ] = 0x0, 1170 }, 1171 }, 1172 [ C(LL ) ] = { 1173 [ C(OP_READ) ] = { 1174 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ 1175 [ C(RESULT_ACCESS) ] = 0x01b7, 1176 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ 1177 [ C(RESULT_MISS) ] = 0x01b7, 1178 }, 1179 /* 1180 * Use RFO, not WRITEBACK, because a write miss would typically occur 1181 * on RFO. 1182 */ 1183 [ C(OP_WRITE) ] = { 1184 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ 1185 [ C(RESULT_ACCESS) ] = 0x01b7, 1186 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ 1187 [ C(RESULT_MISS) ] = 0x01b7, 1188 }, 1189 [ C(OP_PREFETCH) ] = { 1190 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ 1191 [ C(RESULT_ACCESS) ] = 0x01b7, 1192 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ 1193 [ C(RESULT_MISS) ] = 0x01b7, 1194 }, 1195 }, 1196 [ C(DTLB) ] = { 1197 [ C(OP_READ) ] = { 1198 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */ 1199 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */ 1200 }, 1201 [ C(OP_WRITE) ] = { 1202 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */ 1203 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */ 1204 }, 1205 [ C(OP_PREFETCH) ] = { 1206 [ C(RESULT_ACCESS) ] = 0x0, 1207 [ C(RESULT_MISS) ] = 0x0, 1208 }, 1209 }, 1210 [ C(ITLB) ] = { 1211 [ C(OP_READ) ] = { 1212 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */ 1213 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */ 1214 }, 1215 [ C(OP_WRITE) ] = { 1216 [ C(RESULT_ACCESS) ] = -1, 1217 [ C(RESULT_MISS) ] = -1, 1218 }, 1219 [ C(OP_PREFETCH) ] = { 1220 [ C(RESULT_ACCESS) ] = -1, 1221 [ C(RESULT_MISS) ] = -1, 1222 }, 1223 }, 1224 [ C(BPU ) ] = { 1225 [ C(OP_READ) ] = { 1226 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ 1227 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */ 1228 }, 1229 [ C(OP_WRITE) ] = { 1230 [ C(RESULT_ACCESS) ] = -1, 1231 [ C(RESULT_MISS) ] = -1, 1232 }, 1233 [ C(OP_PREFETCH) ] = { 1234 [ C(RESULT_ACCESS) ] = -1, 1235 [ C(RESULT_MISS) ] = -1, 1236 }, 1237 }, 1238 [ C(NODE) ] = { 1239 [ C(OP_READ) ] = { 1240 [ C(RESULT_ACCESS) ] = 0x01b7, 1241 [ C(RESULT_MISS) ] = 0x01b7, 1242 }, 1243 [ C(OP_WRITE) ] = { 1244 [ C(RESULT_ACCESS) ] = 0x01b7, 1245 [ C(RESULT_MISS) ] = 0x01b7, 1246 }, 1247 [ C(OP_PREFETCH) ] = { 1248 [ C(RESULT_ACCESS) ] = 0x01b7, 1249 [ C(RESULT_MISS) ] = 0x01b7, 1250 }, 1251 }, 1252 }; 1253 1254 static __initconst const u64 core2_hw_cache_event_ids 1255 [PERF_COUNT_HW_CACHE_MAX] 1256 [PERF_COUNT_HW_CACHE_OP_MAX] 1257 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1258 { 1259 [ C(L1D) ] = { 1260 [ C(OP_READ) ] = { 1261 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */ 1262 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */ 1263 }, 1264 [ C(OP_WRITE) ] = { 1265 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */ 1266 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */ 1267 }, 1268 [ C(OP_PREFETCH) ] = { 1269 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */ 1270 [ C(RESULT_MISS) ] = 0, 1271 }, 1272 }, 1273 [ C(L1I ) ] = { 1274 [ C(OP_READ) ] = { 1275 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */ 1276 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */ 1277 }, 1278 [ C(OP_WRITE) ] = { 1279 [ C(RESULT_ACCESS) ] = -1, 1280 [ C(RESULT_MISS) ] = -1, 1281 }, 1282 [ C(OP_PREFETCH) ] = { 1283 [ C(RESULT_ACCESS) ] = 0, 1284 [ C(RESULT_MISS) ] = 0, 1285 }, 1286 }, 1287 [ C(LL ) ] = { 1288 [ C(OP_READ) ] = { 1289 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */ 1290 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */ 1291 }, 1292 [ C(OP_WRITE) ] = { 1293 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */ 1294 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */ 1295 }, 1296 [ C(OP_PREFETCH) ] = { 1297 [ C(RESULT_ACCESS) ] = 0, 1298 [ C(RESULT_MISS) ] = 0, 1299 }, 1300 }, 1301 [ C(DTLB) ] = { 1302 [ C(OP_READ) ] = { 1303 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */ 1304 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */ 1305 }, 1306 [ C(OP_WRITE) ] = { 1307 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */ 1308 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */ 1309 }, 1310 [ C(OP_PREFETCH) ] = { 1311 [ C(RESULT_ACCESS) ] = 0, 1312 [ C(RESULT_MISS) ] = 0, 1313 }, 1314 }, 1315 [ C(ITLB) ] = { 1316 [ C(OP_READ) ] = { 1317 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ 1318 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */ 1319 }, 1320 [ C(OP_WRITE) ] = { 1321 [ C(RESULT_ACCESS) ] = -1, 1322 [ C(RESULT_MISS) ] = -1, 1323 }, 1324 [ C(OP_PREFETCH) ] = { 1325 [ C(RESULT_ACCESS) ] = -1, 1326 [ C(RESULT_MISS) ] = -1, 1327 }, 1328 }, 1329 [ C(BPU ) ] = { 1330 [ C(OP_READ) ] = { 1331 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ 1332 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ 1333 }, 1334 [ C(OP_WRITE) ] = { 1335 [ C(RESULT_ACCESS) ] = -1, 1336 [ C(RESULT_MISS) ] = -1, 1337 }, 1338 [ C(OP_PREFETCH) ] = { 1339 [ C(RESULT_ACCESS) ] = -1, 1340 [ C(RESULT_MISS) ] = -1, 1341 }, 1342 }, 1343 }; 1344 1345 static __initconst const u64 atom_hw_cache_event_ids 1346 [PERF_COUNT_HW_CACHE_MAX] 1347 [PERF_COUNT_HW_CACHE_OP_MAX] 1348 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1349 { 1350 [ C(L1D) ] = { 1351 [ C(OP_READ) ] = { 1352 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */ 1353 [ C(RESULT_MISS) ] = 0, 1354 }, 1355 [ C(OP_WRITE) ] = { 1356 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */ 1357 [ C(RESULT_MISS) ] = 0, 1358 }, 1359 [ C(OP_PREFETCH) ] = { 1360 [ C(RESULT_ACCESS) ] = 0x0, 1361 [ C(RESULT_MISS) ] = 0, 1362 }, 1363 }, 1364 [ C(L1I ) ] = { 1365 [ C(OP_READ) ] = { 1366 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ 1367 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ 1368 }, 1369 [ C(OP_WRITE) ] = { 1370 [ C(RESULT_ACCESS) ] = -1, 1371 [ C(RESULT_MISS) ] = -1, 1372 }, 1373 [ C(OP_PREFETCH) ] = { 1374 [ C(RESULT_ACCESS) ] = 0, 1375 [ C(RESULT_MISS) ] = 0, 1376 }, 1377 }, 1378 [ C(LL ) ] = { 1379 [ C(OP_READ) ] = { 1380 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */ 1381 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */ 1382 }, 1383 [ C(OP_WRITE) ] = { 1384 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */ 1385 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */ 1386 }, 1387 [ C(OP_PREFETCH) ] = { 1388 [ C(RESULT_ACCESS) ] = 0, 1389 [ C(RESULT_MISS) ] = 0, 1390 }, 1391 }, 1392 [ C(DTLB) ] = { 1393 [ C(OP_READ) ] = { 1394 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */ 1395 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */ 1396 }, 1397 [ C(OP_WRITE) ] = { 1398 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */ 1399 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */ 1400 }, 1401 [ C(OP_PREFETCH) ] = { 1402 [ C(RESULT_ACCESS) ] = 0, 1403 [ C(RESULT_MISS) ] = 0, 1404 }, 1405 }, 1406 [ C(ITLB) ] = { 1407 [ C(OP_READ) ] = { 1408 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ 1409 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */ 1410 }, 1411 [ C(OP_WRITE) ] = { 1412 [ C(RESULT_ACCESS) ] = -1, 1413 [ C(RESULT_MISS) ] = -1, 1414 }, 1415 [ C(OP_PREFETCH) ] = { 1416 [ C(RESULT_ACCESS) ] = -1, 1417 [ C(RESULT_MISS) ] = -1, 1418 }, 1419 }, 1420 [ C(BPU ) ] = { 1421 [ C(OP_READ) ] = { 1422 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ 1423 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ 1424 }, 1425 [ C(OP_WRITE) ] = { 1426 [ C(RESULT_ACCESS) ] = -1, 1427 [ C(RESULT_MISS) ] = -1, 1428 }, 1429 [ C(OP_PREFETCH) ] = { 1430 [ C(RESULT_ACCESS) ] = -1, 1431 [ C(RESULT_MISS) ] = -1, 1432 }, 1433 }, 1434 }; 1435 1436 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c"); 1437 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2"); 1438 /* no_alloc_cycles.not_delivered */ 1439 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm, 1440 "event=0xca,umask=0x50"); 1441 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2"); 1442 /* uops_retired.all */ 1443 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm, 1444 "event=0xc2,umask=0x10"); 1445 /* uops_retired.all */ 1446 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm, 1447 "event=0xc2,umask=0x10"); 1448 1449 static struct attribute *slm_events_attrs[] = { 1450 EVENT_PTR(td_total_slots_slm), 1451 EVENT_PTR(td_total_slots_scale_slm), 1452 EVENT_PTR(td_fetch_bubbles_slm), 1453 EVENT_PTR(td_fetch_bubbles_scale_slm), 1454 EVENT_PTR(td_slots_issued_slm), 1455 EVENT_PTR(td_slots_retired_slm), 1456 NULL 1457 }; 1458 1459 static struct extra_reg intel_slm_extra_regs[] __read_mostly = 1460 { 1461 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 1462 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0), 1463 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1), 1464 EVENT_EXTRA_END 1465 }; 1466 1467 #define SLM_DMND_READ SNB_DMND_DATA_RD 1468 #define SLM_DMND_WRITE SNB_DMND_RFO 1469 #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO) 1470 1471 #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM) 1472 #define SLM_LLC_ACCESS SNB_RESP_ANY 1473 #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM) 1474 1475 static __initconst const u64 slm_hw_cache_extra_regs 1476 [PERF_COUNT_HW_CACHE_MAX] 1477 [PERF_COUNT_HW_CACHE_OP_MAX] 1478 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1479 { 1480 [ C(LL ) ] = { 1481 [ C(OP_READ) ] = { 1482 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS, 1483 [ C(RESULT_MISS) ] = 0, 1484 }, 1485 [ C(OP_WRITE) ] = { 1486 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS, 1487 [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS, 1488 }, 1489 [ C(OP_PREFETCH) ] = { 1490 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS, 1491 [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS, 1492 }, 1493 }, 1494 }; 1495 1496 static __initconst const u64 slm_hw_cache_event_ids 1497 [PERF_COUNT_HW_CACHE_MAX] 1498 [PERF_COUNT_HW_CACHE_OP_MAX] 1499 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1500 { 1501 [ C(L1D) ] = { 1502 [ C(OP_READ) ] = { 1503 [ C(RESULT_ACCESS) ] = 0, 1504 [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */ 1505 }, 1506 [ C(OP_WRITE) ] = { 1507 [ C(RESULT_ACCESS) ] = 0, 1508 [ C(RESULT_MISS) ] = 0, 1509 }, 1510 [ C(OP_PREFETCH) ] = { 1511 [ C(RESULT_ACCESS) ] = 0, 1512 [ C(RESULT_MISS) ] = 0, 1513 }, 1514 }, 1515 [ C(L1I ) ] = { 1516 [ C(OP_READ) ] = { 1517 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */ 1518 [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */ 1519 }, 1520 [ C(OP_WRITE) ] = { 1521 [ C(RESULT_ACCESS) ] = -1, 1522 [ C(RESULT_MISS) ] = -1, 1523 }, 1524 [ C(OP_PREFETCH) ] = { 1525 [ C(RESULT_ACCESS) ] = 0, 1526 [ C(RESULT_MISS) ] = 0, 1527 }, 1528 }, 1529 [ C(LL ) ] = { 1530 [ C(OP_READ) ] = { 1531 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ 1532 [ C(RESULT_ACCESS) ] = 0x01b7, 1533 [ C(RESULT_MISS) ] = 0, 1534 }, 1535 [ C(OP_WRITE) ] = { 1536 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ 1537 [ C(RESULT_ACCESS) ] = 0x01b7, 1538 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ 1539 [ C(RESULT_MISS) ] = 0x01b7, 1540 }, 1541 [ C(OP_PREFETCH) ] = { 1542 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ 1543 [ C(RESULT_ACCESS) ] = 0x01b7, 1544 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ 1545 [ C(RESULT_MISS) ] = 0x01b7, 1546 }, 1547 }, 1548 [ C(DTLB) ] = { 1549 [ C(OP_READ) ] = { 1550 [ C(RESULT_ACCESS) ] = 0, 1551 [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */ 1552 }, 1553 [ C(OP_WRITE) ] = { 1554 [ C(RESULT_ACCESS) ] = 0, 1555 [ C(RESULT_MISS) ] = 0, 1556 }, 1557 [ C(OP_PREFETCH) ] = { 1558 [ C(RESULT_ACCESS) ] = 0, 1559 [ C(RESULT_MISS) ] = 0, 1560 }, 1561 }, 1562 [ C(ITLB) ] = { 1563 [ C(OP_READ) ] = { 1564 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ 1565 [ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */ 1566 }, 1567 [ C(OP_WRITE) ] = { 1568 [ C(RESULT_ACCESS) ] = -1, 1569 [ C(RESULT_MISS) ] = -1, 1570 }, 1571 [ C(OP_PREFETCH) ] = { 1572 [ C(RESULT_ACCESS) ] = -1, 1573 [ C(RESULT_MISS) ] = -1, 1574 }, 1575 }, 1576 [ C(BPU ) ] = { 1577 [ C(OP_READ) ] = { 1578 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ 1579 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ 1580 }, 1581 [ C(OP_WRITE) ] = { 1582 [ C(RESULT_ACCESS) ] = -1, 1583 [ C(RESULT_MISS) ] = -1, 1584 }, 1585 [ C(OP_PREFETCH) ] = { 1586 [ C(RESULT_ACCESS) ] = -1, 1587 [ C(RESULT_MISS) ] = -1, 1588 }, 1589 }, 1590 }; 1591 1592 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c"); 1593 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3"); 1594 /* UOPS_NOT_DELIVERED.ANY */ 1595 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c"); 1596 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */ 1597 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02"); 1598 /* UOPS_RETIRED.ANY */ 1599 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2"); 1600 /* UOPS_ISSUED.ANY */ 1601 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e"); 1602 1603 static struct attribute *glm_events_attrs[] = { 1604 EVENT_PTR(td_total_slots_glm), 1605 EVENT_PTR(td_total_slots_scale_glm), 1606 EVENT_PTR(td_fetch_bubbles_glm), 1607 EVENT_PTR(td_recovery_bubbles_glm), 1608 EVENT_PTR(td_slots_issued_glm), 1609 EVENT_PTR(td_slots_retired_glm), 1610 NULL 1611 }; 1612 1613 static struct extra_reg intel_glm_extra_regs[] __read_mostly = { 1614 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 1615 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0), 1616 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1), 1617 EVENT_EXTRA_END 1618 }; 1619 1620 #define GLM_DEMAND_DATA_RD BIT_ULL(0) 1621 #define GLM_DEMAND_RFO BIT_ULL(1) 1622 #define GLM_ANY_RESPONSE BIT_ULL(16) 1623 #define GLM_SNP_NONE_OR_MISS BIT_ULL(33) 1624 #define GLM_DEMAND_READ GLM_DEMAND_DATA_RD 1625 #define GLM_DEMAND_WRITE GLM_DEMAND_RFO 1626 #define GLM_DEMAND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO) 1627 #define GLM_LLC_ACCESS GLM_ANY_RESPONSE 1628 #define GLM_SNP_ANY (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM) 1629 #define GLM_LLC_MISS (GLM_SNP_ANY|SNB_NON_DRAM) 1630 1631 static __initconst const u64 glm_hw_cache_event_ids 1632 [PERF_COUNT_HW_CACHE_MAX] 1633 [PERF_COUNT_HW_CACHE_OP_MAX] 1634 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1635 [C(L1D)] = { 1636 [C(OP_READ)] = { 1637 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 1638 [C(RESULT_MISS)] = 0x0, 1639 }, 1640 [C(OP_WRITE)] = { 1641 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 1642 [C(RESULT_MISS)] = 0x0, 1643 }, 1644 [C(OP_PREFETCH)] = { 1645 [C(RESULT_ACCESS)] = 0x0, 1646 [C(RESULT_MISS)] = 0x0, 1647 }, 1648 }, 1649 [C(L1I)] = { 1650 [C(OP_READ)] = { 1651 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */ 1652 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */ 1653 }, 1654 [C(OP_WRITE)] = { 1655 [C(RESULT_ACCESS)] = -1, 1656 [C(RESULT_MISS)] = -1, 1657 }, 1658 [C(OP_PREFETCH)] = { 1659 [C(RESULT_ACCESS)] = 0x0, 1660 [C(RESULT_MISS)] = 0x0, 1661 }, 1662 }, 1663 [C(LL)] = { 1664 [C(OP_READ)] = { 1665 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1666 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1667 }, 1668 [C(OP_WRITE)] = { 1669 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1670 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1671 }, 1672 [C(OP_PREFETCH)] = { 1673 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1674 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1675 }, 1676 }, 1677 [C(DTLB)] = { 1678 [C(OP_READ)] = { 1679 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 1680 [C(RESULT_MISS)] = 0x0, 1681 }, 1682 [C(OP_WRITE)] = { 1683 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 1684 [C(RESULT_MISS)] = 0x0, 1685 }, 1686 [C(OP_PREFETCH)] = { 1687 [C(RESULT_ACCESS)] = 0x0, 1688 [C(RESULT_MISS)] = 0x0, 1689 }, 1690 }, 1691 [C(ITLB)] = { 1692 [C(OP_READ)] = { 1693 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */ 1694 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */ 1695 }, 1696 [C(OP_WRITE)] = { 1697 [C(RESULT_ACCESS)] = -1, 1698 [C(RESULT_MISS)] = -1, 1699 }, 1700 [C(OP_PREFETCH)] = { 1701 [C(RESULT_ACCESS)] = -1, 1702 [C(RESULT_MISS)] = -1, 1703 }, 1704 }, 1705 [C(BPU)] = { 1706 [C(OP_READ)] = { 1707 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ 1708 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */ 1709 }, 1710 [C(OP_WRITE)] = { 1711 [C(RESULT_ACCESS)] = -1, 1712 [C(RESULT_MISS)] = -1, 1713 }, 1714 [C(OP_PREFETCH)] = { 1715 [C(RESULT_ACCESS)] = -1, 1716 [C(RESULT_MISS)] = -1, 1717 }, 1718 }, 1719 }; 1720 1721 static __initconst const u64 glm_hw_cache_extra_regs 1722 [PERF_COUNT_HW_CACHE_MAX] 1723 [PERF_COUNT_HW_CACHE_OP_MAX] 1724 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1725 [C(LL)] = { 1726 [C(OP_READ)] = { 1727 [C(RESULT_ACCESS)] = GLM_DEMAND_READ| 1728 GLM_LLC_ACCESS, 1729 [C(RESULT_MISS)] = GLM_DEMAND_READ| 1730 GLM_LLC_MISS, 1731 }, 1732 [C(OP_WRITE)] = { 1733 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE| 1734 GLM_LLC_ACCESS, 1735 [C(RESULT_MISS)] = GLM_DEMAND_WRITE| 1736 GLM_LLC_MISS, 1737 }, 1738 [C(OP_PREFETCH)] = { 1739 [C(RESULT_ACCESS)] = GLM_DEMAND_PREFETCH| 1740 GLM_LLC_ACCESS, 1741 [C(RESULT_MISS)] = GLM_DEMAND_PREFETCH| 1742 GLM_LLC_MISS, 1743 }, 1744 }, 1745 }; 1746 1747 static __initconst const u64 glp_hw_cache_event_ids 1748 [PERF_COUNT_HW_CACHE_MAX] 1749 [PERF_COUNT_HW_CACHE_OP_MAX] 1750 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1751 [C(L1D)] = { 1752 [C(OP_READ)] = { 1753 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 1754 [C(RESULT_MISS)] = 0x0, 1755 }, 1756 [C(OP_WRITE)] = { 1757 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 1758 [C(RESULT_MISS)] = 0x0, 1759 }, 1760 [C(OP_PREFETCH)] = { 1761 [C(RESULT_ACCESS)] = 0x0, 1762 [C(RESULT_MISS)] = 0x0, 1763 }, 1764 }, 1765 [C(L1I)] = { 1766 [C(OP_READ)] = { 1767 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */ 1768 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */ 1769 }, 1770 [C(OP_WRITE)] = { 1771 [C(RESULT_ACCESS)] = -1, 1772 [C(RESULT_MISS)] = -1, 1773 }, 1774 [C(OP_PREFETCH)] = { 1775 [C(RESULT_ACCESS)] = 0x0, 1776 [C(RESULT_MISS)] = 0x0, 1777 }, 1778 }, 1779 [C(LL)] = { 1780 [C(OP_READ)] = { 1781 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1782 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1783 }, 1784 [C(OP_WRITE)] = { 1785 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1786 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1787 }, 1788 [C(OP_PREFETCH)] = { 1789 [C(RESULT_ACCESS)] = 0x0, 1790 [C(RESULT_MISS)] = 0x0, 1791 }, 1792 }, 1793 [C(DTLB)] = { 1794 [C(OP_READ)] = { 1795 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 1796 [C(RESULT_MISS)] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */ 1797 }, 1798 [C(OP_WRITE)] = { 1799 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 1800 [C(RESULT_MISS)] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */ 1801 }, 1802 [C(OP_PREFETCH)] = { 1803 [C(RESULT_ACCESS)] = 0x0, 1804 [C(RESULT_MISS)] = 0x0, 1805 }, 1806 }, 1807 [C(ITLB)] = { 1808 [C(OP_READ)] = { 1809 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */ 1810 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */ 1811 }, 1812 [C(OP_WRITE)] = { 1813 [C(RESULT_ACCESS)] = -1, 1814 [C(RESULT_MISS)] = -1, 1815 }, 1816 [C(OP_PREFETCH)] = { 1817 [C(RESULT_ACCESS)] = -1, 1818 [C(RESULT_MISS)] = -1, 1819 }, 1820 }, 1821 [C(BPU)] = { 1822 [C(OP_READ)] = { 1823 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ 1824 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */ 1825 }, 1826 [C(OP_WRITE)] = { 1827 [C(RESULT_ACCESS)] = -1, 1828 [C(RESULT_MISS)] = -1, 1829 }, 1830 [C(OP_PREFETCH)] = { 1831 [C(RESULT_ACCESS)] = -1, 1832 [C(RESULT_MISS)] = -1, 1833 }, 1834 }, 1835 }; 1836 1837 static __initconst const u64 glp_hw_cache_extra_regs 1838 [PERF_COUNT_HW_CACHE_MAX] 1839 [PERF_COUNT_HW_CACHE_OP_MAX] 1840 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1841 [C(LL)] = { 1842 [C(OP_READ)] = { 1843 [C(RESULT_ACCESS)] = GLM_DEMAND_READ| 1844 GLM_LLC_ACCESS, 1845 [C(RESULT_MISS)] = GLM_DEMAND_READ| 1846 GLM_LLC_MISS, 1847 }, 1848 [C(OP_WRITE)] = { 1849 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE| 1850 GLM_LLC_ACCESS, 1851 [C(RESULT_MISS)] = GLM_DEMAND_WRITE| 1852 GLM_LLC_MISS, 1853 }, 1854 [C(OP_PREFETCH)] = { 1855 [C(RESULT_ACCESS)] = 0x0, 1856 [C(RESULT_MISS)] = 0x0, 1857 }, 1858 }, 1859 }; 1860 1861 #define TNT_LOCAL_DRAM BIT_ULL(26) 1862 #define TNT_DEMAND_READ GLM_DEMAND_DATA_RD 1863 #define TNT_DEMAND_WRITE GLM_DEMAND_RFO 1864 #define TNT_LLC_ACCESS GLM_ANY_RESPONSE 1865 #define TNT_SNP_ANY (SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \ 1866 SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM) 1867 #define TNT_LLC_MISS (TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM) 1868 1869 static __initconst const u64 tnt_hw_cache_extra_regs 1870 [PERF_COUNT_HW_CACHE_MAX] 1871 [PERF_COUNT_HW_CACHE_OP_MAX] 1872 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1873 [C(LL)] = { 1874 [C(OP_READ)] = { 1875 [C(RESULT_ACCESS)] = TNT_DEMAND_READ| 1876 TNT_LLC_ACCESS, 1877 [C(RESULT_MISS)] = TNT_DEMAND_READ| 1878 TNT_LLC_MISS, 1879 }, 1880 [C(OP_WRITE)] = { 1881 [C(RESULT_ACCESS)] = TNT_DEMAND_WRITE| 1882 TNT_LLC_ACCESS, 1883 [C(RESULT_MISS)] = TNT_DEMAND_WRITE| 1884 TNT_LLC_MISS, 1885 }, 1886 [C(OP_PREFETCH)] = { 1887 [C(RESULT_ACCESS)] = 0x0, 1888 [C(RESULT_MISS)] = 0x0, 1889 }, 1890 }, 1891 }; 1892 1893 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = { 1894 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 1895 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0), 1896 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1), 1897 EVENT_EXTRA_END 1898 }; 1899 1900 #define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */ 1901 #define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */ 1902 #define KNL_MCDRAM_LOCAL BIT_ULL(21) 1903 #define KNL_MCDRAM_FAR BIT_ULL(22) 1904 #define KNL_DDR_LOCAL BIT_ULL(23) 1905 #define KNL_DDR_FAR BIT_ULL(24) 1906 #define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \ 1907 KNL_DDR_LOCAL | KNL_DDR_FAR) 1908 #define KNL_L2_READ SLM_DMND_READ 1909 #define KNL_L2_WRITE SLM_DMND_WRITE 1910 #define KNL_L2_PREFETCH SLM_DMND_PREFETCH 1911 #define KNL_L2_ACCESS SLM_LLC_ACCESS 1912 #define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \ 1913 KNL_DRAM_ANY | SNB_SNP_ANY | \ 1914 SNB_NON_DRAM) 1915 1916 static __initconst const u64 knl_hw_cache_extra_regs 1917 [PERF_COUNT_HW_CACHE_MAX] 1918 [PERF_COUNT_HW_CACHE_OP_MAX] 1919 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1920 [C(LL)] = { 1921 [C(OP_READ)] = { 1922 [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS, 1923 [C(RESULT_MISS)] = 0, 1924 }, 1925 [C(OP_WRITE)] = { 1926 [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS, 1927 [C(RESULT_MISS)] = KNL_L2_WRITE | KNL_L2_MISS, 1928 }, 1929 [C(OP_PREFETCH)] = { 1930 [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS, 1931 [C(RESULT_MISS)] = KNL_L2_PREFETCH | KNL_L2_MISS, 1932 }, 1933 }, 1934 }; 1935 1936 /* 1937 * Used from PMIs where the LBRs are already disabled. 1938 * 1939 * This function could be called consecutively. It is required to remain in 1940 * disabled state if called consecutively. 1941 * 1942 * During consecutive calls, the same disable value will be written to related 1943 * registers, so the PMU state remains unchanged. 1944 * 1945 * intel_bts events don't coexist with intel PMU's BTS events because of 1946 * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them 1947 * disabled around intel PMU's event batching etc, only inside the PMI handler. 1948 * 1949 * Avoid PEBS_ENABLE MSR access in PMIs. 1950 * The GLOBAL_CTRL has been disabled. All the counters do not count anymore. 1951 * It doesn't matter if the PEBS is enabled or not. 1952 * Usually, the PEBS status are not changed in PMIs. It's unnecessary to 1953 * access PEBS_ENABLE MSR in disable_all()/enable_all(). 1954 * However, there are some cases which may change PEBS status, e.g. PMI 1955 * throttle. The PEBS_ENABLE should be updated where the status changes. 1956 */ 1957 static void __intel_pmu_disable_all(void) 1958 { 1959 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1960 1961 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0); 1962 1963 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) 1964 intel_pmu_disable_bts(); 1965 } 1966 1967 static void intel_pmu_disable_all(void) 1968 { 1969 __intel_pmu_disable_all(); 1970 intel_pmu_pebs_disable_all(); 1971 intel_pmu_lbr_disable_all(); 1972 } 1973 1974 static void __intel_pmu_enable_all(int added, bool pmi) 1975 { 1976 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1977 1978 intel_pmu_lbr_enable_all(pmi); 1979 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 1980 x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask); 1981 1982 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) { 1983 struct perf_event *event = 1984 cpuc->events[INTEL_PMC_IDX_FIXED_BTS]; 1985 1986 if (WARN_ON_ONCE(!event)) 1987 return; 1988 1989 intel_pmu_enable_bts(event->hw.config); 1990 } 1991 } 1992 1993 static void intel_pmu_enable_all(int added) 1994 { 1995 intel_pmu_pebs_enable_all(); 1996 __intel_pmu_enable_all(added, false); 1997 } 1998 1999 /* 2000 * Workaround for: 2001 * Intel Errata AAK100 (model 26) 2002 * Intel Errata AAP53 (model 30) 2003 * Intel Errata BD53 (model 44) 2004 * 2005 * The official story: 2006 * These chips need to be 'reset' when adding counters by programming the 2007 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either 2008 * in sequence on the same PMC or on different PMCs. 2009 * 2010 * In practise it appears some of these events do in fact count, and 2011 * we need to program all 4 events. 2012 */ 2013 static void intel_pmu_nhm_workaround(void) 2014 { 2015 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2016 static const unsigned long nhm_magic[4] = { 2017 0x4300B5, 2018 0x4300D2, 2019 0x4300B1, 2020 0x4300B1 2021 }; 2022 struct perf_event *event; 2023 int i; 2024 2025 /* 2026 * The Errata requires below steps: 2027 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL; 2028 * 2) Configure 4 PERFEVTSELx with the magic events and clear 2029 * the corresponding PMCx; 2030 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL; 2031 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL; 2032 * 5) Clear 4 pairs of ERFEVTSELx and PMCx; 2033 */ 2034 2035 /* 2036 * The real steps we choose are a little different from above. 2037 * A) To reduce MSR operations, we don't run step 1) as they 2038 * are already cleared before this function is called; 2039 * B) Call x86_perf_event_update to save PMCx before configuring 2040 * PERFEVTSELx with magic number; 2041 * C) With step 5), we do clear only when the PERFEVTSELx is 2042 * not used currently. 2043 * D) Call x86_perf_event_set_period to restore PMCx; 2044 */ 2045 2046 /* We always operate 4 pairs of PERF Counters */ 2047 for (i = 0; i < 4; i++) { 2048 event = cpuc->events[i]; 2049 if (event) 2050 x86_perf_event_update(event); 2051 } 2052 2053 for (i = 0; i < 4; i++) { 2054 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]); 2055 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0); 2056 } 2057 2058 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf); 2059 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0); 2060 2061 for (i = 0; i < 4; i++) { 2062 event = cpuc->events[i]; 2063 2064 if (event) { 2065 x86_perf_event_set_period(event); 2066 __x86_pmu_enable_event(&event->hw, 2067 ARCH_PERFMON_EVENTSEL_ENABLE); 2068 } else 2069 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0); 2070 } 2071 } 2072 2073 static void intel_pmu_nhm_enable_all(int added) 2074 { 2075 if (added) 2076 intel_pmu_nhm_workaround(); 2077 intel_pmu_enable_all(added); 2078 } 2079 2080 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on) 2081 { 2082 u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0; 2083 2084 if (cpuc->tfa_shadow != val) { 2085 cpuc->tfa_shadow = val; 2086 wrmsrl(MSR_TSX_FORCE_ABORT, val); 2087 } 2088 } 2089 2090 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr) 2091 { 2092 /* 2093 * We're going to use PMC3, make sure TFA is set before we touch it. 2094 */ 2095 if (cntr == 3) 2096 intel_set_tfa(cpuc, true); 2097 } 2098 2099 static void intel_tfa_pmu_enable_all(int added) 2100 { 2101 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2102 2103 /* 2104 * If we find PMC3 is no longer used when we enable the PMU, we can 2105 * clear TFA. 2106 */ 2107 if (!test_bit(3, cpuc->active_mask)) 2108 intel_set_tfa(cpuc, false); 2109 2110 intel_pmu_enable_all(added); 2111 } 2112 2113 static void enable_counter_freeze(void) 2114 { 2115 update_debugctlmsr(get_debugctlmsr() | 2116 DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI); 2117 } 2118 2119 static void disable_counter_freeze(void) 2120 { 2121 update_debugctlmsr(get_debugctlmsr() & 2122 ~DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI); 2123 } 2124 2125 static inline u64 intel_pmu_get_status(void) 2126 { 2127 u64 status; 2128 2129 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); 2130 2131 return status; 2132 } 2133 2134 static inline void intel_pmu_ack_status(u64 ack) 2135 { 2136 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack); 2137 } 2138 2139 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc) 2140 { 2141 int idx = hwc->idx - INTEL_PMC_IDX_FIXED; 2142 u64 ctrl_val, mask; 2143 2144 mask = 0xfULL << (idx * 4); 2145 2146 rdmsrl(hwc->config_base, ctrl_val); 2147 ctrl_val &= ~mask; 2148 wrmsrl(hwc->config_base, ctrl_val); 2149 } 2150 2151 static inline bool event_is_checkpointed(struct perf_event *event) 2152 { 2153 return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0; 2154 } 2155 2156 static void intel_pmu_disable_event(struct perf_event *event) 2157 { 2158 struct hw_perf_event *hwc = &event->hw; 2159 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2160 2161 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) { 2162 intel_pmu_disable_bts(); 2163 intel_pmu_drain_bts_buffer(); 2164 return; 2165 } 2166 2167 cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx); 2168 cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx); 2169 cpuc->intel_cp_status &= ~(1ull << hwc->idx); 2170 2171 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) 2172 intel_pmu_disable_fixed(hwc); 2173 else 2174 x86_pmu_disable_event(event); 2175 2176 /* 2177 * Needs to be called after x86_pmu_disable_event, 2178 * so we don't trigger the event without PEBS bit set. 2179 */ 2180 if (unlikely(event->attr.precise_ip)) 2181 intel_pmu_pebs_disable(event); 2182 } 2183 2184 static void intel_pmu_del_event(struct perf_event *event) 2185 { 2186 if (needs_branch_stack(event)) 2187 intel_pmu_lbr_del(event); 2188 if (event->attr.precise_ip) 2189 intel_pmu_pebs_del(event); 2190 } 2191 2192 static void intel_pmu_read_event(struct perf_event *event) 2193 { 2194 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD) 2195 intel_pmu_auto_reload_read(event); 2196 else 2197 x86_perf_event_update(event); 2198 } 2199 2200 static void intel_pmu_enable_fixed(struct perf_event *event) 2201 { 2202 struct hw_perf_event *hwc = &event->hw; 2203 int idx = hwc->idx - INTEL_PMC_IDX_FIXED; 2204 u64 ctrl_val, mask, bits = 0; 2205 2206 /* 2207 * Enable IRQ generation (0x8), if not PEBS, 2208 * and enable ring-3 counting (0x2) and ring-0 counting (0x1) 2209 * if requested: 2210 */ 2211 if (!event->attr.precise_ip) 2212 bits |= 0x8; 2213 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR) 2214 bits |= 0x2; 2215 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS) 2216 bits |= 0x1; 2217 2218 /* 2219 * ANY bit is supported in v3 and up 2220 */ 2221 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY) 2222 bits |= 0x4; 2223 2224 bits <<= (idx * 4); 2225 mask = 0xfULL << (idx * 4); 2226 2227 if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) { 2228 bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4); 2229 mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4); 2230 } 2231 2232 rdmsrl(hwc->config_base, ctrl_val); 2233 ctrl_val &= ~mask; 2234 ctrl_val |= bits; 2235 wrmsrl(hwc->config_base, ctrl_val); 2236 } 2237 2238 static void intel_pmu_enable_event(struct perf_event *event) 2239 { 2240 struct hw_perf_event *hwc = &event->hw; 2241 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2242 2243 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) { 2244 if (!__this_cpu_read(cpu_hw_events.enabled)) 2245 return; 2246 2247 intel_pmu_enable_bts(hwc->config); 2248 return; 2249 } 2250 2251 if (event->attr.exclude_host) 2252 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx); 2253 if (event->attr.exclude_guest) 2254 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx); 2255 2256 if (unlikely(event_is_checkpointed(event))) 2257 cpuc->intel_cp_status |= (1ull << hwc->idx); 2258 2259 if (unlikely(event->attr.precise_ip)) 2260 intel_pmu_pebs_enable(event); 2261 2262 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) { 2263 intel_pmu_enable_fixed(event); 2264 return; 2265 } 2266 2267 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); 2268 } 2269 2270 static void intel_pmu_add_event(struct perf_event *event) 2271 { 2272 if (event->attr.precise_ip) 2273 intel_pmu_pebs_add(event); 2274 if (needs_branch_stack(event)) 2275 intel_pmu_lbr_add(event); 2276 } 2277 2278 /* 2279 * Save and restart an expired event. Called by NMI contexts, 2280 * so it has to be careful about preempting normal event ops: 2281 */ 2282 int intel_pmu_save_and_restart(struct perf_event *event) 2283 { 2284 x86_perf_event_update(event); 2285 /* 2286 * For a checkpointed counter always reset back to 0. This 2287 * avoids a situation where the counter overflows, aborts the 2288 * transaction and is then set back to shortly before the 2289 * overflow, and overflows and aborts again. 2290 */ 2291 if (unlikely(event_is_checkpointed(event))) { 2292 /* No race with NMIs because the counter should not be armed */ 2293 wrmsrl(event->hw.event_base, 0); 2294 local64_set(&event->hw.prev_count, 0); 2295 } 2296 return x86_perf_event_set_period(event); 2297 } 2298 2299 static void intel_pmu_reset(void) 2300 { 2301 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds); 2302 unsigned long flags; 2303 int idx; 2304 2305 if (!x86_pmu.num_counters) 2306 return; 2307 2308 local_irq_save(flags); 2309 2310 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id()); 2311 2312 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 2313 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull); 2314 wrmsrl_safe(x86_pmu_event_addr(idx), 0ull); 2315 } 2316 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) 2317 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull); 2318 2319 if (ds) 2320 ds->bts_index = ds->bts_buffer_base; 2321 2322 /* Ack all overflows and disable fixed counters */ 2323 if (x86_pmu.version >= 2) { 2324 intel_pmu_ack_status(intel_pmu_get_status()); 2325 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0); 2326 } 2327 2328 /* Reset LBRs and LBR freezing */ 2329 if (x86_pmu.lbr_nr) { 2330 update_debugctlmsr(get_debugctlmsr() & 2331 ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR)); 2332 } 2333 2334 local_irq_restore(flags); 2335 } 2336 2337 static int handle_pmi_common(struct pt_regs *regs, u64 status) 2338 { 2339 struct perf_sample_data data; 2340 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2341 int bit; 2342 int handled = 0; 2343 2344 inc_irq_stat(apic_perf_irqs); 2345 2346 /* 2347 * Ignore a range of extra bits in status that do not indicate 2348 * overflow by themselves. 2349 */ 2350 status &= ~(GLOBAL_STATUS_COND_CHG | 2351 GLOBAL_STATUS_ASIF | 2352 GLOBAL_STATUS_LBRS_FROZEN); 2353 if (!status) 2354 return 0; 2355 /* 2356 * In case multiple PEBS events are sampled at the same time, 2357 * it is possible to have GLOBAL_STATUS bit 62 set indicating 2358 * PEBS buffer overflow and also seeing at most 3 PEBS counters 2359 * having their bits set in the status register. This is a sign 2360 * that there was at least one PEBS record pending at the time 2361 * of the PMU interrupt. PEBS counters must only be processed 2362 * via the drain_pebs() calls and not via the regular sample 2363 * processing loop coming after that the function, otherwise 2364 * phony regular samples may be generated in the sampling buffer 2365 * not marked with the EXACT tag. Another possibility is to have 2366 * one PEBS event and at least one non-PEBS event whic hoverflows 2367 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will 2368 * not be set, yet the overflow status bit for the PEBS counter will 2369 * be on Skylake. 2370 * 2371 * To avoid this problem, we systematically ignore the PEBS-enabled 2372 * counters from the GLOBAL_STATUS mask and we always process PEBS 2373 * events via drain_pebs(). 2374 */ 2375 if (x86_pmu.flags & PMU_FL_PEBS_ALL) 2376 status &= ~cpuc->pebs_enabled; 2377 else 2378 status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK); 2379 2380 /* 2381 * PEBS overflow sets bit 62 in the global status register 2382 */ 2383 if (__test_and_clear_bit(62, (unsigned long *)&status)) { 2384 u64 pebs_enabled = cpuc->pebs_enabled; 2385 2386 handled++; 2387 x86_pmu.drain_pebs(regs); 2388 status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI; 2389 2390 /* 2391 * PMI throttle may be triggered, which stops the PEBS event. 2392 * Although cpuc->pebs_enabled is updated accordingly, the 2393 * MSR_IA32_PEBS_ENABLE is not updated. Because the 2394 * cpuc->enabled has been forced to 0 in PMI. 2395 * Update the MSR if pebs_enabled is changed. 2396 */ 2397 if (pebs_enabled != cpuc->pebs_enabled) 2398 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled); 2399 } 2400 2401 /* 2402 * Intel PT 2403 */ 2404 if (__test_and_clear_bit(55, (unsigned long *)&status)) { 2405 handled++; 2406 if (unlikely(perf_guest_cbs && perf_guest_cbs->is_in_guest() && 2407 perf_guest_cbs->handle_intel_pt_intr)) 2408 perf_guest_cbs->handle_intel_pt_intr(); 2409 else 2410 intel_pt_interrupt(); 2411 } 2412 2413 /* 2414 * Checkpointed counters can lead to 'spurious' PMIs because the 2415 * rollback caused by the PMI will have cleared the overflow status 2416 * bit. Therefore always force probe these counters. 2417 */ 2418 status |= cpuc->intel_cp_status; 2419 2420 for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) { 2421 struct perf_event *event = cpuc->events[bit]; 2422 2423 handled++; 2424 2425 if (!test_bit(bit, cpuc->active_mask)) 2426 continue; 2427 2428 if (!intel_pmu_save_and_restart(event)) 2429 continue; 2430 2431 perf_sample_data_init(&data, 0, event->hw.last_period); 2432 2433 if (has_branch_stack(event)) 2434 data.br_stack = &cpuc->lbr_stack; 2435 2436 if (perf_event_overflow(event, &data, regs)) 2437 x86_pmu_stop(event, 0); 2438 } 2439 2440 return handled; 2441 } 2442 2443 static bool disable_counter_freezing = true; 2444 static int __init intel_perf_counter_freezing_setup(char *s) 2445 { 2446 bool res; 2447 2448 if (kstrtobool(s, &res)) 2449 return -EINVAL; 2450 2451 disable_counter_freezing = !res; 2452 return 1; 2453 } 2454 __setup("perf_v4_pmi=", intel_perf_counter_freezing_setup); 2455 2456 /* 2457 * Simplified handler for Arch Perfmon v4: 2458 * - We rely on counter freezing/unfreezing to enable/disable the PMU. 2459 * This is done automatically on PMU ack. 2460 * - Ack the PMU only after the APIC. 2461 */ 2462 2463 static int intel_pmu_handle_irq_v4(struct pt_regs *regs) 2464 { 2465 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2466 int handled = 0; 2467 bool bts = false; 2468 u64 status; 2469 int pmu_enabled = cpuc->enabled; 2470 int loops = 0; 2471 2472 /* PMU has been disabled because of counter freezing */ 2473 cpuc->enabled = 0; 2474 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) { 2475 bts = true; 2476 intel_bts_disable_local(); 2477 handled = intel_pmu_drain_bts_buffer(); 2478 handled += intel_bts_interrupt(); 2479 } 2480 status = intel_pmu_get_status(); 2481 if (!status) 2482 goto done; 2483 again: 2484 intel_pmu_lbr_read(); 2485 if (++loops > 100) { 2486 static bool warned; 2487 2488 if (!warned) { 2489 WARN(1, "perfevents: irq loop stuck!\n"); 2490 perf_event_print_debug(); 2491 warned = true; 2492 } 2493 intel_pmu_reset(); 2494 goto done; 2495 } 2496 2497 2498 handled += handle_pmi_common(regs, status); 2499 done: 2500 /* Ack the PMI in the APIC */ 2501 apic_write(APIC_LVTPC, APIC_DM_NMI); 2502 2503 /* 2504 * The counters start counting immediately while ack the status. 2505 * Make it as close as possible to IRET. This avoids bogus 2506 * freezing on Skylake CPUs. 2507 */ 2508 if (status) { 2509 intel_pmu_ack_status(status); 2510 } else { 2511 /* 2512 * CPU may issues two PMIs very close to each other. 2513 * When the PMI handler services the first one, the 2514 * GLOBAL_STATUS is already updated to reflect both. 2515 * When it IRETs, the second PMI is immediately 2516 * handled and it sees clear status. At the meantime, 2517 * there may be a third PMI, because the freezing bit 2518 * isn't set since the ack in first PMI handlers. 2519 * Double check if there is more work to be done. 2520 */ 2521 status = intel_pmu_get_status(); 2522 if (status) 2523 goto again; 2524 } 2525 2526 if (bts) 2527 intel_bts_enable_local(); 2528 cpuc->enabled = pmu_enabled; 2529 return handled; 2530 } 2531 2532 /* 2533 * This handler is triggered by the local APIC, so the APIC IRQ handling 2534 * rules apply: 2535 */ 2536 static int intel_pmu_handle_irq(struct pt_regs *regs) 2537 { 2538 struct cpu_hw_events *cpuc; 2539 int loops; 2540 u64 status; 2541 int handled; 2542 int pmu_enabled; 2543 2544 cpuc = this_cpu_ptr(&cpu_hw_events); 2545 2546 /* 2547 * Save the PMU state. 2548 * It needs to be restored when leaving the handler. 2549 */ 2550 pmu_enabled = cpuc->enabled; 2551 /* 2552 * No known reason to not always do late ACK, 2553 * but just in case do it opt-in. 2554 */ 2555 if (!x86_pmu.late_ack) 2556 apic_write(APIC_LVTPC, APIC_DM_NMI); 2557 intel_bts_disable_local(); 2558 cpuc->enabled = 0; 2559 __intel_pmu_disable_all(); 2560 handled = intel_pmu_drain_bts_buffer(); 2561 handled += intel_bts_interrupt(); 2562 status = intel_pmu_get_status(); 2563 if (!status) 2564 goto done; 2565 2566 loops = 0; 2567 again: 2568 intel_pmu_lbr_read(); 2569 intel_pmu_ack_status(status); 2570 if (++loops > 100) { 2571 static bool warned; 2572 2573 if (!warned) { 2574 WARN(1, "perfevents: irq loop stuck!\n"); 2575 perf_event_print_debug(); 2576 warned = true; 2577 } 2578 intel_pmu_reset(); 2579 goto done; 2580 } 2581 2582 handled += handle_pmi_common(regs, status); 2583 2584 /* 2585 * Repeat if there is more work to be done: 2586 */ 2587 status = intel_pmu_get_status(); 2588 if (status) 2589 goto again; 2590 2591 done: 2592 /* Only restore PMU state when it's active. See x86_pmu_disable(). */ 2593 cpuc->enabled = pmu_enabled; 2594 if (pmu_enabled) 2595 __intel_pmu_enable_all(0, true); 2596 intel_bts_enable_local(); 2597 2598 /* 2599 * Only unmask the NMI after the overflow counters 2600 * have been reset. This avoids spurious NMIs on 2601 * Haswell CPUs. 2602 */ 2603 if (x86_pmu.late_ack) 2604 apic_write(APIC_LVTPC, APIC_DM_NMI); 2605 return handled; 2606 } 2607 2608 static struct event_constraint * 2609 intel_bts_constraints(struct perf_event *event) 2610 { 2611 if (unlikely(intel_pmu_has_bts(event))) 2612 return &bts_constraint; 2613 2614 return NULL; 2615 } 2616 2617 static int intel_alt_er(int idx, u64 config) 2618 { 2619 int alt_idx = idx; 2620 2621 if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1)) 2622 return idx; 2623 2624 if (idx == EXTRA_REG_RSP_0) 2625 alt_idx = EXTRA_REG_RSP_1; 2626 2627 if (idx == EXTRA_REG_RSP_1) 2628 alt_idx = EXTRA_REG_RSP_0; 2629 2630 if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask) 2631 return idx; 2632 2633 return alt_idx; 2634 } 2635 2636 static void intel_fixup_er(struct perf_event *event, int idx) 2637 { 2638 event->hw.extra_reg.idx = idx; 2639 2640 if (idx == EXTRA_REG_RSP_0) { 2641 event->hw.config &= ~INTEL_ARCH_EVENT_MASK; 2642 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event; 2643 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0; 2644 } else if (idx == EXTRA_REG_RSP_1) { 2645 event->hw.config &= ~INTEL_ARCH_EVENT_MASK; 2646 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event; 2647 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1; 2648 } 2649 } 2650 2651 /* 2652 * manage allocation of shared extra msr for certain events 2653 * 2654 * sharing can be: 2655 * per-cpu: to be shared between the various events on a single PMU 2656 * per-core: per-cpu + shared by HT threads 2657 */ 2658 static struct event_constraint * 2659 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc, 2660 struct perf_event *event, 2661 struct hw_perf_event_extra *reg) 2662 { 2663 struct event_constraint *c = &emptyconstraint; 2664 struct er_account *era; 2665 unsigned long flags; 2666 int idx = reg->idx; 2667 2668 /* 2669 * reg->alloc can be set due to existing state, so for fake cpuc we 2670 * need to ignore this, otherwise we might fail to allocate proper fake 2671 * state for this extra reg constraint. Also see the comment below. 2672 */ 2673 if (reg->alloc && !cpuc->is_fake) 2674 return NULL; /* call x86_get_event_constraint() */ 2675 2676 again: 2677 era = &cpuc->shared_regs->regs[idx]; 2678 /* 2679 * we use spin_lock_irqsave() to avoid lockdep issues when 2680 * passing a fake cpuc 2681 */ 2682 raw_spin_lock_irqsave(&era->lock, flags); 2683 2684 if (!atomic_read(&era->ref) || era->config == reg->config) { 2685 2686 /* 2687 * If its a fake cpuc -- as per validate_{group,event}() we 2688 * shouldn't touch event state and we can avoid doing so 2689 * since both will only call get_event_constraints() once 2690 * on each event, this avoids the need for reg->alloc. 2691 * 2692 * Not doing the ER fixup will only result in era->reg being 2693 * wrong, but since we won't actually try and program hardware 2694 * this isn't a problem either. 2695 */ 2696 if (!cpuc->is_fake) { 2697 if (idx != reg->idx) 2698 intel_fixup_er(event, idx); 2699 2700 /* 2701 * x86_schedule_events() can call get_event_constraints() 2702 * multiple times on events in the case of incremental 2703 * scheduling(). reg->alloc ensures we only do the ER 2704 * allocation once. 2705 */ 2706 reg->alloc = 1; 2707 } 2708 2709 /* lock in msr value */ 2710 era->config = reg->config; 2711 era->reg = reg->reg; 2712 2713 /* one more user */ 2714 atomic_inc(&era->ref); 2715 2716 /* 2717 * need to call x86_get_event_constraint() 2718 * to check if associated event has constraints 2719 */ 2720 c = NULL; 2721 } else { 2722 idx = intel_alt_er(idx, reg->config); 2723 if (idx != reg->idx) { 2724 raw_spin_unlock_irqrestore(&era->lock, flags); 2725 goto again; 2726 } 2727 } 2728 raw_spin_unlock_irqrestore(&era->lock, flags); 2729 2730 return c; 2731 } 2732 2733 static void 2734 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc, 2735 struct hw_perf_event_extra *reg) 2736 { 2737 struct er_account *era; 2738 2739 /* 2740 * Only put constraint if extra reg was actually allocated. Also takes 2741 * care of event which do not use an extra shared reg. 2742 * 2743 * Also, if this is a fake cpuc we shouldn't touch any event state 2744 * (reg->alloc) and we don't care about leaving inconsistent cpuc state 2745 * either since it'll be thrown out. 2746 */ 2747 if (!reg->alloc || cpuc->is_fake) 2748 return; 2749 2750 era = &cpuc->shared_regs->regs[reg->idx]; 2751 2752 /* one fewer user */ 2753 atomic_dec(&era->ref); 2754 2755 /* allocate again next time */ 2756 reg->alloc = 0; 2757 } 2758 2759 static struct event_constraint * 2760 intel_shared_regs_constraints(struct cpu_hw_events *cpuc, 2761 struct perf_event *event) 2762 { 2763 struct event_constraint *c = NULL, *d; 2764 struct hw_perf_event_extra *xreg, *breg; 2765 2766 xreg = &event->hw.extra_reg; 2767 if (xreg->idx != EXTRA_REG_NONE) { 2768 c = __intel_shared_reg_get_constraints(cpuc, event, xreg); 2769 if (c == &emptyconstraint) 2770 return c; 2771 } 2772 breg = &event->hw.branch_reg; 2773 if (breg->idx != EXTRA_REG_NONE) { 2774 d = __intel_shared_reg_get_constraints(cpuc, event, breg); 2775 if (d == &emptyconstraint) { 2776 __intel_shared_reg_put_constraints(cpuc, xreg); 2777 c = d; 2778 } 2779 } 2780 return c; 2781 } 2782 2783 struct event_constraint * 2784 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 2785 struct perf_event *event) 2786 { 2787 struct event_constraint *c; 2788 2789 if (x86_pmu.event_constraints) { 2790 for_each_event_constraint(c, x86_pmu.event_constraints) { 2791 if (constraint_match(c, event->hw.config)) { 2792 event->hw.flags |= c->flags; 2793 return c; 2794 } 2795 } 2796 } 2797 2798 return &unconstrained; 2799 } 2800 2801 static struct event_constraint * 2802 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 2803 struct perf_event *event) 2804 { 2805 struct event_constraint *c; 2806 2807 c = intel_bts_constraints(event); 2808 if (c) 2809 return c; 2810 2811 c = intel_shared_regs_constraints(cpuc, event); 2812 if (c) 2813 return c; 2814 2815 c = intel_pebs_constraints(event); 2816 if (c) 2817 return c; 2818 2819 return x86_get_event_constraints(cpuc, idx, event); 2820 } 2821 2822 static void 2823 intel_start_scheduling(struct cpu_hw_events *cpuc) 2824 { 2825 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 2826 struct intel_excl_states *xl; 2827 int tid = cpuc->excl_thread_id; 2828 2829 /* 2830 * nothing needed if in group validation mode 2831 */ 2832 if (cpuc->is_fake || !is_ht_workaround_enabled()) 2833 return; 2834 2835 /* 2836 * no exclusion needed 2837 */ 2838 if (WARN_ON_ONCE(!excl_cntrs)) 2839 return; 2840 2841 xl = &excl_cntrs->states[tid]; 2842 2843 xl->sched_started = true; 2844 /* 2845 * lock shared state until we are done scheduling 2846 * in stop_event_scheduling() 2847 * makes scheduling appear as a transaction 2848 */ 2849 raw_spin_lock(&excl_cntrs->lock); 2850 } 2851 2852 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr) 2853 { 2854 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 2855 struct event_constraint *c = cpuc->event_constraint[idx]; 2856 struct intel_excl_states *xl; 2857 int tid = cpuc->excl_thread_id; 2858 2859 if (cpuc->is_fake || !is_ht_workaround_enabled()) 2860 return; 2861 2862 if (WARN_ON_ONCE(!excl_cntrs)) 2863 return; 2864 2865 if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) 2866 return; 2867 2868 xl = &excl_cntrs->states[tid]; 2869 2870 lockdep_assert_held(&excl_cntrs->lock); 2871 2872 if (c->flags & PERF_X86_EVENT_EXCL) 2873 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE; 2874 else 2875 xl->state[cntr] = INTEL_EXCL_SHARED; 2876 } 2877 2878 static void 2879 intel_stop_scheduling(struct cpu_hw_events *cpuc) 2880 { 2881 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 2882 struct intel_excl_states *xl; 2883 int tid = cpuc->excl_thread_id; 2884 2885 /* 2886 * nothing needed if in group validation mode 2887 */ 2888 if (cpuc->is_fake || !is_ht_workaround_enabled()) 2889 return; 2890 /* 2891 * no exclusion needed 2892 */ 2893 if (WARN_ON_ONCE(!excl_cntrs)) 2894 return; 2895 2896 xl = &excl_cntrs->states[tid]; 2897 2898 xl->sched_started = false; 2899 /* 2900 * release shared state lock (acquired in intel_start_scheduling()) 2901 */ 2902 raw_spin_unlock(&excl_cntrs->lock); 2903 } 2904 2905 static struct event_constraint * 2906 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx) 2907 { 2908 WARN_ON_ONCE(!cpuc->constraint_list); 2909 2910 if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) { 2911 struct event_constraint *cx; 2912 2913 /* 2914 * grab pre-allocated constraint entry 2915 */ 2916 cx = &cpuc->constraint_list[idx]; 2917 2918 /* 2919 * initialize dynamic constraint 2920 * with static constraint 2921 */ 2922 *cx = *c; 2923 2924 /* 2925 * mark constraint as dynamic 2926 */ 2927 cx->flags |= PERF_X86_EVENT_DYNAMIC; 2928 c = cx; 2929 } 2930 2931 return c; 2932 } 2933 2934 static struct event_constraint * 2935 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event, 2936 int idx, struct event_constraint *c) 2937 { 2938 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 2939 struct intel_excl_states *xlo; 2940 int tid = cpuc->excl_thread_id; 2941 int is_excl, i, w; 2942 2943 /* 2944 * validating a group does not require 2945 * enforcing cross-thread exclusion 2946 */ 2947 if (cpuc->is_fake || !is_ht_workaround_enabled()) 2948 return c; 2949 2950 /* 2951 * no exclusion needed 2952 */ 2953 if (WARN_ON_ONCE(!excl_cntrs)) 2954 return c; 2955 2956 /* 2957 * because we modify the constraint, we need 2958 * to make a copy. Static constraints come 2959 * from static const tables. 2960 * 2961 * only needed when constraint has not yet 2962 * been cloned (marked dynamic) 2963 */ 2964 c = dyn_constraint(cpuc, c, idx); 2965 2966 /* 2967 * From here on, the constraint is dynamic. 2968 * Either it was just allocated above, or it 2969 * was allocated during a earlier invocation 2970 * of this function 2971 */ 2972 2973 /* 2974 * state of sibling HT 2975 */ 2976 xlo = &excl_cntrs->states[tid ^ 1]; 2977 2978 /* 2979 * event requires exclusive counter access 2980 * across HT threads 2981 */ 2982 is_excl = c->flags & PERF_X86_EVENT_EXCL; 2983 if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) { 2984 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT; 2985 if (!cpuc->n_excl++) 2986 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1); 2987 } 2988 2989 /* 2990 * Modify static constraint with current dynamic 2991 * state of thread 2992 * 2993 * EXCLUSIVE: sibling counter measuring exclusive event 2994 * SHARED : sibling counter measuring non-exclusive event 2995 * UNUSED : sibling counter unused 2996 */ 2997 w = c->weight; 2998 for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) { 2999 /* 3000 * exclusive event in sibling counter 3001 * our corresponding counter cannot be used 3002 * regardless of our event 3003 */ 3004 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) { 3005 __clear_bit(i, c->idxmsk); 3006 w--; 3007 continue; 3008 } 3009 /* 3010 * if measuring an exclusive event, sibling 3011 * measuring non-exclusive, then counter cannot 3012 * be used 3013 */ 3014 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) { 3015 __clear_bit(i, c->idxmsk); 3016 w--; 3017 continue; 3018 } 3019 } 3020 3021 /* 3022 * if we return an empty mask, then switch 3023 * back to static empty constraint to avoid 3024 * the cost of freeing later on 3025 */ 3026 if (!w) 3027 c = &emptyconstraint; 3028 3029 c->weight = w; 3030 3031 return c; 3032 } 3033 3034 static struct event_constraint * 3035 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 3036 struct perf_event *event) 3037 { 3038 struct event_constraint *c1, *c2; 3039 3040 c1 = cpuc->event_constraint[idx]; 3041 3042 /* 3043 * first time only 3044 * - static constraint: no change across incremental scheduling calls 3045 * - dynamic constraint: handled by intel_get_excl_constraints() 3046 */ 3047 c2 = __intel_get_event_constraints(cpuc, idx, event); 3048 if (c1) { 3049 WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC)); 3050 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX); 3051 c1->weight = c2->weight; 3052 c2 = c1; 3053 } 3054 3055 if (cpuc->excl_cntrs) 3056 return intel_get_excl_constraints(cpuc, event, idx, c2); 3057 3058 return c2; 3059 } 3060 3061 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc, 3062 struct perf_event *event) 3063 { 3064 struct hw_perf_event *hwc = &event->hw; 3065 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 3066 int tid = cpuc->excl_thread_id; 3067 struct intel_excl_states *xl; 3068 3069 /* 3070 * nothing needed if in group validation mode 3071 */ 3072 if (cpuc->is_fake) 3073 return; 3074 3075 if (WARN_ON_ONCE(!excl_cntrs)) 3076 return; 3077 3078 if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) { 3079 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT; 3080 if (!--cpuc->n_excl) 3081 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0); 3082 } 3083 3084 /* 3085 * If event was actually assigned, then mark the counter state as 3086 * unused now. 3087 */ 3088 if (hwc->idx >= 0) { 3089 xl = &excl_cntrs->states[tid]; 3090 3091 /* 3092 * put_constraint may be called from x86_schedule_events() 3093 * which already has the lock held so here make locking 3094 * conditional. 3095 */ 3096 if (!xl->sched_started) 3097 raw_spin_lock(&excl_cntrs->lock); 3098 3099 xl->state[hwc->idx] = INTEL_EXCL_UNUSED; 3100 3101 if (!xl->sched_started) 3102 raw_spin_unlock(&excl_cntrs->lock); 3103 } 3104 } 3105 3106 static void 3107 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc, 3108 struct perf_event *event) 3109 { 3110 struct hw_perf_event_extra *reg; 3111 3112 reg = &event->hw.extra_reg; 3113 if (reg->idx != EXTRA_REG_NONE) 3114 __intel_shared_reg_put_constraints(cpuc, reg); 3115 3116 reg = &event->hw.branch_reg; 3117 if (reg->idx != EXTRA_REG_NONE) 3118 __intel_shared_reg_put_constraints(cpuc, reg); 3119 } 3120 3121 static void intel_put_event_constraints(struct cpu_hw_events *cpuc, 3122 struct perf_event *event) 3123 { 3124 intel_put_shared_regs_event_constraints(cpuc, event); 3125 3126 /* 3127 * is PMU has exclusive counter restrictions, then 3128 * all events are subject to and must call the 3129 * put_excl_constraints() routine 3130 */ 3131 if (cpuc->excl_cntrs) 3132 intel_put_excl_constraints(cpuc, event); 3133 } 3134 3135 static void intel_pebs_aliases_core2(struct perf_event *event) 3136 { 3137 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) { 3138 /* 3139 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P 3140 * (0x003c) so that we can use it with PEBS. 3141 * 3142 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't 3143 * PEBS capable. However we can use INST_RETIRED.ANY_P 3144 * (0x00c0), which is a PEBS capable event, to get the same 3145 * count. 3146 * 3147 * INST_RETIRED.ANY_P counts the number of cycles that retires 3148 * CNTMASK instructions. By setting CNTMASK to a value (16) 3149 * larger than the maximum number of instructions that can be 3150 * retired per cycle (4) and then inverting the condition, we 3151 * count all cycles that retire 16 or less instructions, which 3152 * is every cycle. 3153 * 3154 * Thereby we gain a PEBS capable cycle counter. 3155 */ 3156 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16); 3157 3158 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK); 3159 event->hw.config = alt_config; 3160 } 3161 } 3162 3163 static void intel_pebs_aliases_snb(struct perf_event *event) 3164 { 3165 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) { 3166 /* 3167 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P 3168 * (0x003c) so that we can use it with PEBS. 3169 * 3170 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't 3171 * PEBS capable. However we can use UOPS_RETIRED.ALL 3172 * (0x01c2), which is a PEBS capable event, to get the same 3173 * count. 3174 * 3175 * UOPS_RETIRED.ALL counts the number of cycles that retires 3176 * CNTMASK micro-ops. By setting CNTMASK to a value (16) 3177 * larger than the maximum number of micro-ops that can be 3178 * retired per cycle (4) and then inverting the condition, we 3179 * count all cycles that retire 16 or less micro-ops, which 3180 * is every cycle. 3181 * 3182 * Thereby we gain a PEBS capable cycle counter. 3183 */ 3184 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16); 3185 3186 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK); 3187 event->hw.config = alt_config; 3188 } 3189 } 3190 3191 static void intel_pebs_aliases_precdist(struct perf_event *event) 3192 { 3193 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) { 3194 /* 3195 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P 3196 * (0x003c) so that we can use it with PEBS. 3197 * 3198 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't 3199 * PEBS capable. However we can use INST_RETIRED.PREC_DIST 3200 * (0x01c0), which is a PEBS capable event, to get the same 3201 * count. 3202 * 3203 * The PREC_DIST event has special support to minimize sample 3204 * shadowing effects. One drawback is that it can be 3205 * only programmed on counter 1, but that seems like an 3206 * acceptable trade off. 3207 */ 3208 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16); 3209 3210 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK); 3211 event->hw.config = alt_config; 3212 } 3213 } 3214 3215 static void intel_pebs_aliases_ivb(struct perf_event *event) 3216 { 3217 if (event->attr.precise_ip < 3) 3218 return intel_pebs_aliases_snb(event); 3219 return intel_pebs_aliases_precdist(event); 3220 } 3221 3222 static void intel_pebs_aliases_skl(struct perf_event *event) 3223 { 3224 if (event->attr.precise_ip < 3) 3225 return intel_pebs_aliases_core2(event); 3226 return intel_pebs_aliases_precdist(event); 3227 } 3228 3229 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event) 3230 { 3231 unsigned long flags = x86_pmu.large_pebs_flags; 3232 3233 if (event->attr.use_clockid) 3234 flags &= ~PERF_SAMPLE_TIME; 3235 if (!event->attr.exclude_kernel) 3236 flags &= ~PERF_SAMPLE_REGS_USER; 3237 if (event->attr.sample_regs_user & ~PEBS_GP_REGS) 3238 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR); 3239 return flags; 3240 } 3241 3242 static int intel_pmu_bts_config(struct perf_event *event) 3243 { 3244 struct perf_event_attr *attr = &event->attr; 3245 3246 if (unlikely(intel_pmu_has_bts(event))) { 3247 /* BTS is not supported by this architecture. */ 3248 if (!x86_pmu.bts_active) 3249 return -EOPNOTSUPP; 3250 3251 /* BTS is currently only allowed for user-mode. */ 3252 if (!attr->exclude_kernel) 3253 return -EOPNOTSUPP; 3254 3255 /* BTS is not allowed for precise events. */ 3256 if (attr->precise_ip) 3257 return -EOPNOTSUPP; 3258 3259 /* disallow bts if conflicting events are present */ 3260 if (x86_add_exclusive(x86_lbr_exclusive_lbr)) 3261 return -EBUSY; 3262 3263 event->destroy = hw_perf_lbr_event_destroy; 3264 } 3265 3266 return 0; 3267 } 3268 3269 static int core_pmu_hw_config(struct perf_event *event) 3270 { 3271 int ret = x86_pmu_hw_config(event); 3272 3273 if (ret) 3274 return ret; 3275 3276 return intel_pmu_bts_config(event); 3277 } 3278 3279 static int intel_pmu_hw_config(struct perf_event *event) 3280 { 3281 int ret = x86_pmu_hw_config(event); 3282 3283 if (ret) 3284 return ret; 3285 3286 ret = intel_pmu_bts_config(event); 3287 if (ret) 3288 return ret; 3289 3290 if (event->attr.precise_ip) { 3291 if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) { 3292 event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD; 3293 if (!(event->attr.sample_type & 3294 ~intel_pmu_large_pebs_flags(event))) 3295 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS; 3296 } 3297 if (x86_pmu.pebs_aliases) 3298 x86_pmu.pebs_aliases(event); 3299 3300 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 3301 event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY; 3302 } 3303 3304 if (needs_branch_stack(event)) { 3305 ret = intel_pmu_setup_lbr_filter(event); 3306 if (ret) 3307 return ret; 3308 3309 /* 3310 * BTS is set up earlier in this path, so don't account twice 3311 */ 3312 if (!unlikely(intel_pmu_has_bts(event))) { 3313 /* disallow lbr if conflicting events are present */ 3314 if (x86_add_exclusive(x86_lbr_exclusive_lbr)) 3315 return -EBUSY; 3316 3317 event->destroy = hw_perf_lbr_event_destroy; 3318 } 3319 } 3320 3321 if (event->attr.aux_output) { 3322 if (!event->attr.precise_ip) 3323 return -EINVAL; 3324 3325 event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT; 3326 } 3327 3328 if (event->attr.type != PERF_TYPE_RAW) 3329 return 0; 3330 3331 if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY)) 3332 return 0; 3333 3334 if (x86_pmu.version < 3) 3335 return -EINVAL; 3336 3337 ret = perf_allow_cpu(&event->attr); 3338 if (ret) 3339 return ret; 3340 3341 event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY; 3342 3343 return 0; 3344 } 3345 3346 #ifdef CONFIG_RETPOLINE 3347 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr); 3348 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr); 3349 #endif 3350 3351 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr) 3352 { 3353 #ifdef CONFIG_RETPOLINE 3354 if (x86_pmu.guest_get_msrs == intel_guest_get_msrs) 3355 return intel_guest_get_msrs(nr); 3356 else if (x86_pmu.guest_get_msrs == core_guest_get_msrs) 3357 return core_guest_get_msrs(nr); 3358 #endif 3359 if (x86_pmu.guest_get_msrs) 3360 return x86_pmu.guest_get_msrs(nr); 3361 *nr = 0; 3362 return NULL; 3363 } 3364 EXPORT_SYMBOL_GPL(perf_guest_get_msrs); 3365 3366 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr) 3367 { 3368 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 3369 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs; 3370 3371 arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL; 3372 arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask; 3373 arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask; 3374 if (x86_pmu.flags & PMU_FL_PEBS_ALL) 3375 arr[0].guest &= ~cpuc->pebs_enabled; 3376 else 3377 arr[0].guest &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK); 3378 *nr = 1; 3379 3380 if (x86_pmu.pebs && x86_pmu.pebs_no_isolation) { 3381 /* 3382 * If PMU counter has PEBS enabled it is not enough to 3383 * disable counter on a guest entry since PEBS memory 3384 * write can overshoot guest entry and corrupt guest 3385 * memory. Disabling PEBS solves the problem. 3386 * 3387 * Don't do this if the CPU already enforces it. 3388 */ 3389 arr[1].msr = MSR_IA32_PEBS_ENABLE; 3390 arr[1].host = cpuc->pebs_enabled; 3391 arr[1].guest = 0; 3392 *nr = 2; 3393 } 3394 3395 return arr; 3396 } 3397 3398 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr) 3399 { 3400 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 3401 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs; 3402 int idx; 3403 3404 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 3405 struct perf_event *event = cpuc->events[idx]; 3406 3407 arr[idx].msr = x86_pmu_config_addr(idx); 3408 arr[idx].host = arr[idx].guest = 0; 3409 3410 if (!test_bit(idx, cpuc->active_mask)) 3411 continue; 3412 3413 arr[idx].host = arr[idx].guest = 3414 event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE; 3415 3416 if (event->attr.exclude_host) 3417 arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE; 3418 else if (event->attr.exclude_guest) 3419 arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE; 3420 } 3421 3422 *nr = x86_pmu.num_counters; 3423 return arr; 3424 } 3425 3426 static void core_pmu_enable_event(struct perf_event *event) 3427 { 3428 if (!event->attr.exclude_host) 3429 x86_pmu_enable_event(event); 3430 } 3431 3432 static void core_pmu_enable_all(int added) 3433 { 3434 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 3435 int idx; 3436 3437 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 3438 struct hw_perf_event *hwc = &cpuc->events[idx]->hw; 3439 3440 if (!test_bit(idx, cpuc->active_mask) || 3441 cpuc->events[idx]->attr.exclude_host) 3442 continue; 3443 3444 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); 3445 } 3446 } 3447 3448 static int hsw_hw_config(struct perf_event *event) 3449 { 3450 int ret = intel_pmu_hw_config(event); 3451 3452 if (ret) 3453 return ret; 3454 if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE)) 3455 return 0; 3456 event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED); 3457 3458 /* 3459 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with 3460 * PEBS or in ANY thread mode. Since the results are non-sensical forbid 3461 * this combination. 3462 */ 3463 if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) && 3464 ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) || 3465 event->attr.precise_ip > 0)) 3466 return -EOPNOTSUPP; 3467 3468 if (event_is_checkpointed(event)) { 3469 /* 3470 * Sampling of checkpointed events can cause situations where 3471 * the CPU constantly aborts because of a overflow, which is 3472 * then checkpointed back and ignored. Forbid checkpointing 3473 * for sampling. 3474 * 3475 * But still allow a long sampling period, so that perf stat 3476 * from KVM works. 3477 */ 3478 if (event->attr.sample_period > 0 && 3479 event->attr.sample_period < 0x7fffffff) 3480 return -EOPNOTSUPP; 3481 } 3482 return 0; 3483 } 3484 3485 static struct event_constraint counter0_constraint = 3486 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1); 3487 3488 static struct event_constraint counter2_constraint = 3489 EVENT_CONSTRAINT(0, 0x4, 0); 3490 3491 static struct event_constraint fixed0_constraint = 3492 FIXED_EVENT_CONSTRAINT(0x00c0, 0); 3493 3494 static struct event_constraint fixed0_counter0_constraint = 3495 INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL); 3496 3497 static struct event_constraint * 3498 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 3499 struct perf_event *event) 3500 { 3501 struct event_constraint *c; 3502 3503 c = intel_get_event_constraints(cpuc, idx, event); 3504 3505 /* Handle special quirk on in_tx_checkpointed only in counter 2 */ 3506 if (event->hw.config & HSW_IN_TX_CHECKPOINTED) { 3507 if (c->idxmsk64 & (1U << 2)) 3508 return &counter2_constraint; 3509 return &emptyconstraint; 3510 } 3511 3512 return c; 3513 } 3514 3515 static struct event_constraint * 3516 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 3517 struct perf_event *event) 3518 { 3519 /* 3520 * Fixed counter 0 has less skid. 3521 * Force instruction:ppp in Fixed counter 0 3522 */ 3523 if ((event->attr.precise_ip == 3) && 3524 constraint_match(&fixed0_constraint, event->hw.config)) 3525 return &fixed0_constraint; 3526 3527 return hsw_get_event_constraints(cpuc, idx, event); 3528 } 3529 3530 static struct event_constraint * 3531 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 3532 struct perf_event *event) 3533 { 3534 struct event_constraint *c; 3535 3536 /* :ppp means to do reduced skid PEBS which is PMC0 only. */ 3537 if (event->attr.precise_ip == 3) 3538 return &counter0_constraint; 3539 3540 c = intel_get_event_constraints(cpuc, idx, event); 3541 3542 return c; 3543 } 3544 3545 static struct event_constraint * 3546 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 3547 struct perf_event *event) 3548 { 3549 struct event_constraint *c; 3550 3551 /* 3552 * :ppp means to do reduced skid PEBS, 3553 * which is available on PMC0 and fixed counter 0. 3554 */ 3555 if (event->attr.precise_ip == 3) { 3556 /* Force instruction:ppp on PMC0 and Fixed counter 0 */ 3557 if (constraint_match(&fixed0_constraint, event->hw.config)) 3558 return &fixed0_counter0_constraint; 3559 3560 return &counter0_constraint; 3561 } 3562 3563 c = intel_get_event_constraints(cpuc, idx, event); 3564 3565 return c; 3566 } 3567 3568 static bool allow_tsx_force_abort = true; 3569 3570 static struct event_constraint * 3571 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 3572 struct perf_event *event) 3573 { 3574 struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event); 3575 3576 /* 3577 * Without TFA we must not use PMC3. 3578 */ 3579 if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) { 3580 c = dyn_constraint(cpuc, c, idx); 3581 c->idxmsk64 &= ~(1ULL << 3); 3582 c->weight--; 3583 } 3584 3585 return c; 3586 } 3587 3588 /* 3589 * Broadwell: 3590 * 3591 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared 3592 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine 3593 * the two to enforce a minimum period of 128 (the smallest value that has bits 3594 * 0-5 cleared and >= 100). 3595 * 3596 * Because of how the code in x86_perf_event_set_period() works, the truncation 3597 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period 3598 * to make up for the 'lost' events due to carrying the 'error' in period_left. 3599 * 3600 * Therefore the effective (average) period matches the requested period, 3601 * despite coarser hardware granularity. 3602 */ 3603 static u64 bdw_limit_period(struct perf_event *event, u64 left) 3604 { 3605 if ((event->hw.config & INTEL_ARCH_EVENT_MASK) == 3606 X86_CONFIG(.event=0xc0, .umask=0x01)) { 3607 if (left < 128) 3608 left = 128; 3609 left &= ~0x3fULL; 3610 } 3611 return left; 3612 } 3613 3614 static u64 nhm_limit_period(struct perf_event *event, u64 left) 3615 { 3616 return max(left, 32ULL); 3617 } 3618 3619 PMU_FORMAT_ATTR(event, "config:0-7" ); 3620 PMU_FORMAT_ATTR(umask, "config:8-15" ); 3621 PMU_FORMAT_ATTR(edge, "config:18" ); 3622 PMU_FORMAT_ATTR(pc, "config:19" ); 3623 PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */ 3624 PMU_FORMAT_ATTR(inv, "config:23" ); 3625 PMU_FORMAT_ATTR(cmask, "config:24-31" ); 3626 PMU_FORMAT_ATTR(in_tx, "config:32"); 3627 PMU_FORMAT_ATTR(in_tx_cp, "config:33"); 3628 3629 static struct attribute *intel_arch_formats_attr[] = { 3630 &format_attr_event.attr, 3631 &format_attr_umask.attr, 3632 &format_attr_edge.attr, 3633 &format_attr_pc.attr, 3634 &format_attr_inv.attr, 3635 &format_attr_cmask.attr, 3636 NULL, 3637 }; 3638 3639 ssize_t intel_event_sysfs_show(char *page, u64 config) 3640 { 3641 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT); 3642 3643 return x86_event_sysfs_show(page, config, event); 3644 } 3645 3646 static struct intel_shared_regs *allocate_shared_regs(int cpu) 3647 { 3648 struct intel_shared_regs *regs; 3649 int i; 3650 3651 regs = kzalloc_node(sizeof(struct intel_shared_regs), 3652 GFP_KERNEL, cpu_to_node(cpu)); 3653 if (regs) { 3654 /* 3655 * initialize the locks to keep lockdep happy 3656 */ 3657 for (i = 0; i < EXTRA_REG_MAX; i++) 3658 raw_spin_lock_init(®s->regs[i].lock); 3659 3660 regs->core_id = -1; 3661 } 3662 return regs; 3663 } 3664 3665 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu) 3666 { 3667 struct intel_excl_cntrs *c; 3668 3669 c = kzalloc_node(sizeof(struct intel_excl_cntrs), 3670 GFP_KERNEL, cpu_to_node(cpu)); 3671 if (c) { 3672 raw_spin_lock_init(&c->lock); 3673 c->core_id = -1; 3674 } 3675 return c; 3676 } 3677 3678 3679 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu) 3680 { 3681 cpuc->pebs_record_size = x86_pmu.pebs_record_size; 3682 3683 if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) { 3684 cpuc->shared_regs = allocate_shared_regs(cpu); 3685 if (!cpuc->shared_regs) 3686 goto err; 3687 } 3688 3689 if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) { 3690 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint); 3691 3692 cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu)); 3693 if (!cpuc->constraint_list) 3694 goto err_shared_regs; 3695 } 3696 3697 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) { 3698 cpuc->excl_cntrs = allocate_excl_cntrs(cpu); 3699 if (!cpuc->excl_cntrs) 3700 goto err_constraint_list; 3701 3702 cpuc->excl_thread_id = 0; 3703 } 3704 3705 return 0; 3706 3707 err_constraint_list: 3708 kfree(cpuc->constraint_list); 3709 cpuc->constraint_list = NULL; 3710 3711 err_shared_regs: 3712 kfree(cpuc->shared_regs); 3713 cpuc->shared_regs = NULL; 3714 3715 err: 3716 return -ENOMEM; 3717 } 3718 3719 static int intel_pmu_cpu_prepare(int cpu) 3720 { 3721 return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu); 3722 } 3723 3724 static void flip_smm_bit(void *data) 3725 { 3726 unsigned long set = *(unsigned long *)data; 3727 3728 if (set > 0) { 3729 msr_set_bit(MSR_IA32_DEBUGCTLMSR, 3730 DEBUGCTLMSR_FREEZE_IN_SMM_BIT); 3731 } else { 3732 msr_clear_bit(MSR_IA32_DEBUGCTLMSR, 3733 DEBUGCTLMSR_FREEZE_IN_SMM_BIT); 3734 } 3735 } 3736 3737 static void intel_pmu_cpu_starting(int cpu) 3738 { 3739 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 3740 int core_id = topology_core_id(cpu); 3741 int i; 3742 3743 init_debug_store_on_cpu(cpu); 3744 /* 3745 * Deal with CPUs that don't clear their LBRs on power-up. 3746 */ 3747 intel_pmu_lbr_reset(); 3748 3749 cpuc->lbr_sel = NULL; 3750 3751 if (x86_pmu.flags & PMU_FL_TFA) { 3752 WARN_ON_ONCE(cpuc->tfa_shadow); 3753 cpuc->tfa_shadow = ~0ULL; 3754 intel_set_tfa(cpuc, false); 3755 } 3756 3757 if (x86_pmu.version > 1) 3758 flip_smm_bit(&x86_pmu.attr_freeze_on_smi); 3759 3760 if (x86_pmu.counter_freezing) 3761 enable_counter_freeze(); 3762 3763 if (!cpuc->shared_regs) 3764 return; 3765 3766 if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) { 3767 for_each_cpu(i, topology_sibling_cpumask(cpu)) { 3768 struct intel_shared_regs *pc; 3769 3770 pc = per_cpu(cpu_hw_events, i).shared_regs; 3771 if (pc && pc->core_id == core_id) { 3772 cpuc->kfree_on_online[0] = cpuc->shared_regs; 3773 cpuc->shared_regs = pc; 3774 break; 3775 } 3776 } 3777 cpuc->shared_regs->core_id = core_id; 3778 cpuc->shared_regs->refcnt++; 3779 } 3780 3781 if (x86_pmu.lbr_sel_map) 3782 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR]; 3783 3784 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) { 3785 for_each_cpu(i, topology_sibling_cpumask(cpu)) { 3786 struct cpu_hw_events *sibling; 3787 struct intel_excl_cntrs *c; 3788 3789 sibling = &per_cpu(cpu_hw_events, i); 3790 c = sibling->excl_cntrs; 3791 if (c && c->core_id == core_id) { 3792 cpuc->kfree_on_online[1] = cpuc->excl_cntrs; 3793 cpuc->excl_cntrs = c; 3794 if (!sibling->excl_thread_id) 3795 cpuc->excl_thread_id = 1; 3796 break; 3797 } 3798 } 3799 cpuc->excl_cntrs->core_id = core_id; 3800 cpuc->excl_cntrs->refcnt++; 3801 } 3802 } 3803 3804 static void free_excl_cntrs(struct cpu_hw_events *cpuc) 3805 { 3806 struct intel_excl_cntrs *c; 3807 3808 c = cpuc->excl_cntrs; 3809 if (c) { 3810 if (c->core_id == -1 || --c->refcnt == 0) 3811 kfree(c); 3812 cpuc->excl_cntrs = NULL; 3813 } 3814 3815 kfree(cpuc->constraint_list); 3816 cpuc->constraint_list = NULL; 3817 } 3818 3819 static void intel_pmu_cpu_dying(int cpu) 3820 { 3821 fini_debug_store_on_cpu(cpu); 3822 3823 if (x86_pmu.counter_freezing) 3824 disable_counter_freeze(); 3825 } 3826 3827 void intel_cpuc_finish(struct cpu_hw_events *cpuc) 3828 { 3829 struct intel_shared_regs *pc; 3830 3831 pc = cpuc->shared_regs; 3832 if (pc) { 3833 if (pc->core_id == -1 || --pc->refcnt == 0) 3834 kfree(pc); 3835 cpuc->shared_regs = NULL; 3836 } 3837 3838 free_excl_cntrs(cpuc); 3839 } 3840 3841 static void intel_pmu_cpu_dead(int cpu) 3842 { 3843 intel_cpuc_finish(&per_cpu(cpu_hw_events, cpu)); 3844 } 3845 3846 static void intel_pmu_sched_task(struct perf_event_context *ctx, 3847 bool sched_in) 3848 { 3849 intel_pmu_pebs_sched_task(ctx, sched_in); 3850 intel_pmu_lbr_sched_task(ctx, sched_in); 3851 } 3852 3853 static void intel_pmu_swap_task_ctx(struct perf_event_context *prev, 3854 struct perf_event_context *next) 3855 { 3856 intel_pmu_lbr_swap_task_ctx(prev, next); 3857 } 3858 3859 static int intel_pmu_check_period(struct perf_event *event, u64 value) 3860 { 3861 return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0; 3862 } 3863 3864 static int intel_pmu_aux_output_match(struct perf_event *event) 3865 { 3866 if (!x86_pmu.intel_cap.pebs_output_pt_available) 3867 return 0; 3868 3869 return is_intel_pt_event(event); 3870 } 3871 3872 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63"); 3873 3874 PMU_FORMAT_ATTR(ldlat, "config1:0-15"); 3875 3876 PMU_FORMAT_ATTR(frontend, "config1:0-23"); 3877 3878 static struct attribute *intel_arch3_formats_attr[] = { 3879 &format_attr_event.attr, 3880 &format_attr_umask.attr, 3881 &format_attr_edge.attr, 3882 &format_attr_pc.attr, 3883 &format_attr_any.attr, 3884 &format_attr_inv.attr, 3885 &format_attr_cmask.attr, 3886 NULL, 3887 }; 3888 3889 static struct attribute *hsw_format_attr[] = { 3890 &format_attr_in_tx.attr, 3891 &format_attr_in_tx_cp.attr, 3892 &format_attr_offcore_rsp.attr, 3893 &format_attr_ldlat.attr, 3894 NULL 3895 }; 3896 3897 static struct attribute *nhm_format_attr[] = { 3898 &format_attr_offcore_rsp.attr, 3899 &format_attr_ldlat.attr, 3900 NULL 3901 }; 3902 3903 static struct attribute *slm_format_attr[] = { 3904 &format_attr_offcore_rsp.attr, 3905 NULL 3906 }; 3907 3908 static struct attribute *skl_format_attr[] = { 3909 &format_attr_frontend.attr, 3910 NULL, 3911 }; 3912 3913 static __initconst const struct x86_pmu core_pmu = { 3914 .name = "core", 3915 .handle_irq = x86_pmu_handle_irq, 3916 .disable_all = x86_pmu_disable_all, 3917 .enable_all = core_pmu_enable_all, 3918 .enable = core_pmu_enable_event, 3919 .disable = x86_pmu_disable_event, 3920 .hw_config = core_pmu_hw_config, 3921 .schedule_events = x86_schedule_events, 3922 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0, 3923 .perfctr = MSR_ARCH_PERFMON_PERFCTR0, 3924 .event_map = intel_pmu_event_map, 3925 .max_events = ARRAY_SIZE(intel_perfmon_event_map), 3926 .apic = 1, 3927 .large_pebs_flags = LARGE_PEBS_FLAGS, 3928 3929 /* 3930 * Intel PMCs cannot be accessed sanely above 32-bit width, 3931 * so we install an artificial 1<<31 period regardless of 3932 * the generic event period: 3933 */ 3934 .max_period = (1ULL<<31) - 1, 3935 .get_event_constraints = intel_get_event_constraints, 3936 .put_event_constraints = intel_put_event_constraints, 3937 .event_constraints = intel_core_event_constraints, 3938 .guest_get_msrs = core_guest_get_msrs, 3939 .format_attrs = intel_arch_formats_attr, 3940 .events_sysfs_show = intel_event_sysfs_show, 3941 3942 /* 3943 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs 3944 * together with PMU version 1 and thus be using core_pmu with 3945 * shared_regs. We need following callbacks here to allocate 3946 * it properly. 3947 */ 3948 .cpu_prepare = intel_pmu_cpu_prepare, 3949 .cpu_starting = intel_pmu_cpu_starting, 3950 .cpu_dying = intel_pmu_cpu_dying, 3951 .cpu_dead = intel_pmu_cpu_dead, 3952 3953 .check_period = intel_pmu_check_period, 3954 }; 3955 3956 static __initconst const struct x86_pmu intel_pmu = { 3957 .name = "Intel", 3958 .handle_irq = intel_pmu_handle_irq, 3959 .disable_all = intel_pmu_disable_all, 3960 .enable_all = intel_pmu_enable_all, 3961 .enable = intel_pmu_enable_event, 3962 .disable = intel_pmu_disable_event, 3963 .add = intel_pmu_add_event, 3964 .del = intel_pmu_del_event, 3965 .read = intel_pmu_read_event, 3966 .hw_config = intel_pmu_hw_config, 3967 .schedule_events = x86_schedule_events, 3968 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0, 3969 .perfctr = MSR_ARCH_PERFMON_PERFCTR0, 3970 .event_map = intel_pmu_event_map, 3971 .max_events = ARRAY_SIZE(intel_perfmon_event_map), 3972 .apic = 1, 3973 .large_pebs_flags = LARGE_PEBS_FLAGS, 3974 /* 3975 * Intel PMCs cannot be accessed sanely above 32 bit width, 3976 * so we install an artificial 1<<31 period regardless of 3977 * the generic event period: 3978 */ 3979 .max_period = (1ULL << 31) - 1, 3980 .get_event_constraints = intel_get_event_constraints, 3981 .put_event_constraints = intel_put_event_constraints, 3982 .pebs_aliases = intel_pebs_aliases_core2, 3983 3984 .format_attrs = intel_arch3_formats_attr, 3985 .events_sysfs_show = intel_event_sysfs_show, 3986 3987 .cpu_prepare = intel_pmu_cpu_prepare, 3988 .cpu_starting = intel_pmu_cpu_starting, 3989 .cpu_dying = intel_pmu_cpu_dying, 3990 .cpu_dead = intel_pmu_cpu_dead, 3991 3992 .guest_get_msrs = intel_guest_get_msrs, 3993 .sched_task = intel_pmu_sched_task, 3994 .swap_task_ctx = intel_pmu_swap_task_ctx, 3995 3996 .check_period = intel_pmu_check_period, 3997 3998 .aux_output_match = intel_pmu_aux_output_match, 3999 }; 4000 4001 static __init void intel_clovertown_quirk(void) 4002 { 4003 /* 4004 * PEBS is unreliable due to: 4005 * 4006 * AJ67 - PEBS may experience CPL leaks 4007 * AJ68 - PEBS PMI may be delayed by one event 4008 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12] 4009 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS 4010 * 4011 * AJ67 could be worked around by restricting the OS/USR flags. 4012 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI. 4013 * 4014 * AJ106 could possibly be worked around by not allowing LBR 4015 * usage from PEBS, including the fixup. 4016 * AJ68 could possibly be worked around by always programming 4017 * a pebs_event_reset[0] value and coping with the lost events. 4018 * 4019 * But taken together it might just make sense to not enable PEBS on 4020 * these chips. 4021 */ 4022 pr_warn("PEBS disabled due to CPU errata\n"); 4023 x86_pmu.pebs = 0; 4024 x86_pmu.pebs_constraints = NULL; 4025 } 4026 4027 static const struct x86_cpu_desc isolation_ucodes[] = { 4028 INTEL_CPU_DESC(INTEL_FAM6_HASWELL, 3, 0x0000001f), 4029 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L, 1, 0x0000001e), 4030 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G, 1, 0x00000015), 4031 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X, 2, 0x00000037), 4032 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X, 4, 0x0000000a), 4033 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL, 4, 0x00000023), 4034 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G, 1, 0x00000014), 4035 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 2, 0x00000010), 4036 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 3, 0x07000009), 4037 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 4, 0x0f000009), 4038 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 5, 0x0e000002), 4039 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X, 2, 0x0b000014), 4040 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 3, 0x00000021), 4041 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 4, 0x00000000), 4042 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L, 3, 0x0000007c), 4043 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE, 3, 0x0000007c), 4044 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 9, 0x0000004e), 4045 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 9, 0x0000004e), 4046 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 10, 0x0000004e), 4047 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 11, 0x0000004e), 4048 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 12, 0x0000004e), 4049 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 10, 0x0000004e), 4050 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 11, 0x0000004e), 4051 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 12, 0x0000004e), 4052 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 13, 0x0000004e), 4053 {} 4054 }; 4055 4056 static void intel_check_pebs_isolation(void) 4057 { 4058 x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes); 4059 } 4060 4061 static __init void intel_pebs_isolation_quirk(void) 4062 { 4063 WARN_ON_ONCE(x86_pmu.check_microcode); 4064 x86_pmu.check_microcode = intel_check_pebs_isolation; 4065 intel_check_pebs_isolation(); 4066 } 4067 4068 static const struct x86_cpu_desc pebs_ucodes[] = { 4069 INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE, 7, 0x00000028), 4070 INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X, 6, 0x00000618), 4071 INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X, 7, 0x0000070c), 4072 {} 4073 }; 4074 4075 static bool intel_snb_pebs_broken(void) 4076 { 4077 return !x86_cpu_has_min_microcode_rev(pebs_ucodes); 4078 } 4079 4080 static void intel_snb_check_microcode(void) 4081 { 4082 if (intel_snb_pebs_broken() == x86_pmu.pebs_broken) 4083 return; 4084 4085 /* 4086 * Serialized by the microcode lock.. 4087 */ 4088 if (x86_pmu.pebs_broken) { 4089 pr_info("PEBS enabled due to microcode update\n"); 4090 x86_pmu.pebs_broken = 0; 4091 } else { 4092 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n"); 4093 x86_pmu.pebs_broken = 1; 4094 } 4095 } 4096 4097 static bool is_lbr_from(unsigned long msr) 4098 { 4099 unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr; 4100 4101 return x86_pmu.lbr_from <= msr && msr < lbr_from_nr; 4102 } 4103 4104 /* 4105 * Under certain circumstances, access certain MSR may cause #GP. 4106 * The function tests if the input MSR can be safely accessed. 4107 */ 4108 static bool check_msr(unsigned long msr, u64 mask) 4109 { 4110 u64 val_old, val_new, val_tmp; 4111 4112 /* 4113 * Disable the check for real HW, so we don't 4114 * mess with potentionaly enabled registers: 4115 */ 4116 if (!boot_cpu_has(X86_FEATURE_HYPERVISOR)) 4117 return true; 4118 4119 /* 4120 * Read the current value, change it and read it back to see if it 4121 * matches, this is needed to detect certain hardware emulators 4122 * (qemu/kvm) that don't trap on the MSR access and always return 0s. 4123 */ 4124 if (rdmsrl_safe(msr, &val_old)) 4125 return false; 4126 4127 /* 4128 * Only change the bits which can be updated by wrmsrl. 4129 */ 4130 val_tmp = val_old ^ mask; 4131 4132 if (is_lbr_from(msr)) 4133 val_tmp = lbr_from_signext_quirk_wr(val_tmp); 4134 4135 if (wrmsrl_safe(msr, val_tmp) || 4136 rdmsrl_safe(msr, &val_new)) 4137 return false; 4138 4139 /* 4140 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value 4141 * should equal rdmsrl()'s even with the quirk. 4142 */ 4143 if (val_new != val_tmp) 4144 return false; 4145 4146 if (is_lbr_from(msr)) 4147 val_old = lbr_from_signext_quirk_wr(val_old); 4148 4149 /* Here it's sure that the MSR can be safely accessed. 4150 * Restore the old value and return. 4151 */ 4152 wrmsrl(msr, val_old); 4153 4154 return true; 4155 } 4156 4157 static __init void intel_sandybridge_quirk(void) 4158 { 4159 x86_pmu.check_microcode = intel_snb_check_microcode; 4160 cpus_read_lock(); 4161 intel_snb_check_microcode(); 4162 cpus_read_unlock(); 4163 } 4164 4165 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = { 4166 { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" }, 4167 { PERF_COUNT_HW_INSTRUCTIONS, "instructions" }, 4168 { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" }, 4169 { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" }, 4170 { PERF_COUNT_HW_CACHE_MISSES, "cache misses" }, 4171 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" }, 4172 { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" }, 4173 }; 4174 4175 static __init void intel_arch_events_quirk(void) 4176 { 4177 int bit; 4178 4179 /* disable event that reported as not presend by cpuid */ 4180 for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) { 4181 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0; 4182 pr_warn("CPUID marked event: \'%s\' unavailable\n", 4183 intel_arch_events_map[bit].name); 4184 } 4185 } 4186 4187 static __init void intel_nehalem_quirk(void) 4188 { 4189 union cpuid10_ebx ebx; 4190 4191 ebx.full = x86_pmu.events_maskl; 4192 if (ebx.split.no_branch_misses_retired) { 4193 /* 4194 * Erratum AAJ80 detected, we work it around by using 4195 * the BR_MISP_EXEC.ANY event. This will over-count 4196 * branch-misses, but it's still much better than the 4197 * architectural event which is often completely bogus: 4198 */ 4199 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89; 4200 ebx.split.no_branch_misses_retired = 0; 4201 x86_pmu.events_maskl = ebx.full; 4202 pr_info("CPU erratum AAJ80 worked around\n"); 4203 } 4204 } 4205 4206 static const struct x86_cpu_desc counter_freezing_ucodes[] = { 4207 INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT, 2, 0x0000000e), 4208 INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT, 9, 0x0000002e), 4209 INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT, 10, 0x00000008), 4210 INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_D, 1, 0x00000028), 4211 INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS, 1, 0x00000028), 4212 INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS, 8, 0x00000006), 4213 {} 4214 }; 4215 4216 static bool intel_counter_freezing_broken(void) 4217 { 4218 return !x86_cpu_has_min_microcode_rev(counter_freezing_ucodes); 4219 } 4220 4221 static __init void intel_counter_freezing_quirk(void) 4222 { 4223 /* Check if it's already disabled */ 4224 if (disable_counter_freezing) 4225 return; 4226 4227 /* 4228 * If the system starts with the wrong ucode, leave the 4229 * counter-freezing feature permanently disabled. 4230 */ 4231 if (intel_counter_freezing_broken()) { 4232 pr_info("PMU counter freezing disabled due to CPU errata," 4233 "please upgrade microcode\n"); 4234 x86_pmu.counter_freezing = false; 4235 x86_pmu.handle_irq = intel_pmu_handle_irq; 4236 } 4237 } 4238 4239 /* 4240 * enable software workaround for errata: 4241 * SNB: BJ122 4242 * IVB: BV98 4243 * HSW: HSD29 4244 * 4245 * Only needed when HT is enabled. However detecting 4246 * if HT is enabled is difficult (model specific). So instead, 4247 * we enable the workaround in the early boot, and verify if 4248 * it is needed in a later initcall phase once we have valid 4249 * topology information to check if HT is actually enabled 4250 */ 4251 static __init void intel_ht_bug(void) 4252 { 4253 x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED; 4254 4255 x86_pmu.start_scheduling = intel_start_scheduling; 4256 x86_pmu.commit_scheduling = intel_commit_scheduling; 4257 x86_pmu.stop_scheduling = intel_stop_scheduling; 4258 } 4259 4260 EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3"); 4261 EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82") 4262 4263 /* Haswell special events */ 4264 EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1"); 4265 EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2"); 4266 EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4"); 4267 EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2"); 4268 EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1"); 4269 EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1"); 4270 EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2"); 4271 EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4"); 4272 EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2"); 4273 EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1"); 4274 EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1"); 4275 EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1"); 4276 4277 static struct attribute *hsw_events_attrs[] = { 4278 EVENT_PTR(td_slots_issued), 4279 EVENT_PTR(td_slots_retired), 4280 EVENT_PTR(td_fetch_bubbles), 4281 EVENT_PTR(td_total_slots), 4282 EVENT_PTR(td_total_slots_scale), 4283 EVENT_PTR(td_recovery_bubbles), 4284 EVENT_PTR(td_recovery_bubbles_scale), 4285 NULL 4286 }; 4287 4288 static struct attribute *hsw_mem_events_attrs[] = { 4289 EVENT_PTR(mem_ld_hsw), 4290 EVENT_PTR(mem_st_hsw), 4291 NULL, 4292 }; 4293 4294 static struct attribute *hsw_tsx_events_attrs[] = { 4295 EVENT_PTR(tx_start), 4296 EVENT_PTR(tx_commit), 4297 EVENT_PTR(tx_abort), 4298 EVENT_PTR(tx_capacity), 4299 EVENT_PTR(tx_conflict), 4300 EVENT_PTR(el_start), 4301 EVENT_PTR(el_commit), 4302 EVENT_PTR(el_abort), 4303 EVENT_PTR(el_capacity), 4304 EVENT_PTR(el_conflict), 4305 EVENT_PTR(cycles_t), 4306 EVENT_PTR(cycles_ct), 4307 NULL 4308 }; 4309 4310 EVENT_ATTR_STR(tx-capacity-read, tx_capacity_read, "event=0x54,umask=0x80"); 4311 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2"); 4312 EVENT_ATTR_STR(el-capacity-read, el_capacity_read, "event=0x54,umask=0x80"); 4313 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2"); 4314 4315 static struct attribute *icl_events_attrs[] = { 4316 EVENT_PTR(mem_ld_hsw), 4317 EVENT_PTR(mem_st_hsw), 4318 NULL, 4319 }; 4320 4321 static struct attribute *icl_tsx_events_attrs[] = { 4322 EVENT_PTR(tx_start), 4323 EVENT_PTR(tx_abort), 4324 EVENT_PTR(tx_commit), 4325 EVENT_PTR(tx_capacity_read), 4326 EVENT_PTR(tx_capacity_write), 4327 EVENT_PTR(tx_conflict), 4328 EVENT_PTR(el_start), 4329 EVENT_PTR(el_abort), 4330 EVENT_PTR(el_commit), 4331 EVENT_PTR(el_capacity_read), 4332 EVENT_PTR(el_capacity_write), 4333 EVENT_PTR(el_conflict), 4334 EVENT_PTR(cycles_t), 4335 EVENT_PTR(cycles_ct), 4336 NULL, 4337 }; 4338 4339 static ssize_t freeze_on_smi_show(struct device *cdev, 4340 struct device_attribute *attr, 4341 char *buf) 4342 { 4343 return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi); 4344 } 4345 4346 static DEFINE_MUTEX(freeze_on_smi_mutex); 4347 4348 static ssize_t freeze_on_smi_store(struct device *cdev, 4349 struct device_attribute *attr, 4350 const char *buf, size_t count) 4351 { 4352 unsigned long val; 4353 ssize_t ret; 4354 4355 ret = kstrtoul(buf, 0, &val); 4356 if (ret) 4357 return ret; 4358 4359 if (val > 1) 4360 return -EINVAL; 4361 4362 mutex_lock(&freeze_on_smi_mutex); 4363 4364 if (x86_pmu.attr_freeze_on_smi == val) 4365 goto done; 4366 4367 x86_pmu.attr_freeze_on_smi = val; 4368 4369 get_online_cpus(); 4370 on_each_cpu(flip_smm_bit, &val, 1); 4371 put_online_cpus(); 4372 done: 4373 mutex_unlock(&freeze_on_smi_mutex); 4374 4375 return count; 4376 } 4377 4378 static void update_tfa_sched(void *ignored) 4379 { 4380 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 4381 4382 /* 4383 * check if PMC3 is used 4384 * and if so force schedule out for all event types all contexts 4385 */ 4386 if (test_bit(3, cpuc->active_mask)) 4387 perf_pmu_resched(x86_get_pmu()); 4388 } 4389 4390 static ssize_t show_sysctl_tfa(struct device *cdev, 4391 struct device_attribute *attr, 4392 char *buf) 4393 { 4394 return snprintf(buf, 40, "%d\n", allow_tsx_force_abort); 4395 } 4396 4397 static ssize_t set_sysctl_tfa(struct device *cdev, 4398 struct device_attribute *attr, 4399 const char *buf, size_t count) 4400 { 4401 bool val; 4402 ssize_t ret; 4403 4404 ret = kstrtobool(buf, &val); 4405 if (ret) 4406 return ret; 4407 4408 /* no change */ 4409 if (val == allow_tsx_force_abort) 4410 return count; 4411 4412 allow_tsx_force_abort = val; 4413 4414 get_online_cpus(); 4415 on_each_cpu(update_tfa_sched, NULL, 1); 4416 put_online_cpus(); 4417 4418 return count; 4419 } 4420 4421 4422 static DEVICE_ATTR_RW(freeze_on_smi); 4423 4424 static ssize_t branches_show(struct device *cdev, 4425 struct device_attribute *attr, 4426 char *buf) 4427 { 4428 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr); 4429 } 4430 4431 static DEVICE_ATTR_RO(branches); 4432 4433 static struct attribute *lbr_attrs[] = { 4434 &dev_attr_branches.attr, 4435 NULL 4436 }; 4437 4438 static char pmu_name_str[30]; 4439 4440 static ssize_t pmu_name_show(struct device *cdev, 4441 struct device_attribute *attr, 4442 char *buf) 4443 { 4444 return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str); 4445 } 4446 4447 static DEVICE_ATTR_RO(pmu_name); 4448 4449 static struct attribute *intel_pmu_caps_attrs[] = { 4450 &dev_attr_pmu_name.attr, 4451 NULL 4452 }; 4453 4454 static DEVICE_ATTR(allow_tsx_force_abort, 0644, 4455 show_sysctl_tfa, 4456 set_sysctl_tfa); 4457 4458 static struct attribute *intel_pmu_attrs[] = { 4459 &dev_attr_freeze_on_smi.attr, 4460 &dev_attr_allow_tsx_force_abort.attr, 4461 NULL, 4462 }; 4463 4464 static umode_t 4465 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i) 4466 { 4467 return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0; 4468 } 4469 4470 static umode_t 4471 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i) 4472 { 4473 return x86_pmu.pebs ? attr->mode : 0; 4474 } 4475 4476 static umode_t 4477 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i) 4478 { 4479 return x86_pmu.lbr_nr ? attr->mode : 0; 4480 } 4481 4482 static umode_t 4483 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i) 4484 { 4485 return x86_pmu.version >= 2 ? attr->mode : 0; 4486 } 4487 4488 static umode_t 4489 default_is_visible(struct kobject *kobj, struct attribute *attr, int i) 4490 { 4491 if (attr == &dev_attr_allow_tsx_force_abort.attr) 4492 return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0; 4493 4494 return attr->mode; 4495 } 4496 4497 static struct attribute_group group_events_td = { 4498 .name = "events", 4499 }; 4500 4501 static struct attribute_group group_events_mem = { 4502 .name = "events", 4503 .is_visible = pebs_is_visible, 4504 }; 4505 4506 static struct attribute_group group_events_tsx = { 4507 .name = "events", 4508 .is_visible = tsx_is_visible, 4509 }; 4510 4511 static struct attribute_group group_caps_gen = { 4512 .name = "caps", 4513 .attrs = intel_pmu_caps_attrs, 4514 }; 4515 4516 static struct attribute_group group_caps_lbr = { 4517 .name = "caps", 4518 .attrs = lbr_attrs, 4519 .is_visible = lbr_is_visible, 4520 }; 4521 4522 static struct attribute_group group_format_extra = { 4523 .name = "format", 4524 .is_visible = exra_is_visible, 4525 }; 4526 4527 static struct attribute_group group_format_extra_skl = { 4528 .name = "format", 4529 .is_visible = exra_is_visible, 4530 }; 4531 4532 static struct attribute_group group_default = { 4533 .attrs = intel_pmu_attrs, 4534 .is_visible = default_is_visible, 4535 }; 4536 4537 static const struct attribute_group *attr_update[] = { 4538 &group_events_td, 4539 &group_events_mem, 4540 &group_events_tsx, 4541 &group_caps_gen, 4542 &group_caps_lbr, 4543 &group_format_extra, 4544 &group_format_extra_skl, 4545 &group_default, 4546 NULL, 4547 }; 4548 4549 static struct attribute *empty_attrs; 4550 4551 __init int intel_pmu_init(void) 4552 { 4553 struct attribute **extra_skl_attr = &empty_attrs; 4554 struct attribute **extra_attr = &empty_attrs; 4555 struct attribute **td_attr = &empty_attrs; 4556 struct attribute **mem_attr = &empty_attrs; 4557 struct attribute **tsx_attr = &empty_attrs; 4558 union cpuid10_edx edx; 4559 union cpuid10_eax eax; 4560 union cpuid10_ebx ebx; 4561 struct event_constraint *c; 4562 unsigned int unused; 4563 struct extra_reg *er; 4564 bool pmem = false; 4565 int version, i; 4566 char *name; 4567 4568 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) { 4569 switch (boot_cpu_data.x86) { 4570 case 0x6: 4571 return p6_pmu_init(); 4572 case 0xb: 4573 return knc_pmu_init(); 4574 case 0xf: 4575 return p4_pmu_init(); 4576 } 4577 return -ENODEV; 4578 } 4579 4580 /* 4581 * Check whether the Architectural PerfMon supports 4582 * Branch Misses Retired hw_event or not. 4583 */ 4584 cpuid(10, &eax.full, &ebx.full, &unused, &edx.full); 4585 if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT) 4586 return -ENODEV; 4587 4588 version = eax.split.version_id; 4589 if (version < 2) 4590 x86_pmu = core_pmu; 4591 else 4592 x86_pmu = intel_pmu; 4593 4594 x86_pmu.version = version; 4595 x86_pmu.num_counters = eax.split.num_counters; 4596 x86_pmu.cntval_bits = eax.split.bit_width; 4597 x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1; 4598 4599 x86_pmu.events_maskl = ebx.full; 4600 x86_pmu.events_mask_len = eax.split.mask_length; 4601 4602 x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters); 4603 4604 /* 4605 * Quirk: v2 perfmon does not report fixed-purpose events, so 4606 * assume at least 3 events, when not running in a hypervisor: 4607 */ 4608 if (version > 1) { 4609 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR); 4610 4611 x86_pmu.num_counters_fixed = 4612 max((int)edx.split.num_counters_fixed, assume); 4613 } 4614 4615 if (version >= 4) 4616 x86_pmu.counter_freezing = !disable_counter_freezing; 4617 4618 if (boot_cpu_has(X86_FEATURE_PDCM)) { 4619 u64 capabilities; 4620 4621 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities); 4622 x86_pmu.intel_cap.capabilities = capabilities; 4623 } 4624 4625 intel_ds_init(); 4626 4627 x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */ 4628 4629 /* 4630 * Install the hw-cache-events table: 4631 */ 4632 switch (boot_cpu_data.x86_model) { 4633 case INTEL_FAM6_CORE_YONAH: 4634 pr_cont("Core events, "); 4635 name = "core"; 4636 break; 4637 4638 case INTEL_FAM6_CORE2_MEROM: 4639 x86_add_quirk(intel_clovertown_quirk); 4640 /* fall through */ 4641 4642 case INTEL_FAM6_CORE2_MEROM_L: 4643 case INTEL_FAM6_CORE2_PENRYN: 4644 case INTEL_FAM6_CORE2_DUNNINGTON: 4645 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids, 4646 sizeof(hw_cache_event_ids)); 4647 4648 intel_pmu_lbr_init_core(); 4649 4650 x86_pmu.event_constraints = intel_core2_event_constraints; 4651 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints; 4652 pr_cont("Core2 events, "); 4653 name = "core2"; 4654 break; 4655 4656 case INTEL_FAM6_NEHALEM: 4657 case INTEL_FAM6_NEHALEM_EP: 4658 case INTEL_FAM6_NEHALEM_EX: 4659 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids, 4660 sizeof(hw_cache_event_ids)); 4661 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs, 4662 sizeof(hw_cache_extra_regs)); 4663 4664 intel_pmu_lbr_init_nhm(); 4665 4666 x86_pmu.event_constraints = intel_nehalem_event_constraints; 4667 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints; 4668 x86_pmu.enable_all = intel_pmu_nhm_enable_all; 4669 x86_pmu.extra_regs = intel_nehalem_extra_regs; 4670 x86_pmu.limit_period = nhm_limit_period; 4671 4672 mem_attr = nhm_mem_events_attrs; 4673 4674 /* UOPS_ISSUED.STALLED_CYCLES */ 4675 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 4676 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); 4677 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */ 4678 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 4679 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1); 4680 4681 intel_pmu_pebs_data_source_nhm(); 4682 x86_add_quirk(intel_nehalem_quirk); 4683 x86_pmu.pebs_no_tlb = 1; 4684 extra_attr = nhm_format_attr; 4685 4686 pr_cont("Nehalem events, "); 4687 name = "nehalem"; 4688 break; 4689 4690 case INTEL_FAM6_ATOM_BONNELL: 4691 case INTEL_FAM6_ATOM_BONNELL_MID: 4692 case INTEL_FAM6_ATOM_SALTWELL: 4693 case INTEL_FAM6_ATOM_SALTWELL_MID: 4694 case INTEL_FAM6_ATOM_SALTWELL_TABLET: 4695 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids, 4696 sizeof(hw_cache_event_ids)); 4697 4698 intel_pmu_lbr_init_atom(); 4699 4700 x86_pmu.event_constraints = intel_gen_event_constraints; 4701 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints; 4702 x86_pmu.pebs_aliases = intel_pebs_aliases_core2; 4703 pr_cont("Atom events, "); 4704 name = "bonnell"; 4705 break; 4706 4707 case INTEL_FAM6_ATOM_SILVERMONT: 4708 case INTEL_FAM6_ATOM_SILVERMONT_D: 4709 case INTEL_FAM6_ATOM_SILVERMONT_MID: 4710 case INTEL_FAM6_ATOM_AIRMONT: 4711 case INTEL_FAM6_ATOM_AIRMONT_MID: 4712 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids, 4713 sizeof(hw_cache_event_ids)); 4714 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs, 4715 sizeof(hw_cache_extra_regs)); 4716 4717 intel_pmu_lbr_init_slm(); 4718 4719 x86_pmu.event_constraints = intel_slm_event_constraints; 4720 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints; 4721 x86_pmu.extra_regs = intel_slm_extra_regs; 4722 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4723 td_attr = slm_events_attrs; 4724 extra_attr = slm_format_attr; 4725 pr_cont("Silvermont events, "); 4726 name = "silvermont"; 4727 break; 4728 4729 case INTEL_FAM6_ATOM_GOLDMONT: 4730 case INTEL_FAM6_ATOM_GOLDMONT_D: 4731 x86_add_quirk(intel_counter_freezing_quirk); 4732 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids, 4733 sizeof(hw_cache_event_ids)); 4734 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs, 4735 sizeof(hw_cache_extra_regs)); 4736 4737 intel_pmu_lbr_init_skl(); 4738 4739 x86_pmu.event_constraints = intel_slm_event_constraints; 4740 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints; 4741 x86_pmu.extra_regs = intel_glm_extra_regs; 4742 /* 4743 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS 4744 * for precise cycles. 4745 * :pp is identical to :ppp 4746 */ 4747 x86_pmu.pebs_aliases = NULL; 4748 x86_pmu.pebs_prec_dist = true; 4749 x86_pmu.lbr_pt_coexist = true; 4750 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4751 td_attr = glm_events_attrs; 4752 extra_attr = slm_format_attr; 4753 pr_cont("Goldmont events, "); 4754 name = "goldmont"; 4755 break; 4756 4757 case INTEL_FAM6_ATOM_GOLDMONT_PLUS: 4758 x86_add_quirk(intel_counter_freezing_quirk); 4759 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids, 4760 sizeof(hw_cache_event_ids)); 4761 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs, 4762 sizeof(hw_cache_extra_regs)); 4763 4764 intel_pmu_lbr_init_skl(); 4765 4766 x86_pmu.event_constraints = intel_slm_event_constraints; 4767 x86_pmu.extra_regs = intel_glm_extra_regs; 4768 /* 4769 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS 4770 * for precise cycles. 4771 */ 4772 x86_pmu.pebs_aliases = NULL; 4773 x86_pmu.pebs_prec_dist = true; 4774 x86_pmu.lbr_pt_coexist = true; 4775 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4776 x86_pmu.flags |= PMU_FL_PEBS_ALL; 4777 x86_pmu.get_event_constraints = glp_get_event_constraints; 4778 td_attr = glm_events_attrs; 4779 /* Goldmont Plus has 4-wide pipeline */ 4780 event_attr_td_total_slots_scale_glm.event_str = "4"; 4781 extra_attr = slm_format_attr; 4782 pr_cont("Goldmont plus events, "); 4783 name = "goldmont_plus"; 4784 break; 4785 4786 case INTEL_FAM6_ATOM_TREMONT_D: 4787 case INTEL_FAM6_ATOM_TREMONT: 4788 x86_pmu.late_ack = true; 4789 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids, 4790 sizeof(hw_cache_event_ids)); 4791 memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs, 4792 sizeof(hw_cache_extra_regs)); 4793 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1; 4794 4795 intel_pmu_lbr_init_skl(); 4796 4797 x86_pmu.event_constraints = intel_slm_event_constraints; 4798 x86_pmu.extra_regs = intel_tnt_extra_regs; 4799 /* 4800 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS 4801 * for precise cycles. 4802 */ 4803 x86_pmu.pebs_aliases = NULL; 4804 x86_pmu.pebs_prec_dist = true; 4805 x86_pmu.lbr_pt_coexist = true; 4806 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4807 x86_pmu.get_event_constraints = tnt_get_event_constraints; 4808 extra_attr = slm_format_attr; 4809 pr_cont("Tremont events, "); 4810 name = "Tremont"; 4811 break; 4812 4813 case INTEL_FAM6_WESTMERE: 4814 case INTEL_FAM6_WESTMERE_EP: 4815 case INTEL_FAM6_WESTMERE_EX: 4816 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids, 4817 sizeof(hw_cache_event_ids)); 4818 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs, 4819 sizeof(hw_cache_extra_regs)); 4820 4821 intel_pmu_lbr_init_nhm(); 4822 4823 x86_pmu.event_constraints = intel_westmere_event_constraints; 4824 x86_pmu.enable_all = intel_pmu_nhm_enable_all; 4825 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints; 4826 x86_pmu.extra_regs = intel_westmere_extra_regs; 4827 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4828 4829 mem_attr = nhm_mem_events_attrs; 4830 4831 /* UOPS_ISSUED.STALLED_CYCLES */ 4832 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 4833 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); 4834 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */ 4835 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 4836 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1); 4837 4838 intel_pmu_pebs_data_source_nhm(); 4839 extra_attr = nhm_format_attr; 4840 pr_cont("Westmere events, "); 4841 name = "westmere"; 4842 break; 4843 4844 case INTEL_FAM6_SANDYBRIDGE: 4845 case INTEL_FAM6_SANDYBRIDGE_X: 4846 x86_add_quirk(intel_sandybridge_quirk); 4847 x86_add_quirk(intel_ht_bug); 4848 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids, 4849 sizeof(hw_cache_event_ids)); 4850 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs, 4851 sizeof(hw_cache_extra_regs)); 4852 4853 intel_pmu_lbr_init_snb(); 4854 4855 x86_pmu.event_constraints = intel_snb_event_constraints; 4856 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints; 4857 x86_pmu.pebs_aliases = intel_pebs_aliases_snb; 4858 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X) 4859 x86_pmu.extra_regs = intel_snbep_extra_regs; 4860 else 4861 x86_pmu.extra_regs = intel_snb_extra_regs; 4862 4863 4864 /* all extra regs are per-cpu when HT is on */ 4865 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4866 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 4867 4868 td_attr = snb_events_attrs; 4869 mem_attr = snb_mem_events_attrs; 4870 4871 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */ 4872 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 4873 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); 4874 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/ 4875 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 4876 X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1); 4877 4878 extra_attr = nhm_format_attr; 4879 4880 pr_cont("SandyBridge events, "); 4881 name = "sandybridge"; 4882 break; 4883 4884 case INTEL_FAM6_IVYBRIDGE: 4885 case INTEL_FAM6_IVYBRIDGE_X: 4886 x86_add_quirk(intel_ht_bug); 4887 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids, 4888 sizeof(hw_cache_event_ids)); 4889 /* dTLB-load-misses on IVB is different than SNB */ 4890 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */ 4891 4892 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs, 4893 sizeof(hw_cache_extra_regs)); 4894 4895 intel_pmu_lbr_init_snb(); 4896 4897 x86_pmu.event_constraints = intel_ivb_event_constraints; 4898 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints; 4899 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb; 4900 x86_pmu.pebs_prec_dist = true; 4901 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X) 4902 x86_pmu.extra_regs = intel_snbep_extra_regs; 4903 else 4904 x86_pmu.extra_regs = intel_snb_extra_regs; 4905 /* all extra regs are per-cpu when HT is on */ 4906 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4907 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 4908 4909 td_attr = snb_events_attrs; 4910 mem_attr = snb_mem_events_attrs; 4911 4912 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */ 4913 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 4914 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); 4915 4916 extra_attr = nhm_format_attr; 4917 4918 pr_cont("IvyBridge events, "); 4919 name = "ivybridge"; 4920 break; 4921 4922 4923 case INTEL_FAM6_HASWELL: 4924 case INTEL_FAM6_HASWELL_X: 4925 case INTEL_FAM6_HASWELL_L: 4926 case INTEL_FAM6_HASWELL_G: 4927 x86_add_quirk(intel_ht_bug); 4928 x86_add_quirk(intel_pebs_isolation_quirk); 4929 x86_pmu.late_ack = true; 4930 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 4931 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); 4932 4933 intel_pmu_lbr_init_hsw(); 4934 4935 x86_pmu.event_constraints = intel_hsw_event_constraints; 4936 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints; 4937 x86_pmu.extra_regs = intel_snbep_extra_regs; 4938 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb; 4939 x86_pmu.pebs_prec_dist = true; 4940 /* all extra regs are per-cpu when HT is on */ 4941 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4942 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 4943 4944 x86_pmu.hw_config = hsw_hw_config; 4945 x86_pmu.get_event_constraints = hsw_get_event_constraints; 4946 x86_pmu.lbr_double_abort = true; 4947 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? 4948 hsw_format_attr : nhm_format_attr; 4949 td_attr = hsw_events_attrs; 4950 mem_attr = hsw_mem_events_attrs; 4951 tsx_attr = hsw_tsx_events_attrs; 4952 pr_cont("Haswell events, "); 4953 name = "haswell"; 4954 break; 4955 4956 case INTEL_FAM6_BROADWELL: 4957 case INTEL_FAM6_BROADWELL_D: 4958 case INTEL_FAM6_BROADWELL_G: 4959 case INTEL_FAM6_BROADWELL_X: 4960 x86_add_quirk(intel_pebs_isolation_quirk); 4961 x86_pmu.late_ack = true; 4962 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 4963 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); 4964 4965 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */ 4966 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ | 4967 BDW_L3_MISS|HSW_SNOOP_DRAM; 4968 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS| 4969 HSW_SNOOP_DRAM; 4970 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ| 4971 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM; 4972 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE| 4973 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM; 4974 4975 intel_pmu_lbr_init_hsw(); 4976 4977 x86_pmu.event_constraints = intel_bdw_event_constraints; 4978 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints; 4979 x86_pmu.extra_regs = intel_snbep_extra_regs; 4980 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb; 4981 x86_pmu.pebs_prec_dist = true; 4982 /* all extra regs are per-cpu when HT is on */ 4983 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4984 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 4985 4986 x86_pmu.hw_config = hsw_hw_config; 4987 x86_pmu.get_event_constraints = hsw_get_event_constraints; 4988 x86_pmu.limit_period = bdw_limit_period; 4989 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? 4990 hsw_format_attr : nhm_format_attr; 4991 td_attr = hsw_events_attrs; 4992 mem_attr = hsw_mem_events_attrs; 4993 tsx_attr = hsw_tsx_events_attrs; 4994 pr_cont("Broadwell events, "); 4995 name = "broadwell"; 4996 break; 4997 4998 case INTEL_FAM6_XEON_PHI_KNL: 4999 case INTEL_FAM6_XEON_PHI_KNM: 5000 memcpy(hw_cache_event_ids, 5001 slm_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 5002 memcpy(hw_cache_extra_regs, 5003 knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); 5004 intel_pmu_lbr_init_knl(); 5005 5006 x86_pmu.event_constraints = intel_slm_event_constraints; 5007 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints; 5008 x86_pmu.extra_regs = intel_knl_extra_regs; 5009 5010 /* all extra regs are per-cpu when HT is on */ 5011 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 5012 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 5013 extra_attr = slm_format_attr; 5014 pr_cont("Knights Landing/Mill events, "); 5015 name = "knights-landing"; 5016 break; 5017 5018 case INTEL_FAM6_SKYLAKE_X: 5019 pmem = true; 5020 /* fall through */ 5021 case INTEL_FAM6_SKYLAKE_L: 5022 case INTEL_FAM6_SKYLAKE: 5023 case INTEL_FAM6_KABYLAKE_L: 5024 case INTEL_FAM6_KABYLAKE: 5025 case INTEL_FAM6_COMETLAKE_L: 5026 case INTEL_FAM6_COMETLAKE: 5027 x86_add_quirk(intel_pebs_isolation_quirk); 5028 x86_pmu.late_ack = true; 5029 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 5030 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); 5031 intel_pmu_lbr_init_skl(); 5032 5033 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */ 5034 event_attr_td_recovery_bubbles.event_str_noht = 5035 "event=0xd,umask=0x1,cmask=1"; 5036 event_attr_td_recovery_bubbles.event_str_ht = 5037 "event=0xd,umask=0x1,cmask=1,any=1"; 5038 5039 x86_pmu.event_constraints = intel_skl_event_constraints; 5040 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints; 5041 x86_pmu.extra_regs = intel_skl_extra_regs; 5042 x86_pmu.pebs_aliases = intel_pebs_aliases_skl; 5043 x86_pmu.pebs_prec_dist = true; 5044 /* all extra regs are per-cpu when HT is on */ 5045 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 5046 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 5047 5048 x86_pmu.hw_config = hsw_hw_config; 5049 x86_pmu.get_event_constraints = hsw_get_event_constraints; 5050 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? 5051 hsw_format_attr : nhm_format_attr; 5052 extra_skl_attr = skl_format_attr; 5053 td_attr = hsw_events_attrs; 5054 mem_attr = hsw_mem_events_attrs; 5055 tsx_attr = hsw_tsx_events_attrs; 5056 intel_pmu_pebs_data_source_skl(pmem); 5057 5058 if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT)) { 5059 x86_pmu.flags |= PMU_FL_TFA; 5060 x86_pmu.get_event_constraints = tfa_get_event_constraints; 5061 x86_pmu.enable_all = intel_tfa_pmu_enable_all; 5062 x86_pmu.commit_scheduling = intel_tfa_commit_scheduling; 5063 } 5064 5065 pr_cont("Skylake events, "); 5066 name = "skylake"; 5067 break; 5068 5069 case INTEL_FAM6_ICELAKE_X: 5070 case INTEL_FAM6_ICELAKE_D: 5071 pmem = true; 5072 /* fall through */ 5073 case INTEL_FAM6_ICELAKE_L: 5074 case INTEL_FAM6_ICELAKE: 5075 case INTEL_FAM6_TIGERLAKE_L: 5076 case INTEL_FAM6_TIGERLAKE: 5077 x86_pmu.late_ack = true; 5078 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 5079 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); 5080 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1; 5081 intel_pmu_lbr_init_skl(); 5082 5083 x86_pmu.event_constraints = intel_icl_event_constraints; 5084 x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints; 5085 x86_pmu.extra_regs = intel_icl_extra_regs; 5086 x86_pmu.pebs_aliases = NULL; 5087 x86_pmu.pebs_prec_dist = true; 5088 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 5089 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 5090 5091 x86_pmu.hw_config = hsw_hw_config; 5092 x86_pmu.get_event_constraints = icl_get_event_constraints; 5093 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? 5094 hsw_format_attr : nhm_format_attr; 5095 extra_skl_attr = skl_format_attr; 5096 mem_attr = icl_events_attrs; 5097 tsx_attr = icl_tsx_events_attrs; 5098 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xca, .umask=0x02); 5099 x86_pmu.lbr_pt_coexist = true; 5100 intel_pmu_pebs_data_source_skl(pmem); 5101 pr_cont("Icelake events, "); 5102 name = "icelake"; 5103 break; 5104 5105 default: 5106 switch (x86_pmu.version) { 5107 case 1: 5108 x86_pmu.event_constraints = intel_v1_event_constraints; 5109 pr_cont("generic architected perfmon v1, "); 5110 name = "generic_arch_v1"; 5111 break; 5112 default: 5113 /* 5114 * default constraints for v2 and up 5115 */ 5116 x86_pmu.event_constraints = intel_gen_event_constraints; 5117 pr_cont("generic architected perfmon, "); 5118 name = "generic_arch_v2+"; 5119 break; 5120 } 5121 } 5122 5123 snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name); 5124 5125 5126 group_events_td.attrs = td_attr; 5127 group_events_mem.attrs = mem_attr; 5128 group_events_tsx.attrs = tsx_attr; 5129 group_format_extra.attrs = extra_attr; 5130 group_format_extra_skl.attrs = extra_skl_attr; 5131 5132 x86_pmu.attr_update = attr_update; 5133 5134 if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) { 5135 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!", 5136 x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC); 5137 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC; 5138 } 5139 x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1; 5140 5141 if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) { 5142 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!", 5143 x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED); 5144 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED; 5145 } 5146 5147 x86_pmu.intel_ctrl |= 5148 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED; 5149 5150 if (x86_pmu.event_constraints) { 5151 /* 5152 * event on fixed counter2 (REF_CYCLES) only works on this 5153 * counter, so do not extend mask to generic counters 5154 */ 5155 for_each_event_constraint(c, x86_pmu.event_constraints) { 5156 if (c->cmask == FIXED_EVENT_FLAGS 5157 && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) { 5158 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1; 5159 } 5160 c->idxmsk64 &= 5161 ~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed)); 5162 c->weight = hweight64(c->idxmsk64); 5163 } 5164 } 5165 5166 /* 5167 * Access LBR MSR may cause #GP under certain circumstances. 5168 * E.g. KVM doesn't support LBR MSR 5169 * Check all LBT MSR here. 5170 * Disable LBR access if any LBR MSRs can not be accessed. 5171 */ 5172 if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL)) 5173 x86_pmu.lbr_nr = 0; 5174 for (i = 0; i < x86_pmu.lbr_nr; i++) { 5175 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) && 5176 check_msr(x86_pmu.lbr_to + i, 0xffffUL))) 5177 x86_pmu.lbr_nr = 0; 5178 } 5179 5180 if (x86_pmu.lbr_nr) 5181 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr); 5182 5183 /* 5184 * Access extra MSR may cause #GP under certain circumstances. 5185 * E.g. KVM doesn't support offcore event 5186 * Check all extra_regs here. 5187 */ 5188 if (x86_pmu.extra_regs) { 5189 for (er = x86_pmu.extra_regs; er->msr; er++) { 5190 er->extra_msr_access = check_msr(er->msr, 0x11UL); 5191 /* Disable LBR select mapping */ 5192 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access) 5193 x86_pmu.lbr_sel_map = NULL; 5194 } 5195 } 5196 5197 /* Support full width counters using alternative MSR range */ 5198 if (x86_pmu.intel_cap.full_width_write) { 5199 x86_pmu.max_period = x86_pmu.cntval_mask >> 1; 5200 x86_pmu.perfctr = MSR_IA32_PMC0; 5201 pr_cont("full-width counters, "); 5202 } 5203 5204 /* 5205 * For arch perfmon 4 use counter freezing to avoid 5206 * several MSR accesses in the PMI. 5207 */ 5208 if (x86_pmu.counter_freezing) 5209 x86_pmu.handle_irq = intel_pmu_handle_irq_v4; 5210 5211 return 0; 5212 } 5213 5214 /* 5215 * HT bug: phase 2 init 5216 * Called once we have valid topology information to check 5217 * whether or not HT is enabled 5218 * If HT is off, then we disable the workaround 5219 */ 5220 static __init int fixup_ht_bug(void) 5221 { 5222 int c; 5223 /* 5224 * problem not present on this CPU model, nothing to do 5225 */ 5226 if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED)) 5227 return 0; 5228 5229 if (topology_max_smt_threads() > 1) { 5230 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n"); 5231 return 0; 5232 } 5233 5234 cpus_read_lock(); 5235 5236 hardlockup_detector_perf_stop(); 5237 5238 x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED); 5239 5240 x86_pmu.start_scheduling = NULL; 5241 x86_pmu.commit_scheduling = NULL; 5242 x86_pmu.stop_scheduling = NULL; 5243 5244 hardlockup_detector_perf_restart(); 5245 5246 for_each_online_cpu(c) 5247 free_excl_cntrs(&per_cpu(cpu_hw_events, c)); 5248 5249 cpus_read_unlock(); 5250 pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n"); 5251 return 0; 5252 } 5253 subsys_initcall(fixup_ht_bug) 5254