1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Per core/cpu state 4 * 5 * Used to coordinate shared registers between HT threads or 6 * among events on a single PMU. 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/stddef.h> 12 #include <linux/types.h> 13 #include <linux/init.h> 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/nmi.h> 17 18 #include <asm/cpufeature.h> 19 #include <asm/hardirq.h> 20 #include <asm/intel-family.h> 21 #include <asm/apic.h> 22 #include <asm/cpu_device_id.h> 23 #include <asm/hypervisor.h> 24 25 #include "../perf_event.h" 26 27 /* 28 * Intel PerfMon, used on Core and later. 29 */ 30 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly = 31 { 32 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c, 33 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0, 34 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e, 35 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e, 36 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4, 37 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5, 38 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c, 39 [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */ 40 }; 41 42 static struct event_constraint intel_core_event_constraints[] __read_mostly = 43 { 44 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */ 45 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */ 46 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */ 47 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */ 48 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */ 49 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */ 50 EVENT_CONSTRAINT_END 51 }; 52 53 static struct event_constraint intel_core2_event_constraints[] __read_mostly = 54 { 55 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 56 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 57 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 58 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */ 59 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */ 60 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */ 61 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */ 62 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */ 63 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */ 64 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */ 65 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */ 66 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */ 67 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */ 68 EVENT_CONSTRAINT_END 69 }; 70 71 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly = 72 { 73 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 74 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 75 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 76 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */ 77 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */ 78 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */ 79 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */ 80 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */ 81 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */ 82 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */ 83 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */ 84 EVENT_CONSTRAINT_END 85 }; 86 87 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly = 88 { 89 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 90 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0), 91 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b), 92 EVENT_EXTRA_END 93 }; 94 95 static struct event_constraint intel_westmere_event_constraints[] __read_mostly = 96 { 97 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 98 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 99 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 100 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */ 101 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */ 102 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */ 103 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */ 104 EVENT_CONSTRAINT_END 105 }; 106 107 static struct event_constraint intel_snb_event_constraints[] __read_mostly = 108 { 109 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 110 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 111 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 112 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */ 113 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */ 114 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ 115 INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */ 116 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */ 117 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */ 118 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */ 119 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */ 120 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ 121 122 /* 123 * When HT is off these events can only run on the bottom 4 counters 124 * When HT is on, they are impacted by the HT bug and require EXCL access 125 */ 126 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */ 127 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 128 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 129 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 130 131 EVENT_CONSTRAINT_END 132 }; 133 134 static struct event_constraint intel_ivb_event_constraints[] __read_mostly = 135 { 136 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 137 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 138 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 139 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */ 140 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */ 141 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */ 142 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */ 143 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */ 144 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */ 145 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */ 146 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ 147 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */ 148 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */ 149 150 /* 151 * When HT is off these events can only run on the bottom 4 counters 152 * When HT is on, they are impacted by the HT bug and require EXCL access 153 */ 154 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */ 155 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 156 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 157 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 158 159 EVENT_CONSTRAINT_END 160 }; 161 162 static struct extra_reg intel_westmere_extra_regs[] __read_mostly = 163 { 164 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 165 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0), 166 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1), 167 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b), 168 EVENT_EXTRA_END 169 }; 170 171 static struct event_constraint intel_v1_event_constraints[] __read_mostly = 172 { 173 EVENT_CONSTRAINT_END 174 }; 175 176 static struct event_constraint intel_gen_event_constraints[] __read_mostly = 177 { 178 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 179 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 180 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 181 EVENT_CONSTRAINT_END 182 }; 183 184 static struct event_constraint intel_slm_event_constraints[] __read_mostly = 185 { 186 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 187 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 188 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */ 189 EVENT_CONSTRAINT_END 190 }; 191 192 static struct event_constraint intel_skl_event_constraints[] = { 193 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 194 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 195 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 196 INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */ 197 198 /* 199 * when HT is off, these can only run on the bottom 4 counters 200 */ 201 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */ 202 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */ 203 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */ 204 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */ 205 INTEL_EVENT_CONSTRAINT(0xc6, 0xf), /* FRONTEND_RETIRED.* */ 206 207 EVENT_CONSTRAINT_END 208 }; 209 210 static struct extra_reg intel_knl_extra_regs[] __read_mostly = { 211 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0), 212 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1), 213 EVENT_EXTRA_END 214 }; 215 216 static struct extra_reg intel_snb_extra_regs[] __read_mostly = { 217 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 218 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0), 219 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1), 220 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), 221 EVENT_EXTRA_END 222 }; 223 224 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = { 225 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 226 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0), 227 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1), 228 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), 229 EVENT_EXTRA_END 230 }; 231 232 static struct extra_reg intel_skl_extra_regs[] __read_mostly = { 233 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0), 234 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1), 235 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), 236 /* 237 * Note the low 8 bits eventsel code is not a continuous field, containing 238 * some #GPing bits. These are masked out. 239 */ 240 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE), 241 EVENT_EXTRA_END 242 }; 243 244 static struct event_constraint intel_icl_event_constraints[] = { 245 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 246 INTEL_UEVENT_CONSTRAINT(0x1c0, 0), /* INST_RETIRED.PREC_DIST */ 247 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 248 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 249 FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */ 250 INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf), 251 INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf), 252 INTEL_EVENT_CONSTRAINT(0x32, 0xf), /* SW_PREFETCH_ACCESS.* */ 253 INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x54, 0xf), 254 INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf), 255 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff), /* CYCLE_ACTIVITY.STALLS_TOTAL */ 256 INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff), /* CYCLE_ACTIVITY.STALLS_MEM_ANY */ 257 INTEL_EVENT_CONSTRAINT(0xa3, 0xf), /* CYCLE_ACTIVITY.* */ 258 INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf), 259 INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf), 260 INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf), 261 INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf), 262 EVENT_CONSTRAINT_END 263 }; 264 265 static struct extra_reg intel_icl_extra_regs[] __read_mostly = { 266 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff9fffull, RSP_0), 267 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff9fffull, RSP_1), 268 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), 269 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE), 270 EVENT_EXTRA_END 271 }; 272 273 EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3"); 274 EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3"); 275 EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2"); 276 277 static struct attribute *nhm_mem_events_attrs[] = { 278 EVENT_PTR(mem_ld_nhm), 279 NULL, 280 }; 281 282 /* 283 * topdown events for Intel Core CPUs. 284 * 285 * The events are all in slots, which is a free slot in a 4 wide 286 * pipeline. Some events are already reported in slots, for cycle 287 * events we multiply by the pipeline width (4). 288 * 289 * With Hyper Threading on, topdown metrics are either summed or averaged 290 * between the threads of a core: (count_t0 + count_t1). 291 * 292 * For the average case the metric is always scaled to pipeline width, 293 * so we use factor 2 ((count_t0 + count_t1) / 2 * 4) 294 */ 295 296 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots, 297 "event=0x3c,umask=0x0", /* cpu_clk_unhalted.thread */ 298 "event=0x3c,umask=0x0,any=1"); /* cpu_clk_unhalted.thread_any */ 299 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2"); 300 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued, 301 "event=0xe,umask=0x1"); /* uops_issued.any */ 302 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired, 303 "event=0xc2,umask=0x2"); /* uops_retired.retire_slots */ 304 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles, 305 "event=0x9c,umask=0x1"); /* idq_uops_not_delivered_core */ 306 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles, 307 "event=0xd,umask=0x3,cmask=1", /* int_misc.recovery_cycles */ 308 "event=0xd,umask=0x3,cmask=1,any=1"); /* int_misc.recovery_cycles_any */ 309 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale, 310 "4", "2"); 311 312 static struct attribute *snb_events_attrs[] = { 313 EVENT_PTR(td_slots_issued), 314 EVENT_PTR(td_slots_retired), 315 EVENT_PTR(td_fetch_bubbles), 316 EVENT_PTR(td_total_slots), 317 EVENT_PTR(td_total_slots_scale), 318 EVENT_PTR(td_recovery_bubbles), 319 EVENT_PTR(td_recovery_bubbles_scale), 320 NULL, 321 }; 322 323 static struct attribute *snb_mem_events_attrs[] = { 324 EVENT_PTR(mem_ld_snb), 325 EVENT_PTR(mem_st_snb), 326 NULL, 327 }; 328 329 static struct event_constraint intel_hsw_event_constraints[] = { 330 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 331 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 332 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 333 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */ 334 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */ 335 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */ 336 /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ 337 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), 338 /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */ 339 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), 340 /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */ 341 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), 342 343 /* 344 * When HT is off these events can only run on the bottom 4 counters 345 * When HT is on, they are impacted by the HT bug and require EXCL access 346 */ 347 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */ 348 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ 349 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ 350 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ 351 352 EVENT_CONSTRAINT_END 353 }; 354 355 static struct event_constraint intel_bdw_event_constraints[] = { 356 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ 357 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ 358 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ 359 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */ 360 INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */ 361 /* 362 * when HT is off, these can only run on the bottom 4 counters 363 */ 364 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */ 365 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */ 366 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */ 367 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */ 368 EVENT_CONSTRAINT_END 369 }; 370 371 static u64 intel_pmu_event_map(int hw_event) 372 { 373 return intel_perfmon_event_map[hw_event]; 374 } 375 376 /* 377 * Notes on the events: 378 * - data reads do not include code reads (comparable to earlier tables) 379 * - data counts include speculative execution (except L1 write, dtlb, bpu) 380 * - remote node access includes remote memory, remote cache, remote mmio. 381 * - prefetches are not included in the counts. 382 * - icache miss does not include decoded icache 383 */ 384 385 #define SKL_DEMAND_DATA_RD BIT_ULL(0) 386 #define SKL_DEMAND_RFO BIT_ULL(1) 387 #define SKL_ANY_RESPONSE BIT_ULL(16) 388 #define SKL_SUPPLIER_NONE BIT_ULL(17) 389 #define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26) 390 #define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27) 391 #define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28) 392 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29) 393 #define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \ 394 SKL_L3_MISS_REMOTE_HOP0_DRAM| \ 395 SKL_L3_MISS_REMOTE_HOP1_DRAM| \ 396 SKL_L3_MISS_REMOTE_HOP2P_DRAM) 397 #define SKL_SPL_HIT BIT_ULL(30) 398 #define SKL_SNOOP_NONE BIT_ULL(31) 399 #define SKL_SNOOP_NOT_NEEDED BIT_ULL(32) 400 #define SKL_SNOOP_MISS BIT_ULL(33) 401 #define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34) 402 #define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35) 403 #define SKL_SNOOP_HITM BIT_ULL(36) 404 #define SKL_SNOOP_NON_DRAM BIT_ULL(37) 405 #define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \ 406 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \ 407 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \ 408 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM) 409 #define SKL_DEMAND_READ SKL_DEMAND_DATA_RD 410 #define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \ 411 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \ 412 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \ 413 SKL_SNOOP_HITM|SKL_SPL_HIT) 414 #define SKL_DEMAND_WRITE SKL_DEMAND_RFO 415 #define SKL_LLC_ACCESS SKL_ANY_RESPONSE 416 #define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \ 417 SKL_L3_MISS_REMOTE_HOP1_DRAM| \ 418 SKL_L3_MISS_REMOTE_HOP2P_DRAM) 419 420 static __initconst const u64 skl_hw_cache_event_ids 421 [PERF_COUNT_HW_CACHE_MAX] 422 [PERF_COUNT_HW_CACHE_OP_MAX] 423 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 424 { 425 [ C(L1D ) ] = { 426 [ C(OP_READ) ] = { 427 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */ 428 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */ 429 }, 430 [ C(OP_WRITE) ] = { 431 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */ 432 [ C(RESULT_MISS) ] = 0x0, 433 }, 434 [ C(OP_PREFETCH) ] = { 435 [ C(RESULT_ACCESS) ] = 0x0, 436 [ C(RESULT_MISS) ] = 0x0, 437 }, 438 }, 439 [ C(L1I ) ] = { 440 [ C(OP_READ) ] = { 441 [ C(RESULT_ACCESS) ] = 0x0, 442 [ C(RESULT_MISS) ] = 0x283, /* ICACHE_64B.MISS */ 443 }, 444 [ C(OP_WRITE) ] = { 445 [ C(RESULT_ACCESS) ] = -1, 446 [ C(RESULT_MISS) ] = -1, 447 }, 448 [ C(OP_PREFETCH) ] = { 449 [ C(RESULT_ACCESS) ] = 0x0, 450 [ C(RESULT_MISS) ] = 0x0, 451 }, 452 }, 453 [ C(LL ) ] = { 454 [ C(OP_READ) ] = { 455 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 456 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 457 }, 458 [ C(OP_WRITE) ] = { 459 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 460 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 461 }, 462 [ C(OP_PREFETCH) ] = { 463 [ C(RESULT_ACCESS) ] = 0x0, 464 [ C(RESULT_MISS) ] = 0x0, 465 }, 466 }, 467 [ C(DTLB) ] = { 468 [ C(OP_READ) ] = { 469 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */ 470 [ C(RESULT_MISS) ] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */ 471 }, 472 [ C(OP_WRITE) ] = { 473 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */ 474 [ C(RESULT_MISS) ] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */ 475 }, 476 [ C(OP_PREFETCH) ] = { 477 [ C(RESULT_ACCESS) ] = 0x0, 478 [ C(RESULT_MISS) ] = 0x0, 479 }, 480 }, 481 [ C(ITLB) ] = { 482 [ C(OP_READ) ] = { 483 [ C(RESULT_ACCESS) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */ 484 [ C(RESULT_MISS) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */ 485 }, 486 [ C(OP_WRITE) ] = { 487 [ C(RESULT_ACCESS) ] = -1, 488 [ C(RESULT_MISS) ] = -1, 489 }, 490 [ C(OP_PREFETCH) ] = { 491 [ C(RESULT_ACCESS) ] = -1, 492 [ C(RESULT_MISS) ] = -1, 493 }, 494 }, 495 [ C(BPU ) ] = { 496 [ C(OP_READ) ] = { 497 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */ 498 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */ 499 }, 500 [ C(OP_WRITE) ] = { 501 [ C(RESULT_ACCESS) ] = -1, 502 [ C(RESULT_MISS) ] = -1, 503 }, 504 [ C(OP_PREFETCH) ] = { 505 [ C(RESULT_ACCESS) ] = -1, 506 [ C(RESULT_MISS) ] = -1, 507 }, 508 }, 509 [ C(NODE) ] = { 510 [ C(OP_READ) ] = { 511 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 512 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 513 }, 514 [ C(OP_WRITE) ] = { 515 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 516 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 517 }, 518 [ C(OP_PREFETCH) ] = { 519 [ C(RESULT_ACCESS) ] = 0x0, 520 [ C(RESULT_MISS) ] = 0x0, 521 }, 522 }, 523 }; 524 525 static __initconst const u64 skl_hw_cache_extra_regs 526 [PERF_COUNT_HW_CACHE_MAX] 527 [PERF_COUNT_HW_CACHE_OP_MAX] 528 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 529 { 530 [ C(LL ) ] = { 531 [ C(OP_READ) ] = { 532 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ| 533 SKL_LLC_ACCESS|SKL_ANY_SNOOP, 534 [ C(RESULT_MISS) ] = SKL_DEMAND_READ| 535 SKL_L3_MISS|SKL_ANY_SNOOP| 536 SKL_SUPPLIER_NONE, 537 }, 538 [ C(OP_WRITE) ] = { 539 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE| 540 SKL_LLC_ACCESS|SKL_ANY_SNOOP, 541 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE| 542 SKL_L3_MISS|SKL_ANY_SNOOP| 543 SKL_SUPPLIER_NONE, 544 }, 545 [ C(OP_PREFETCH) ] = { 546 [ C(RESULT_ACCESS) ] = 0x0, 547 [ C(RESULT_MISS) ] = 0x0, 548 }, 549 }, 550 [ C(NODE) ] = { 551 [ C(OP_READ) ] = { 552 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ| 553 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM, 554 [ C(RESULT_MISS) ] = SKL_DEMAND_READ| 555 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM, 556 }, 557 [ C(OP_WRITE) ] = { 558 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE| 559 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM, 560 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE| 561 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM, 562 }, 563 [ C(OP_PREFETCH) ] = { 564 [ C(RESULT_ACCESS) ] = 0x0, 565 [ C(RESULT_MISS) ] = 0x0, 566 }, 567 }, 568 }; 569 570 #define SNB_DMND_DATA_RD (1ULL << 0) 571 #define SNB_DMND_RFO (1ULL << 1) 572 #define SNB_DMND_IFETCH (1ULL << 2) 573 #define SNB_DMND_WB (1ULL << 3) 574 #define SNB_PF_DATA_RD (1ULL << 4) 575 #define SNB_PF_RFO (1ULL << 5) 576 #define SNB_PF_IFETCH (1ULL << 6) 577 #define SNB_LLC_DATA_RD (1ULL << 7) 578 #define SNB_LLC_RFO (1ULL << 8) 579 #define SNB_LLC_IFETCH (1ULL << 9) 580 #define SNB_BUS_LOCKS (1ULL << 10) 581 #define SNB_STRM_ST (1ULL << 11) 582 #define SNB_OTHER (1ULL << 15) 583 #define SNB_RESP_ANY (1ULL << 16) 584 #define SNB_NO_SUPP (1ULL << 17) 585 #define SNB_LLC_HITM (1ULL << 18) 586 #define SNB_LLC_HITE (1ULL << 19) 587 #define SNB_LLC_HITS (1ULL << 20) 588 #define SNB_LLC_HITF (1ULL << 21) 589 #define SNB_LOCAL (1ULL << 22) 590 #define SNB_REMOTE (0xffULL << 23) 591 #define SNB_SNP_NONE (1ULL << 31) 592 #define SNB_SNP_NOT_NEEDED (1ULL << 32) 593 #define SNB_SNP_MISS (1ULL << 33) 594 #define SNB_NO_FWD (1ULL << 34) 595 #define SNB_SNP_FWD (1ULL << 35) 596 #define SNB_HITM (1ULL << 36) 597 #define SNB_NON_DRAM (1ULL << 37) 598 599 #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD) 600 #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO) 601 #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO) 602 603 #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \ 604 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \ 605 SNB_HITM) 606 607 #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY) 608 #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY) 609 610 #define SNB_L3_ACCESS SNB_RESP_ANY 611 #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM) 612 613 static __initconst const u64 snb_hw_cache_extra_regs 614 [PERF_COUNT_HW_CACHE_MAX] 615 [PERF_COUNT_HW_CACHE_OP_MAX] 616 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 617 { 618 [ C(LL ) ] = { 619 [ C(OP_READ) ] = { 620 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS, 621 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS, 622 }, 623 [ C(OP_WRITE) ] = { 624 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS, 625 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS, 626 }, 627 [ C(OP_PREFETCH) ] = { 628 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS, 629 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS, 630 }, 631 }, 632 [ C(NODE) ] = { 633 [ C(OP_READ) ] = { 634 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY, 635 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE, 636 }, 637 [ C(OP_WRITE) ] = { 638 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY, 639 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE, 640 }, 641 [ C(OP_PREFETCH) ] = { 642 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY, 643 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE, 644 }, 645 }, 646 }; 647 648 static __initconst const u64 snb_hw_cache_event_ids 649 [PERF_COUNT_HW_CACHE_MAX] 650 [PERF_COUNT_HW_CACHE_OP_MAX] 651 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 652 { 653 [ C(L1D) ] = { 654 [ C(OP_READ) ] = { 655 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */ 656 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */ 657 }, 658 [ C(OP_WRITE) ] = { 659 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */ 660 [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */ 661 }, 662 [ C(OP_PREFETCH) ] = { 663 [ C(RESULT_ACCESS) ] = 0x0, 664 [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */ 665 }, 666 }, 667 [ C(L1I ) ] = { 668 [ C(OP_READ) ] = { 669 [ C(RESULT_ACCESS) ] = 0x0, 670 [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */ 671 }, 672 [ C(OP_WRITE) ] = { 673 [ C(RESULT_ACCESS) ] = -1, 674 [ C(RESULT_MISS) ] = -1, 675 }, 676 [ C(OP_PREFETCH) ] = { 677 [ C(RESULT_ACCESS) ] = 0x0, 678 [ C(RESULT_MISS) ] = 0x0, 679 }, 680 }, 681 [ C(LL ) ] = { 682 [ C(OP_READ) ] = { 683 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ 684 [ C(RESULT_ACCESS) ] = 0x01b7, 685 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ 686 [ C(RESULT_MISS) ] = 0x01b7, 687 }, 688 [ C(OP_WRITE) ] = { 689 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ 690 [ C(RESULT_ACCESS) ] = 0x01b7, 691 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ 692 [ C(RESULT_MISS) ] = 0x01b7, 693 }, 694 [ C(OP_PREFETCH) ] = { 695 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ 696 [ C(RESULT_ACCESS) ] = 0x01b7, 697 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ 698 [ C(RESULT_MISS) ] = 0x01b7, 699 }, 700 }, 701 [ C(DTLB) ] = { 702 [ C(OP_READ) ] = { 703 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */ 704 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */ 705 }, 706 [ C(OP_WRITE) ] = { 707 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */ 708 [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */ 709 }, 710 [ C(OP_PREFETCH) ] = { 711 [ C(RESULT_ACCESS) ] = 0x0, 712 [ C(RESULT_MISS) ] = 0x0, 713 }, 714 }, 715 [ C(ITLB) ] = { 716 [ C(OP_READ) ] = { 717 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */ 718 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */ 719 }, 720 [ C(OP_WRITE) ] = { 721 [ C(RESULT_ACCESS) ] = -1, 722 [ C(RESULT_MISS) ] = -1, 723 }, 724 [ C(OP_PREFETCH) ] = { 725 [ C(RESULT_ACCESS) ] = -1, 726 [ C(RESULT_MISS) ] = -1, 727 }, 728 }, 729 [ C(BPU ) ] = { 730 [ C(OP_READ) ] = { 731 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ 732 [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */ 733 }, 734 [ C(OP_WRITE) ] = { 735 [ C(RESULT_ACCESS) ] = -1, 736 [ C(RESULT_MISS) ] = -1, 737 }, 738 [ C(OP_PREFETCH) ] = { 739 [ C(RESULT_ACCESS) ] = -1, 740 [ C(RESULT_MISS) ] = -1, 741 }, 742 }, 743 [ C(NODE) ] = { 744 [ C(OP_READ) ] = { 745 [ C(RESULT_ACCESS) ] = 0x01b7, 746 [ C(RESULT_MISS) ] = 0x01b7, 747 }, 748 [ C(OP_WRITE) ] = { 749 [ C(RESULT_ACCESS) ] = 0x01b7, 750 [ C(RESULT_MISS) ] = 0x01b7, 751 }, 752 [ C(OP_PREFETCH) ] = { 753 [ C(RESULT_ACCESS) ] = 0x01b7, 754 [ C(RESULT_MISS) ] = 0x01b7, 755 }, 756 }, 757 758 }; 759 760 /* 761 * Notes on the events: 762 * - data reads do not include code reads (comparable to earlier tables) 763 * - data counts include speculative execution (except L1 write, dtlb, bpu) 764 * - remote node access includes remote memory, remote cache, remote mmio. 765 * - prefetches are not included in the counts because they are not 766 * reliably counted. 767 */ 768 769 #define HSW_DEMAND_DATA_RD BIT_ULL(0) 770 #define HSW_DEMAND_RFO BIT_ULL(1) 771 #define HSW_ANY_RESPONSE BIT_ULL(16) 772 #define HSW_SUPPLIER_NONE BIT_ULL(17) 773 #define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22) 774 #define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27) 775 #define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28) 776 #define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29) 777 #define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \ 778 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \ 779 HSW_L3_MISS_REMOTE_HOP2P) 780 #define HSW_SNOOP_NONE BIT_ULL(31) 781 #define HSW_SNOOP_NOT_NEEDED BIT_ULL(32) 782 #define HSW_SNOOP_MISS BIT_ULL(33) 783 #define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34) 784 #define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35) 785 #define HSW_SNOOP_HITM BIT_ULL(36) 786 #define HSW_SNOOP_NON_DRAM BIT_ULL(37) 787 #define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \ 788 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \ 789 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \ 790 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM) 791 #define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM) 792 #define HSW_DEMAND_READ HSW_DEMAND_DATA_RD 793 #define HSW_DEMAND_WRITE HSW_DEMAND_RFO 794 #define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\ 795 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P) 796 #define HSW_LLC_ACCESS HSW_ANY_RESPONSE 797 798 #define BDW_L3_MISS_LOCAL BIT(26) 799 #define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \ 800 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \ 801 HSW_L3_MISS_REMOTE_HOP2P) 802 803 804 static __initconst const u64 hsw_hw_cache_event_ids 805 [PERF_COUNT_HW_CACHE_MAX] 806 [PERF_COUNT_HW_CACHE_OP_MAX] 807 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 808 { 809 [ C(L1D ) ] = { 810 [ C(OP_READ) ] = { 811 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 812 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */ 813 }, 814 [ C(OP_WRITE) ] = { 815 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 816 [ C(RESULT_MISS) ] = 0x0, 817 }, 818 [ C(OP_PREFETCH) ] = { 819 [ C(RESULT_ACCESS) ] = 0x0, 820 [ C(RESULT_MISS) ] = 0x0, 821 }, 822 }, 823 [ C(L1I ) ] = { 824 [ C(OP_READ) ] = { 825 [ C(RESULT_ACCESS) ] = 0x0, 826 [ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */ 827 }, 828 [ C(OP_WRITE) ] = { 829 [ C(RESULT_ACCESS) ] = -1, 830 [ C(RESULT_MISS) ] = -1, 831 }, 832 [ C(OP_PREFETCH) ] = { 833 [ C(RESULT_ACCESS) ] = 0x0, 834 [ C(RESULT_MISS) ] = 0x0, 835 }, 836 }, 837 [ C(LL ) ] = { 838 [ C(OP_READ) ] = { 839 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 840 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 841 }, 842 [ C(OP_WRITE) ] = { 843 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 844 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 845 }, 846 [ C(OP_PREFETCH) ] = { 847 [ C(RESULT_ACCESS) ] = 0x0, 848 [ C(RESULT_MISS) ] = 0x0, 849 }, 850 }, 851 [ C(DTLB) ] = { 852 [ C(OP_READ) ] = { 853 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 854 [ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */ 855 }, 856 [ C(OP_WRITE) ] = { 857 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 858 [ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */ 859 }, 860 [ C(OP_PREFETCH) ] = { 861 [ C(RESULT_ACCESS) ] = 0x0, 862 [ C(RESULT_MISS) ] = 0x0, 863 }, 864 }, 865 [ C(ITLB) ] = { 866 [ C(OP_READ) ] = { 867 [ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */ 868 [ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */ 869 }, 870 [ C(OP_WRITE) ] = { 871 [ C(RESULT_ACCESS) ] = -1, 872 [ C(RESULT_MISS) ] = -1, 873 }, 874 [ C(OP_PREFETCH) ] = { 875 [ C(RESULT_ACCESS) ] = -1, 876 [ C(RESULT_MISS) ] = -1, 877 }, 878 }, 879 [ C(BPU ) ] = { 880 [ C(OP_READ) ] = { 881 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */ 882 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */ 883 }, 884 [ C(OP_WRITE) ] = { 885 [ C(RESULT_ACCESS) ] = -1, 886 [ C(RESULT_MISS) ] = -1, 887 }, 888 [ C(OP_PREFETCH) ] = { 889 [ C(RESULT_ACCESS) ] = -1, 890 [ C(RESULT_MISS) ] = -1, 891 }, 892 }, 893 [ C(NODE) ] = { 894 [ C(OP_READ) ] = { 895 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 896 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 897 }, 898 [ C(OP_WRITE) ] = { 899 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 900 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ 901 }, 902 [ C(OP_PREFETCH) ] = { 903 [ C(RESULT_ACCESS) ] = 0x0, 904 [ C(RESULT_MISS) ] = 0x0, 905 }, 906 }, 907 }; 908 909 static __initconst const u64 hsw_hw_cache_extra_regs 910 [PERF_COUNT_HW_CACHE_MAX] 911 [PERF_COUNT_HW_CACHE_OP_MAX] 912 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 913 { 914 [ C(LL ) ] = { 915 [ C(OP_READ) ] = { 916 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ| 917 HSW_LLC_ACCESS, 918 [ C(RESULT_MISS) ] = HSW_DEMAND_READ| 919 HSW_L3_MISS|HSW_ANY_SNOOP, 920 }, 921 [ C(OP_WRITE) ] = { 922 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE| 923 HSW_LLC_ACCESS, 924 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE| 925 HSW_L3_MISS|HSW_ANY_SNOOP, 926 }, 927 [ C(OP_PREFETCH) ] = { 928 [ C(RESULT_ACCESS) ] = 0x0, 929 [ C(RESULT_MISS) ] = 0x0, 930 }, 931 }, 932 [ C(NODE) ] = { 933 [ C(OP_READ) ] = { 934 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ| 935 HSW_L3_MISS_LOCAL_DRAM| 936 HSW_SNOOP_DRAM, 937 [ C(RESULT_MISS) ] = HSW_DEMAND_READ| 938 HSW_L3_MISS_REMOTE| 939 HSW_SNOOP_DRAM, 940 }, 941 [ C(OP_WRITE) ] = { 942 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE| 943 HSW_L3_MISS_LOCAL_DRAM| 944 HSW_SNOOP_DRAM, 945 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE| 946 HSW_L3_MISS_REMOTE| 947 HSW_SNOOP_DRAM, 948 }, 949 [ C(OP_PREFETCH) ] = { 950 [ C(RESULT_ACCESS) ] = 0x0, 951 [ C(RESULT_MISS) ] = 0x0, 952 }, 953 }, 954 }; 955 956 static __initconst const u64 westmere_hw_cache_event_ids 957 [PERF_COUNT_HW_CACHE_MAX] 958 [PERF_COUNT_HW_CACHE_OP_MAX] 959 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 960 { 961 [ C(L1D) ] = { 962 [ C(OP_READ) ] = { 963 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ 964 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */ 965 }, 966 [ C(OP_WRITE) ] = { 967 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ 968 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */ 969 }, 970 [ C(OP_PREFETCH) ] = { 971 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */ 972 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */ 973 }, 974 }, 975 [ C(L1I ) ] = { 976 [ C(OP_READ) ] = { 977 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ 978 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ 979 }, 980 [ C(OP_WRITE) ] = { 981 [ C(RESULT_ACCESS) ] = -1, 982 [ C(RESULT_MISS) ] = -1, 983 }, 984 [ C(OP_PREFETCH) ] = { 985 [ C(RESULT_ACCESS) ] = 0x0, 986 [ C(RESULT_MISS) ] = 0x0, 987 }, 988 }, 989 [ C(LL ) ] = { 990 [ C(OP_READ) ] = { 991 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ 992 [ C(RESULT_ACCESS) ] = 0x01b7, 993 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ 994 [ C(RESULT_MISS) ] = 0x01b7, 995 }, 996 /* 997 * Use RFO, not WRITEBACK, because a write miss would typically occur 998 * on RFO. 999 */ 1000 [ C(OP_WRITE) ] = { 1001 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ 1002 [ C(RESULT_ACCESS) ] = 0x01b7, 1003 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ 1004 [ C(RESULT_MISS) ] = 0x01b7, 1005 }, 1006 [ C(OP_PREFETCH) ] = { 1007 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ 1008 [ C(RESULT_ACCESS) ] = 0x01b7, 1009 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ 1010 [ C(RESULT_MISS) ] = 0x01b7, 1011 }, 1012 }, 1013 [ C(DTLB) ] = { 1014 [ C(OP_READ) ] = { 1015 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ 1016 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */ 1017 }, 1018 [ C(OP_WRITE) ] = { 1019 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ 1020 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */ 1021 }, 1022 [ C(OP_PREFETCH) ] = { 1023 [ C(RESULT_ACCESS) ] = 0x0, 1024 [ C(RESULT_MISS) ] = 0x0, 1025 }, 1026 }, 1027 [ C(ITLB) ] = { 1028 [ C(OP_READ) ] = { 1029 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */ 1030 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */ 1031 }, 1032 [ C(OP_WRITE) ] = { 1033 [ C(RESULT_ACCESS) ] = -1, 1034 [ C(RESULT_MISS) ] = -1, 1035 }, 1036 [ C(OP_PREFETCH) ] = { 1037 [ C(RESULT_ACCESS) ] = -1, 1038 [ C(RESULT_MISS) ] = -1, 1039 }, 1040 }, 1041 [ C(BPU ) ] = { 1042 [ C(OP_READ) ] = { 1043 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ 1044 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */ 1045 }, 1046 [ C(OP_WRITE) ] = { 1047 [ C(RESULT_ACCESS) ] = -1, 1048 [ C(RESULT_MISS) ] = -1, 1049 }, 1050 [ C(OP_PREFETCH) ] = { 1051 [ C(RESULT_ACCESS) ] = -1, 1052 [ C(RESULT_MISS) ] = -1, 1053 }, 1054 }, 1055 [ C(NODE) ] = { 1056 [ C(OP_READ) ] = { 1057 [ C(RESULT_ACCESS) ] = 0x01b7, 1058 [ C(RESULT_MISS) ] = 0x01b7, 1059 }, 1060 [ C(OP_WRITE) ] = { 1061 [ C(RESULT_ACCESS) ] = 0x01b7, 1062 [ C(RESULT_MISS) ] = 0x01b7, 1063 }, 1064 [ C(OP_PREFETCH) ] = { 1065 [ C(RESULT_ACCESS) ] = 0x01b7, 1066 [ C(RESULT_MISS) ] = 0x01b7, 1067 }, 1068 }, 1069 }; 1070 1071 /* 1072 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits; 1073 * See IA32 SDM Vol 3B 30.6.1.3 1074 */ 1075 1076 #define NHM_DMND_DATA_RD (1 << 0) 1077 #define NHM_DMND_RFO (1 << 1) 1078 #define NHM_DMND_IFETCH (1 << 2) 1079 #define NHM_DMND_WB (1 << 3) 1080 #define NHM_PF_DATA_RD (1 << 4) 1081 #define NHM_PF_DATA_RFO (1 << 5) 1082 #define NHM_PF_IFETCH (1 << 6) 1083 #define NHM_OFFCORE_OTHER (1 << 7) 1084 #define NHM_UNCORE_HIT (1 << 8) 1085 #define NHM_OTHER_CORE_HIT_SNP (1 << 9) 1086 #define NHM_OTHER_CORE_HITM (1 << 10) 1087 /* reserved */ 1088 #define NHM_REMOTE_CACHE_FWD (1 << 12) 1089 #define NHM_REMOTE_DRAM (1 << 13) 1090 #define NHM_LOCAL_DRAM (1 << 14) 1091 #define NHM_NON_DRAM (1 << 15) 1092 1093 #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD) 1094 #define NHM_REMOTE (NHM_REMOTE_DRAM) 1095 1096 #define NHM_DMND_READ (NHM_DMND_DATA_RD) 1097 #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB) 1098 #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO) 1099 1100 #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM) 1101 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD) 1102 #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS) 1103 1104 static __initconst const u64 nehalem_hw_cache_extra_regs 1105 [PERF_COUNT_HW_CACHE_MAX] 1106 [PERF_COUNT_HW_CACHE_OP_MAX] 1107 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1108 { 1109 [ C(LL ) ] = { 1110 [ C(OP_READ) ] = { 1111 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS, 1112 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS, 1113 }, 1114 [ C(OP_WRITE) ] = { 1115 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS, 1116 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS, 1117 }, 1118 [ C(OP_PREFETCH) ] = { 1119 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS, 1120 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS, 1121 }, 1122 }, 1123 [ C(NODE) ] = { 1124 [ C(OP_READ) ] = { 1125 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE, 1126 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE, 1127 }, 1128 [ C(OP_WRITE) ] = { 1129 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE, 1130 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE, 1131 }, 1132 [ C(OP_PREFETCH) ] = { 1133 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE, 1134 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE, 1135 }, 1136 }, 1137 }; 1138 1139 static __initconst const u64 nehalem_hw_cache_event_ids 1140 [PERF_COUNT_HW_CACHE_MAX] 1141 [PERF_COUNT_HW_CACHE_OP_MAX] 1142 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1143 { 1144 [ C(L1D) ] = { 1145 [ C(OP_READ) ] = { 1146 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ 1147 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */ 1148 }, 1149 [ C(OP_WRITE) ] = { 1150 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ 1151 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */ 1152 }, 1153 [ C(OP_PREFETCH) ] = { 1154 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */ 1155 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */ 1156 }, 1157 }, 1158 [ C(L1I ) ] = { 1159 [ C(OP_READ) ] = { 1160 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ 1161 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ 1162 }, 1163 [ C(OP_WRITE) ] = { 1164 [ C(RESULT_ACCESS) ] = -1, 1165 [ C(RESULT_MISS) ] = -1, 1166 }, 1167 [ C(OP_PREFETCH) ] = { 1168 [ C(RESULT_ACCESS) ] = 0x0, 1169 [ C(RESULT_MISS) ] = 0x0, 1170 }, 1171 }, 1172 [ C(LL ) ] = { 1173 [ C(OP_READ) ] = { 1174 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ 1175 [ C(RESULT_ACCESS) ] = 0x01b7, 1176 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ 1177 [ C(RESULT_MISS) ] = 0x01b7, 1178 }, 1179 /* 1180 * Use RFO, not WRITEBACK, because a write miss would typically occur 1181 * on RFO. 1182 */ 1183 [ C(OP_WRITE) ] = { 1184 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ 1185 [ C(RESULT_ACCESS) ] = 0x01b7, 1186 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ 1187 [ C(RESULT_MISS) ] = 0x01b7, 1188 }, 1189 [ C(OP_PREFETCH) ] = { 1190 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ 1191 [ C(RESULT_ACCESS) ] = 0x01b7, 1192 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ 1193 [ C(RESULT_MISS) ] = 0x01b7, 1194 }, 1195 }, 1196 [ C(DTLB) ] = { 1197 [ C(OP_READ) ] = { 1198 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */ 1199 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */ 1200 }, 1201 [ C(OP_WRITE) ] = { 1202 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */ 1203 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */ 1204 }, 1205 [ C(OP_PREFETCH) ] = { 1206 [ C(RESULT_ACCESS) ] = 0x0, 1207 [ C(RESULT_MISS) ] = 0x0, 1208 }, 1209 }, 1210 [ C(ITLB) ] = { 1211 [ C(OP_READ) ] = { 1212 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */ 1213 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */ 1214 }, 1215 [ C(OP_WRITE) ] = { 1216 [ C(RESULT_ACCESS) ] = -1, 1217 [ C(RESULT_MISS) ] = -1, 1218 }, 1219 [ C(OP_PREFETCH) ] = { 1220 [ C(RESULT_ACCESS) ] = -1, 1221 [ C(RESULT_MISS) ] = -1, 1222 }, 1223 }, 1224 [ C(BPU ) ] = { 1225 [ C(OP_READ) ] = { 1226 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ 1227 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */ 1228 }, 1229 [ C(OP_WRITE) ] = { 1230 [ C(RESULT_ACCESS) ] = -1, 1231 [ C(RESULT_MISS) ] = -1, 1232 }, 1233 [ C(OP_PREFETCH) ] = { 1234 [ C(RESULT_ACCESS) ] = -1, 1235 [ C(RESULT_MISS) ] = -1, 1236 }, 1237 }, 1238 [ C(NODE) ] = { 1239 [ C(OP_READ) ] = { 1240 [ C(RESULT_ACCESS) ] = 0x01b7, 1241 [ C(RESULT_MISS) ] = 0x01b7, 1242 }, 1243 [ C(OP_WRITE) ] = { 1244 [ C(RESULT_ACCESS) ] = 0x01b7, 1245 [ C(RESULT_MISS) ] = 0x01b7, 1246 }, 1247 [ C(OP_PREFETCH) ] = { 1248 [ C(RESULT_ACCESS) ] = 0x01b7, 1249 [ C(RESULT_MISS) ] = 0x01b7, 1250 }, 1251 }, 1252 }; 1253 1254 static __initconst const u64 core2_hw_cache_event_ids 1255 [PERF_COUNT_HW_CACHE_MAX] 1256 [PERF_COUNT_HW_CACHE_OP_MAX] 1257 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1258 { 1259 [ C(L1D) ] = { 1260 [ C(OP_READ) ] = { 1261 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */ 1262 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */ 1263 }, 1264 [ C(OP_WRITE) ] = { 1265 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */ 1266 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */ 1267 }, 1268 [ C(OP_PREFETCH) ] = { 1269 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */ 1270 [ C(RESULT_MISS) ] = 0, 1271 }, 1272 }, 1273 [ C(L1I ) ] = { 1274 [ C(OP_READ) ] = { 1275 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */ 1276 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */ 1277 }, 1278 [ C(OP_WRITE) ] = { 1279 [ C(RESULT_ACCESS) ] = -1, 1280 [ C(RESULT_MISS) ] = -1, 1281 }, 1282 [ C(OP_PREFETCH) ] = { 1283 [ C(RESULT_ACCESS) ] = 0, 1284 [ C(RESULT_MISS) ] = 0, 1285 }, 1286 }, 1287 [ C(LL ) ] = { 1288 [ C(OP_READ) ] = { 1289 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */ 1290 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */ 1291 }, 1292 [ C(OP_WRITE) ] = { 1293 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */ 1294 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */ 1295 }, 1296 [ C(OP_PREFETCH) ] = { 1297 [ C(RESULT_ACCESS) ] = 0, 1298 [ C(RESULT_MISS) ] = 0, 1299 }, 1300 }, 1301 [ C(DTLB) ] = { 1302 [ C(OP_READ) ] = { 1303 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */ 1304 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */ 1305 }, 1306 [ C(OP_WRITE) ] = { 1307 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */ 1308 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */ 1309 }, 1310 [ C(OP_PREFETCH) ] = { 1311 [ C(RESULT_ACCESS) ] = 0, 1312 [ C(RESULT_MISS) ] = 0, 1313 }, 1314 }, 1315 [ C(ITLB) ] = { 1316 [ C(OP_READ) ] = { 1317 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ 1318 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */ 1319 }, 1320 [ C(OP_WRITE) ] = { 1321 [ C(RESULT_ACCESS) ] = -1, 1322 [ C(RESULT_MISS) ] = -1, 1323 }, 1324 [ C(OP_PREFETCH) ] = { 1325 [ C(RESULT_ACCESS) ] = -1, 1326 [ C(RESULT_MISS) ] = -1, 1327 }, 1328 }, 1329 [ C(BPU ) ] = { 1330 [ C(OP_READ) ] = { 1331 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ 1332 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ 1333 }, 1334 [ C(OP_WRITE) ] = { 1335 [ C(RESULT_ACCESS) ] = -1, 1336 [ C(RESULT_MISS) ] = -1, 1337 }, 1338 [ C(OP_PREFETCH) ] = { 1339 [ C(RESULT_ACCESS) ] = -1, 1340 [ C(RESULT_MISS) ] = -1, 1341 }, 1342 }, 1343 }; 1344 1345 static __initconst const u64 atom_hw_cache_event_ids 1346 [PERF_COUNT_HW_CACHE_MAX] 1347 [PERF_COUNT_HW_CACHE_OP_MAX] 1348 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1349 { 1350 [ C(L1D) ] = { 1351 [ C(OP_READ) ] = { 1352 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */ 1353 [ C(RESULT_MISS) ] = 0, 1354 }, 1355 [ C(OP_WRITE) ] = { 1356 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */ 1357 [ C(RESULT_MISS) ] = 0, 1358 }, 1359 [ C(OP_PREFETCH) ] = { 1360 [ C(RESULT_ACCESS) ] = 0x0, 1361 [ C(RESULT_MISS) ] = 0, 1362 }, 1363 }, 1364 [ C(L1I ) ] = { 1365 [ C(OP_READ) ] = { 1366 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ 1367 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ 1368 }, 1369 [ C(OP_WRITE) ] = { 1370 [ C(RESULT_ACCESS) ] = -1, 1371 [ C(RESULT_MISS) ] = -1, 1372 }, 1373 [ C(OP_PREFETCH) ] = { 1374 [ C(RESULT_ACCESS) ] = 0, 1375 [ C(RESULT_MISS) ] = 0, 1376 }, 1377 }, 1378 [ C(LL ) ] = { 1379 [ C(OP_READ) ] = { 1380 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */ 1381 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */ 1382 }, 1383 [ C(OP_WRITE) ] = { 1384 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */ 1385 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */ 1386 }, 1387 [ C(OP_PREFETCH) ] = { 1388 [ C(RESULT_ACCESS) ] = 0, 1389 [ C(RESULT_MISS) ] = 0, 1390 }, 1391 }, 1392 [ C(DTLB) ] = { 1393 [ C(OP_READ) ] = { 1394 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */ 1395 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */ 1396 }, 1397 [ C(OP_WRITE) ] = { 1398 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */ 1399 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */ 1400 }, 1401 [ C(OP_PREFETCH) ] = { 1402 [ C(RESULT_ACCESS) ] = 0, 1403 [ C(RESULT_MISS) ] = 0, 1404 }, 1405 }, 1406 [ C(ITLB) ] = { 1407 [ C(OP_READ) ] = { 1408 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ 1409 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */ 1410 }, 1411 [ C(OP_WRITE) ] = { 1412 [ C(RESULT_ACCESS) ] = -1, 1413 [ C(RESULT_MISS) ] = -1, 1414 }, 1415 [ C(OP_PREFETCH) ] = { 1416 [ C(RESULT_ACCESS) ] = -1, 1417 [ C(RESULT_MISS) ] = -1, 1418 }, 1419 }, 1420 [ C(BPU ) ] = { 1421 [ C(OP_READ) ] = { 1422 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ 1423 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ 1424 }, 1425 [ C(OP_WRITE) ] = { 1426 [ C(RESULT_ACCESS) ] = -1, 1427 [ C(RESULT_MISS) ] = -1, 1428 }, 1429 [ C(OP_PREFETCH) ] = { 1430 [ C(RESULT_ACCESS) ] = -1, 1431 [ C(RESULT_MISS) ] = -1, 1432 }, 1433 }, 1434 }; 1435 1436 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c"); 1437 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2"); 1438 /* no_alloc_cycles.not_delivered */ 1439 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm, 1440 "event=0xca,umask=0x50"); 1441 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2"); 1442 /* uops_retired.all */ 1443 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm, 1444 "event=0xc2,umask=0x10"); 1445 /* uops_retired.all */ 1446 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm, 1447 "event=0xc2,umask=0x10"); 1448 1449 static struct attribute *slm_events_attrs[] = { 1450 EVENT_PTR(td_total_slots_slm), 1451 EVENT_PTR(td_total_slots_scale_slm), 1452 EVENT_PTR(td_fetch_bubbles_slm), 1453 EVENT_PTR(td_fetch_bubbles_scale_slm), 1454 EVENT_PTR(td_slots_issued_slm), 1455 EVENT_PTR(td_slots_retired_slm), 1456 NULL 1457 }; 1458 1459 static struct extra_reg intel_slm_extra_regs[] __read_mostly = 1460 { 1461 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 1462 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0), 1463 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1), 1464 EVENT_EXTRA_END 1465 }; 1466 1467 #define SLM_DMND_READ SNB_DMND_DATA_RD 1468 #define SLM_DMND_WRITE SNB_DMND_RFO 1469 #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO) 1470 1471 #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM) 1472 #define SLM_LLC_ACCESS SNB_RESP_ANY 1473 #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM) 1474 1475 static __initconst const u64 slm_hw_cache_extra_regs 1476 [PERF_COUNT_HW_CACHE_MAX] 1477 [PERF_COUNT_HW_CACHE_OP_MAX] 1478 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1479 { 1480 [ C(LL ) ] = { 1481 [ C(OP_READ) ] = { 1482 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS, 1483 [ C(RESULT_MISS) ] = 0, 1484 }, 1485 [ C(OP_WRITE) ] = { 1486 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS, 1487 [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS, 1488 }, 1489 [ C(OP_PREFETCH) ] = { 1490 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS, 1491 [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS, 1492 }, 1493 }, 1494 }; 1495 1496 static __initconst const u64 slm_hw_cache_event_ids 1497 [PERF_COUNT_HW_CACHE_MAX] 1498 [PERF_COUNT_HW_CACHE_OP_MAX] 1499 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 1500 { 1501 [ C(L1D) ] = { 1502 [ C(OP_READ) ] = { 1503 [ C(RESULT_ACCESS) ] = 0, 1504 [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */ 1505 }, 1506 [ C(OP_WRITE) ] = { 1507 [ C(RESULT_ACCESS) ] = 0, 1508 [ C(RESULT_MISS) ] = 0, 1509 }, 1510 [ C(OP_PREFETCH) ] = { 1511 [ C(RESULT_ACCESS) ] = 0, 1512 [ C(RESULT_MISS) ] = 0, 1513 }, 1514 }, 1515 [ C(L1I ) ] = { 1516 [ C(OP_READ) ] = { 1517 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */ 1518 [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */ 1519 }, 1520 [ C(OP_WRITE) ] = { 1521 [ C(RESULT_ACCESS) ] = -1, 1522 [ C(RESULT_MISS) ] = -1, 1523 }, 1524 [ C(OP_PREFETCH) ] = { 1525 [ C(RESULT_ACCESS) ] = 0, 1526 [ C(RESULT_MISS) ] = 0, 1527 }, 1528 }, 1529 [ C(LL ) ] = { 1530 [ C(OP_READ) ] = { 1531 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ 1532 [ C(RESULT_ACCESS) ] = 0x01b7, 1533 [ C(RESULT_MISS) ] = 0, 1534 }, 1535 [ C(OP_WRITE) ] = { 1536 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ 1537 [ C(RESULT_ACCESS) ] = 0x01b7, 1538 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ 1539 [ C(RESULT_MISS) ] = 0x01b7, 1540 }, 1541 [ C(OP_PREFETCH) ] = { 1542 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ 1543 [ C(RESULT_ACCESS) ] = 0x01b7, 1544 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ 1545 [ C(RESULT_MISS) ] = 0x01b7, 1546 }, 1547 }, 1548 [ C(DTLB) ] = { 1549 [ C(OP_READ) ] = { 1550 [ C(RESULT_ACCESS) ] = 0, 1551 [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */ 1552 }, 1553 [ C(OP_WRITE) ] = { 1554 [ C(RESULT_ACCESS) ] = 0, 1555 [ C(RESULT_MISS) ] = 0, 1556 }, 1557 [ C(OP_PREFETCH) ] = { 1558 [ C(RESULT_ACCESS) ] = 0, 1559 [ C(RESULT_MISS) ] = 0, 1560 }, 1561 }, 1562 [ C(ITLB) ] = { 1563 [ C(OP_READ) ] = { 1564 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ 1565 [ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */ 1566 }, 1567 [ C(OP_WRITE) ] = { 1568 [ C(RESULT_ACCESS) ] = -1, 1569 [ C(RESULT_MISS) ] = -1, 1570 }, 1571 [ C(OP_PREFETCH) ] = { 1572 [ C(RESULT_ACCESS) ] = -1, 1573 [ C(RESULT_MISS) ] = -1, 1574 }, 1575 }, 1576 [ C(BPU ) ] = { 1577 [ C(OP_READ) ] = { 1578 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ 1579 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ 1580 }, 1581 [ C(OP_WRITE) ] = { 1582 [ C(RESULT_ACCESS) ] = -1, 1583 [ C(RESULT_MISS) ] = -1, 1584 }, 1585 [ C(OP_PREFETCH) ] = { 1586 [ C(RESULT_ACCESS) ] = -1, 1587 [ C(RESULT_MISS) ] = -1, 1588 }, 1589 }, 1590 }; 1591 1592 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c"); 1593 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3"); 1594 /* UOPS_NOT_DELIVERED.ANY */ 1595 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c"); 1596 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */ 1597 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02"); 1598 /* UOPS_RETIRED.ANY */ 1599 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2"); 1600 /* UOPS_ISSUED.ANY */ 1601 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e"); 1602 1603 static struct attribute *glm_events_attrs[] = { 1604 EVENT_PTR(td_total_slots_glm), 1605 EVENT_PTR(td_total_slots_scale_glm), 1606 EVENT_PTR(td_fetch_bubbles_glm), 1607 EVENT_PTR(td_recovery_bubbles_glm), 1608 EVENT_PTR(td_slots_issued_glm), 1609 EVENT_PTR(td_slots_retired_glm), 1610 NULL 1611 }; 1612 1613 static struct extra_reg intel_glm_extra_regs[] __read_mostly = { 1614 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 1615 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0), 1616 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1), 1617 EVENT_EXTRA_END 1618 }; 1619 1620 #define GLM_DEMAND_DATA_RD BIT_ULL(0) 1621 #define GLM_DEMAND_RFO BIT_ULL(1) 1622 #define GLM_ANY_RESPONSE BIT_ULL(16) 1623 #define GLM_SNP_NONE_OR_MISS BIT_ULL(33) 1624 #define GLM_DEMAND_READ GLM_DEMAND_DATA_RD 1625 #define GLM_DEMAND_WRITE GLM_DEMAND_RFO 1626 #define GLM_DEMAND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO) 1627 #define GLM_LLC_ACCESS GLM_ANY_RESPONSE 1628 #define GLM_SNP_ANY (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM) 1629 #define GLM_LLC_MISS (GLM_SNP_ANY|SNB_NON_DRAM) 1630 1631 static __initconst const u64 glm_hw_cache_event_ids 1632 [PERF_COUNT_HW_CACHE_MAX] 1633 [PERF_COUNT_HW_CACHE_OP_MAX] 1634 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1635 [C(L1D)] = { 1636 [C(OP_READ)] = { 1637 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 1638 [C(RESULT_MISS)] = 0x0, 1639 }, 1640 [C(OP_WRITE)] = { 1641 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 1642 [C(RESULT_MISS)] = 0x0, 1643 }, 1644 [C(OP_PREFETCH)] = { 1645 [C(RESULT_ACCESS)] = 0x0, 1646 [C(RESULT_MISS)] = 0x0, 1647 }, 1648 }, 1649 [C(L1I)] = { 1650 [C(OP_READ)] = { 1651 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */ 1652 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */ 1653 }, 1654 [C(OP_WRITE)] = { 1655 [C(RESULT_ACCESS)] = -1, 1656 [C(RESULT_MISS)] = -1, 1657 }, 1658 [C(OP_PREFETCH)] = { 1659 [C(RESULT_ACCESS)] = 0x0, 1660 [C(RESULT_MISS)] = 0x0, 1661 }, 1662 }, 1663 [C(LL)] = { 1664 [C(OP_READ)] = { 1665 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1666 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1667 }, 1668 [C(OP_WRITE)] = { 1669 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1670 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1671 }, 1672 [C(OP_PREFETCH)] = { 1673 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1674 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1675 }, 1676 }, 1677 [C(DTLB)] = { 1678 [C(OP_READ)] = { 1679 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 1680 [C(RESULT_MISS)] = 0x0, 1681 }, 1682 [C(OP_WRITE)] = { 1683 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 1684 [C(RESULT_MISS)] = 0x0, 1685 }, 1686 [C(OP_PREFETCH)] = { 1687 [C(RESULT_ACCESS)] = 0x0, 1688 [C(RESULT_MISS)] = 0x0, 1689 }, 1690 }, 1691 [C(ITLB)] = { 1692 [C(OP_READ)] = { 1693 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */ 1694 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */ 1695 }, 1696 [C(OP_WRITE)] = { 1697 [C(RESULT_ACCESS)] = -1, 1698 [C(RESULT_MISS)] = -1, 1699 }, 1700 [C(OP_PREFETCH)] = { 1701 [C(RESULT_ACCESS)] = -1, 1702 [C(RESULT_MISS)] = -1, 1703 }, 1704 }, 1705 [C(BPU)] = { 1706 [C(OP_READ)] = { 1707 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ 1708 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */ 1709 }, 1710 [C(OP_WRITE)] = { 1711 [C(RESULT_ACCESS)] = -1, 1712 [C(RESULT_MISS)] = -1, 1713 }, 1714 [C(OP_PREFETCH)] = { 1715 [C(RESULT_ACCESS)] = -1, 1716 [C(RESULT_MISS)] = -1, 1717 }, 1718 }, 1719 }; 1720 1721 static __initconst const u64 glm_hw_cache_extra_regs 1722 [PERF_COUNT_HW_CACHE_MAX] 1723 [PERF_COUNT_HW_CACHE_OP_MAX] 1724 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1725 [C(LL)] = { 1726 [C(OP_READ)] = { 1727 [C(RESULT_ACCESS)] = GLM_DEMAND_READ| 1728 GLM_LLC_ACCESS, 1729 [C(RESULT_MISS)] = GLM_DEMAND_READ| 1730 GLM_LLC_MISS, 1731 }, 1732 [C(OP_WRITE)] = { 1733 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE| 1734 GLM_LLC_ACCESS, 1735 [C(RESULT_MISS)] = GLM_DEMAND_WRITE| 1736 GLM_LLC_MISS, 1737 }, 1738 [C(OP_PREFETCH)] = { 1739 [C(RESULT_ACCESS)] = GLM_DEMAND_PREFETCH| 1740 GLM_LLC_ACCESS, 1741 [C(RESULT_MISS)] = GLM_DEMAND_PREFETCH| 1742 GLM_LLC_MISS, 1743 }, 1744 }, 1745 }; 1746 1747 static __initconst const u64 glp_hw_cache_event_ids 1748 [PERF_COUNT_HW_CACHE_MAX] 1749 [PERF_COUNT_HW_CACHE_OP_MAX] 1750 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1751 [C(L1D)] = { 1752 [C(OP_READ)] = { 1753 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 1754 [C(RESULT_MISS)] = 0x0, 1755 }, 1756 [C(OP_WRITE)] = { 1757 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 1758 [C(RESULT_MISS)] = 0x0, 1759 }, 1760 [C(OP_PREFETCH)] = { 1761 [C(RESULT_ACCESS)] = 0x0, 1762 [C(RESULT_MISS)] = 0x0, 1763 }, 1764 }, 1765 [C(L1I)] = { 1766 [C(OP_READ)] = { 1767 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */ 1768 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */ 1769 }, 1770 [C(OP_WRITE)] = { 1771 [C(RESULT_ACCESS)] = -1, 1772 [C(RESULT_MISS)] = -1, 1773 }, 1774 [C(OP_PREFETCH)] = { 1775 [C(RESULT_ACCESS)] = 0x0, 1776 [C(RESULT_MISS)] = 0x0, 1777 }, 1778 }, 1779 [C(LL)] = { 1780 [C(OP_READ)] = { 1781 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1782 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1783 }, 1784 [C(OP_WRITE)] = { 1785 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1786 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ 1787 }, 1788 [C(OP_PREFETCH)] = { 1789 [C(RESULT_ACCESS)] = 0x0, 1790 [C(RESULT_MISS)] = 0x0, 1791 }, 1792 }, 1793 [C(DTLB)] = { 1794 [C(OP_READ)] = { 1795 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ 1796 [C(RESULT_MISS)] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */ 1797 }, 1798 [C(OP_WRITE)] = { 1799 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ 1800 [C(RESULT_MISS)] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */ 1801 }, 1802 [C(OP_PREFETCH)] = { 1803 [C(RESULT_ACCESS)] = 0x0, 1804 [C(RESULT_MISS)] = 0x0, 1805 }, 1806 }, 1807 [C(ITLB)] = { 1808 [C(OP_READ)] = { 1809 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */ 1810 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */ 1811 }, 1812 [C(OP_WRITE)] = { 1813 [C(RESULT_ACCESS)] = -1, 1814 [C(RESULT_MISS)] = -1, 1815 }, 1816 [C(OP_PREFETCH)] = { 1817 [C(RESULT_ACCESS)] = -1, 1818 [C(RESULT_MISS)] = -1, 1819 }, 1820 }, 1821 [C(BPU)] = { 1822 [C(OP_READ)] = { 1823 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ 1824 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */ 1825 }, 1826 [C(OP_WRITE)] = { 1827 [C(RESULT_ACCESS)] = -1, 1828 [C(RESULT_MISS)] = -1, 1829 }, 1830 [C(OP_PREFETCH)] = { 1831 [C(RESULT_ACCESS)] = -1, 1832 [C(RESULT_MISS)] = -1, 1833 }, 1834 }, 1835 }; 1836 1837 static __initconst const u64 glp_hw_cache_extra_regs 1838 [PERF_COUNT_HW_CACHE_MAX] 1839 [PERF_COUNT_HW_CACHE_OP_MAX] 1840 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1841 [C(LL)] = { 1842 [C(OP_READ)] = { 1843 [C(RESULT_ACCESS)] = GLM_DEMAND_READ| 1844 GLM_LLC_ACCESS, 1845 [C(RESULT_MISS)] = GLM_DEMAND_READ| 1846 GLM_LLC_MISS, 1847 }, 1848 [C(OP_WRITE)] = { 1849 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE| 1850 GLM_LLC_ACCESS, 1851 [C(RESULT_MISS)] = GLM_DEMAND_WRITE| 1852 GLM_LLC_MISS, 1853 }, 1854 [C(OP_PREFETCH)] = { 1855 [C(RESULT_ACCESS)] = 0x0, 1856 [C(RESULT_MISS)] = 0x0, 1857 }, 1858 }, 1859 }; 1860 1861 #define TNT_LOCAL_DRAM BIT_ULL(26) 1862 #define TNT_DEMAND_READ GLM_DEMAND_DATA_RD 1863 #define TNT_DEMAND_WRITE GLM_DEMAND_RFO 1864 #define TNT_LLC_ACCESS GLM_ANY_RESPONSE 1865 #define TNT_SNP_ANY (SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \ 1866 SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM) 1867 #define TNT_LLC_MISS (TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM) 1868 1869 static __initconst const u64 tnt_hw_cache_extra_regs 1870 [PERF_COUNT_HW_CACHE_MAX] 1871 [PERF_COUNT_HW_CACHE_OP_MAX] 1872 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1873 [C(LL)] = { 1874 [C(OP_READ)] = { 1875 [C(RESULT_ACCESS)] = TNT_DEMAND_READ| 1876 TNT_LLC_ACCESS, 1877 [C(RESULT_MISS)] = TNT_DEMAND_READ| 1878 TNT_LLC_MISS, 1879 }, 1880 [C(OP_WRITE)] = { 1881 [C(RESULT_ACCESS)] = TNT_DEMAND_WRITE| 1882 TNT_LLC_ACCESS, 1883 [C(RESULT_MISS)] = TNT_DEMAND_WRITE| 1884 TNT_LLC_MISS, 1885 }, 1886 [C(OP_PREFETCH)] = { 1887 [C(RESULT_ACCESS)] = 0x0, 1888 [C(RESULT_MISS)] = 0x0, 1889 }, 1890 }, 1891 }; 1892 1893 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = { 1894 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ 1895 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffffff9fffull, RSP_0), 1896 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xffffff9fffull, RSP_1), 1897 EVENT_EXTRA_END 1898 }; 1899 1900 #define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */ 1901 #define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */ 1902 #define KNL_MCDRAM_LOCAL BIT_ULL(21) 1903 #define KNL_MCDRAM_FAR BIT_ULL(22) 1904 #define KNL_DDR_LOCAL BIT_ULL(23) 1905 #define KNL_DDR_FAR BIT_ULL(24) 1906 #define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \ 1907 KNL_DDR_LOCAL | KNL_DDR_FAR) 1908 #define KNL_L2_READ SLM_DMND_READ 1909 #define KNL_L2_WRITE SLM_DMND_WRITE 1910 #define KNL_L2_PREFETCH SLM_DMND_PREFETCH 1911 #define KNL_L2_ACCESS SLM_LLC_ACCESS 1912 #define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \ 1913 KNL_DRAM_ANY | SNB_SNP_ANY | \ 1914 SNB_NON_DRAM) 1915 1916 static __initconst const u64 knl_hw_cache_extra_regs 1917 [PERF_COUNT_HW_CACHE_MAX] 1918 [PERF_COUNT_HW_CACHE_OP_MAX] 1919 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1920 [C(LL)] = { 1921 [C(OP_READ)] = { 1922 [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS, 1923 [C(RESULT_MISS)] = 0, 1924 }, 1925 [C(OP_WRITE)] = { 1926 [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS, 1927 [C(RESULT_MISS)] = KNL_L2_WRITE | KNL_L2_MISS, 1928 }, 1929 [C(OP_PREFETCH)] = { 1930 [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS, 1931 [C(RESULT_MISS)] = KNL_L2_PREFETCH | KNL_L2_MISS, 1932 }, 1933 }, 1934 }; 1935 1936 /* 1937 * Used from PMIs where the LBRs are already disabled. 1938 * 1939 * This function could be called consecutively. It is required to remain in 1940 * disabled state if called consecutively. 1941 * 1942 * During consecutive calls, the same disable value will be written to related 1943 * registers, so the PMU state remains unchanged. 1944 * 1945 * intel_bts events don't coexist with intel PMU's BTS events because of 1946 * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them 1947 * disabled around intel PMU's event batching etc, only inside the PMI handler. 1948 */ 1949 static void __intel_pmu_disable_all(void) 1950 { 1951 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1952 1953 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0); 1954 1955 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) 1956 intel_pmu_disable_bts(); 1957 1958 intel_pmu_pebs_disable_all(); 1959 } 1960 1961 static void intel_pmu_disable_all(void) 1962 { 1963 __intel_pmu_disable_all(); 1964 intel_pmu_lbr_disable_all(); 1965 } 1966 1967 static void __intel_pmu_enable_all(int added, bool pmi) 1968 { 1969 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1970 1971 intel_pmu_pebs_enable_all(); 1972 intel_pmu_lbr_enable_all(pmi); 1973 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 1974 x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask); 1975 1976 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) { 1977 struct perf_event *event = 1978 cpuc->events[INTEL_PMC_IDX_FIXED_BTS]; 1979 1980 if (WARN_ON_ONCE(!event)) 1981 return; 1982 1983 intel_pmu_enable_bts(event->hw.config); 1984 } 1985 } 1986 1987 static void intel_pmu_enable_all(int added) 1988 { 1989 __intel_pmu_enable_all(added, false); 1990 } 1991 1992 /* 1993 * Workaround for: 1994 * Intel Errata AAK100 (model 26) 1995 * Intel Errata AAP53 (model 30) 1996 * Intel Errata BD53 (model 44) 1997 * 1998 * The official story: 1999 * These chips need to be 'reset' when adding counters by programming the 2000 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either 2001 * in sequence on the same PMC or on different PMCs. 2002 * 2003 * In practise it appears some of these events do in fact count, and 2004 * we need to program all 4 events. 2005 */ 2006 static void intel_pmu_nhm_workaround(void) 2007 { 2008 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2009 static const unsigned long nhm_magic[4] = { 2010 0x4300B5, 2011 0x4300D2, 2012 0x4300B1, 2013 0x4300B1 2014 }; 2015 struct perf_event *event; 2016 int i; 2017 2018 /* 2019 * The Errata requires below steps: 2020 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL; 2021 * 2) Configure 4 PERFEVTSELx with the magic events and clear 2022 * the corresponding PMCx; 2023 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL; 2024 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL; 2025 * 5) Clear 4 pairs of ERFEVTSELx and PMCx; 2026 */ 2027 2028 /* 2029 * The real steps we choose are a little different from above. 2030 * A) To reduce MSR operations, we don't run step 1) as they 2031 * are already cleared before this function is called; 2032 * B) Call x86_perf_event_update to save PMCx before configuring 2033 * PERFEVTSELx with magic number; 2034 * C) With step 5), we do clear only when the PERFEVTSELx is 2035 * not used currently. 2036 * D) Call x86_perf_event_set_period to restore PMCx; 2037 */ 2038 2039 /* We always operate 4 pairs of PERF Counters */ 2040 for (i = 0; i < 4; i++) { 2041 event = cpuc->events[i]; 2042 if (event) 2043 x86_perf_event_update(event); 2044 } 2045 2046 for (i = 0; i < 4; i++) { 2047 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]); 2048 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0); 2049 } 2050 2051 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf); 2052 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0); 2053 2054 for (i = 0; i < 4; i++) { 2055 event = cpuc->events[i]; 2056 2057 if (event) { 2058 x86_perf_event_set_period(event); 2059 __x86_pmu_enable_event(&event->hw, 2060 ARCH_PERFMON_EVENTSEL_ENABLE); 2061 } else 2062 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0); 2063 } 2064 } 2065 2066 static void intel_pmu_nhm_enable_all(int added) 2067 { 2068 if (added) 2069 intel_pmu_nhm_workaround(); 2070 intel_pmu_enable_all(added); 2071 } 2072 2073 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on) 2074 { 2075 u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0; 2076 2077 if (cpuc->tfa_shadow != val) { 2078 cpuc->tfa_shadow = val; 2079 wrmsrl(MSR_TSX_FORCE_ABORT, val); 2080 } 2081 } 2082 2083 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr) 2084 { 2085 /* 2086 * We're going to use PMC3, make sure TFA is set before we touch it. 2087 */ 2088 if (cntr == 3) 2089 intel_set_tfa(cpuc, true); 2090 } 2091 2092 static void intel_tfa_pmu_enable_all(int added) 2093 { 2094 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2095 2096 /* 2097 * If we find PMC3 is no longer used when we enable the PMU, we can 2098 * clear TFA. 2099 */ 2100 if (!test_bit(3, cpuc->active_mask)) 2101 intel_set_tfa(cpuc, false); 2102 2103 intel_pmu_enable_all(added); 2104 } 2105 2106 static void enable_counter_freeze(void) 2107 { 2108 update_debugctlmsr(get_debugctlmsr() | 2109 DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI); 2110 } 2111 2112 static void disable_counter_freeze(void) 2113 { 2114 update_debugctlmsr(get_debugctlmsr() & 2115 ~DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI); 2116 } 2117 2118 static inline u64 intel_pmu_get_status(void) 2119 { 2120 u64 status; 2121 2122 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); 2123 2124 return status; 2125 } 2126 2127 static inline void intel_pmu_ack_status(u64 ack) 2128 { 2129 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack); 2130 } 2131 2132 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc) 2133 { 2134 int idx = hwc->idx - INTEL_PMC_IDX_FIXED; 2135 u64 ctrl_val, mask; 2136 2137 mask = 0xfULL << (idx * 4); 2138 2139 rdmsrl(hwc->config_base, ctrl_val); 2140 ctrl_val &= ~mask; 2141 wrmsrl(hwc->config_base, ctrl_val); 2142 } 2143 2144 static inline bool event_is_checkpointed(struct perf_event *event) 2145 { 2146 return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0; 2147 } 2148 2149 static void intel_pmu_disable_event(struct perf_event *event) 2150 { 2151 struct hw_perf_event *hwc = &event->hw; 2152 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2153 2154 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) { 2155 intel_pmu_disable_bts(); 2156 intel_pmu_drain_bts_buffer(); 2157 return; 2158 } 2159 2160 cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx); 2161 cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx); 2162 cpuc->intel_cp_status &= ~(1ull << hwc->idx); 2163 2164 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) 2165 intel_pmu_disable_fixed(hwc); 2166 else 2167 x86_pmu_disable_event(event); 2168 2169 /* 2170 * Needs to be called after x86_pmu_disable_event, 2171 * so we don't trigger the event without PEBS bit set. 2172 */ 2173 if (unlikely(event->attr.precise_ip)) 2174 intel_pmu_pebs_disable(event); 2175 } 2176 2177 static void intel_pmu_del_event(struct perf_event *event) 2178 { 2179 if (needs_branch_stack(event)) 2180 intel_pmu_lbr_del(event); 2181 if (event->attr.precise_ip) 2182 intel_pmu_pebs_del(event); 2183 } 2184 2185 static void intel_pmu_read_event(struct perf_event *event) 2186 { 2187 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD) 2188 intel_pmu_auto_reload_read(event); 2189 else 2190 x86_perf_event_update(event); 2191 } 2192 2193 static void intel_pmu_enable_fixed(struct perf_event *event) 2194 { 2195 struct hw_perf_event *hwc = &event->hw; 2196 int idx = hwc->idx - INTEL_PMC_IDX_FIXED; 2197 u64 ctrl_val, mask, bits = 0; 2198 2199 /* 2200 * Enable IRQ generation (0x8), if not PEBS, 2201 * and enable ring-3 counting (0x2) and ring-0 counting (0x1) 2202 * if requested: 2203 */ 2204 if (!event->attr.precise_ip) 2205 bits |= 0x8; 2206 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR) 2207 bits |= 0x2; 2208 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS) 2209 bits |= 0x1; 2210 2211 /* 2212 * ANY bit is supported in v3 and up 2213 */ 2214 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY) 2215 bits |= 0x4; 2216 2217 bits <<= (idx * 4); 2218 mask = 0xfULL << (idx * 4); 2219 2220 if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) { 2221 bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4); 2222 mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4); 2223 } 2224 2225 rdmsrl(hwc->config_base, ctrl_val); 2226 ctrl_val &= ~mask; 2227 ctrl_val |= bits; 2228 wrmsrl(hwc->config_base, ctrl_val); 2229 } 2230 2231 static void intel_pmu_enable_event(struct perf_event *event) 2232 { 2233 struct hw_perf_event *hwc = &event->hw; 2234 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2235 2236 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) { 2237 if (!__this_cpu_read(cpu_hw_events.enabled)) 2238 return; 2239 2240 intel_pmu_enable_bts(hwc->config); 2241 return; 2242 } 2243 2244 if (event->attr.exclude_host) 2245 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx); 2246 if (event->attr.exclude_guest) 2247 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx); 2248 2249 if (unlikely(event_is_checkpointed(event))) 2250 cpuc->intel_cp_status |= (1ull << hwc->idx); 2251 2252 if (unlikely(event->attr.precise_ip)) 2253 intel_pmu_pebs_enable(event); 2254 2255 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) { 2256 intel_pmu_enable_fixed(event); 2257 return; 2258 } 2259 2260 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); 2261 } 2262 2263 static void intel_pmu_add_event(struct perf_event *event) 2264 { 2265 if (event->attr.precise_ip) 2266 intel_pmu_pebs_add(event); 2267 if (needs_branch_stack(event)) 2268 intel_pmu_lbr_add(event); 2269 } 2270 2271 /* 2272 * Save and restart an expired event. Called by NMI contexts, 2273 * so it has to be careful about preempting normal event ops: 2274 */ 2275 int intel_pmu_save_and_restart(struct perf_event *event) 2276 { 2277 x86_perf_event_update(event); 2278 /* 2279 * For a checkpointed counter always reset back to 0. This 2280 * avoids a situation where the counter overflows, aborts the 2281 * transaction and is then set back to shortly before the 2282 * overflow, and overflows and aborts again. 2283 */ 2284 if (unlikely(event_is_checkpointed(event))) { 2285 /* No race with NMIs because the counter should not be armed */ 2286 wrmsrl(event->hw.event_base, 0); 2287 local64_set(&event->hw.prev_count, 0); 2288 } 2289 return x86_perf_event_set_period(event); 2290 } 2291 2292 static void intel_pmu_reset(void) 2293 { 2294 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds); 2295 unsigned long flags; 2296 int idx; 2297 2298 if (!x86_pmu.num_counters) 2299 return; 2300 2301 local_irq_save(flags); 2302 2303 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id()); 2304 2305 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 2306 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull); 2307 wrmsrl_safe(x86_pmu_event_addr(idx), 0ull); 2308 } 2309 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) 2310 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull); 2311 2312 if (ds) 2313 ds->bts_index = ds->bts_buffer_base; 2314 2315 /* Ack all overflows and disable fixed counters */ 2316 if (x86_pmu.version >= 2) { 2317 intel_pmu_ack_status(intel_pmu_get_status()); 2318 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0); 2319 } 2320 2321 /* Reset LBRs and LBR freezing */ 2322 if (x86_pmu.lbr_nr) { 2323 update_debugctlmsr(get_debugctlmsr() & 2324 ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR)); 2325 } 2326 2327 local_irq_restore(flags); 2328 } 2329 2330 static int handle_pmi_common(struct pt_regs *regs, u64 status) 2331 { 2332 struct perf_sample_data data; 2333 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2334 int bit; 2335 int handled = 0; 2336 2337 inc_irq_stat(apic_perf_irqs); 2338 2339 /* 2340 * Ignore a range of extra bits in status that do not indicate 2341 * overflow by themselves. 2342 */ 2343 status &= ~(GLOBAL_STATUS_COND_CHG | 2344 GLOBAL_STATUS_ASIF | 2345 GLOBAL_STATUS_LBRS_FROZEN); 2346 if (!status) 2347 return 0; 2348 /* 2349 * In case multiple PEBS events are sampled at the same time, 2350 * it is possible to have GLOBAL_STATUS bit 62 set indicating 2351 * PEBS buffer overflow and also seeing at most 3 PEBS counters 2352 * having their bits set in the status register. This is a sign 2353 * that there was at least one PEBS record pending at the time 2354 * of the PMU interrupt. PEBS counters must only be processed 2355 * via the drain_pebs() calls and not via the regular sample 2356 * processing loop coming after that the function, otherwise 2357 * phony regular samples may be generated in the sampling buffer 2358 * not marked with the EXACT tag. Another possibility is to have 2359 * one PEBS event and at least one non-PEBS event whic hoverflows 2360 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will 2361 * not be set, yet the overflow status bit for the PEBS counter will 2362 * be on Skylake. 2363 * 2364 * To avoid this problem, we systematically ignore the PEBS-enabled 2365 * counters from the GLOBAL_STATUS mask and we always process PEBS 2366 * events via drain_pebs(). 2367 */ 2368 if (x86_pmu.flags & PMU_FL_PEBS_ALL) 2369 status &= ~cpuc->pebs_enabled; 2370 else 2371 status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK); 2372 2373 /* 2374 * PEBS overflow sets bit 62 in the global status register 2375 */ 2376 if (__test_and_clear_bit(62, (unsigned long *)&status)) { 2377 handled++; 2378 x86_pmu.drain_pebs(regs); 2379 status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI; 2380 } 2381 2382 /* 2383 * Intel PT 2384 */ 2385 if (__test_and_clear_bit(55, (unsigned long *)&status)) { 2386 handled++; 2387 if (unlikely(perf_guest_cbs && perf_guest_cbs->is_in_guest() && 2388 perf_guest_cbs->handle_intel_pt_intr)) 2389 perf_guest_cbs->handle_intel_pt_intr(); 2390 else 2391 intel_pt_interrupt(); 2392 } 2393 2394 /* 2395 * Checkpointed counters can lead to 'spurious' PMIs because the 2396 * rollback caused by the PMI will have cleared the overflow status 2397 * bit. Therefore always force probe these counters. 2398 */ 2399 status |= cpuc->intel_cp_status; 2400 2401 for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) { 2402 struct perf_event *event = cpuc->events[bit]; 2403 2404 handled++; 2405 2406 if (!test_bit(bit, cpuc->active_mask)) 2407 continue; 2408 2409 if (!intel_pmu_save_and_restart(event)) 2410 continue; 2411 2412 perf_sample_data_init(&data, 0, event->hw.last_period); 2413 2414 if (has_branch_stack(event)) 2415 data.br_stack = &cpuc->lbr_stack; 2416 2417 if (perf_event_overflow(event, &data, regs)) 2418 x86_pmu_stop(event, 0); 2419 } 2420 2421 return handled; 2422 } 2423 2424 static bool disable_counter_freezing = true; 2425 static int __init intel_perf_counter_freezing_setup(char *s) 2426 { 2427 bool res; 2428 2429 if (kstrtobool(s, &res)) 2430 return -EINVAL; 2431 2432 disable_counter_freezing = !res; 2433 return 1; 2434 } 2435 __setup("perf_v4_pmi=", intel_perf_counter_freezing_setup); 2436 2437 /* 2438 * Simplified handler for Arch Perfmon v4: 2439 * - We rely on counter freezing/unfreezing to enable/disable the PMU. 2440 * This is done automatically on PMU ack. 2441 * - Ack the PMU only after the APIC. 2442 */ 2443 2444 static int intel_pmu_handle_irq_v4(struct pt_regs *regs) 2445 { 2446 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 2447 int handled = 0; 2448 bool bts = false; 2449 u64 status; 2450 int pmu_enabled = cpuc->enabled; 2451 int loops = 0; 2452 2453 /* PMU has been disabled because of counter freezing */ 2454 cpuc->enabled = 0; 2455 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) { 2456 bts = true; 2457 intel_bts_disable_local(); 2458 handled = intel_pmu_drain_bts_buffer(); 2459 handled += intel_bts_interrupt(); 2460 } 2461 status = intel_pmu_get_status(); 2462 if (!status) 2463 goto done; 2464 again: 2465 intel_pmu_lbr_read(); 2466 if (++loops > 100) { 2467 static bool warned; 2468 2469 if (!warned) { 2470 WARN(1, "perfevents: irq loop stuck!\n"); 2471 perf_event_print_debug(); 2472 warned = true; 2473 } 2474 intel_pmu_reset(); 2475 goto done; 2476 } 2477 2478 2479 handled += handle_pmi_common(regs, status); 2480 done: 2481 /* Ack the PMI in the APIC */ 2482 apic_write(APIC_LVTPC, APIC_DM_NMI); 2483 2484 /* 2485 * The counters start counting immediately while ack the status. 2486 * Make it as close as possible to IRET. This avoids bogus 2487 * freezing on Skylake CPUs. 2488 */ 2489 if (status) { 2490 intel_pmu_ack_status(status); 2491 } else { 2492 /* 2493 * CPU may issues two PMIs very close to each other. 2494 * When the PMI handler services the first one, the 2495 * GLOBAL_STATUS is already updated to reflect both. 2496 * When it IRETs, the second PMI is immediately 2497 * handled and it sees clear status. At the meantime, 2498 * there may be a third PMI, because the freezing bit 2499 * isn't set since the ack in first PMI handlers. 2500 * Double check if there is more work to be done. 2501 */ 2502 status = intel_pmu_get_status(); 2503 if (status) 2504 goto again; 2505 } 2506 2507 if (bts) 2508 intel_bts_enable_local(); 2509 cpuc->enabled = pmu_enabled; 2510 return handled; 2511 } 2512 2513 /* 2514 * This handler is triggered by the local APIC, so the APIC IRQ handling 2515 * rules apply: 2516 */ 2517 static int intel_pmu_handle_irq(struct pt_regs *regs) 2518 { 2519 struct cpu_hw_events *cpuc; 2520 int loops; 2521 u64 status; 2522 int handled; 2523 int pmu_enabled; 2524 2525 cpuc = this_cpu_ptr(&cpu_hw_events); 2526 2527 /* 2528 * Save the PMU state. 2529 * It needs to be restored when leaving the handler. 2530 */ 2531 pmu_enabled = cpuc->enabled; 2532 /* 2533 * No known reason to not always do late ACK, 2534 * but just in case do it opt-in. 2535 */ 2536 if (!x86_pmu.late_ack) 2537 apic_write(APIC_LVTPC, APIC_DM_NMI); 2538 intel_bts_disable_local(); 2539 cpuc->enabled = 0; 2540 __intel_pmu_disable_all(); 2541 handled = intel_pmu_drain_bts_buffer(); 2542 handled += intel_bts_interrupt(); 2543 status = intel_pmu_get_status(); 2544 if (!status) 2545 goto done; 2546 2547 loops = 0; 2548 again: 2549 intel_pmu_lbr_read(); 2550 intel_pmu_ack_status(status); 2551 if (++loops > 100) { 2552 static bool warned; 2553 2554 if (!warned) { 2555 WARN(1, "perfevents: irq loop stuck!\n"); 2556 perf_event_print_debug(); 2557 warned = true; 2558 } 2559 intel_pmu_reset(); 2560 goto done; 2561 } 2562 2563 handled += handle_pmi_common(regs, status); 2564 2565 /* 2566 * Repeat if there is more work to be done: 2567 */ 2568 status = intel_pmu_get_status(); 2569 if (status) 2570 goto again; 2571 2572 done: 2573 /* Only restore PMU state when it's active. See x86_pmu_disable(). */ 2574 cpuc->enabled = pmu_enabled; 2575 if (pmu_enabled) 2576 __intel_pmu_enable_all(0, true); 2577 intel_bts_enable_local(); 2578 2579 /* 2580 * Only unmask the NMI after the overflow counters 2581 * have been reset. This avoids spurious NMIs on 2582 * Haswell CPUs. 2583 */ 2584 if (x86_pmu.late_ack) 2585 apic_write(APIC_LVTPC, APIC_DM_NMI); 2586 return handled; 2587 } 2588 2589 static struct event_constraint * 2590 intel_bts_constraints(struct perf_event *event) 2591 { 2592 if (unlikely(intel_pmu_has_bts(event))) 2593 return &bts_constraint; 2594 2595 return NULL; 2596 } 2597 2598 static int intel_alt_er(int idx, u64 config) 2599 { 2600 int alt_idx = idx; 2601 2602 if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1)) 2603 return idx; 2604 2605 if (idx == EXTRA_REG_RSP_0) 2606 alt_idx = EXTRA_REG_RSP_1; 2607 2608 if (idx == EXTRA_REG_RSP_1) 2609 alt_idx = EXTRA_REG_RSP_0; 2610 2611 if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask) 2612 return idx; 2613 2614 return alt_idx; 2615 } 2616 2617 static void intel_fixup_er(struct perf_event *event, int idx) 2618 { 2619 event->hw.extra_reg.idx = idx; 2620 2621 if (idx == EXTRA_REG_RSP_0) { 2622 event->hw.config &= ~INTEL_ARCH_EVENT_MASK; 2623 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event; 2624 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0; 2625 } else if (idx == EXTRA_REG_RSP_1) { 2626 event->hw.config &= ~INTEL_ARCH_EVENT_MASK; 2627 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event; 2628 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1; 2629 } 2630 } 2631 2632 /* 2633 * manage allocation of shared extra msr for certain events 2634 * 2635 * sharing can be: 2636 * per-cpu: to be shared between the various events on a single PMU 2637 * per-core: per-cpu + shared by HT threads 2638 */ 2639 static struct event_constraint * 2640 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc, 2641 struct perf_event *event, 2642 struct hw_perf_event_extra *reg) 2643 { 2644 struct event_constraint *c = &emptyconstraint; 2645 struct er_account *era; 2646 unsigned long flags; 2647 int idx = reg->idx; 2648 2649 /* 2650 * reg->alloc can be set due to existing state, so for fake cpuc we 2651 * need to ignore this, otherwise we might fail to allocate proper fake 2652 * state for this extra reg constraint. Also see the comment below. 2653 */ 2654 if (reg->alloc && !cpuc->is_fake) 2655 return NULL; /* call x86_get_event_constraint() */ 2656 2657 again: 2658 era = &cpuc->shared_regs->regs[idx]; 2659 /* 2660 * we use spin_lock_irqsave() to avoid lockdep issues when 2661 * passing a fake cpuc 2662 */ 2663 raw_spin_lock_irqsave(&era->lock, flags); 2664 2665 if (!atomic_read(&era->ref) || era->config == reg->config) { 2666 2667 /* 2668 * If its a fake cpuc -- as per validate_{group,event}() we 2669 * shouldn't touch event state and we can avoid doing so 2670 * since both will only call get_event_constraints() once 2671 * on each event, this avoids the need for reg->alloc. 2672 * 2673 * Not doing the ER fixup will only result in era->reg being 2674 * wrong, but since we won't actually try and program hardware 2675 * this isn't a problem either. 2676 */ 2677 if (!cpuc->is_fake) { 2678 if (idx != reg->idx) 2679 intel_fixup_er(event, idx); 2680 2681 /* 2682 * x86_schedule_events() can call get_event_constraints() 2683 * multiple times on events in the case of incremental 2684 * scheduling(). reg->alloc ensures we only do the ER 2685 * allocation once. 2686 */ 2687 reg->alloc = 1; 2688 } 2689 2690 /* lock in msr value */ 2691 era->config = reg->config; 2692 era->reg = reg->reg; 2693 2694 /* one more user */ 2695 atomic_inc(&era->ref); 2696 2697 /* 2698 * need to call x86_get_event_constraint() 2699 * to check if associated event has constraints 2700 */ 2701 c = NULL; 2702 } else { 2703 idx = intel_alt_er(idx, reg->config); 2704 if (idx != reg->idx) { 2705 raw_spin_unlock_irqrestore(&era->lock, flags); 2706 goto again; 2707 } 2708 } 2709 raw_spin_unlock_irqrestore(&era->lock, flags); 2710 2711 return c; 2712 } 2713 2714 static void 2715 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc, 2716 struct hw_perf_event_extra *reg) 2717 { 2718 struct er_account *era; 2719 2720 /* 2721 * Only put constraint if extra reg was actually allocated. Also takes 2722 * care of event which do not use an extra shared reg. 2723 * 2724 * Also, if this is a fake cpuc we shouldn't touch any event state 2725 * (reg->alloc) and we don't care about leaving inconsistent cpuc state 2726 * either since it'll be thrown out. 2727 */ 2728 if (!reg->alloc || cpuc->is_fake) 2729 return; 2730 2731 era = &cpuc->shared_regs->regs[reg->idx]; 2732 2733 /* one fewer user */ 2734 atomic_dec(&era->ref); 2735 2736 /* allocate again next time */ 2737 reg->alloc = 0; 2738 } 2739 2740 static struct event_constraint * 2741 intel_shared_regs_constraints(struct cpu_hw_events *cpuc, 2742 struct perf_event *event) 2743 { 2744 struct event_constraint *c = NULL, *d; 2745 struct hw_perf_event_extra *xreg, *breg; 2746 2747 xreg = &event->hw.extra_reg; 2748 if (xreg->idx != EXTRA_REG_NONE) { 2749 c = __intel_shared_reg_get_constraints(cpuc, event, xreg); 2750 if (c == &emptyconstraint) 2751 return c; 2752 } 2753 breg = &event->hw.branch_reg; 2754 if (breg->idx != EXTRA_REG_NONE) { 2755 d = __intel_shared_reg_get_constraints(cpuc, event, breg); 2756 if (d == &emptyconstraint) { 2757 __intel_shared_reg_put_constraints(cpuc, xreg); 2758 c = d; 2759 } 2760 } 2761 return c; 2762 } 2763 2764 struct event_constraint * 2765 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 2766 struct perf_event *event) 2767 { 2768 struct event_constraint *c; 2769 2770 if (x86_pmu.event_constraints) { 2771 for_each_event_constraint(c, x86_pmu.event_constraints) { 2772 if (constraint_match(c, event->hw.config)) { 2773 event->hw.flags |= c->flags; 2774 return c; 2775 } 2776 } 2777 } 2778 2779 return &unconstrained; 2780 } 2781 2782 static struct event_constraint * 2783 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 2784 struct perf_event *event) 2785 { 2786 struct event_constraint *c; 2787 2788 c = intel_bts_constraints(event); 2789 if (c) 2790 return c; 2791 2792 c = intel_shared_regs_constraints(cpuc, event); 2793 if (c) 2794 return c; 2795 2796 c = intel_pebs_constraints(event); 2797 if (c) 2798 return c; 2799 2800 return x86_get_event_constraints(cpuc, idx, event); 2801 } 2802 2803 static void 2804 intel_start_scheduling(struct cpu_hw_events *cpuc) 2805 { 2806 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 2807 struct intel_excl_states *xl; 2808 int tid = cpuc->excl_thread_id; 2809 2810 /* 2811 * nothing needed if in group validation mode 2812 */ 2813 if (cpuc->is_fake || !is_ht_workaround_enabled()) 2814 return; 2815 2816 /* 2817 * no exclusion needed 2818 */ 2819 if (WARN_ON_ONCE(!excl_cntrs)) 2820 return; 2821 2822 xl = &excl_cntrs->states[tid]; 2823 2824 xl->sched_started = true; 2825 /* 2826 * lock shared state until we are done scheduling 2827 * in stop_event_scheduling() 2828 * makes scheduling appear as a transaction 2829 */ 2830 raw_spin_lock(&excl_cntrs->lock); 2831 } 2832 2833 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr) 2834 { 2835 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 2836 struct event_constraint *c = cpuc->event_constraint[idx]; 2837 struct intel_excl_states *xl; 2838 int tid = cpuc->excl_thread_id; 2839 2840 if (cpuc->is_fake || !is_ht_workaround_enabled()) 2841 return; 2842 2843 if (WARN_ON_ONCE(!excl_cntrs)) 2844 return; 2845 2846 if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) 2847 return; 2848 2849 xl = &excl_cntrs->states[tid]; 2850 2851 lockdep_assert_held(&excl_cntrs->lock); 2852 2853 if (c->flags & PERF_X86_EVENT_EXCL) 2854 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE; 2855 else 2856 xl->state[cntr] = INTEL_EXCL_SHARED; 2857 } 2858 2859 static void 2860 intel_stop_scheduling(struct cpu_hw_events *cpuc) 2861 { 2862 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 2863 struct intel_excl_states *xl; 2864 int tid = cpuc->excl_thread_id; 2865 2866 /* 2867 * nothing needed if in group validation mode 2868 */ 2869 if (cpuc->is_fake || !is_ht_workaround_enabled()) 2870 return; 2871 /* 2872 * no exclusion needed 2873 */ 2874 if (WARN_ON_ONCE(!excl_cntrs)) 2875 return; 2876 2877 xl = &excl_cntrs->states[tid]; 2878 2879 xl->sched_started = false; 2880 /* 2881 * release shared state lock (acquired in intel_start_scheduling()) 2882 */ 2883 raw_spin_unlock(&excl_cntrs->lock); 2884 } 2885 2886 static struct event_constraint * 2887 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx) 2888 { 2889 WARN_ON_ONCE(!cpuc->constraint_list); 2890 2891 if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) { 2892 struct event_constraint *cx; 2893 2894 /* 2895 * grab pre-allocated constraint entry 2896 */ 2897 cx = &cpuc->constraint_list[idx]; 2898 2899 /* 2900 * initialize dynamic constraint 2901 * with static constraint 2902 */ 2903 *cx = *c; 2904 2905 /* 2906 * mark constraint as dynamic 2907 */ 2908 cx->flags |= PERF_X86_EVENT_DYNAMIC; 2909 c = cx; 2910 } 2911 2912 return c; 2913 } 2914 2915 static struct event_constraint * 2916 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event, 2917 int idx, struct event_constraint *c) 2918 { 2919 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 2920 struct intel_excl_states *xlo; 2921 int tid = cpuc->excl_thread_id; 2922 int is_excl, i, w; 2923 2924 /* 2925 * validating a group does not require 2926 * enforcing cross-thread exclusion 2927 */ 2928 if (cpuc->is_fake || !is_ht_workaround_enabled()) 2929 return c; 2930 2931 /* 2932 * no exclusion needed 2933 */ 2934 if (WARN_ON_ONCE(!excl_cntrs)) 2935 return c; 2936 2937 /* 2938 * because we modify the constraint, we need 2939 * to make a copy. Static constraints come 2940 * from static const tables. 2941 * 2942 * only needed when constraint has not yet 2943 * been cloned (marked dynamic) 2944 */ 2945 c = dyn_constraint(cpuc, c, idx); 2946 2947 /* 2948 * From here on, the constraint is dynamic. 2949 * Either it was just allocated above, or it 2950 * was allocated during a earlier invocation 2951 * of this function 2952 */ 2953 2954 /* 2955 * state of sibling HT 2956 */ 2957 xlo = &excl_cntrs->states[tid ^ 1]; 2958 2959 /* 2960 * event requires exclusive counter access 2961 * across HT threads 2962 */ 2963 is_excl = c->flags & PERF_X86_EVENT_EXCL; 2964 if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) { 2965 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT; 2966 if (!cpuc->n_excl++) 2967 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1); 2968 } 2969 2970 /* 2971 * Modify static constraint with current dynamic 2972 * state of thread 2973 * 2974 * EXCLUSIVE: sibling counter measuring exclusive event 2975 * SHARED : sibling counter measuring non-exclusive event 2976 * UNUSED : sibling counter unused 2977 */ 2978 w = c->weight; 2979 for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) { 2980 /* 2981 * exclusive event in sibling counter 2982 * our corresponding counter cannot be used 2983 * regardless of our event 2984 */ 2985 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) { 2986 __clear_bit(i, c->idxmsk); 2987 w--; 2988 continue; 2989 } 2990 /* 2991 * if measuring an exclusive event, sibling 2992 * measuring non-exclusive, then counter cannot 2993 * be used 2994 */ 2995 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) { 2996 __clear_bit(i, c->idxmsk); 2997 w--; 2998 continue; 2999 } 3000 } 3001 3002 /* 3003 * if we return an empty mask, then switch 3004 * back to static empty constraint to avoid 3005 * the cost of freeing later on 3006 */ 3007 if (!w) 3008 c = &emptyconstraint; 3009 3010 c->weight = w; 3011 3012 return c; 3013 } 3014 3015 static struct event_constraint * 3016 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 3017 struct perf_event *event) 3018 { 3019 struct event_constraint *c1, *c2; 3020 3021 c1 = cpuc->event_constraint[idx]; 3022 3023 /* 3024 * first time only 3025 * - static constraint: no change across incremental scheduling calls 3026 * - dynamic constraint: handled by intel_get_excl_constraints() 3027 */ 3028 c2 = __intel_get_event_constraints(cpuc, idx, event); 3029 if (c1) { 3030 WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC)); 3031 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX); 3032 c1->weight = c2->weight; 3033 c2 = c1; 3034 } 3035 3036 if (cpuc->excl_cntrs) 3037 return intel_get_excl_constraints(cpuc, event, idx, c2); 3038 3039 return c2; 3040 } 3041 3042 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc, 3043 struct perf_event *event) 3044 { 3045 struct hw_perf_event *hwc = &event->hw; 3046 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; 3047 int tid = cpuc->excl_thread_id; 3048 struct intel_excl_states *xl; 3049 3050 /* 3051 * nothing needed if in group validation mode 3052 */ 3053 if (cpuc->is_fake) 3054 return; 3055 3056 if (WARN_ON_ONCE(!excl_cntrs)) 3057 return; 3058 3059 if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) { 3060 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT; 3061 if (!--cpuc->n_excl) 3062 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0); 3063 } 3064 3065 /* 3066 * If event was actually assigned, then mark the counter state as 3067 * unused now. 3068 */ 3069 if (hwc->idx >= 0) { 3070 xl = &excl_cntrs->states[tid]; 3071 3072 /* 3073 * put_constraint may be called from x86_schedule_events() 3074 * which already has the lock held so here make locking 3075 * conditional. 3076 */ 3077 if (!xl->sched_started) 3078 raw_spin_lock(&excl_cntrs->lock); 3079 3080 xl->state[hwc->idx] = INTEL_EXCL_UNUSED; 3081 3082 if (!xl->sched_started) 3083 raw_spin_unlock(&excl_cntrs->lock); 3084 } 3085 } 3086 3087 static void 3088 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc, 3089 struct perf_event *event) 3090 { 3091 struct hw_perf_event_extra *reg; 3092 3093 reg = &event->hw.extra_reg; 3094 if (reg->idx != EXTRA_REG_NONE) 3095 __intel_shared_reg_put_constraints(cpuc, reg); 3096 3097 reg = &event->hw.branch_reg; 3098 if (reg->idx != EXTRA_REG_NONE) 3099 __intel_shared_reg_put_constraints(cpuc, reg); 3100 } 3101 3102 static void intel_put_event_constraints(struct cpu_hw_events *cpuc, 3103 struct perf_event *event) 3104 { 3105 intel_put_shared_regs_event_constraints(cpuc, event); 3106 3107 /* 3108 * is PMU has exclusive counter restrictions, then 3109 * all events are subject to and must call the 3110 * put_excl_constraints() routine 3111 */ 3112 if (cpuc->excl_cntrs) 3113 intel_put_excl_constraints(cpuc, event); 3114 } 3115 3116 static void intel_pebs_aliases_core2(struct perf_event *event) 3117 { 3118 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) { 3119 /* 3120 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P 3121 * (0x003c) so that we can use it with PEBS. 3122 * 3123 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't 3124 * PEBS capable. However we can use INST_RETIRED.ANY_P 3125 * (0x00c0), which is a PEBS capable event, to get the same 3126 * count. 3127 * 3128 * INST_RETIRED.ANY_P counts the number of cycles that retires 3129 * CNTMASK instructions. By setting CNTMASK to a value (16) 3130 * larger than the maximum number of instructions that can be 3131 * retired per cycle (4) and then inverting the condition, we 3132 * count all cycles that retire 16 or less instructions, which 3133 * is every cycle. 3134 * 3135 * Thereby we gain a PEBS capable cycle counter. 3136 */ 3137 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16); 3138 3139 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK); 3140 event->hw.config = alt_config; 3141 } 3142 } 3143 3144 static void intel_pebs_aliases_snb(struct perf_event *event) 3145 { 3146 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) { 3147 /* 3148 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P 3149 * (0x003c) so that we can use it with PEBS. 3150 * 3151 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't 3152 * PEBS capable. However we can use UOPS_RETIRED.ALL 3153 * (0x01c2), which is a PEBS capable event, to get the same 3154 * count. 3155 * 3156 * UOPS_RETIRED.ALL counts the number of cycles that retires 3157 * CNTMASK micro-ops. By setting CNTMASK to a value (16) 3158 * larger than the maximum number of micro-ops that can be 3159 * retired per cycle (4) and then inverting the condition, we 3160 * count all cycles that retire 16 or less micro-ops, which 3161 * is every cycle. 3162 * 3163 * Thereby we gain a PEBS capable cycle counter. 3164 */ 3165 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16); 3166 3167 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK); 3168 event->hw.config = alt_config; 3169 } 3170 } 3171 3172 static void intel_pebs_aliases_precdist(struct perf_event *event) 3173 { 3174 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) { 3175 /* 3176 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P 3177 * (0x003c) so that we can use it with PEBS. 3178 * 3179 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't 3180 * PEBS capable. However we can use INST_RETIRED.PREC_DIST 3181 * (0x01c0), which is a PEBS capable event, to get the same 3182 * count. 3183 * 3184 * The PREC_DIST event has special support to minimize sample 3185 * shadowing effects. One drawback is that it can be 3186 * only programmed on counter 1, but that seems like an 3187 * acceptable trade off. 3188 */ 3189 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16); 3190 3191 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK); 3192 event->hw.config = alt_config; 3193 } 3194 } 3195 3196 static void intel_pebs_aliases_ivb(struct perf_event *event) 3197 { 3198 if (event->attr.precise_ip < 3) 3199 return intel_pebs_aliases_snb(event); 3200 return intel_pebs_aliases_precdist(event); 3201 } 3202 3203 static void intel_pebs_aliases_skl(struct perf_event *event) 3204 { 3205 if (event->attr.precise_ip < 3) 3206 return intel_pebs_aliases_core2(event); 3207 return intel_pebs_aliases_precdist(event); 3208 } 3209 3210 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event) 3211 { 3212 unsigned long flags = x86_pmu.large_pebs_flags; 3213 3214 if (event->attr.use_clockid) 3215 flags &= ~PERF_SAMPLE_TIME; 3216 if (!event->attr.exclude_kernel) 3217 flags &= ~PERF_SAMPLE_REGS_USER; 3218 if (event->attr.sample_regs_user & ~PEBS_GP_REGS) 3219 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR); 3220 return flags; 3221 } 3222 3223 static int intel_pmu_bts_config(struct perf_event *event) 3224 { 3225 struct perf_event_attr *attr = &event->attr; 3226 3227 if (unlikely(intel_pmu_has_bts(event))) { 3228 /* BTS is not supported by this architecture. */ 3229 if (!x86_pmu.bts_active) 3230 return -EOPNOTSUPP; 3231 3232 /* BTS is currently only allowed for user-mode. */ 3233 if (!attr->exclude_kernel) 3234 return -EOPNOTSUPP; 3235 3236 /* BTS is not allowed for precise events. */ 3237 if (attr->precise_ip) 3238 return -EOPNOTSUPP; 3239 3240 /* disallow bts if conflicting events are present */ 3241 if (x86_add_exclusive(x86_lbr_exclusive_lbr)) 3242 return -EBUSY; 3243 3244 event->destroy = hw_perf_lbr_event_destroy; 3245 } 3246 3247 return 0; 3248 } 3249 3250 static int core_pmu_hw_config(struct perf_event *event) 3251 { 3252 int ret = x86_pmu_hw_config(event); 3253 3254 if (ret) 3255 return ret; 3256 3257 return intel_pmu_bts_config(event); 3258 } 3259 3260 static int intel_pmu_hw_config(struct perf_event *event) 3261 { 3262 int ret = x86_pmu_hw_config(event); 3263 3264 if (ret) 3265 return ret; 3266 3267 ret = intel_pmu_bts_config(event); 3268 if (ret) 3269 return ret; 3270 3271 if (event->attr.precise_ip) { 3272 if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) { 3273 event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD; 3274 if (!(event->attr.sample_type & 3275 ~intel_pmu_large_pebs_flags(event))) 3276 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS; 3277 } 3278 if (x86_pmu.pebs_aliases) 3279 x86_pmu.pebs_aliases(event); 3280 3281 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 3282 event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY; 3283 } 3284 3285 if (needs_branch_stack(event)) { 3286 ret = intel_pmu_setup_lbr_filter(event); 3287 if (ret) 3288 return ret; 3289 3290 /* 3291 * BTS is set up earlier in this path, so don't account twice 3292 */ 3293 if (!unlikely(intel_pmu_has_bts(event))) { 3294 /* disallow lbr if conflicting events are present */ 3295 if (x86_add_exclusive(x86_lbr_exclusive_lbr)) 3296 return -EBUSY; 3297 3298 event->destroy = hw_perf_lbr_event_destroy; 3299 } 3300 } 3301 3302 if (event->attr.type != PERF_TYPE_RAW) 3303 return 0; 3304 3305 if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY)) 3306 return 0; 3307 3308 if (x86_pmu.version < 3) 3309 return -EINVAL; 3310 3311 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3312 return -EACCES; 3313 3314 event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY; 3315 3316 return 0; 3317 } 3318 3319 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr) 3320 { 3321 if (x86_pmu.guest_get_msrs) 3322 return x86_pmu.guest_get_msrs(nr); 3323 *nr = 0; 3324 return NULL; 3325 } 3326 EXPORT_SYMBOL_GPL(perf_guest_get_msrs); 3327 3328 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr) 3329 { 3330 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 3331 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs; 3332 3333 arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL; 3334 arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask; 3335 arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask; 3336 if (x86_pmu.flags & PMU_FL_PEBS_ALL) 3337 arr[0].guest &= ~cpuc->pebs_enabled; 3338 else 3339 arr[0].guest &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK); 3340 *nr = 1; 3341 3342 if (x86_pmu.pebs && x86_pmu.pebs_no_isolation) { 3343 /* 3344 * If PMU counter has PEBS enabled it is not enough to 3345 * disable counter on a guest entry since PEBS memory 3346 * write can overshoot guest entry and corrupt guest 3347 * memory. Disabling PEBS solves the problem. 3348 * 3349 * Don't do this if the CPU already enforces it. 3350 */ 3351 arr[1].msr = MSR_IA32_PEBS_ENABLE; 3352 arr[1].host = cpuc->pebs_enabled; 3353 arr[1].guest = 0; 3354 *nr = 2; 3355 } 3356 3357 return arr; 3358 } 3359 3360 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr) 3361 { 3362 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 3363 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs; 3364 int idx; 3365 3366 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 3367 struct perf_event *event = cpuc->events[idx]; 3368 3369 arr[idx].msr = x86_pmu_config_addr(idx); 3370 arr[idx].host = arr[idx].guest = 0; 3371 3372 if (!test_bit(idx, cpuc->active_mask)) 3373 continue; 3374 3375 arr[idx].host = arr[idx].guest = 3376 event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE; 3377 3378 if (event->attr.exclude_host) 3379 arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE; 3380 else if (event->attr.exclude_guest) 3381 arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE; 3382 } 3383 3384 *nr = x86_pmu.num_counters; 3385 return arr; 3386 } 3387 3388 static void core_pmu_enable_event(struct perf_event *event) 3389 { 3390 if (!event->attr.exclude_host) 3391 x86_pmu_enable_event(event); 3392 } 3393 3394 static void core_pmu_enable_all(int added) 3395 { 3396 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 3397 int idx; 3398 3399 for (idx = 0; idx < x86_pmu.num_counters; idx++) { 3400 struct hw_perf_event *hwc = &cpuc->events[idx]->hw; 3401 3402 if (!test_bit(idx, cpuc->active_mask) || 3403 cpuc->events[idx]->attr.exclude_host) 3404 continue; 3405 3406 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); 3407 } 3408 } 3409 3410 static int hsw_hw_config(struct perf_event *event) 3411 { 3412 int ret = intel_pmu_hw_config(event); 3413 3414 if (ret) 3415 return ret; 3416 if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE)) 3417 return 0; 3418 event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED); 3419 3420 /* 3421 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with 3422 * PEBS or in ANY thread mode. Since the results are non-sensical forbid 3423 * this combination. 3424 */ 3425 if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) && 3426 ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) || 3427 event->attr.precise_ip > 0)) 3428 return -EOPNOTSUPP; 3429 3430 if (event_is_checkpointed(event)) { 3431 /* 3432 * Sampling of checkpointed events can cause situations where 3433 * the CPU constantly aborts because of a overflow, which is 3434 * then checkpointed back and ignored. Forbid checkpointing 3435 * for sampling. 3436 * 3437 * But still allow a long sampling period, so that perf stat 3438 * from KVM works. 3439 */ 3440 if (event->attr.sample_period > 0 && 3441 event->attr.sample_period < 0x7fffffff) 3442 return -EOPNOTSUPP; 3443 } 3444 return 0; 3445 } 3446 3447 static struct event_constraint counter0_constraint = 3448 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1); 3449 3450 static struct event_constraint counter2_constraint = 3451 EVENT_CONSTRAINT(0, 0x4, 0); 3452 3453 static struct event_constraint fixed0_constraint = 3454 FIXED_EVENT_CONSTRAINT(0x00c0, 0); 3455 3456 static struct event_constraint fixed0_counter0_constraint = 3457 INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL); 3458 3459 static struct event_constraint * 3460 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 3461 struct perf_event *event) 3462 { 3463 struct event_constraint *c; 3464 3465 c = intel_get_event_constraints(cpuc, idx, event); 3466 3467 /* Handle special quirk on in_tx_checkpointed only in counter 2 */ 3468 if (event->hw.config & HSW_IN_TX_CHECKPOINTED) { 3469 if (c->idxmsk64 & (1U << 2)) 3470 return &counter2_constraint; 3471 return &emptyconstraint; 3472 } 3473 3474 return c; 3475 } 3476 3477 static struct event_constraint * 3478 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 3479 struct perf_event *event) 3480 { 3481 /* 3482 * Fixed counter 0 has less skid. 3483 * Force instruction:ppp in Fixed counter 0 3484 */ 3485 if ((event->attr.precise_ip == 3) && 3486 constraint_match(&fixed0_constraint, event->hw.config)) 3487 return &fixed0_constraint; 3488 3489 return hsw_get_event_constraints(cpuc, idx, event); 3490 } 3491 3492 static struct event_constraint * 3493 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 3494 struct perf_event *event) 3495 { 3496 struct event_constraint *c; 3497 3498 /* :ppp means to do reduced skid PEBS which is PMC0 only. */ 3499 if (event->attr.precise_ip == 3) 3500 return &counter0_constraint; 3501 3502 c = intel_get_event_constraints(cpuc, idx, event); 3503 3504 return c; 3505 } 3506 3507 static struct event_constraint * 3508 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 3509 struct perf_event *event) 3510 { 3511 struct event_constraint *c; 3512 3513 /* 3514 * :ppp means to do reduced skid PEBS, 3515 * which is available on PMC0 and fixed counter 0. 3516 */ 3517 if (event->attr.precise_ip == 3) { 3518 /* Force instruction:ppp on PMC0 and Fixed counter 0 */ 3519 if (constraint_match(&fixed0_constraint, event->hw.config)) 3520 return &fixed0_counter0_constraint; 3521 3522 return &counter0_constraint; 3523 } 3524 3525 c = intel_get_event_constraints(cpuc, idx, event); 3526 3527 return c; 3528 } 3529 3530 static bool allow_tsx_force_abort = true; 3531 3532 static struct event_constraint * 3533 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx, 3534 struct perf_event *event) 3535 { 3536 struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event); 3537 3538 /* 3539 * Without TFA we must not use PMC3. 3540 */ 3541 if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) { 3542 c = dyn_constraint(cpuc, c, idx); 3543 c->idxmsk64 &= ~(1ULL << 3); 3544 c->weight--; 3545 } 3546 3547 return c; 3548 } 3549 3550 /* 3551 * Broadwell: 3552 * 3553 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared 3554 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine 3555 * the two to enforce a minimum period of 128 (the smallest value that has bits 3556 * 0-5 cleared and >= 100). 3557 * 3558 * Because of how the code in x86_perf_event_set_period() works, the truncation 3559 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period 3560 * to make up for the 'lost' events due to carrying the 'error' in period_left. 3561 * 3562 * Therefore the effective (average) period matches the requested period, 3563 * despite coarser hardware granularity. 3564 */ 3565 static u64 bdw_limit_period(struct perf_event *event, u64 left) 3566 { 3567 if ((event->hw.config & INTEL_ARCH_EVENT_MASK) == 3568 X86_CONFIG(.event=0xc0, .umask=0x01)) { 3569 if (left < 128) 3570 left = 128; 3571 left &= ~0x3fULL; 3572 } 3573 return left; 3574 } 3575 3576 PMU_FORMAT_ATTR(event, "config:0-7" ); 3577 PMU_FORMAT_ATTR(umask, "config:8-15" ); 3578 PMU_FORMAT_ATTR(edge, "config:18" ); 3579 PMU_FORMAT_ATTR(pc, "config:19" ); 3580 PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */ 3581 PMU_FORMAT_ATTR(inv, "config:23" ); 3582 PMU_FORMAT_ATTR(cmask, "config:24-31" ); 3583 PMU_FORMAT_ATTR(in_tx, "config:32"); 3584 PMU_FORMAT_ATTR(in_tx_cp, "config:33"); 3585 3586 static struct attribute *intel_arch_formats_attr[] = { 3587 &format_attr_event.attr, 3588 &format_attr_umask.attr, 3589 &format_attr_edge.attr, 3590 &format_attr_pc.attr, 3591 &format_attr_inv.attr, 3592 &format_attr_cmask.attr, 3593 NULL, 3594 }; 3595 3596 ssize_t intel_event_sysfs_show(char *page, u64 config) 3597 { 3598 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT); 3599 3600 return x86_event_sysfs_show(page, config, event); 3601 } 3602 3603 static struct intel_shared_regs *allocate_shared_regs(int cpu) 3604 { 3605 struct intel_shared_regs *regs; 3606 int i; 3607 3608 regs = kzalloc_node(sizeof(struct intel_shared_regs), 3609 GFP_KERNEL, cpu_to_node(cpu)); 3610 if (regs) { 3611 /* 3612 * initialize the locks to keep lockdep happy 3613 */ 3614 for (i = 0; i < EXTRA_REG_MAX; i++) 3615 raw_spin_lock_init(®s->regs[i].lock); 3616 3617 regs->core_id = -1; 3618 } 3619 return regs; 3620 } 3621 3622 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu) 3623 { 3624 struct intel_excl_cntrs *c; 3625 3626 c = kzalloc_node(sizeof(struct intel_excl_cntrs), 3627 GFP_KERNEL, cpu_to_node(cpu)); 3628 if (c) { 3629 raw_spin_lock_init(&c->lock); 3630 c->core_id = -1; 3631 } 3632 return c; 3633 } 3634 3635 3636 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu) 3637 { 3638 cpuc->pebs_record_size = x86_pmu.pebs_record_size; 3639 3640 if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) { 3641 cpuc->shared_regs = allocate_shared_regs(cpu); 3642 if (!cpuc->shared_regs) 3643 goto err; 3644 } 3645 3646 if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) { 3647 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint); 3648 3649 cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu)); 3650 if (!cpuc->constraint_list) 3651 goto err_shared_regs; 3652 } 3653 3654 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) { 3655 cpuc->excl_cntrs = allocate_excl_cntrs(cpu); 3656 if (!cpuc->excl_cntrs) 3657 goto err_constraint_list; 3658 3659 cpuc->excl_thread_id = 0; 3660 } 3661 3662 return 0; 3663 3664 err_constraint_list: 3665 kfree(cpuc->constraint_list); 3666 cpuc->constraint_list = NULL; 3667 3668 err_shared_regs: 3669 kfree(cpuc->shared_regs); 3670 cpuc->shared_regs = NULL; 3671 3672 err: 3673 return -ENOMEM; 3674 } 3675 3676 static int intel_pmu_cpu_prepare(int cpu) 3677 { 3678 return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu); 3679 } 3680 3681 static void flip_smm_bit(void *data) 3682 { 3683 unsigned long set = *(unsigned long *)data; 3684 3685 if (set > 0) { 3686 msr_set_bit(MSR_IA32_DEBUGCTLMSR, 3687 DEBUGCTLMSR_FREEZE_IN_SMM_BIT); 3688 } else { 3689 msr_clear_bit(MSR_IA32_DEBUGCTLMSR, 3690 DEBUGCTLMSR_FREEZE_IN_SMM_BIT); 3691 } 3692 } 3693 3694 static void intel_pmu_cpu_starting(int cpu) 3695 { 3696 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); 3697 int core_id = topology_core_id(cpu); 3698 int i; 3699 3700 init_debug_store_on_cpu(cpu); 3701 /* 3702 * Deal with CPUs that don't clear their LBRs on power-up. 3703 */ 3704 intel_pmu_lbr_reset(); 3705 3706 cpuc->lbr_sel = NULL; 3707 3708 if (x86_pmu.flags & PMU_FL_TFA) { 3709 WARN_ON_ONCE(cpuc->tfa_shadow); 3710 cpuc->tfa_shadow = ~0ULL; 3711 intel_set_tfa(cpuc, false); 3712 } 3713 3714 if (x86_pmu.version > 1) 3715 flip_smm_bit(&x86_pmu.attr_freeze_on_smi); 3716 3717 if (x86_pmu.counter_freezing) 3718 enable_counter_freeze(); 3719 3720 if (!cpuc->shared_regs) 3721 return; 3722 3723 if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) { 3724 for_each_cpu(i, topology_sibling_cpumask(cpu)) { 3725 struct intel_shared_regs *pc; 3726 3727 pc = per_cpu(cpu_hw_events, i).shared_regs; 3728 if (pc && pc->core_id == core_id) { 3729 cpuc->kfree_on_online[0] = cpuc->shared_regs; 3730 cpuc->shared_regs = pc; 3731 break; 3732 } 3733 } 3734 cpuc->shared_regs->core_id = core_id; 3735 cpuc->shared_regs->refcnt++; 3736 } 3737 3738 if (x86_pmu.lbr_sel_map) 3739 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR]; 3740 3741 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) { 3742 for_each_cpu(i, topology_sibling_cpumask(cpu)) { 3743 struct cpu_hw_events *sibling; 3744 struct intel_excl_cntrs *c; 3745 3746 sibling = &per_cpu(cpu_hw_events, i); 3747 c = sibling->excl_cntrs; 3748 if (c && c->core_id == core_id) { 3749 cpuc->kfree_on_online[1] = cpuc->excl_cntrs; 3750 cpuc->excl_cntrs = c; 3751 if (!sibling->excl_thread_id) 3752 cpuc->excl_thread_id = 1; 3753 break; 3754 } 3755 } 3756 cpuc->excl_cntrs->core_id = core_id; 3757 cpuc->excl_cntrs->refcnt++; 3758 } 3759 } 3760 3761 static void free_excl_cntrs(struct cpu_hw_events *cpuc) 3762 { 3763 struct intel_excl_cntrs *c; 3764 3765 c = cpuc->excl_cntrs; 3766 if (c) { 3767 if (c->core_id == -1 || --c->refcnt == 0) 3768 kfree(c); 3769 cpuc->excl_cntrs = NULL; 3770 } 3771 3772 kfree(cpuc->constraint_list); 3773 cpuc->constraint_list = NULL; 3774 } 3775 3776 static void intel_pmu_cpu_dying(int cpu) 3777 { 3778 fini_debug_store_on_cpu(cpu); 3779 3780 if (x86_pmu.counter_freezing) 3781 disable_counter_freeze(); 3782 } 3783 3784 void intel_cpuc_finish(struct cpu_hw_events *cpuc) 3785 { 3786 struct intel_shared_regs *pc; 3787 3788 pc = cpuc->shared_regs; 3789 if (pc) { 3790 if (pc->core_id == -1 || --pc->refcnt == 0) 3791 kfree(pc); 3792 cpuc->shared_regs = NULL; 3793 } 3794 3795 free_excl_cntrs(cpuc); 3796 } 3797 3798 static void intel_pmu_cpu_dead(int cpu) 3799 { 3800 intel_cpuc_finish(&per_cpu(cpu_hw_events, cpu)); 3801 } 3802 3803 static void intel_pmu_sched_task(struct perf_event_context *ctx, 3804 bool sched_in) 3805 { 3806 intel_pmu_pebs_sched_task(ctx, sched_in); 3807 intel_pmu_lbr_sched_task(ctx, sched_in); 3808 } 3809 3810 static int intel_pmu_check_period(struct perf_event *event, u64 value) 3811 { 3812 return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0; 3813 } 3814 3815 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63"); 3816 3817 PMU_FORMAT_ATTR(ldlat, "config1:0-15"); 3818 3819 PMU_FORMAT_ATTR(frontend, "config1:0-23"); 3820 3821 static struct attribute *intel_arch3_formats_attr[] = { 3822 &format_attr_event.attr, 3823 &format_attr_umask.attr, 3824 &format_attr_edge.attr, 3825 &format_attr_pc.attr, 3826 &format_attr_any.attr, 3827 &format_attr_inv.attr, 3828 &format_attr_cmask.attr, 3829 NULL, 3830 }; 3831 3832 static struct attribute *hsw_format_attr[] = { 3833 &format_attr_in_tx.attr, 3834 &format_attr_in_tx_cp.attr, 3835 &format_attr_offcore_rsp.attr, 3836 &format_attr_ldlat.attr, 3837 NULL 3838 }; 3839 3840 static struct attribute *nhm_format_attr[] = { 3841 &format_attr_offcore_rsp.attr, 3842 &format_attr_ldlat.attr, 3843 NULL 3844 }; 3845 3846 static struct attribute *slm_format_attr[] = { 3847 &format_attr_offcore_rsp.attr, 3848 NULL 3849 }; 3850 3851 static struct attribute *skl_format_attr[] = { 3852 &format_attr_frontend.attr, 3853 NULL, 3854 }; 3855 3856 static __initconst const struct x86_pmu core_pmu = { 3857 .name = "core", 3858 .handle_irq = x86_pmu_handle_irq, 3859 .disable_all = x86_pmu_disable_all, 3860 .enable_all = core_pmu_enable_all, 3861 .enable = core_pmu_enable_event, 3862 .disable = x86_pmu_disable_event, 3863 .hw_config = core_pmu_hw_config, 3864 .schedule_events = x86_schedule_events, 3865 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0, 3866 .perfctr = MSR_ARCH_PERFMON_PERFCTR0, 3867 .event_map = intel_pmu_event_map, 3868 .max_events = ARRAY_SIZE(intel_perfmon_event_map), 3869 .apic = 1, 3870 .large_pebs_flags = LARGE_PEBS_FLAGS, 3871 3872 /* 3873 * Intel PMCs cannot be accessed sanely above 32-bit width, 3874 * so we install an artificial 1<<31 period regardless of 3875 * the generic event period: 3876 */ 3877 .max_period = (1ULL<<31) - 1, 3878 .get_event_constraints = intel_get_event_constraints, 3879 .put_event_constraints = intel_put_event_constraints, 3880 .event_constraints = intel_core_event_constraints, 3881 .guest_get_msrs = core_guest_get_msrs, 3882 .format_attrs = intel_arch_formats_attr, 3883 .events_sysfs_show = intel_event_sysfs_show, 3884 3885 /* 3886 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs 3887 * together with PMU version 1 and thus be using core_pmu with 3888 * shared_regs. We need following callbacks here to allocate 3889 * it properly. 3890 */ 3891 .cpu_prepare = intel_pmu_cpu_prepare, 3892 .cpu_starting = intel_pmu_cpu_starting, 3893 .cpu_dying = intel_pmu_cpu_dying, 3894 .cpu_dead = intel_pmu_cpu_dead, 3895 3896 .check_period = intel_pmu_check_period, 3897 }; 3898 3899 static __initconst const struct x86_pmu intel_pmu = { 3900 .name = "Intel", 3901 .handle_irq = intel_pmu_handle_irq, 3902 .disable_all = intel_pmu_disable_all, 3903 .enable_all = intel_pmu_enable_all, 3904 .enable = intel_pmu_enable_event, 3905 .disable = intel_pmu_disable_event, 3906 .add = intel_pmu_add_event, 3907 .del = intel_pmu_del_event, 3908 .read = intel_pmu_read_event, 3909 .hw_config = intel_pmu_hw_config, 3910 .schedule_events = x86_schedule_events, 3911 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0, 3912 .perfctr = MSR_ARCH_PERFMON_PERFCTR0, 3913 .event_map = intel_pmu_event_map, 3914 .max_events = ARRAY_SIZE(intel_perfmon_event_map), 3915 .apic = 1, 3916 .large_pebs_flags = LARGE_PEBS_FLAGS, 3917 /* 3918 * Intel PMCs cannot be accessed sanely above 32 bit width, 3919 * so we install an artificial 1<<31 period regardless of 3920 * the generic event period: 3921 */ 3922 .max_period = (1ULL << 31) - 1, 3923 .get_event_constraints = intel_get_event_constraints, 3924 .put_event_constraints = intel_put_event_constraints, 3925 .pebs_aliases = intel_pebs_aliases_core2, 3926 3927 .format_attrs = intel_arch3_formats_attr, 3928 .events_sysfs_show = intel_event_sysfs_show, 3929 3930 .cpu_prepare = intel_pmu_cpu_prepare, 3931 .cpu_starting = intel_pmu_cpu_starting, 3932 .cpu_dying = intel_pmu_cpu_dying, 3933 .cpu_dead = intel_pmu_cpu_dead, 3934 3935 .guest_get_msrs = intel_guest_get_msrs, 3936 .sched_task = intel_pmu_sched_task, 3937 3938 .check_period = intel_pmu_check_period, 3939 }; 3940 3941 static __init void intel_clovertown_quirk(void) 3942 { 3943 /* 3944 * PEBS is unreliable due to: 3945 * 3946 * AJ67 - PEBS may experience CPL leaks 3947 * AJ68 - PEBS PMI may be delayed by one event 3948 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12] 3949 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS 3950 * 3951 * AJ67 could be worked around by restricting the OS/USR flags. 3952 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI. 3953 * 3954 * AJ106 could possibly be worked around by not allowing LBR 3955 * usage from PEBS, including the fixup. 3956 * AJ68 could possibly be worked around by always programming 3957 * a pebs_event_reset[0] value and coping with the lost events. 3958 * 3959 * But taken together it might just make sense to not enable PEBS on 3960 * these chips. 3961 */ 3962 pr_warn("PEBS disabled due to CPU errata\n"); 3963 x86_pmu.pebs = 0; 3964 x86_pmu.pebs_constraints = NULL; 3965 } 3966 3967 static const struct x86_cpu_desc isolation_ucodes[] = { 3968 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_CORE, 3, 0x0000001f), 3969 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_ULT, 1, 0x0000001e), 3970 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_GT3E, 1, 0x00000015), 3971 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X, 2, 0x00000037), 3972 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X, 4, 0x0000000a), 3973 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_CORE, 4, 0x00000023), 3974 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_GT3E, 1, 0x00000014), 3975 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_XEON_D, 2, 0x00000010), 3976 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_XEON_D, 3, 0x07000009), 3977 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_XEON_D, 4, 0x0f000009), 3978 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_XEON_D, 5, 0x0e000002), 3979 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X, 2, 0x0b000014), 3980 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 3, 0x00000021), 3981 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 4, 0x00000000), 3982 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_MOBILE, 3, 0x0000007c), 3983 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_DESKTOP, 3, 0x0000007c), 3984 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_DESKTOP, 9, 0x0000004e), 3985 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_MOBILE, 9, 0x0000004e), 3986 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_MOBILE, 10, 0x0000004e), 3987 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_MOBILE, 11, 0x0000004e), 3988 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_MOBILE, 12, 0x0000004e), 3989 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_DESKTOP, 10, 0x0000004e), 3990 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_DESKTOP, 11, 0x0000004e), 3991 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_DESKTOP, 12, 0x0000004e), 3992 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_DESKTOP, 13, 0x0000004e), 3993 {} 3994 }; 3995 3996 static void intel_check_pebs_isolation(void) 3997 { 3998 x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes); 3999 } 4000 4001 static __init void intel_pebs_isolation_quirk(void) 4002 { 4003 WARN_ON_ONCE(x86_pmu.check_microcode); 4004 x86_pmu.check_microcode = intel_check_pebs_isolation; 4005 intel_check_pebs_isolation(); 4006 } 4007 4008 static const struct x86_cpu_desc pebs_ucodes[] = { 4009 INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE, 7, 0x00000028), 4010 INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X, 6, 0x00000618), 4011 INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X, 7, 0x0000070c), 4012 {} 4013 }; 4014 4015 static bool intel_snb_pebs_broken(void) 4016 { 4017 return !x86_cpu_has_min_microcode_rev(pebs_ucodes); 4018 } 4019 4020 static void intel_snb_check_microcode(void) 4021 { 4022 if (intel_snb_pebs_broken() == x86_pmu.pebs_broken) 4023 return; 4024 4025 /* 4026 * Serialized by the microcode lock.. 4027 */ 4028 if (x86_pmu.pebs_broken) { 4029 pr_info("PEBS enabled due to microcode update\n"); 4030 x86_pmu.pebs_broken = 0; 4031 } else { 4032 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n"); 4033 x86_pmu.pebs_broken = 1; 4034 } 4035 } 4036 4037 static bool is_lbr_from(unsigned long msr) 4038 { 4039 unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr; 4040 4041 return x86_pmu.lbr_from <= msr && msr < lbr_from_nr; 4042 } 4043 4044 /* 4045 * Under certain circumstances, access certain MSR may cause #GP. 4046 * The function tests if the input MSR can be safely accessed. 4047 */ 4048 static bool check_msr(unsigned long msr, u64 mask) 4049 { 4050 u64 val_old, val_new, val_tmp; 4051 4052 /* 4053 * Disable the check for real HW, so we don't 4054 * mess with potentionaly enabled registers: 4055 */ 4056 if (hypervisor_is_type(X86_HYPER_NATIVE)) 4057 return true; 4058 4059 /* 4060 * Read the current value, change it and read it back to see if it 4061 * matches, this is needed to detect certain hardware emulators 4062 * (qemu/kvm) that don't trap on the MSR access and always return 0s. 4063 */ 4064 if (rdmsrl_safe(msr, &val_old)) 4065 return false; 4066 4067 /* 4068 * Only change the bits which can be updated by wrmsrl. 4069 */ 4070 val_tmp = val_old ^ mask; 4071 4072 if (is_lbr_from(msr)) 4073 val_tmp = lbr_from_signext_quirk_wr(val_tmp); 4074 4075 if (wrmsrl_safe(msr, val_tmp) || 4076 rdmsrl_safe(msr, &val_new)) 4077 return false; 4078 4079 /* 4080 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value 4081 * should equal rdmsrl()'s even with the quirk. 4082 */ 4083 if (val_new != val_tmp) 4084 return false; 4085 4086 if (is_lbr_from(msr)) 4087 val_old = lbr_from_signext_quirk_wr(val_old); 4088 4089 /* Here it's sure that the MSR can be safely accessed. 4090 * Restore the old value and return. 4091 */ 4092 wrmsrl(msr, val_old); 4093 4094 return true; 4095 } 4096 4097 static __init void intel_sandybridge_quirk(void) 4098 { 4099 x86_pmu.check_microcode = intel_snb_check_microcode; 4100 cpus_read_lock(); 4101 intel_snb_check_microcode(); 4102 cpus_read_unlock(); 4103 } 4104 4105 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = { 4106 { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" }, 4107 { PERF_COUNT_HW_INSTRUCTIONS, "instructions" }, 4108 { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" }, 4109 { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" }, 4110 { PERF_COUNT_HW_CACHE_MISSES, "cache misses" }, 4111 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" }, 4112 { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" }, 4113 }; 4114 4115 static __init void intel_arch_events_quirk(void) 4116 { 4117 int bit; 4118 4119 /* disable event that reported as not presend by cpuid */ 4120 for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) { 4121 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0; 4122 pr_warn("CPUID marked event: \'%s\' unavailable\n", 4123 intel_arch_events_map[bit].name); 4124 } 4125 } 4126 4127 static __init void intel_nehalem_quirk(void) 4128 { 4129 union cpuid10_ebx ebx; 4130 4131 ebx.full = x86_pmu.events_maskl; 4132 if (ebx.split.no_branch_misses_retired) { 4133 /* 4134 * Erratum AAJ80 detected, we work it around by using 4135 * the BR_MISP_EXEC.ANY event. This will over-count 4136 * branch-misses, but it's still much better than the 4137 * architectural event which is often completely bogus: 4138 */ 4139 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89; 4140 ebx.split.no_branch_misses_retired = 0; 4141 x86_pmu.events_maskl = ebx.full; 4142 pr_info("CPU erratum AAJ80 worked around\n"); 4143 } 4144 } 4145 4146 static const struct x86_cpu_desc counter_freezing_ucodes[] = { 4147 INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT, 2, 0x0000000e), 4148 INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT, 9, 0x0000002e), 4149 INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT, 10, 0x00000008), 4150 INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_X, 1, 0x00000028), 4151 INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS, 1, 0x00000028), 4152 INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS, 8, 0x00000006), 4153 {} 4154 }; 4155 4156 static bool intel_counter_freezing_broken(void) 4157 { 4158 return !x86_cpu_has_min_microcode_rev(counter_freezing_ucodes); 4159 } 4160 4161 static __init void intel_counter_freezing_quirk(void) 4162 { 4163 /* Check if it's already disabled */ 4164 if (disable_counter_freezing) 4165 return; 4166 4167 /* 4168 * If the system starts with the wrong ucode, leave the 4169 * counter-freezing feature permanently disabled. 4170 */ 4171 if (intel_counter_freezing_broken()) { 4172 pr_info("PMU counter freezing disabled due to CPU errata," 4173 "please upgrade microcode\n"); 4174 x86_pmu.counter_freezing = false; 4175 x86_pmu.handle_irq = intel_pmu_handle_irq; 4176 } 4177 } 4178 4179 /* 4180 * enable software workaround for errata: 4181 * SNB: BJ122 4182 * IVB: BV98 4183 * HSW: HSD29 4184 * 4185 * Only needed when HT is enabled. However detecting 4186 * if HT is enabled is difficult (model specific). So instead, 4187 * we enable the workaround in the early boot, and verify if 4188 * it is needed in a later initcall phase once we have valid 4189 * topology information to check if HT is actually enabled 4190 */ 4191 static __init void intel_ht_bug(void) 4192 { 4193 x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED; 4194 4195 x86_pmu.start_scheduling = intel_start_scheduling; 4196 x86_pmu.commit_scheduling = intel_commit_scheduling; 4197 x86_pmu.stop_scheduling = intel_stop_scheduling; 4198 } 4199 4200 EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3"); 4201 EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82") 4202 4203 /* Haswell special events */ 4204 EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1"); 4205 EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2"); 4206 EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4"); 4207 EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2"); 4208 EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1"); 4209 EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1"); 4210 EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2"); 4211 EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4"); 4212 EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2"); 4213 EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1"); 4214 EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1"); 4215 EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1"); 4216 4217 static struct attribute *hsw_events_attrs[] = { 4218 EVENT_PTR(td_slots_issued), 4219 EVENT_PTR(td_slots_retired), 4220 EVENT_PTR(td_fetch_bubbles), 4221 EVENT_PTR(td_total_slots), 4222 EVENT_PTR(td_total_slots_scale), 4223 EVENT_PTR(td_recovery_bubbles), 4224 EVENT_PTR(td_recovery_bubbles_scale), 4225 NULL 4226 }; 4227 4228 static struct attribute *hsw_mem_events_attrs[] = { 4229 EVENT_PTR(mem_ld_hsw), 4230 EVENT_PTR(mem_st_hsw), 4231 NULL, 4232 }; 4233 4234 static struct attribute *hsw_tsx_events_attrs[] = { 4235 EVENT_PTR(tx_start), 4236 EVENT_PTR(tx_commit), 4237 EVENT_PTR(tx_abort), 4238 EVENT_PTR(tx_capacity), 4239 EVENT_PTR(tx_conflict), 4240 EVENT_PTR(el_start), 4241 EVENT_PTR(el_commit), 4242 EVENT_PTR(el_abort), 4243 EVENT_PTR(el_capacity), 4244 EVENT_PTR(el_conflict), 4245 EVENT_PTR(cycles_t), 4246 EVENT_PTR(cycles_ct), 4247 NULL 4248 }; 4249 4250 EVENT_ATTR_STR(tx-capacity-read, tx_capacity_read, "event=0x54,umask=0x80"); 4251 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2"); 4252 EVENT_ATTR_STR(el-capacity-read, el_capacity_read, "event=0x54,umask=0x80"); 4253 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2"); 4254 4255 static struct attribute *icl_events_attrs[] = { 4256 EVENT_PTR(mem_ld_hsw), 4257 EVENT_PTR(mem_st_hsw), 4258 NULL, 4259 }; 4260 4261 static struct attribute *icl_tsx_events_attrs[] = { 4262 EVENT_PTR(tx_start), 4263 EVENT_PTR(tx_abort), 4264 EVENT_PTR(tx_commit), 4265 EVENT_PTR(tx_capacity_read), 4266 EVENT_PTR(tx_capacity_write), 4267 EVENT_PTR(tx_conflict), 4268 EVENT_PTR(el_start), 4269 EVENT_PTR(el_abort), 4270 EVENT_PTR(el_commit), 4271 EVENT_PTR(el_capacity_read), 4272 EVENT_PTR(el_capacity_write), 4273 EVENT_PTR(el_conflict), 4274 EVENT_PTR(cycles_t), 4275 EVENT_PTR(cycles_ct), 4276 NULL, 4277 }; 4278 4279 static ssize_t freeze_on_smi_show(struct device *cdev, 4280 struct device_attribute *attr, 4281 char *buf) 4282 { 4283 return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi); 4284 } 4285 4286 static DEFINE_MUTEX(freeze_on_smi_mutex); 4287 4288 static ssize_t freeze_on_smi_store(struct device *cdev, 4289 struct device_attribute *attr, 4290 const char *buf, size_t count) 4291 { 4292 unsigned long val; 4293 ssize_t ret; 4294 4295 ret = kstrtoul(buf, 0, &val); 4296 if (ret) 4297 return ret; 4298 4299 if (val > 1) 4300 return -EINVAL; 4301 4302 mutex_lock(&freeze_on_smi_mutex); 4303 4304 if (x86_pmu.attr_freeze_on_smi == val) 4305 goto done; 4306 4307 x86_pmu.attr_freeze_on_smi = val; 4308 4309 get_online_cpus(); 4310 on_each_cpu(flip_smm_bit, &val, 1); 4311 put_online_cpus(); 4312 done: 4313 mutex_unlock(&freeze_on_smi_mutex); 4314 4315 return count; 4316 } 4317 4318 static void update_tfa_sched(void *ignored) 4319 { 4320 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 4321 4322 /* 4323 * check if PMC3 is used 4324 * and if so force schedule out for all event types all contexts 4325 */ 4326 if (test_bit(3, cpuc->active_mask)) 4327 perf_pmu_resched(x86_get_pmu()); 4328 } 4329 4330 static ssize_t show_sysctl_tfa(struct device *cdev, 4331 struct device_attribute *attr, 4332 char *buf) 4333 { 4334 return snprintf(buf, 40, "%d\n", allow_tsx_force_abort); 4335 } 4336 4337 static ssize_t set_sysctl_tfa(struct device *cdev, 4338 struct device_attribute *attr, 4339 const char *buf, size_t count) 4340 { 4341 bool val; 4342 ssize_t ret; 4343 4344 ret = kstrtobool(buf, &val); 4345 if (ret) 4346 return ret; 4347 4348 /* no change */ 4349 if (val == allow_tsx_force_abort) 4350 return count; 4351 4352 allow_tsx_force_abort = val; 4353 4354 get_online_cpus(); 4355 on_each_cpu(update_tfa_sched, NULL, 1); 4356 put_online_cpus(); 4357 4358 return count; 4359 } 4360 4361 4362 static DEVICE_ATTR_RW(freeze_on_smi); 4363 4364 static ssize_t branches_show(struct device *cdev, 4365 struct device_attribute *attr, 4366 char *buf) 4367 { 4368 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr); 4369 } 4370 4371 static DEVICE_ATTR_RO(branches); 4372 4373 static struct attribute *lbr_attrs[] = { 4374 &dev_attr_branches.attr, 4375 NULL 4376 }; 4377 4378 static char pmu_name_str[30]; 4379 4380 static ssize_t pmu_name_show(struct device *cdev, 4381 struct device_attribute *attr, 4382 char *buf) 4383 { 4384 return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str); 4385 } 4386 4387 static DEVICE_ATTR_RO(pmu_name); 4388 4389 static struct attribute *intel_pmu_caps_attrs[] = { 4390 &dev_attr_pmu_name.attr, 4391 NULL 4392 }; 4393 4394 static DEVICE_ATTR(allow_tsx_force_abort, 0644, 4395 show_sysctl_tfa, 4396 set_sysctl_tfa); 4397 4398 static struct attribute *intel_pmu_attrs[] = { 4399 &dev_attr_freeze_on_smi.attr, 4400 &dev_attr_allow_tsx_force_abort.attr, 4401 NULL, 4402 }; 4403 4404 static umode_t 4405 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i) 4406 { 4407 return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0; 4408 } 4409 4410 static umode_t 4411 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i) 4412 { 4413 return x86_pmu.pebs ? attr->mode : 0; 4414 } 4415 4416 static umode_t 4417 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i) 4418 { 4419 return x86_pmu.lbr_nr ? attr->mode : 0; 4420 } 4421 4422 static umode_t 4423 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i) 4424 { 4425 return x86_pmu.version >= 2 ? attr->mode : 0; 4426 } 4427 4428 static umode_t 4429 default_is_visible(struct kobject *kobj, struct attribute *attr, int i) 4430 { 4431 if (attr == &dev_attr_allow_tsx_force_abort.attr) 4432 return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0; 4433 4434 return attr->mode; 4435 } 4436 4437 static struct attribute_group group_events_td = { 4438 .name = "events", 4439 }; 4440 4441 static struct attribute_group group_events_mem = { 4442 .name = "events", 4443 .is_visible = pebs_is_visible, 4444 }; 4445 4446 static struct attribute_group group_events_tsx = { 4447 .name = "events", 4448 .is_visible = tsx_is_visible, 4449 }; 4450 4451 static struct attribute_group group_caps_gen = { 4452 .name = "caps", 4453 .attrs = intel_pmu_caps_attrs, 4454 }; 4455 4456 static struct attribute_group group_caps_lbr = { 4457 .name = "caps", 4458 .attrs = lbr_attrs, 4459 .is_visible = lbr_is_visible, 4460 }; 4461 4462 static struct attribute_group group_format_extra = { 4463 .name = "format", 4464 .is_visible = exra_is_visible, 4465 }; 4466 4467 static struct attribute_group group_format_extra_skl = { 4468 .name = "format", 4469 .is_visible = exra_is_visible, 4470 }; 4471 4472 static struct attribute_group group_default = { 4473 .attrs = intel_pmu_attrs, 4474 .is_visible = default_is_visible, 4475 }; 4476 4477 static const struct attribute_group *attr_update[] = { 4478 &group_events_td, 4479 &group_events_mem, 4480 &group_events_tsx, 4481 &group_caps_gen, 4482 &group_caps_lbr, 4483 &group_format_extra, 4484 &group_format_extra_skl, 4485 &group_default, 4486 NULL, 4487 }; 4488 4489 static struct attribute *empty_attrs; 4490 4491 __init int intel_pmu_init(void) 4492 { 4493 struct attribute **extra_skl_attr = &empty_attrs; 4494 struct attribute **extra_attr = &empty_attrs; 4495 struct attribute **td_attr = &empty_attrs; 4496 struct attribute **mem_attr = &empty_attrs; 4497 struct attribute **tsx_attr = &empty_attrs; 4498 union cpuid10_edx edx; 4499 union cpuid10_eax eax; 4500 union cpuid10_ebx ebx; 4501 struct event_constraint *c; 4502 unsigned int unused; 4503 struct extra_reg *er; 4504 bool pmem = false; 4505 int version, i; 4506 char *name; 4507 4508 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) { 4509 switch (boot_cpu_data.x86) { 4510 case 0x6: 4511 return p6_pmu_init(); 4512 case 0xb: 4513 return knc_pmu_init(); 4514 case 0xf: 4515 return p4_pmu_init(); 4516 } 4517 return -ENODEV; 4518 } 4519 4520 /* 4521 * Check whether the Architectural PerfMon supports 4522 * Branch Misses Retired hw_event or not. 4523 */ 4524 cpuid(10, &eax.full, &ebx.full, &unused, &edx.full); 4525 if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT) 4526 return -ENODEV; 4527 4528 version = eax.split.version_id; 4529 if (version < 2) 4530 x86_pmu = core_pmu; 4531 else 4532 x86_pmu = intel_pmu; 4533 4534 x86_pmu.version = version; 4535 x86_pmu.num_counters = eax.split.num_counters; 4536 x86_pmu.cntval_bits = eax.split.bit_width; 4537 x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1; 4538 4539 x86_pmu.events_maskl = ebx.full; 4540 x86_pmu.events_mask_len = eax.split.mask_length; 4541 4542 x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters); 4543 4544 /* 4545 * Quirk: v2 perfmon does not report fixed-purpose events, so 4546 * assume at least 3 events, when not running in a hypervisor: 4547 */ 4548 if (version > 1) { 4549 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR); 4550 4551 x86_pmu.num_counters_fixed = 4552 max((int)edx.split.num_counters_fixed, assume); 4553 } 4554 4555 if (version >= 4) 4556 x86_pmu.counter_freezing = !disable_counter_freezing; 4557 4558 if (boot_cpu_has(X86_FEATURE_PDCM)) { 4559 u64 capabilities; 4560 4561 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities); 4562 x86_pmu.intel_cap.capabilities = capabilities; 4563 } 4564 4565 intel_ds_init(); 4566 4567 x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */ 4568 4569 /* 4570 * Install the hw-cache-events table: 4571 */ 4572 switch (boot_cpu_data.x86_model) { 4573 case INTEL_FAM6_CORE_YONAH: 4574 pr_cont("Core events, "); 4575 name = "core"; 4576 break; 4577 4578 case INTEL_FAM6_CORE2_MEROM: 4579 x86_add_quirk(intel_clovertown_quirk); 4580 /* fall through */ 4581 4582 case INTEL_FAM6_CORE2_MEROM_L: 4583 case INTEL_FAM6_CORE2_PENRYN: 4584 case INTEL_FAM6_CORE2_DUNNINGTON: 4585 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids, 4586 sizeof(hw_cache_event_ids)); 4587 4588 intel_pmu_lbr_init_core(); 4589 4590 x86_pmu.event_constraints = intel_core2_event_constraints; 4591 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints; 4592 pr_cont("Core2 events, "); 4593 name = "core2"; 4594 break; 4595 4596 case INTEL_FAM6_NEHALEM: 4597 case INTEL_FAM6_NEHALEM_EP: 4598 case INTEL_FAM6_NEHALEM_EX: 4599 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids, 4600 sizeof(hw_cache_event_ids)); 4601 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs, 4602 sizeof(hw_cache_extra_regs)); 4603 4604 intel_pmu_lbr_init_nhm(); 4605 4606 x86_pmu.event_constraints = intel_nehalem_event_constraints; 4607 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints; 4608 x86_pmu.enable_all = intel_pmu_nhm_enable_all; 4609 x86_pmu.extra_regs = intel_nehalem_extra_regs; 4610 4611 mem_attr = nhm_mem_events_attrs; 4612 4613 /* UOPS_ISSUED.STALLED_CYCLES */ 4614 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 4615 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); 4616 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */ 4617 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 4618 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1); 4619 4620 intel_pmu_pebs_data_source_nhm(); 4621 x86_add_quirk(intel_nehalem_quirk); 4622 x86_pmu.pebs_no_tlb = 1; 4623 extra_attr = nhm_format_attr; 4624 4625 pr_cont("Nehalem events, "); 4626 name = "nehalem"; 4627 break; 4628 4629 case INTEL_FAM6_ATOM_BONNELL: 4630 case INTEL_FAM6_ATOM_BONNELL_MID: 4631 case INTEL_FAM6_ATOM_SALTWELL: 4632 case INTEL_FAM6_ATOM_SALTWELL_MID: 4633 case INTEL_FAM6_ATOM_SALTWELL_TABLET: 4634 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids, 4635 sizeof(hw_cache_event_ids)); 4636 4637 intel_pmu_lbr_init_atom(); 4638 4639 x86_pmu.event_constraints = intel_gen_event_constraints; 4640 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints; 4641 x86_pmu.pebs_aliases = intel_pebs_aliases_core2; 4642 pr_cont("Atom events, "); 4643 name = "bonnell"; 4644 break; 4645 4646 case INTEL_FAM6_ATOM_SILVERMONT: 4647 case INTEL_FAM6_ATOM_SILVERMONT_X: 4648 case INTEL_FAM6_ATOM_SILVERMONT_MID: 4649 case INTEL_FAM6_ATOM_AIRMONT: 4650 case INTEL_FAM6_ATOM_AIRMONT_MID: 4651 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids, 4652 sizeof(hw_cache_event_ids)); 4653 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs, 4654 sizeof(hw_cache_extra_regs)); 4655 4656 intel_pmu_lbr_init_slm(); 4657 4658 x86_pmu.event_constraints = intel_slm_event_constraints; 4659 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints; 4660 x86_pmu.extra_regs = intel_slm_extra_regs; 4661 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4662 td_attr = slm_events_attrs; 4663 extra_attr = slm_format_attr; 4664 pr_cont("Silvermont events, "); 4665 name = "silvermont"; 4666 break; 4667 4668 case INTEL_FAM6_ATOM_GOLDMONT: 4669 case INTEL_FAM6_ATOM_GOLDMONT_X: 4670 x86_add_quirk(intel_counter_freezing_quirk); 4671 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids, 4672 sizeof(hw_cache_event_ids)); 4673 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs, 4674 sizeof(hw_cache_extra_regs)); 4675 4676 intel_pmu_lbr_init_skl(); 4677 4678 x86_pmu.event_constraints = intel_slm_event_constraints; 4679 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints; 4680 x86_pmu.extra_regs = intel_glm_extra_regs; 4681 /* 4682 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS 4683 * for precise cycles. 4684 * :pp is identical to :ppp 4685 */ 4686 x86_pmu.pebs_aliases = NULL; 4687 x86_pmu.pebs_prec_dist = true; 4688 x86_pmu.lbr_pt_coexist = true; 4689 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4690 td_attr = glm_events_attrs; 4691 extra_attr = slm_format_attr; 4692 pr_cont("Goldmont events, "); 4693 name = "goldmont"; 4694 break; 4695 4696 case INTEL_FAM6_ATOM_GOLDMONT_PLUS: 4697 x86_add_quirk(intel_counter_freezing_quirk); 4698 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids, 4699 sizeof(hw_cache_event_ids)); 4700 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs, 4701 sizeof(hw_cache_extra_regs)); 4702 4703 intel_pmu_lbr_init_skl(); 4704 4705 x86_pmu.event_constraints = intel_slm_event_constraints; 4706 x86_pmu.extra_regs = intel_glm_extra_regs; 4707 /* 4708 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS 4709 * for precise cycles. 4710 */ 4711 x86_pmu.pebs_aliases = NULL; 4712 x86_pmu.pebs_prec_dist = true; 4713 x86_pmu.lbr_pt_coexist = true; 4714 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4715 x86_pmu.flags |= PMU_FL_PEBS_ALL; 4716 x86_pmu.get_event_constraints = glp_get_event_constraints; 4717 td_attr = glm_events_attrs; 4718 /* Goldmont Plus has 4-wide pipeline */ 4719 event_attr_td_total_slots_scale_glm.event_str = "4"; 4720 extra_attr = slm_format_attr; 4721 pr_cont("Goldmont plus events, "); 4722 name = "goldmont_plus"; 4723 break; 4724 4725 case INTEL_FAM6_ATOM_TREMONT_X: 4726 x86_pmu.late_ack = true; 4727 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids, 4728 sizeof(hw_cache_event_ids)); 4729 memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs, 4730 sizeof(hw_cache_extra_regs)); 4731 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1; 4732 4733 intel_pmu_lbr_init_skl(); 4734 4735 x86_pmu.event_constraints = intel_slm_event_constraints; 4736 x86_pmu.extra_regs = intel_tnt_extra_regs; 4737 /* 4738 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS 4739 * for precise cycles. 4740 */ 4741 x86_pmu.pebs_aliases = NULL; 4742 x86_pmu.pebs_prec_dist = true; 4743 x86_pmu.lbr_pt_coexist = true; 4744 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4745 x86_pmu.get_event_constraints = tnt_get_event_constraints; 4746 extra_attr = slm_format_attr; 4747 pr_cont("Tremont events, "); 4748 name = "Tremont"; 4749 break; 4750 4751 case INTEL_FAM6_WESTMERE: 4752 case INTEL_FAM6_WESTMERE_EP: 4753 case INTEL_FAM6_WESTMERE_EX: 4754 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids, 4755 sizeof(hw_cache_event_ids)); 4756 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs, 4757 sizeof(hw_cache_extra_regs)); 4758 4759 intel_pmu_lbr_init_nhm(); 4760 4761 x86_pmu.event_constraints = intel_westmere_event_constraints; 4762 x86_pmu.enable_all = intel_pmu_nhm_enable_all; 4763 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints; 4764 x86_pmu.extra_regs = intel_westmere_extra_regs; 4765 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4766 4767 mem_attr = nhm_mem_events_attrs; 4768 4769 /* UOPS_ISSUED.STALLED_CYCLES */ 4770 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 4771 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); 4772 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */ 4773 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 4774 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1); 4775 4776 intel_pmu_pebs_data_source_nhm(); 4777 extra_attr = nhm_format_attr; 4778 pr_cont("Westmere events, "); 4779 name = "westmere"; 4780 break; 4781 4782 case INTEL_FAM6_SANDYBRIDGE: 4783 case INTEL_FAM6_SANDYBRIDGE_X: 4784 x86_add_quirk(intel_sandybridge_quirk); 4785 x86_add_quirk(intel_ht_bug); 4786 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids, 4787 sizeof(hw_cache_event_ids)); 4788 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs, 4789 sizeof(hw_cache_extra_regs)); 4790 4791 intel_pmu_lbr_init_snb(); 4792 4793 x86_pmu.event_constraints = intel_snb_event_constraints; 4794 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints; 4795 x86_pmu.pebs_aliases = intel_pebs_aliases_snb; 4796 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X) 4797 x86_pmu.extra_regs = intel_snbep_extra_regs; 4798 else 4799 x86_pmu.extra_regs = intel_snb_extra_regs; 4800 4801 4802 /* all extra regs are per-cpu when HT is on */ 4803 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4804 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 4805 4806 td_attr = snb_events_attrs; 4807 mem_attr = snb_mem_events_attrs; 4808 4809 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */ 4810 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 4811 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); 4812 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/ 4813 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 4814 X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1); 4815 4816 extra_attr = nhm_format_attr; 4817 4818 pr_cont("SandyBridge events, "); 4819 name = "sandybridge"; 4820 break; 4821 4822 case INTEL_FAM6_IVYBRIDGE: 4823 case INTEL_FAM6_IVYBRIDGE_X: 4824 x86_add_quirk(intel_ht_bug); 4825 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids, 4826 sizeof(hw_cache_event_ids)); 4827 /* dTLB-load-misses on IVB is different than SNB */ 4828 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */ 4829 4830 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs, 4831 sizeof(hw_cache_extra_regs)); 4832 4833 intel_pmu_lbr_init_snb(); 4834 4835 x86_pmu.event_constraints = intel_ivb_event_constraints; 4836 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints; 4837 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb; 4838 x86_pmu.pebs_prec_dist = true; 4839 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X) 4840 x86_pmu.extra_regs = intel_snbep_extra_regs; 4841 else 4842 x86_pmu.extra_regs = intel_snb_extra_regs; 4843 /* all extra regs are per-cpu when HT is on */ 4844 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4845 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 4846 4847 td_attr = snb_events_attrs; 4848 mem_attr = snb_mem_events_attrs; 4849 4850 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */ 4851 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 4852 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); 4853 4854 extra_attr = nhm_format_attr; 4855 4856 pr_cont("IvyBridge events, "); 4857 name = "ivybridge"; 4858 break; 4859 4860 4861 case INTEL_FAM6_HASWELL_CORE: 4862 case INTEL_FAM6_HASWELL_X: 4863 case INTEL_FAM6_HASWELL_ULT: 4864 case INTEL_FAM6_HASWELL_GT3E: 4865 x86_add_quirk(intel_ht_bug); 4866 x86_add_quirk(intel_pebs_isolation_quirk); 4867 x86_pmu.late_ack = true; 4868 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 4869 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); 4870 4871 intel_pmu_lbr_init_hsw(); 4872 4873 x86_pmu.event_constraints = intel_hsw_event_constraints; 4874 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints; 4875 x86_pmu.extra_regs = intel_snbep_extra_regs; 4876 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb; 4877 x86_pmu.pebs_prec_dist = true; 4878 /* all extra regs are per-cpu when HT is on */ 4879 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4880 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 4881 4882 x86_pmu.hw_config = hsw_hw_config; 4883 x86_pmu.get_event_constraints = hsw_get_event_constraints; 4884 x86_pmu.lbr_double_abort = true; 4885 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? 4886 hsw_format_attr : nhm_format_attr; 4887 td_attr = hsw_events_attrs; 4888 mem_attr = hsw_mem_events_attrs; 4889 tsx_attr = hsw_tsx_events_attrs; 4890 pr_cont("Haswell events, "); 4891 name = "haswell"; 4892 break; 4893 4894 case INTEL_FAM6_BROADWELL_CORE: 4895 case INTEL_FAM6_BROADWELL_XEON_D: 4896 case INTEL_FAM6_BROADWELL_GT3E: 4897 case INTEL_FAM6_BROADWELL_X: 4898 x86_add_quirk(intel_pebs_isolation_quirk); 4899 x86_pmu.late_ack = true; 4900 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 4901 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); 4902 4903 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */ 4904 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ | 4905 BDW_L3_MISS|HSW_SNOOP_DRAM; 4906 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS| 4907 HSW_SNOOP_DRAM; 4908 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ| 4909 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM; 4910 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE| 4911 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM; 4912 4913 intel_pmu_lbr_init_hsw(); 4914 4915 x86_pmu.event_constraints = intel_bdw_event_constraints; 4916 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints; 4917 x86_pmu.extra_regs = intel_snbep_extra_regs; 4918 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb; 4919 x86_pmu.pebs_prec_dist = true; 4920 /* all extra regs are per-cpu when HT is on */ 4921 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4922 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 4923 4924 x86_pmu.hw_config = hsw_hw_config; 4925 x86_pmu.get_event_constraints = hsw_get_event_constraints; 4926 x86_pmu.limit_period = bdw_limit_period; 4927 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? 4928 hsw_format_attr : nhm_format_attr; 4929 td_attr = hsw_events_attrs; 4930 mem_attr = hsw_mem_events_attrs; 4931 tsx_attr = hsw_tsx_events_attrs; 4932 pr_cont("Broadwell events, "); 4933 name = "broadwell"; 4934 break; 4935 4936 case INTEL_FAM6_XEON_PHI_KNL: 4937 case INTEL_FAM6_XEON_PHI_KNM: 4938 memcpy(hw_cache_event_ids, 4939 slm_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 4940 memcpy(hw_cache_extra_regs, 4941 knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); 4942 intel_pmu_lbr_init_knl(); 4943 4944 x86_pmu.event_constraints = intel_slm_event_constraints; 4945 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints; 4946 x86_pmu.extra_regs = intel_knl_extra_regs; 4947 4948 /* all extra regs are per-cpu when HT is on */ 4949 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4950 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 4951 extra_attr = slm_format_attr; 4952 pr_cont("Knights Landing/Mill events, "); 4953 name = "knights-landing"; 4954 break; 4955 4956 case INTEL_FAM6_SKYLAKE_X: 4957 pmem = true; 4958 case INTEL_FAM6_SKYLAKE_MOBILE: 4959 case INTEL_FAM6_SKYLAKE_DESKTOP: 4960 case INTEL_FAM6_KABYLAKE_MOBILE: 4961 case INTEL_FAM6_KABYLAKE_DESKTOP: 4962 x86_add_quirk(intel_pebs_isolation_quirk); 4963 x86_pmu.late_ack = true; 4964 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 4965 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); 4966 intel_pmu_lbr_init_skl(); 4967 4968 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */ 4969 event_attr_td_recovery_bubbles.event_str_noht = 4970 "event=0xd,umask=0x1,cmask=1"; 4971 event_attr_td_recovery_bubbles.event_str_ht = 4972 "event=0xd,umask=0x1,cmask=1,any=1"; 4973 4974 x86_pmu.event_constraints = intel_skl_event_constraints; 4975 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints; 4976 x86_pmu.extra_regs = intel_skl_extra_regs; 4977 x86_pmu.pebs_aliases = intel_pebs_aliases_skl; 4978 x86_pmu.pebs_prec_dist = true; 4979 /* all extra regs are per-cpu when HT is on */ 4980 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 4981 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 4982 4983 x86_pmu.hw_config = hsw_hw_config; 4984 x86_pmu.get_event_constraints = hsw_get_event_constraints; 4985 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? 4986 hsw_format_attr : nhm_format_attr; 4987 extra_skl_attr = skl_format_attr; 4988 td_attr = hsw_events_attrs; 4989 mem_attr = hsw_mem_events_attrs; 4990 tsx_attr = hsw_tsx_events_attrs; 4991 intel_pmu_pebs_data_source_skl(pmem); 4992 4993 if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT)) { 4994 x86_pmu.flags |= PMU_FL_TFA; 4995 x86_pmu.get_event_constraints = tfa_get_event_constraints; 4996 x86_pmu.enable_all = intel_tfa_pmu_enable_all; 4997 x86_pmu.commit_scheduling = intel_tfa_commit_scheduling; 4998 } 4999 5000 pr_cont("Skylake events, "); 5001 name = "skylake"; 5002 break; 5003 5004 case INTEL_FAM6_ICELAKE_X: 5005 case INTEL_FAM6_ICELAKE_XEON_D: 5006 pmem = true; 5007 case INTEL_FAM6_ICELAKE_MOBILE: 5008 case INTEL_FAM6_ICELAKE_DESKTOP: 5009 x86_pmu.late_ack = true; 5010 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids)); 5011 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); 5012 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1; 5013 intel_pmu_lbr_init_skl(); 5014 5015 x86_pmu.event_constraints = intel_icl_event_constraints; 5016 x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints; 5017 x86_pmu.extra_regs = intel_icl_extra_regs; 5018 x86_pmu.pebs_aliases = NULL; 5019 x86_pmu.pebs_prec_dist = true; 5020 x86_pmu.flags |= PMU_FL_HAS_RSP_1; 5021 x86_pmu.flags |= PMU_FL_NO_HT_SHARING; 5022 5023 x86_pmu.hw_config = hsw_hw_config; 5024 x86_pmu.get_event_constraints = icl_get_event_constraints; 5025 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? 5026 hsw_format_attr : nhm_format_attr; 5027 extra_skl_attr = skl_format_attr; 5028 mem_attr = icl_events_attrs; 5029 tsx_attr = icl_tsx_events_attrs; 5030 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xca, .umask=0x02); 5031 x86_pmu.lbr_pt_coexist = true; 5032 intel_pmu_pebs_data_source_skl(pmem); 5033 pr_cont("Icelake events, "); 5034 name = "icelake"; 5035 break; 5036 5037 default: 5038 switch (x86_pmu.version) { 5039 case 1: 5040 x86_pmu.event_constraints = intel_v1_event_constraints; 5041 pr_cont("generic architected perfmon v1, "); 5042 name = "generic_arch_v1"; 5043 break; 5044 default: 5045 /* 5046 * default constraints for v2 and up 5047 */ 5048 x86_pmu.event_constraints = intel_gen_event_constraints; 5049 pr_cont("generic architected perfmon, "); 5050 name = "generic_arch_v2+"; 5051 break; 5052 } 5053 } 5054 5055 snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name); 5056 5057 5058 group_events_td.attrs = td_attr; 5059 group_events_mem.attrs = mem_attr; 5060 group_events_tsx.attrs = tsx_attr; 5061 group_format_extra.attrs = extra_attr; 5062 group_format_extra_skl.attrs = extra_skl_attr; 5063 5064 x86_pmu.attr_update = attr_update; 5065 5066 if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) { 5067 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!", 5068 x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC); 5069 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC; 5070 } 5071 x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1; 5072 5073 if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) { 5074 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!", 5075 x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED); 5076 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED; 5077 } 5078 5079 x86_pmu.intel_ctrl |= 5080 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED; 5081 5082 if (x86_pmu.event_constraints) { 5083 /* 5084 * event on fixed counter2 (REF_CYCLES) only works on this 5085 * counter, so do not extend mask to generic counters 5086 */ 5087 for_each_event_constraint(c, x86_pmu.event_constraints) { 5088 if (c->cmask == FIXED_EVENT_FLAGS 5089 && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) { 5090 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1; 5091 } 5092 c->idxmsk64 &= 5093 ~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed)); 5094 c->weight = hweight64(c->idxmsk64); 5095 } 5096 } 5097 5098 /* 5099 * Access LBR MSR may cause #GP under certain circumstances. 5100 * E.g. KVM doesn't support LBR MSR 5101 * Check all LBT MSR here. 5102 * Disable LBR access if any LBR MSRs can not be accessed. 5103 */ 5104 if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL)) 5105 x86_pmu.lbr_nr = 0; 5106 for (i = 0; i < x86_pmu.lbr_nr; i++) { 5107 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) && 5108 check_msr(x86_pmu.lbr_to + i, 0xffffUL))) 5109 x86_pmu.lbr_nr = 0; 5110 } 5111 5112 if (x86_pmu.lbr_nr) 5113 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr); 5114 5115 /* 5116 * Access extra MSR may cause #GP under certain circumstances. 5117 * E.g. KVM doesn't support offcore event 5118 * Check all extra_regs here. 5119 */ 5120 if (x86_pmu.extra_regs) { 5121 for (er = x86_pmu.extra_regs; er->msr; er++) { 5122 er->extra_msr_access = check_msr(er->msr, 0x11UL); 5123 /* Disable LBR select mapping */ 5124 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access) 5125 x86_pmu.lbr_sel_map = NULL; 5126 } 5127 } 5128 5129 /* Support full width counters using alternative MSR range */ 5130 if (x86_pmu.intel_cap.full_width_write) { 5131 x86_pmu.max_period = x86_pmu.cntval_mask >> 1; 5132 x86_pmu.perfctr = MSR_IA32_PMC0; 5133 pr_cont("full-width counters, "); 5134 } 5135 5136 /* 5137 * For arch perfmon 4 use counter freezing to avoid 5138 * several MSR accesses in the PMI. 5139 */ 5140 if (x86_pmu.counter_freezing) 5141 x86_pmu.handle_irq = intel_pmu_handle_irq_v4; 5142 5143 return 0; 5144 } 5145 5146 /* 5147 * HT bug: phase 2 init 5148 * Called once we have valid topology information to check 5149 * whether or not HT is enabled 5150 * If HT is off, then we disable the workaround 5151 */ 5152 static __init int fixup_ht_bug(void) 5153 { 5154 int c; 5155 /* 5156 * problem not present on this CPU model, nothing to do 5157 */ 5158 if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED)) 5159 return 0; 5160 5161 if (topology_max_smt_threads() > 1) { 5162 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n"); 5163 return 0; 5164 } 5165 5166 cpus_read_lock(); 5167 5168 hardlockup_detector_perf_stop(); 5169 5170 x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED); 5171 5172 x86_pmu.start_scheduling = NULL; 5173 x86_pmu.commit_scheduling = NULL; 5174 x86_pmu.stop_scheduling = NULL; 5175 5176 hardlockup_detector_perf_restart(); 5177 5178 for_each_online_cpu(c) 5179 free_excl_cntrs(&per_cpu(cpu_hw_events, c)); 5180 5181 cpus_read_unlock(); 5182 pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n"); 5183 return 0; 5184 } 5185 subsys_initcall(fixup_ht_bug) 5186