xref: /openbmc/linux/arch/x86/events/intel/core.c (revision 565485b8)
1 /*
2  * Per core/cpu state
3  *
4  * Used to coordinate shared registers between HT threads or
5  * among events on a single PMU.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/nmi.h>
16 
17 #include <asm/cpufeature.h>
18 #include <asm/hardirq.h>
19 #include <asm/intel-family.h>
20 #include <asm/apic.h>
21 
22 #include "../perf_event.h"
23 
24 /*
25  * Intel PerfMon, used on Core and later.
26  */
27 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
28 {
29 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
30 	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
31 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
32 	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
33 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
34 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
35 	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
36 	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
37 };
38 
39 static struct event_constraint intel_core_event_constraints[] __read_mostly =
40 {
41 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
42 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
43 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
44 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
45 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
46 	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
47 	EVENT_CONSTRAINT_END
48 };
49 
50 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
51 {
52 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
53 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
54 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
55 	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
56 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
57 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
58 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
59 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
60 	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
61 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
62 	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
63 	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
64 	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
65 	EVENT_CONSTRAINT_END
66 };
67 
68 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
69 {
70 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
71 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
72 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
73 	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
74 	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
75 	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
76 	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
77 	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
78 	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
79 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
80 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
81 	EVENT_CONSTRAINT_END
82 };
83 
84 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
85 {
86 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
87 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
88 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
89 	EVENT_EXTRA_END
90 };
91 
92 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
93 {
94 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
95 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
96 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
97 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
98 	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
99 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
100 	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
101 	EVENT_CONSTRAINT_END
102 };
103 
104 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
105 {
106 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
107 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
108 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
109 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
110 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
111 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
112 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
113 	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
114 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
115 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
116 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
117 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
118 
119 	/*
120 	 * When HT is off these events can only run on the bottom 4 counters
121 	 * When HT is on, they are impacted by the HT bug and require EXCL access
122 	 */
123 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
124 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
125 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
126 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
127 
128 	EVENT_CONSTRAINT_END
129 };
130 
131 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
132 {
133 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
134 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
135 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
136 	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
137 	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
138 	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
139 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
140 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
141 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
142 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
143 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
144 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
145 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
146 
147 	/*
148 	 * When HT is off these events can only run on the bottom 4 counters
149 	 * When HT is on, they are impacted by the HT bug and require EXCL access
150 	 */
151 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
152 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
153 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
154 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
155 
156 	EVENT_CONSTRAINT_END
157 };
158 
159 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
160 {
161 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
162 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
163 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
164 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
165 	EVENT_EXTRA_END
166 };
167 
168 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
169 {
170 	EVENT_CONSTRAINT_END
171 };
172 
173 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
174 {
175 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
176 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
177 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
178 	EVENT_CONSTRAINT_END
179 };
180 
181 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
182 {
183 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
184 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
185 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
186 	EVENT_CONSTRAINT_END
187 };
188 
189 static struct event_constraint intel_skl_event_constraints[] = {
190 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
191 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
192 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
193 	INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
194 
195 	/*
196 	 * when HT is off, these can only run on the bottom 4 counters
197 	 */
198 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
199 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
200 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
201 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
202 	INTEL_EVENT_CONSTRAINT(0xc6, 0xf),	/* FRONTEND_RETIRED.* */
203 
204 	EVENT_CONSTRAINT_END
205 };
206 
207 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
208 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
209 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
210 	EVENT_EXTRA_END
211 };
212 
213 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
214 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
215 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
216 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
217 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
218 	EVENT_EXTRA_END
219 };
220 
221 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
222 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
223 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
224 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
225 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
226 	EVENT_EXTRA_END
227 };
228 
229 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
230 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
231 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
232 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
233 	/*
234 	 * Note the low 8 bits eventsel code is not a continuous field, containing
235 	 * some #GPing bits. These are masked out.
236 	 */
237 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
238 	EVENT_EXTRA_END
239 };
240 
241 EVENT_ATTR_STR(mem-loads,	mem_ld_nhm,	"event=0x0b,umask=0x10,ldlat=3");
242 EVENT_ATTR_STR(mem-loads,	mem_ld_snb,	"event=0xcd,umask=0x1,ldlat=3");
243 EVENT_ATTR_STR(mem-stores,	mem_st_snb,	"event=0xcd,umask=0x2");
244 
245 static struct attribute *nhm_mem_events_attrs[] = {
246 	EVENT_PTR(mem_ld_nhm),
247 	NULL,
248 };
249 
250 /*
251  * topdown events for Intel Core CPUs.
252  *
253  * The events are all in slots, which is a free slot in a 4 wide
254  * pipeline. Some events are already reported in slots, for cycle
255  * events we multiply by the pipeline width (4).
256  *
257  * With Hyper Threading on, topdown metrics are either summed or averaged
258  * between the threads of a core: (count_t0 + count_t1).
259  *
260  * For the average case the metric is always scaled to pipeline width,
261  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
262  */
263 
264 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
265 	"event=0x3c,umask=0x0",			/* cpu_clk_unhalted.thread */
266 	"event=0x3c,umask=0x0,any=1");		/* cpu_clk_unhalted.thread_any */
267 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
268 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
269 	"event=0xe,umask=0x1");			/* uops_issued.any */
270 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
271 	"event=0xc2,umask=0x2");		/* uops_retired.retire_slots */
272 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
273 	"event=0x9c,umask=0x1");		/* idq_uops_not_delivered_core */
274 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
275 	"event=0xd,umask=0x3,cmask=1",		/* int_misc.recovery_cycles */
276 	"event=0xd,umask=0x3,cmask=1,any=1");	/* int_misc.recovery_cycles_any */
277 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
278 	"4", "2");
279 
280 static struct attribute *snb_events_attrs[] = {
281 	EVENT_PTR(td_slots_issued),
282 	EVENT_PTR(td_slots_retired),
283 	EVENT_PTR(td_fetch_bubbles),
284 	EVENT_PTR(td_total_slots),
285 	EVENT_PTR(td_total_slots_scale),
286 	EVENT_PTR(td_recovery_bubbles),
287 	EVENT_PTR(td_recovery_bubbles_scale),
288 	NULL,
289 };
290 
291 static struct attribute *snb_mem_events_attrs[] = {
292 	EVENT_PTR(mem_ld_snb),
293 	EVENT_PTR(mem_st_snb),
294 	NULL,
295 };
296 
297 static struct event_constraint intel_hsw_event_constraints[] = {
298 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
299 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
300 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
301 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
302 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
303 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
304 	/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
305 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
306 	/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
307 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
308 	/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
309 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
310 
311 	/*
312 	 * When HT is off these events can only run on the bottom 4 counters
313 	 * When HT is on, they are impacted by the HT bug and require EXCL access
314 	 */
315 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
316 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
317 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
318 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
319 
320 	EVENT_CONSTRAINT_END
321 };
322 
323 static struct event_constraint intel_bdw_event_constraints[] = {
324 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
325 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
326 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
327 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
328 	INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),	/* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
329 	/*
330 	 * when HT is off, these can only run on the bottom 4 counters
331 	 */
332 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
333 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
334 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
335 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
336 	EVENT_CONSTRAINT_END
337 };
338 
339 static u64 intel_pmu_event_map(int hw_event)
340 {
341 	return intel_perfmon_event_map[hw_event];
342 }
343 
344 /*
345  * Notes on the events:
346  * - data reads do not include code reads (comparable to earlier tables)
347  * - data counts include speculative execution (except L1 write, dtlb, bpu)
348  * - remote node access includes remote memory, remote cache, remote mmio.
349  * - prefetches are not included in the counts.
350  * - icache miss does not include decoded icache
351  */
352 
353 #define SKL_DEMAND_DATA_RD		BIT_ULL(0)
354 #define SKL_DEMAND_RFO			BIT_ULL(1)
355 #define SKL_ANY_RESPONSE		BIT_ULL(16)
356 #define SKL_SUPPLIER_NONE		BIT_ULL(17)
357 #define SKL_L3_MISS_LOCAL_DRAM		BIT_ULL(26)
358 #define SKL_L3_MISS_REMOTE_HOP0_DRAM	BIT_ULL(27)
359 #define SKL_L3_MISS_REMOTE_HOP1_DRAM	BIT_ULL(28)
360 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM	BIT_ULL(29)
361 #define SKL_L3_MISS			(SKL_L3_MISS_LOCAL_DRAM| \
362 					 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
363 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
364 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
365 #define SKL_SPL_HIT			BIT_ULL(30)
366 #define SKL_SNOOP_NONE			BIT_ULL(31)
367 #define SKL_SNOOP_NOT_NEEDED		BIT_ULL(32)
368 #define SKL_SNOOP_MISS			BIT_ULL(33)
369 #define SKL_SNOOP_HIT_NO_FWD		BIT_ULL(34)
370 #define SKL_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
371 #define SKL_SNOOP_HITM			BIT_ULL(36)
372 #define SKL_SNOOP_NON_DRAM		BIT_ULL(37)
373 #define SKL_ANY_SNOOP			(SKL_SPL_HIT|SKL_SNOOP_NONE| \
374 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
375 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
376 					 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
377 #define SKL_DEMAND_READ			SKL_DEMAND_DATA_RD
378 #define SKL_SNOOP_DRAM			(SKL_SNOOP_NONE| \
379 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
380 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
381 					 SKL_SNOOP_HITM|SKL_SPL_HIT)
382 #define SKL_DEMAND_WRITE		SKL_DEMAND_RFO
383 #define SKL_LLC_ACCESS			SKL_ANY_RESPONSE
384 #define SKL_L3_MISS_REMOTE		(SKL_L3_MISS_REMOTE_HOP0_DRAM| \
385 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
386 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
387 
388 static __initconst const u64 skl_hw_cache_event_ids
389 				[PERF_COUNT_HW_CACHE_MAX]
390 				[PERF_COUNT_HW_CACHE_OP_MAX]
391 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
392 {
393  [ C(L1D ) ] = {
394 	[ C(OP_READ) ] = {
395 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
396 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
397 	},
398 	[ C(OP_WRITE) ] = {
399 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
400 		[ C(RESULT_MISS)   ] = 0x0,
401 	},
402 	[ C(OP_PREFETCH) ] = {
403 		[ C(RESULT_ACCESS) ] = 0x0,
404 		[ C(RESULT_MISS)   ] = 0x0,
405 	},
406  },
407  [ C(L1I ) ] = {
408 	[ C(OP_READ) ] = {
409 		[ C(RESULT_ACCESS) ] = 0x0,
410 		[ C(RESULT_MISS)   ] = 0x283,	/* ICACHE_64B.MISS */
411 	},
412 	[ C(OP_WRITE) ] = {
413 		[ C(RESULT_ACCESS) ] = -1,
414 		[ C(RESULT_MISS)   ] = -1,
415 	},
416 	[ C(OP_PREFETCH) ] = {
417 		[ C(RESULT_ACCESS) ] = 0x0,
418 		[ C(RESULT_MISS)   ] = 0x0,
419 	},
420  },
421  [ C(LL  ) ] = {
422 	[ C(OP_READ) ] = {
423 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
424 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
425 	},
426 	[ C(OP_WRITE) ] = {
427 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
428 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
429 	},
430 	[ C(OP_PREFETCH) ] = {
431 		[ C(RESULT_ACCESS) ] = 0x0,
432 		[ C(RESULT_MISS)   ] = 0x0,
433 	},
434  },
435  [ C(DTLB) ] = {
436 	[ C(OP_READ) ] = {
437 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
438 		[ C(RESULT_MISS)   ] = 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
439 	},
440 	[ C(OP_WRITE) ] = {
441 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
442 		[ C(RESULT_MISS)   ] = 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
443 	},
444 	[ C(OP_PREFETCH) ] = {
445 		[ C(RESULT_ACCESS) ] = 0x0,
446 		[ C(RESULT_MISS)   ] = 0x0,
447 	},
448  },
449  [ C(ITLB) ] = {
450 	[ C(OP_READ) ] = {
451 		[ C(RESULT_ACCESS) ] = 0x2085,	/* ITLB_MISSES.STLB_HIT */
452 		[ C(RESULT_MISS)   ] = 0xe85,	/* ITLB_MISSES.WALK_COMPLETED */
453 	},
454 	[ C(OP_WRITE) ] = {
455 		[ C(RESULT_ACCESS) ] = -1,
456 		[ C(RESULT_MISS)   ] = -1,
457 	},
458 	[ C(OP_PREFETCH) ] = {
459 		[ C(RESULT_ACCESS) ] = -1,
460 		[ C(RESULT_MISS)   ] = -1,
461 	},
462  },
463  [ C(BPU ) ] = {
464 	[ C(OP_READ) ] = {
465 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
466 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
467 	},
468 	[ C(OP_WRITE) ] = {
469 		[ C(RESULT_ACCESS) ] = -1,
470 		[ C(RESULT_MISS)   ] = -1,
471 	},
472 	[ C(OP_PREFETCH) ] = {
473 		[ C(RESULT_ACCESS) ] = -1,
474 		[ C(RESULT_MISS)   ] = -1,
475 	},
476  },
477  [ C(NODE) ] = {
478 	[ C(OP_READ) ] = {
479 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
480 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
481 	},
482 	[ C(OP_WRITE) ] = {
483 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
484 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
485 	},
486 	[ C(OP_PREFETCH) ] = {
487 		[ C(RESULT_ACCESS) ] = 0x0,
488 		[ C(RESULT_MISS)   ] = 0x0,
489 	},
490  },
491 };
492 
493 static __initconst const u64 skl_hw_cache_extra_regs
494 				[PERF_COUNT_HW_CACHE_MAX]
495 				[PERF_COUNT_HW_CACHE_OP_MAX]
496 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
497 {
498  [ C(LL  ) ] = {
499 	[ C(OP_READ) ] = {
500 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
501 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
502 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
503 				       SKL_L3_MISS|SKL_ANY_SNOOP|
504 				       SKL_SUPPLIER_NONE,
505 	},
506 	[ C(OP_WRITE) ] = {
507 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
508 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
509 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
510 				       SKL_L3_MISS|SKL_ANY_SNOOP|
511 				       SKL_SUPPLIER_NONE,
512 	},
513 	[ C(OP_PREFETCH) ] = {
514 		[ C(RESULT_ACCESS) ] = 0x0,
515 		[ C(RESULT_MISS)   ] = 0x0,
516 	},
517  },
518  [ C(NODE) ] = {
519 	[ C(OP_READ) ] = {
520 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
521 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
522 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
523 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
524 	},
525 	[ C(OP_WRITE) ] = {
526 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
527 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
528 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
529 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
530 	},
531 	[ C(OP_PREFETCH) ] = {
532 		[ C(RESULT_ACCESS) ] = 0x0,
533 		[ C(RESULT_MISS)   ] = 0x0,
534 	},
535  },
536 };
537 
538 #define SNB_DMND_DATA_RD	(1ULL << 0)
539 #define SNB_DMND_RFO		(1ULL << 1)
540 #define SNB_DMND_IFETCH		(1ULL << 2)
541 #define SNB_DMND_WB		(1ULL << 3)
542 #define SNB_PF_DATA_RD		(1ULL << 4)
543 #define SNB_PF_RFO		(1ULL << 5)
544 #define SNB_PF_IFETCH		(1ULL << 6)
545 #define SNB_LLC_DATA_RD		(1ULL << 7)
546 #define SNB_LLC_RFO		(1ULL << 8)
547 #define SNB_LLC_IFETCH		(1ULL << 9)
548 #define SNB_BUS_LOCKS		(1ULL << 10)
549 #define SNB_STRM_ST		(1ULL << 11)
550 #define SNB_OTHER		(1ULL << 15)
551 #define SNB_RESP_ANY		(1ULL << 16)
552 #define SNB_NO_SUPP		(1ULL << 17)
553 #define SNB_LLC_HITM		(1ULL << 18)
554 #define SNB_LLC_HITE		(1ULL << 19)
555 #define SNB_LLC_HITS		(1ULL << 20)
556 #define SNB_LLC_HITF		(1ULL << 21)
557 #define SNB_LOCAL		(1ULL << 22)
558 #define SNB_REMOTE		(0xffULL << 23)
559 #define SNB_SNP_NONE		(1ULL << 31)
560 #define SNB_SNP_NOT_NEEDED	(1ULL << 32)
561 #define SNB_SNP_MISS		(1ULL << 33)
562 #define SNB_NO_FWD		(1ULL << 34)
563 #define SNB_SNP_FWD		(1ULL << 35)
564 #define SNB_HITM		(1ULL << 36)
565 #define SNB_NON_DRAM		(1ULL << 37)
566 
567 #define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
568 #define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
569 #define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
570 
571 #define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
572 				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
573 				 SNB_HITM)
574 
575 #define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
576 #define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)
577 
578 #define SNB_L3_ACCESS		SNB_RESP_ANY
579 #define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)
580 
581 static __initconst const u64 snb_hw_cache_extra_regs
582 				[PERF_COUNT_HW_CACHE_MAX]
583 				[PERF_COUNT_HW_CACHE_OP_MAX]
584 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
585 {
586  [ C(LL  ) ] = {
587 	[ C(OP_READ) ] = {
588 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
589 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
590 	},
591 	[ C(OP_WRITE) ] = {
592 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
593 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
594 	},
595 	[ C(OP_PREFETCH) ] = {
596 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
597 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
598 	},
599  },
600  [ C(NODE) ] = {
601 	[ C(OP_READ) ] = {
602 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
603 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
604 	},
605 	[ C(OP_WRITE) ] = {
606 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
607 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
608 	},
609 	[ C(OP_PREFETCH) ] = {
610 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
611 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
612 	},
613  },
614 };
615 
616 static __initconst const u64 snb_hw_cache_event_ids
617 				[PERF_COUNT_HW_CACHE_MAX]
618 				[PERF_COUNT_HW_CACHE_OP_MAX]
619 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
620 {
621  [ C(L1D) ] = {
622 	[ C(OP_READ) ] = {
623 		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
624 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
625 	},
626 	[ C(OP_WRITE) ] = {
627 		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
628 		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
629 	},
630 	[ C(OP_PREFETCH) ] = {
631 		[ C(RESULT_ACCESS) ] = 0x0,
632 		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
633 	},
634  },
635  [ C(L1I ) ] = {
636 	[ C(OP_READ) ] = {
637 		[ C(RESULT_ACCESS) ] = 0x0,
638 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
639 	},
640 	[ C(OP_WRITE) ] = {
641 		[ C(RESULT_ACCESS) ] = -1,
642 		[ C(RESULT_MISS)   ] = -1,
643 	},
644 	[ C(OP_PREFETCH) ] = {
645 		[ C(RESULT_ACCESS) ] = 0x0,
646 		[ C(RESULT_MISS)   ] = 0x0,
647 	},
648  },
649  [ C(LL  ) ] = {
650 	[ C(OP_READ) ] = {
651 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
652 		[ C(RESULT_ACCESS) ] = 0x01b7,
653 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
654 		[ C(RESULT_MISS)   ] = 0x01b7,
655 	},
656 	[ C(OP_WRITE) ] = {
657 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
658 		[ C(RESULT_ACCESS) ] = 0x01b7,
659 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
660 		[ C(RESULT_MISS)   ] = 0x01b7,
661 	},
662 	[ C(OP_PREFETCH) ] = {
663 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
664 		[ C(RESULT_ACCESS) ] = 0x01b7,
665 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
666 		[ C(RESULT_MISS)   ] = 0x01b7,
667 	},
668  },
669  [ C(DTLB) ] = {
670 	[ C(OP_READ) ] = {
671 		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
672 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
673 	},
674 	[ C(OP_WRITE) ] = {
675 		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
676 		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
677 	},
678 	[ C(OP_PREFETCH) ] = {
679 		[ C(RESULT_ACCESS) ] = 0x0,
680 		[ C(RESULT_MISS)   ] = 0x0,
681 	},
682  },
683  [ C(ITLB) ] = {
684 	[ C(OP_READ) ] = {
685 		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
686 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
687 	},
688 	[ C(OP_WRITE) ] = {
689 		[ C(RESULT_ACCESS) ] = -1,
690 		[ C(RESULT_MISS)   ] = -1,
691 	},
692 	[ C(OP_PREFETCH) ] = {
693 		[ C(RESULT_ACCESS) ] = -1,
694 		[ C(RESULT_MISS)   ] = -1,
695 	},
696  },
697  [ C(BPU ) ] = {
698 	[ C(OP_READ) ] = {
699 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
700 		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
701 	},
702 	[ C(OP_WRITE) ] = {
703 		[ C(RESULT_ACCESS) ] = -1,
704 		[ C(RESULT_MISS)   ] = -1,
705 	},
706 	[ C(OP_PREFETCH) ] = {
707 		[ C(RESULT_ACCESS) ] = -1,
708 		[ C(RESULT_MISS)   ] = -1,
709 	},
710  },
711  [ C(NODE) ] = {
712 	[ C(OP_READ) ] = {
713 		[ C(RESULT_ACCESS) ] = 0x01b7,
714 		[ C(RESULT_MISS)   ] = 0x01b7,
715 	},
716 	[ C(OP_WRITE) ] = {
717 		[ C(RESULT_ACCESS) ] = 0x01b7,
718 		[ C(RESULT_MISS)   ] = 0x01b7,
719 	},
720 	[ C(OP_PREFETCH) ] = {
721 		[ C(RESULT_ACCESS) ] = 0x01b7,
722 		[ C(RESULT_MISS)   ] = 0x01b7,
723 	},
724  },
725 
726 };
727 
728 /*
729  * Notes on the events:
730  * - data reads do not include code reads (comparable to earlier tables)
731  * - data counts include speculative execution (except L1 write, dtlb, bpu)
732  * - remote node access includes remote memory, remote cache, remote mmio.
733  * - prefetches are not included in the counts because they are not
734  *   reliably counted.
735  */
736 
737 #define HSW_DEMAND_DATA_RD		BIT_ULL(0)
738 #define HSW_DEMAND_RFO			BIT_ULL(1)
739 #define HSW_ANY_RESPONSE		BIT_ULL(16)
740 #define HSW_SUPPLIER_NONE		BIT_ULL(17)
741 #define HSW_L3_MISS_LOCAL_DRAM		BIT_ULL(22)
742 #define HSW_L3_MISS_REMOTE_HOP0		BIT_ULL(27)
743 #define HSW_L3_MISS_REMOTE_HOP1		BIT_ULL(28)
744 #define HSW_L3_MISS_REMOTE_HOP2P	BIT_ULL(29)
745 #define HSW_L3_MISS			(HSW_L3_MISS_LOCAL_DRAM| \
746 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
747 					 HSW_L3_MISS_REMOTE_HOP2P)
748 #define HSW_SNOOP_NONE			BIT_ULL(31)
749 #define HSW_SNOOP_NOT_NEEDED		BIT_ULL(32)
750 #define HSW_SNOOP_MISS			BIT_ULL(33)
751 #define HSW_SNOOP_HIT_NO_FWD		BIT_ULL(34)
752 #define HSW_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
753 #define HSW_SNOOP_HITM			BIT_ULL(36)
754 #define HSW_SNOOP_NON_DRAM		BIT_ULL(37)
755 #define HSW_ANY_SNOOP			(HSW_SNOOP_NONE| \
756 					 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
757 					 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
758 					 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
759 #define HSW_SNOOP_DRAM			(HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
760 #define HSW_DEMAND_READ			HSW_DEMAND_DATA_RD
761 #define HSW_DEMAND_WRITE		HSW_DEMAND_RFO
762 #define HSW_L3_MISS_REMOTE		(HSW_L3_MISS_REMOTE_HOP0|\
763 					 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
764 #define HSW_LLC_ACCESS			HSW_ANY_RESPONSE
765 
766 #define BDW_L3_MISS_LOCAL		BIT(26)
767 #define BDW_L3_MISS			(BDW_L3_MISS_LOCAL| \
768 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
769 					 HSW_L3_MISS_REMOTE_HOP2P)
770 
771 
772 static __initconst const u64 hsw_hw_cache_event_ids
773 				[PERF_COUNT_HW_CACHE_MAX]
774 				[PERF_COUNT_HW_CACHE_OP_MAX]
775 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
776 {
777  [ C(L1D ) ] = {
778 	[ C(OP_READ) ] = {
779 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
780 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
781 	},
782 	[ C(OP_WRITE) ] = {
783 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
784 		[ C(RESULT_MISS)   ] = 0x0,
785 	},
786 	[ C(OP_PREFETCH) ] = {
787 		[ C(RESULT_ACCESS) ] = 0x0,
788 		[ C(RESULT_MISS)   ] = 0x0,
789 	},
790  },
791  [ C(L1I ) ] = {
792 	[ C(OP_READ) ] = {
793 		[ C(RESULT_ACCESS) ] = 0x0,
794 		[ C(RESULT_MISS)   ] = 0x280,	/* ICACHE.MISSES */
795 	},
796 	[ C(OP_WRITE) ] = {
797 		[ C(RESULT_ACCESS) ] = -1,
798 		[ C(RESULT_MISS)   ] = -1,
799 	},
800 	[ C(OP_PREFETCH) ] = {
801 		[ C(RESULT_ACCESS) ] = 0x0,
802 		[ C(RESULT_MISS)   ] = 0x0,
803 	},
804  },
805  [ C(LL  ) ] = {
806 	[ C(OP_READ) ] = {
807 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
808 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
809 	},
810 	[ C(OP_WRITE) ] = {
811 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
812 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
813 	},
814 	[ C(OP_PREFETCH) ] = {
815 		[ C(RESULT_ACCESS) ] = 0x0,
816 		[ C(RESULT_MISS)   ] = 0x0,
817 	},
818  },
819  [ C(DTLB) ] = {
820 	[ C(OP_READ) ] = {
821 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
822 		[ C(RESULT_MISS)   ] = 0x108,	/* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
823 	},
824 	[ C(OP_WRITE) ] = {
825 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
826 		[ C(RESULT_MISS)   ] = 0x149,	/* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
827 	},
828 	[ C(OP_PREFETCH) ] = {
829 		[ C(RESULT_ACCESS) ] = 0x0,
830 		[ C(RESULT_MISS)   ] = 0x0,
831 	},
832  },
833  [ C(ITLB) ] = {
834 	[ C(OP_READ) ] = {
835 		[ C(RESULT_ACCESS) ] = 0x6085,	/* ITLB_MISSES.STLB_HIT */
836 		[ C(RESULT_MISS)   ] = 0x185,	/* ITLB_MISSES.MISS_CAUSES_A_WALK */
837 	},
838 	[ C(OP_WRITE) ] = {
839 		[ C(RESULT_ACCESS) ] = -1,
840 		[ C(RESULT_MISS)   ] = -1,
841 	},
842 	[ C(OP_PREFETCH) ] = {
843 		[ C(RESULT_ACCESS) ] = -1,
844 		[ C(RESULT_MISS)   ] = -1,
845 	},
846  },
847  [ C(BPU ) ] = {
848 	[ C(OP_READ) ] = {
849 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
850 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
851 	},
852 	[ C(OP_WRITE) ] = {
853 		[ C(RESULT_ACCESS) ] = -1,
854 		[ C(RESULT_MISS)   ] = -1,
855 	},
856 	[ C(OP_PREFETCH) ] = {
857 		[ C(RESULT_ACCESS) ] = -1,
858 		[ C(RESULT_MISS)   ] = -1,
859 	},
860  },
861  [ C(NODE) ] = {
862 	[ C(OP_READ) ] = {
863 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
864 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
865 	},
866 	[ C(OP_WRITE) ] = {
867 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
868 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
869 	},
870 	[ C(OP_PREFETCH) ] = {
871 		[ C(RESULT_ACCESS) ] = 0x0,
872 		[ C(RESULT_MISS)   ] = 0x0,
873 	},
874  },
875 };
876 
877 static __initconst const u64 hsw_hw_cache_extra_regs
878 				[PERF_COUNT_HW_CACHE_MAX]
879 				[PERF_COUNT_HW_CACHE_OP_MAX]
880 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
881 {
882  [ C(LL  ) ] = {
883 	[ C(OP_READ) ] = {
884 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
885 				       HSW_LLC_ACCESS,
886 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
887 				       HSW_L3_MISS|HSW_ANY_SNOOP,
888 	},
889 	[ C(OP_WRITE) ] = {
890 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
891 				       HSW_LLC_ACCESS,
892 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
893 				       HSW_L3_MISS|HSW_ANY_SNOOP,
894 	},
895 	[ C(OP_PREFETCH) ] = {
896 		[ C(RESULT_ACCESS) ] = 0x0,
897 		[ C(RESULT_MISS)   ] = 0x0,
898 	},
899  },
900  [ C(NODE) ] = {
901 	[ C(OP_READ) ] = {
902 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
903 				       HSW_L3_MISS_LOCAL_DRAM|
904 				       HSW_SNOOP_DRAM,
905 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
906 				       HSW_L3_MISS_REMOTE|
907 				       HSW_SNOOP_DRAM,
908 	},
909 	[ C(OP_WRITE) ] = {
910 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
911 				       HSW_L3_MISS_LOCAL_DRAM|
912 				       HSW_SNOOP_DRAM,
913 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
914 				       HSW_L3_MISS_REMOTE|
915 				       HSW_SNOOP_DRAM,
916 	},
917 	[ C(OP_PREFETCH) ] = {
918 		[ C(RESULT_ACCESS) ] = 0x0,
919 		[ C(RESULT_MISS)   ] = 0x0,
920 	},
921  },
922 };
923 
924 static __initconst const u64 westmere_hw_cache_event_ids
925 				[PERF_COUNT_HW_CACHE_MAX]
926 				[PERF_COUNT_HW_CACHE_OP_MAX]
927 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
928 {
929  [ C(L1D) ] = {
930 	[ C(OP_READ) ] = {
931 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
932 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
933 	},
934 	[ C(OP_WRITE) ] = {
935 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
936 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
937 	},
938 	[ C(OP_PREFETCH) ] = {
939 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
940 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
941 	},
942  },
943  [ C(L1I ) ] = {
944 	[ C(OP_READ) ] = {
945 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
946 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
947 	},
948 	[ C(OP_WRITE) ] = {
949 		[ C(RESULT_ACCESS) ] = -1,
950 		[ C(RESULT_MISS)   ] = -1,
951 	},
952 	[ C(OP_PREFETCH) ] = {
953 		[ C(RESULT_ACCESS) ] = 0x0,
954 		[ C(RESULT_MISS)   ] = 0x0,
955 	},
956  },
957  [ C(LL  ) ] = {
958 	[ C(OP_READ) ] = {
959 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
960 		[ C(RESULT_ACCESS) ] = 0x01b7,
961 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
962 		[ C(RESULT_MISS)   ] = 0x01b7,
963 	},
964 	/*
965 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
966 	 * on RFO.
967 	 */
968 	[ C(OP_WRITE) ] = {
969 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
970 		[ C(RESULT_ACCESS) ] = 0x01b7,
971 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
972 		[ C(RESULT_MISS)   ] = 0x01b7,
973 	},
974 	[ C(OP_PREFETCH) ] = {
975 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
976 		[ C(RESULT_ACCESS) ] = 0x01b7,
977 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
978 		[ C(RESULT_MISS)   ] = 0x01b7,
979 	},
980  },
981  [ C(DTLB) ] = {
982 	[ C(OP_READ) ] = {
983 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
984 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
985 	},
986 	[ C(OP_WRITE) ] = {
987 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
988 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
989 	},
990 	[ C(OP_PREFETCH) ] = {
991 		[ C(RESULT_ACCESS) ] = 0x0,
992 		[ C(RESULT_MISS)   ] = 0x0,
993 	},
994  },
995  [ C(ITLB) ] = {
996 	[ C(OP_READ) ] = {
997 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
998 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
999 	},
1000 	[ C(OP_WRITE) ] = {
1001 		[ C(RESULT_ACCESS) ] = -1,
1002 		[ C(RESULT_MISS)   ] = -1,
1003 	},
1004 	[ C(OP_PREFETCH) ] = {
1005 		[ C(RESULT_ACCESS) ] = -1,
1006 		[ C(RESULT_MISS)   ] = -1,
1007 	},
1008  },
1009  [ C(BPU ) ] = {
1010 	[ C(OP_READ) ] = {
1011 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1012 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1013 	},
1014 	[ C(OP_WRITE) ] = {
1015 		[ C(RESULT_ACCESS) ] = -1,
1016 		[ C(RESULT_MISS)   ] = -1,
1017 	},
1018 	[ C(OP_PREFETCH) ] = {
1019 		[ C(RESULT_ACCESS) ] = -1,
1020 		[ C(RESULT_MISS)   ] = -1,
1021 	},
1022  },
1023  [ C(NODE) ] = {
1024 	[ C(OP_READ) ] = {
1025 		[ C(RESULT_ACCESS) ] = 0x01b7,
1026 		[ C(RESULT_MISS)   ] = 0x01b7,
1027 	},
1028 	[ C(OP_WRITE) ] = {
1029 		[ C(RESULT_ACCESS) ] = 0x01b7,
1030 		[ C(RESULT_MISS)   ] = 0x01b7,
1031 	},
1032 	[ C(OP_PREFETCH) ] = {
1033 		[ C(RESULT_ACCESS) ] = 0x01b7,
1034 		[ C(RESULT_MISS)   ] = 0x01b7,
1035 	},
1036  },
1037 };
1038 
1039 /*
1040  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1041  * See IA32 SDM Vol 3B 30.6.1.3
1042  */
1043 
1044 #define NHM_DMND_DATA_RD	(1 << 0)
1045 #define NHM_DMND_RFO		(1 << 1)
1046 #define NHM_DMND_IFETCH		(1 << 2)
1047 #define NHM_DMND_WB		(1 << 3)
1048 #define NHM_PF_DATA_RD		(1 << 4)
1049 #define NHM_PF_DATA_RFO		(1 << 5)
1050 #define NHM_PF_IFETCH		(1 << 6)
1051 #define NHM_OFFCORE_OTHER	(1 << 7)
1052 #define NHM_UNCORE_HIT		(1 << 8)
1053 #define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
1054 #define NHM_OTHER_CORE_HITM	(1 << 10)
1055         			/* reserved */
1056 #define NHM_REMOTE_CACHE_FWD	(1 << 12)
1057 #define NHM_REMOTE_DRAM		(1 << 13)
1058 #define NHM_LOCAL_DRAM		(1 << 14)
1059 #define NHM_NON_DRAM		(1 << 15)
1060 
1061 #define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1062 #define NHM_REMOTE		(NHM_REMOTE_DRAM)
1063 
1064 #define NHM_DMND_READ		(NHM_DMND_DATA_RD)
1065 #define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
1066 #define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1067 
1068 #define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1069 #define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1070 #define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
1071 
1072 static __initconst const u64 nehalem_hw_cache_extra_regs
1073 				[PERF_COUNT_HW_CACHE_MAX]
1074 				[PERF_COUNT_HW_CACHE_OP_MAX]
1075 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1076 {
1077  [ C(LL  ) ] = {
1078 	[ C(OP_READ) ] = {
1079 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1080 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1081 	},
1082 	[ C(OP_WRITE) ] = {
1083 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1084 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1085 	},
1086 	[ C(OP_PREFETCH) ] = {
1087 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1088 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1089 	},
1090  },
1091  [ C(NODE) ] = {
1092 	[ C(OP_READ) ] = {
1093 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1094 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1095 	},
1096 	[ C(OP_WRITE) ] = {
1097 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1098 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1099 	},
1100 	[ C(OP_PREFETCH) ] = {
1101 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1102 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1103 	},
1104  },
1105 };
1106 
1107 static __initconst const u64 nehalem_hw_cache_event_ids
1108 				[PERF_COUNT_HW_CACHE_MAX]
1109 				[PERF_COUNT_HW_CACHE_OP_MAX]
1110 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1111 {
1112  [ C(L1D) ] = {
1113 	[ C(OP_READ) ] = {
1114 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1115 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1116 	},
1117 	[ C(OP_WRITE) ] = {
1118 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1119 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1120 	},
1121 	[ C(OP_PREFETCH) ] = {
1122 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1123 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1124 	},
1125  },
1126  [ C(L1I ) ] = {
1127 	[ C(OP_READ) ] = {
1128 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1129 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1130 	},
1131 	[ C(OP_WRITE) ] = {
1132 		[ C(RESULT_ACCESS) ] = -1,
1133 		[ C(RESULT_MISS)   ] = -1,
1134 	},
1135 	[ C(OP_PREFETCH) ] = {
1136 		[ C(RESULT_ACCESS) ] = 0x0,
1137 		[ C(RESULT_MISS)   ] = 0x0,
1138 	},
1139  },
1140  [ C(LL  ) ] = {
1141 	[ C(OP_READ) ] = {
1142 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1143 		[ C(RESULT_ACCESS) ] = 0x01b7,
1144 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1145 		[ C(RESULT_MISS)   ] = 0x01b7,
1146 	},
1147 	/*
1148 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1149 	 * on RFO.
1150 	 */
1151 	[ C(OP_WRITE) ] = {
1152 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1153 		[ C(RESULT_ACCESS) ] = 0x01b7,
1154 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1155 		[ C(RESULT_MISS)   ] = 0x01b7,
1156 	},
1157 	[ C(OP_PREFETCH) ] = {
1158 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1159 		[ C(RESULT_ACCESS) ] = 0x01b7,
1160 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1161 		[ C(RESULT_MISS)   ] = 0x01b7,
1162 	},
1163  },
1164  [ C(DTLB) ] = {
1165 	[ C(OP_READ) ] = {
1166 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1167 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1168 	},
1169 	[ C(OP_WRITE) ] = {
1170 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1171 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1172 	},
1173 	[ C(OP_PREFETCH) ] = {
1174 		[ C(RESULT_ACCESS) ] = 0x0,
1175 		[ C(RESULT_MISS)   ] = 0x0,
1176 	},
1177  },
1178  [ C(ITLB) ] = {
1179 	[ C(OP_READ) ] = {
1180 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1181 		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1182 	},
1183 	[ C(OP_WRITE) ] = {
1184 		[ C(RESULT_ACCESS) ] = -1,
1185 		[ C(RESULT_MISS)   ] = -1,
1186 	},
1187 	[ C(OP_PREFETCH) ] = {
1188 		[ C(RESULT_ACCESS) ] = -1,
1189 		[ C(RESULT_MISS)   ] = -1,
1190 	},
1191  },
1192  [ C(BPU ) ] = {
1193 	[ C(OP_READ) ] = {
1194 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1195 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1196 	},
1197 	[ C(OP_WRITE) ] = {
1198 		[ C(RESULT_ACCESS) ] = -1,
1199 		[ C(RESULT_MISS)   ] = -1,
1200 	},
1201 	[ C(OP_PREFETCH) ] = {
1202 		[ C(RESULT_ACCESS) ] = -1,
1203 		[ C(RESULT_MISS)   ] = -1,
1204 	},
1205  },
1206  [ C(NODE) ] = {
1207 	[ C(OP_READ) ] = {
1208 		[ C(RESULT_ACCESS) ] = 0x01b7,
1209 		[ C(RESULT_MISS)   ] = 0x01b7,
1210 	},
1211 	[ C(OP_WRITE) ] = {
1212 		[ C(RESULT_ACCESS) ] = 0x01b7,
1213 		[ C(RESULT_MISS)   ] = 0x01b7,
1214 	},
1215 	[ C(OP_PREFETCH) ] = {
1216 		[ C(RESULT_ACCESS) ] = 0x01b7,
1217 		[ C(RESULT_MISS)   ] = 0x01b7,
1218 	},
1219  },
1220 };
1221 
1222 static __initconst const u64 core2_hw_cache_event_ids
1223 				[PERF_COUNT_HW_CACHE_MAX]
1224 				[PERF_COUNT_HW_CACHE_OP_MAX]
1225 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1226 {
1227  [ C(L1D) ] = {
1228 	[ C(OP_READ) ] = {
1229 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1230 		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1231 	},
1232 	[ C(OP_WRITE) ] = {
1233 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1234 		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1235 	},
1236 	[ C(OP_PREFETCH) ] = {
1237 		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1238 		[ C(RESULT_MISS)   ] = 0,
1239 	},
1240  },
1241  [ C(L1I ) ] = {
1242 	[ C(OP_READ) ] = {
1243 		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1244 		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1245 	},
1246 	[ C(OP_WRITE) ] = {
1247 		[ C(RESULT_ACCESS) ] = -1,
1248 		[ C(RESULT_MISS)   ] = -1,
1249 	},
1250 	[ C(OP_PREFETCH) ] = {
1251 		[ C(RESULT_ACCESS) ] = 0,
1252 		[ C(RESULT_MISS)   ] = 0,
1253 	},
1254  },
1255  [ C(LL  ) ] = {
1256 	[ C(OP_READ) ] = {
1257 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1258 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1259 	},
1260 	[ C(OP_WRITE) ] = {
1261 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1262 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1263 	},
1264 	[ C(OP_PREFETCH) ] = {
1265 		[ C(RESULT_ACCESS) ] = 0,
1266 		[ C(RESULT_MISS)   ] = 0,
1267 	},
1268  },
1269  [ C(DTLB) ] = {
1270 	[ C(OP_READ) ] = {
1271 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1272 		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1273 	},
1274 	[ C(OP_WRITE) ] = {
1275 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1276 		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1277 	},
1278 	[ C(OP_PREFETCH) ] = {
1279 		[ C(RESULT_ACCESS) ] = 0,
1280 		[ C(RESULT_MISS)   ] = 0,
1281 	},
1282  },
1283  [ C(ITLB) ] = {
1284 	[ C(OP_READ) ] = {
1285 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1286 		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1287 	},
1288 	[ C(OP_WRITE) ] = {
1289 		[ C(RESULT_ACCESS) ] = -1,
1290 		[ C(RESULT_MISS)   ] = -1,
1291 	},
1292 	[ C(OP_PREFETCH) ] = {
1293 		[ C(RESULT_ACCESS) ] = -1,
1294 		[ C(RESULT_MISS)   ] = -1,
1295 	},
1296  },
1297  [ C(BPU ) ] = {
1298 	[ C(OP_READ) ] = {
1299 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1300 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1301 	},
1302 	[ C(OP_WRITE) ] = {
1303 		[ C(RESULT_ACCESS) ] = -1,
1304 		[ C(RESULT_MISS)   ] = -1,
1305 	},
1306 	[ C(OP_PREFETCH) ] = {
1307 		[ C(RESULT_ACCESS) ] = -1,
1308 		[ C(RESULT_MISS)   ] = -1,
1309 	},
1310  },
1311 };
1312 
1313 static __initconst const u64 atom_hw_cache_event_ids
1314 				[PERF_COUNT_HW_CACHE_MAX]
1315 				[PERF_COUNT_HW_CACHE_OP_MAX]
1316 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1317 {
1318  [ C(L1D) ] = {
1319 	[ C(OP_READ) ] = {
1320 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1321 		[ C(RESULT_MISS)   ] = 0,
1322 	},
1323 	[ C(OP_WRITE) ] = {
1324 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1325 		[ C(RESULT_MISS)   ] = 0,
1326 	},
1327 	[ C(OP_PREFETCH) ] = {
1328 		[ C(RESULT_ACCESS) ] = 0x0,
1329 		[ C(RESULT_MISS)   ] = 0,
1330 	},
1331  },
1332  [ C(L1I ) ] = {
1333 	[ C(OP_READ) ] = {
1334 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1335 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1336 	},
1337 	[ C(OP_WRITE) ] = {
1338 		[ C(RESULT_ACCESS) ] = -1,
1339 		[ C(RESULT_MISS)   ] = -1,
1340 	},
1341 	[ C(OP_PREFETCH) ] = {
1342 		[ C(RESULT_ACCESS) ] = 0,
1343 		[ C(RESULT_MISS)   ] = 0,
1344 	},
1345  },
1346  [ C(LL  ) ] = {
1347 	[ C(OP_READ) ] = {
1348 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1349 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1350 	},
1351 	[ C(OP_WRITE) ] = {
1352 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1353 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1354 	},
1355 	[ C(OP_PREFETCH) ] = {
1356 		[ C(RESULT_ACCESS) ] = 0,
1357 		[ C(RESULT_MISS)   ] = 0,
1358 	},
1359  },
1360  [ C(DTLB) ] = {
1361 	[ C(OP_READ) ] = {
1362 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1363 		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1364 	},
1365 	[ C(OP_WRITE) ] = {
1366 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1367 		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1368 	},
1369 	[ C(OP_PREFETCH) ] = {
1370 		[ C(RESULT_ACCESS) ] = 0,
1371 		[ C(RESULT_MISS)   ] = 0,
1372 	},
1373  },
1374  [ C(ITLB) ] = {
1375 	[ C(OP_READ) ] = {
1376 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1377 		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1378 	},
1379 	[ C(OP_WRITE) ] = {
1380 		[ C(RESULT_ACCESS) ] = -1,
1381 		[ C(RESULT_MISS)   ] = -1,
1382 	},
1383 	[ C(OP_PREFETCH) ] = {
1384 		[ C(RESULT_ACCESS) ] = -1,
1385 		[ C(RESULT_MISS)   ] = -1,
1386 	},
1387  },
1388  [ C(BPU ) ] = {
1389 	[ C(OP_READ) ] = {
1390 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1391 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1392 	},
1393 	[ C(OP_WRITE) ] = {
1394 		[ C(RESULT_ACCESS) ] = -1,
1395 		[ C(RESULT_MISS)   ] = -1,
1396 	},
1397 	[ C(OP_PREFETCH) ] = {
1398 		[ C(RESULT_ACCESS) ] = -1,
1399 		[ C(RESULT_MISS)   ] = -1,
1400 	},
1401  },
1402 };
1403 
1404 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1405 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1406 /* no_alloc_cycles.not_delivered */
1407 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1408 	       "event=0xca,umask=0x50");
1409 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1410 /* uops_retired.all */
1411 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1412 	       "event=0xc2,umask=0x10");
1413 /* uops_retired.all */
1414 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1415 	       "event=0xc2,umask=0x10");
1416 
1417 static struct attribute *slm_events_attrs[] = {
1418 	EVENT_PTR(td_total_slots_slm),
1419 	EVENT_PTR(td_total_slots_scale_slm),
1420 	EVENT_PTR(td_fetch_bubbles_slm),
1421 	EVENT_PTR(td_fetch_bubbles_scale_slm),
1422 	EVENT_PTR(td_slots_issued_slm),
1423 	EVENT_PTR(td_slots_retired_slm),
1424 	NULL
1425 };
1426 
1427 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1428 {
1429 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1430 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1431 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1432 	EVENT_EXTRA_END
1433 };
1434 
1435 #define SLM_DMND_READ		SNB_DMND_DATA_RD
1436 #define SLM_DMND_WRITE		SNB_DMND_RFO
1437 #define SLM_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
1438 
1439 #define SLM_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1440 #define SLM_LLC_ACCESS		SNB_RESP_ANY
1441 #define SLM_LLC_MISS		(SLM_SNP_ANY|SNB_NON_DRAM)
1442 
1443 static __initconst const u64 slm_hw_cache_extra_regs
1444 				[PERF_COUNT_HW_CACHE_MAX]
1445 				[PERF_COUNT_HW_CACHE_OP_MAX]
1446 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1447 {
1448  [ C(LL  ) ] = {
1449 	[ C(OP_READ) ] = {
1450 		[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1451 		[ C(RESULT_MISS)   ] = 0,
1452 	},
1453 	[ C(OP_WRITE) ] = {
1454 		[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1455 		[ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1456 	},
1457 	[ C(OP_PREFETCH) ] = {
1458 		[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1459 		[ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1460 	},
1461  },
1462 };
1463 
1464 static __initconst const u64 slm_hw_cache_event_ids
1465 				[PERF_COUNT_HW_CACHE_MAX]
1466 				[PERF_COUNT_HW_CACHE_OP_MAX]
1467 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1468 {
1469  [ C(L1D) ] = {
1470 	[ C(OP_READ) ] = {
1471 		[ C(RESULT_ACCESS) ] = 0,
1472 		[ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1473 	},
1474 	[ C(OP_WRITE) ] = {
1475 		[ C(RESULT_ACCESS) ] = 0,
1476 		[ C(RESULT_MISS)   ] = 0,
1477 	},
1478 	[ C(OP_PREFETCH) ] = {
1479 		[ C(RESULT_ACCESS) ] = 0,
1480 		[ C(RESULT_MISS)   ] = 0,
1481 	},
1482  },
1483  [ C(L1I ) ] = {
1484 	[ C(OP_READ) ] = {
1485 		[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1486 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1487 	},
1488 	[ C(OP_WRITE) ] = {
1489 		[ C(RESULT_ACCESS) ] = -1,
1490 		[ C(RESULT_MISS)   ] = -1,
1491 	},
1492 	[ C(OP_PREFETCH) ] = {
1493 		[ C(RESULT_ACCESS) ] = 0,
1494 		[ C(RESULT_MISS)   ] = 0,
1495 	},
1496  },
1497  [ C(LL  ) ] = {
1498 	[ C(OP_READ) ] = {
1499 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1500 		[ C(RESULT_ACCESS) ] = 0x01b7,
1501 		[ C(RESULT_MISS)   ] = 0,
1502 	},
1503 	[ C(OP_WRITE) ] = {
1504 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1505 		[ C(RESULT_ACCESS) ] = 0x01b7,
1506 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1507 		[ C(RESULT_MISS)   ] = 0x01b7,
1508 	},
1509 	[ C(OP_PREFETCH) ] = {
1510 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1511 		[ C(RESULT_ACCESS) ] = 0x01b7,
1512 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1513 		[ C(RESULT_MISS)   ] = 0x01b7,
1514 	},
1515  },
1516  [ C(DTLB) ] = {
1517 	[ C(OP_READ) ] = {
1518 		[ C(RESULT_ACCESS) ] = 0,
1519 		[ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1520 	},
1521 	[ C(OP_WRITE) ] = {
1522 		[ C(RESULT_ACCESS) ] = 0,
1523 		[ C(RESULT_MISS)   ] = 0,
1524 	},
1525 	[ C(OP_PREFETCH) ] = {
1526 		[ C(RESULT_ACCESS) ] = 0,
1527 		[ C(RESULT_MISS)   ] = 0,
1528 	},
1529  },
1530  [ C(ITLB) ] = {
1531 	[ C(OP_READ) ] = {
1532 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1533 		[ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1534 	},
1535 	[ C(OP_WRITE) ] = {
1536 		[ C(RESULT_ACCESS) ] = -1,
1537 		[ C(RESULT_MISS)   ] = -1,
1538 	},
1539 	[ C(OP_PREFETCH) ] = {
1540 		[ C(RESULT_ACCESS) ] = -1,
1541 		[ C(RESULT_MISS)   ] = -1,
1542 	},
1543  },
1544  [ C(BPU ) ] = {
1545 	[ C(OP_READ) ] = {
1546 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1547 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1548 	},
1549 	[ C(OP_WRITE) ] = {
1550 		[ C(RESULT_ACCESS) ] = -1,
1551 		[ C(RESULT_MISS)   ] = -1,
1552 	},
1553 	[ C(OP_PREFETCH) ] = {
1554 		[ C(RESULT_ACCESS) ] = -1,
1555 		[ C(RESULT_MISS)   ] = -1,
1556 	},
1557  },
1558 };
1559 
1560 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1561 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1562 /* UOPS_NOT_DELIVERED.ANY */
1563 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1564 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1565 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1566 /* UOPS_RETIRED.ANY */
1567 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1568 /* UOPS_ISSUED.ANY */
1569 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1570 
1571 static struct attribute *glm_events_attrs[] = {
1572 	EVENT_PTR(td_total_slots_glm),
1573 	EVENT_PTR(td_total_slots_scale_glm),
1574 	EVENT_PTR(td_fetch_bubbles_glm),
1575 	EVENT_PTR(td_recovery_bubbles_glm),
1576 	EVENT_PTR(td_slots_issued_glm),
1577 	EVENT_PTR(td_slots_retired_glm),
1578 	NULL
1579 };
1580 
1581 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1582 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1583 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1584 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1585 	EVENT_EXTRA_END
1586 };
1587 
1588 #define GLM_DEMAND_DATA_RD		BIT_ULL(0)
1589 #define GLM_DEMAND_RFO			BIT_ULL(1)
1590 #define GLM_ANY_RESPONSE		BIT_ULL(16)
1591 #define GLM_SNP_NONE_OR_MISS		BIT_ULL(33)
1592 #define GLM_DEMAND_READ			GLM_DEMAND_DATA_RD
1593 #define GLM_DEMAND_WRITE		GLM_DEMAND_RFO
1594 #define GLM_DEMAND_PREFETCH		(SNB_PF_DATA_RD|SNB_PF_RFO)
1595 #define GLM_LLC_ACCESS			GLM_ANY_RESPONSE
1596 #define GLM_SNP_ANY			(GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1597 #define GLM_LLC_MISS			(GLM_SNP_ANY|SNB_NON_DRAM)
1598 
1599 static __initconst const u64 glm_hw_cache_event_ids
1600 				[PERF_COUNT_HW_CACHE_MAX]
1601 				[PERF_COUNT_HW_CACHE_OP_MAX]
1602 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1603 	[C(L1D)] = {
1604 		[C(OP_READ)] = {
1605 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1606 			[C(RESULT_MISS)]	= 0x0,
1607 		},
1608 		[C(OP_WRITE)] = {
1609 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1610 			[C(RESULT_MISS)]	= 0x0,
1611 		},
1612 		[C(OP_PREFETCH)] = {
1613 			[C(RESULT_ACCESS)]	= 0x0,
1614 			[C(RESULT_MISS)]	= 0x0,
1615 		},
1616 	},
1617 	[C(L1I)] = {
1618 		[C(OP_READ)] = {
1619 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1620 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1621 		},
1622 		[C(OP_WRITE)] = {
1623 			[C(RESULT_ACCESS)]	= -1,
1624 			[C(RESULT_MISS)]	= -1,
1625 		},
1626 		[C(OP_PREFETCH)] = {
1627 			[C(RESULT_ACCESS)]	= 0x0,
1628 			[C(RESULT_MISS)]	= 0x0,
1629 		},
1630 	},
1631 	[C(LL)] = {
1632 		[C(OP_READ)] = {
1633 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1634 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1635 		},
1636 		[C(OP_WRITE)] = {
1637 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1638 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1639 		},
1640 		[C(OP_PREFETCH)] = {
1641 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1642 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1643 		},
1644 	},
1645 	[C(DTLB)] = {
1646 		[C(OP_READ)] = {
1647 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1648 			[C(RESULT_MISS)]	= 0x0,
1649 		},
1650 		[C(OP_WRITE)] = {
1651 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1652 			[C(RESULT_MISS)]	= 0x0,
1653 		},
1654 		[C(OP_PREFETCH)] = {
1655 			[C(RESULT_ACCESS)]	= 0x0,
1656 			[C(RESULT_MISS)]	= 0x0,
1657 		},
1658 	},
1659 	[C(ITLB)] = {
1660 		[C(OP_READ)] = {
1661 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1662 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1663 		},
1664 		[C(OP_WRITE)] = {
1665 			[C(RESULT_ACCESS)]	= -1,
1666 			[C(RESULT_MISS)]	= -1,
1667 		},
1668 		[C(OP_PREFETCH)] = {
1669 			[C(RESULT_ACCESS)]	= -1,
1670 			[C(RESULT_MISS)]	= -1,
1671 		},
1672 	},
1673 	[C(BPU)] = {
1674 		[C(OP_READ)] = {
1675 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1676 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1677 		},
1678 		[C(OP_WRITE)] = {
1679 			[C(RESULT_ACCESS)]	= -1,
1680 			[C(RESULT_MISS)]	= -1,
1681 		},
1682 		[C(OP_PREFETCH)] = {
1683 			[C(RESULT_ACCESS)]	= -1,
1684 			[C(RESULT_MISS)]	= -1,
1685 		},
1686 	},
1687 };
1688 
1689 static __initconst const u64 glm_hw_cache_extra_regs
1690 				[PERF_COUNT_HW_CACHE_MAX]
1691 				[PERF_COUNT_HW_CACHE_OP_MAX]
1692 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1693 	[C(LL)] = {
1694 		[C(OP_READ)] = {
1695 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
1696 						  GLM_LLC_ACCESS,
1697 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
1698 						  GLM_LLC_MISS,
1699 		},
1700 		[C(OP_WRITE)] = {
1701 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
1702 						  GLM_LLC_ACCESS,
1703 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
1704 						  GLM_LLC_MISS,
1705 		},
1706 		[C(OP_PREFETCH)] = {
1707 			[C(RESULT_ACCESS)]	= GLM_DEMAND_PREFETCH|
1708 						  GLM_LLC_ACCESS,
1709 			[C(RESULT_MISS)]	= GLM_DEMAND_PREFETCH|
1710 						  GLM_LLC_MISS,
1711 		},
1712 	},
1713 };
1714 
1715 static __initconst const u64 glp_hw_cache_event_ids
1716 				[PERF_COUNT_HW_CACHE_MAX]
1717 				[PERF_COUNT_HW_CACHE_OP_MAX]
1718 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1719 	[C(L1D)] = {
1720 		[C(OP_READ)] = {
1721 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1722 			[C(RESULT_MISS)]	= 0x0,
1723 		},
1724 		[C(OP_WRITE)] = {
1725 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1726 			[C(RESULT_MISS)]	= 0x0,
1727 		},
1728 		[C(OP_PREFETCH)] = {
1729 			[C(RESULT_ACCESS)]	= 0x0,
1730 			[C(RESULT_MISS)]	= 0x0,
1731 		},
1732 	},
1733 	[C(L1I)] = {
1734 		[C(OP_READ)] = {
1735 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1736 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1737 		},
1738 		[C(OP_WRITE)] = {
1739 			[C(RESULT_ACCESS)]	= -1,
1740 			[C(RESULT_MISS)]	= -1,
1741 		},
1742 		[C(OP_PREFETCH)] = {
1743 			[C(RESULT_ACCESS)]	= 0x0,
1744 			[C(RESULT_MISS)]	= 0x0,
1745 		},
1746 	},
1747 	[C(LL)] = {
1748 		[C(OP_READ)] = {
1749 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1750 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1751 		},
1752 		[C(OP_WRITE)] = {
1753 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1754 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1755 		},
1756 		[C(OP_PREFETCH)] = {
1757 			[C(RESULT_ACCESS)]	= 0x0,
1758 			[C(RESULT_MISS)]	= 0x0,
1759 		},
1760 	},
1761 	[C(DTLB)] = {
1762 		[C(OP_READ)] = {
1763 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1764 			[C(RESULT_MISS)]	= 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
1765 		},
1766 		[C(OP_WRITE)] = {
1767 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1768 			[C(RESULT_MISS)]	= 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
1769 		},
1770 		[C(OP_PREFETCH)] = {
1771 			[C(RESULT_ACCESS)]	= 0x0,
1772 			[C(RESULT_MISS)]	= 0x0,
1773 		},
1774 	},
1775 	[C(ITLB)] = {
1776 		[C(OP_READ)] = {
1777 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1778 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1779 		},
1780 		[C(OP_WRITE)] = {
1781 			[C(RESULT_ACCESS)]	= -1,
1782 			[C(RESULT_MISS)]	= -1,
1783 		},
1784 		[C(OP_PREFETCH)] = {
1785 			[C(RESULT_ACCESS)]	= -1,
1786 			[C(RESULT_MISS)]	= -1,
1787 		},
1788 	},
1789 	[C(BPU)] = {
1790 		[C(OP_READ)] = {
1791 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1792 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1793 		},
1794 		[C(OP_WRITE)] = {
1795 			[C(RESULT_ACCESS)]	= -1,
1796 			[C(RESULT_MISS)]	= -1,
1797 		},
1798 		[C(OP_PREFETCH)] = {
1799 			[C(RESULT_ACCESS)]	= -1,
1800 			[C(RESULT_MISS)]	= -1,
1801 		},
1802 	},
1803 };
1804 
1805 static __initconst const u64 glp_hw_cache_extra_regs
1806 				[PERF_COUNT_HW_CACHE_MAX]
1807 				[PERF_COUNT_HW_CACHE_OP_MAX]
1808 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1809 	[C(LL)] = {
1810 		[C(OP_READ)] = {
1811 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
1812 						  GLM_LLC_ACCESS,
1813 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
1814 						  GLM_LLC_MISS,
1815 		},
1816 		[C(OP_WRITE)] = {
1817 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
1818 						  GLM_LLC_ACCESS,
1819 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
1820 						  GLM_LLC_MISS,
1821 		},
1822 		[C(OP_PREFETCH)] = {
1823 			[C(RESULT_ACCESS)]	= 0x0,
1824 			[C(RESULT_MISS)]	= 0x0,
1825 		},
1826 	},
1827 };
1828 
1829 #define KNL_OT_L2_HITE		BIT_ULL(19) /* Other Tile L2 Hit */
1830 #define KNL_OT_L2_HITF		BIT_ULL(20) /* Other Tile L2 Hit */
1831 #define KNL_MCDRAM_LOCAL	BIT_ULL(21)
1832 #define KNL_MCDRAM_FAR		BIT_ULL(22)
1833 #define KNL_DDR_LOCAL		BIT_ULL(23)
1834 #define KNL_DDR_FAR		BIT_ULL(24)
1835 #define KNL_DRAM_ANY		(KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1836 				    KNL_DDR_LOCAL | KNL_DDR_FAR)
1837 #define KNL_L2_READ		SLM_DMND_READ
1838 #define KNL_L2_WRITE		SLM_DMND_WRITE
1839 #define KNL_L2_PREFETCH		SLM_DMND_PREFETCH
1840 #define KNL_L2_ACCESS		SLM_LLC_ACCESS
1841 #define KNL_L2_MISS		(KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1842 				   KNL_DRAM_ANY | SNB_SNP_ANY | \
1843 						  SNB_NON_DRAM)
1844 
1845 static __initconst const u64 knl_hw_cache_extra_regs
1846 				[PERF_COUNT_HW_CACHE_MAX]
1847 				[PERF_COUNT_HW_CACHE_OP_MAX]
1848 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1849 	[C(LL)] = {
1850 		[C(OP_READ)] = {
1851 			[C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1852 			[C(RESULT_MISS)]   = 0,
1853 		},
1854 		[C(OP_WRITE)] = {
1855 			[C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1856 			[C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
1857 		},
1858 		[C(OP_PREFETCH)] = {
1859 			[C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1860 			[C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
1861 		},
1862 	},
1863 };
1864 
1865 /*
1866  * Used from PMIs where the LBRs are already disabled.
1867  *
1868  * This function could be called consecutively. It is required to remain in
1869  * disabled state if called consecutively.
1870  *
1871  * During consecutive calls, the same disable value will be written to related
1872  * registers, so the PMU state remains unchanged.
1873  *
1874  * intel_bts events don't coexist with intel PMU's BTS events because of
1875  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
1876  * disabled around intel PMU's event batching etc, only inside the PMI handler.
1877  */
1878 static void __intel_pmu_disable_all(void)
1879 {
1880 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1881 
1882 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1883 
1884 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1885 		intel_pmu_disable_bts();
1886 
1887 	intel_pmu_pebs_disable_all();
1888 }
1889 
1890 static void intel_pmu_disable_all(void)
1891 {
1892 	__intel_pmu_disable_all();
1893 	intel_pmu_lbr_disable_all();
1894 }
1895 
1896 static void __intel_pmu_enable_all(int added, bool pmi)
1897 {
1898 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1899 
1900 	intel_pmu_pebs_enable_all();
1901 	intel_pmu_lbr_enable_all(pmi);
1902 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1903 			x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1904 
1905 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1906 		struct perf_event *event =
1907 			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1908 
1909 		if (WARN_ON_ONCE(!event))
1910 			return;
1911 
1912 		intel_pmu_enable_bts(event->hw.config);
1913 	}
1914 }
1915 
1916 static void intel_pmu_enable_all(int added)
1917 {
1918 	__intel_pmu_enable_all(added, false);
1919 }
1920 
1921 /*
1922  * Workaround for:
1923  *   Intel Errata AAK100 (model 26)
1924  *   Intel Errata AAP53  (model 30)
1925  *   Intel Errata BD53   (model 44)
1926  *
1927  * The official story:
1928  *   These chips need to be 'reset' when adding counters by programming the
1929  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1930  *   in sequence on the same PMC or on different PMCs.
1931  *
1932  * In practise it appears some of these events do in fact count, and
1933  * we need to program all 4 events.
1934  */
1935 static void intel_pmu_nhm_workaround(void)
1936 {
1937 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1938 	static const unsigned long nhm_magic[4] = {
1939 		0x4300B5,
1940 		0x4300D2,
1941 		0x4300B1,
1942 		0x4300B1
1943 	};
1944 	struct perf_event *event;
1945 	int i;
1946 
1947 	/*
1948 	 * The Errata requires below steps:
1949 	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1950 	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
1951 	 *    the corresponding PMCx;
1952 	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1953 	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1954 	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1955 	 */
1956 
1957 	/*
1958 	 * The real steps we choose are a little different from above.
1959 	 * A) To reduce MSR operations, we don't run step 1) as they
1960 	 *    are already cleared before this function is called;
1961 	 * B) Call x86_perf_event_update to save PMCx before configuring
1962 	 *    PERFEVTSELx with magic number;
1963 	 * C) With step 5), we do clear only when the PERFEVTSELx is
1964 	 *    not used currently.
1965 	 * D) Call x86_perf_event_set_period to restore PMCx;
1966 	 */
1967 
1968 	/* We always operate 4 pairs of PERF Counters */
1969 	for (i = 0; i < 4; i++) {
1970 		event = cpuc->events[i];
1971 		if (event)
1972 			x86_perf_event_update(event);
1973 	}
1974 
1975 	for (i = 0; i < 4; i++) {
1976 		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1977 		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1978 	}
1979 
1980 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1981 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1982 
1983 	for (i = 0; i < 4; i++) {
1984 		event = cpuc->events[i];
1985 
1986 		if (event) {
1987 			x86_perf_event_set_period(event);
1988 			__x86_pmu_enable_event(&event->hw,
1989 					ARCH_PERFMON_EVENTSEL_ENABLE);
1990 		} else
1991 			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1992 	}
1993 }
1994 
1995 static void intel_pmu_nhm_enable_all(int added)
1996 {
1997 	if (added)
1998 		intel_pmu_nhm_workaround();
1999 	intel_pmu_enable_all(added);
2000 }
2001 
2002 static void enable_counter_freeze(void)
2003 {
2004 	update_debugctlmsr(get_debugctlmsr() |
2005 			DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2006 }
2007 
2008 static void disable_counter_freeze(void)
2009 {
2010 	update_debugctlmsr(get_debugctlmsr() &
2011 			~DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2012 }
2013 
2014 static inline u64 intel_pmu_get_status(void)
2015 {
2016 	u64 status;
2017 
2018 	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2019 
2020 	return status;
2021 }
2022 
2023 static inline void intel_pmu_ack_status(u64 ack)
2024 {
2025 	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2026 }
2027 
2028 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
2029 {
2030 	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2031 	u64 ctrl_val, mask;
2032 
2033 	mask = 0xfULL << (idx * 4);
2034 
2035 	rdmsrl(hwc->config_base, ctrl_val);
2036 	ctrl_val &= ~mask;
2037 	wrmsrl(hwc->config_base, ctrl_val);
2038 }
2039 
2040 static inline bool event_is_checkpointed(struct perf_event *event)
2041 {
2042 	return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2043 }
2044 
2045 static void intel_pmu_disable_event(struct perf_event *event)
2046 {
2047 	struct hw_perf_event *hwc = &event->hw;
2048 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2049 
2050 	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2051 		intel_pmu_disable_bts();
2052 		intel_pmu_drain_bts_buffer();
2053 		return;
2054 	}
2055 
2056 	cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
2057 	cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
2058 	cpuc->intel_cp_status &= ~(1ull << hwc->idx);
2059 
2060 	if (unlikely(event->attr.precise_ip))
2061 		intel_pmu_pebs_disable(event);
2062 
2063 	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2064 		intel_pmu_disable_fixed(hwc);
2065 		return;
2066 	}
2067 
2068 	x86_pmu_disable_event(event);
2069 }
2070 
2071 static void intel_pmu_del_event(struct perf_event *event)
2072 {
2073 	if (needs_branch_stack(event))
2074 		intel_pmu_lbr_del(event);
2075 	if (event->attr.precise_ip)
2076 		intel_pmu_pebs_del(event);
2077 }
2078 
2079 static void intel_pmu_read_event(struct perf_event *event)
2080 {
2081 	if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2082 		intel_pmu_auto_reload_read(event);
2083 	else
2084 		x86_perf_event_update(event);
2085 }
2086 
2087 static void intel_pmu_enable_fixed(struct perf_event *event)
2088 {
2089 	struct hw_perf_event *hwc = &event->hw;
2090 	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2091 	u64 ctrl_val, mask, bits = 0;
2092 
2093 	/*
2094 	 * Enable IRQ generation (0x8), if not PEBS,
2095 	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2096 	 * if requested:
2097 	 */
2098 	if (!event->attr.precise_ip)
2099 		bits |= 0x8;
2100 	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2101 		bits |= 0x2;
2102 	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2103 		bits |= 0x1;
2104 
2105 	/*
2106 	 * ANY bit is supported in v3 and up
2107 	 */
2108 	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2109 		bits |= 0x4;
2110 
2111 	bits <<= (idx * 4);
2112 	mask = 0xfULL << (idx * 4);
2113 
2114 	rdmsrl(hwc->config_base, ctrl_val);
2115 	ctrl_val &= ~mask;
2116 	ctrl_val |= bits;
2117 	wrmsrl(hwc->config_base, ctrl_val);
2118 }
2119 
2120 static void intel_pmu_enable_event(struct perf_event *event)
2121 {
2122 	struct hw_perf_event *hwc = &event->hw;
2123 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2124 
2125 	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2126 		if (!__this_cpu_read(cpu_hw_events.enabled))
2127 			return;
2128 
2129 		intel_pmu_enable_bts(hwc->config);
2130 		return;
2131 	}
2132 
2133 	if (event->attr.exclude_host)
2134 		cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
2135 	if (event->attr.exclude_guest)
2136 		cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
2137 
2138 	if (unlikely(event_is_checkpointed(event)))
2139 		cpuc->intel_cp_status |= (1ull << hwc->idx);
2140 
2141 	if (unlikely(event->attr.precise_ip))
2142 		intel_pmu_pebs_enable(event);
2143 
2144 	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2145 		intel_pmu_enable_fixed(event);
2146 		return;
2147 	}
2148 
2149 	__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2150 }
2151 
2152 static void intel_pmu_add_event(struct perf_event *event)
2153 {
2154 	if (event->attr.precise_ip)
2155 		intel_pmu_pebs_add(event);
2156 	if (needs_branch_stack(event))
2157 		intel_pmu_lbr_add(event);
2158 }
2159 
2160 /*
2161  * Save and restart an expired event. Called by NMI contexts,
2162  * so it has to be careful about preempting normal event ops:
2163  */
2164 int intel_pmu_save_and_restart(struct perf_event *event)
2165 {
2166 	x86_perf_event_update(event);
2167 	/*
2168 	 * For a checkpointed counter always reset back to 0.  This
2169 	 * avoids a situation where the counter overflows, aborts the
2170 	 * transaction and is then set back to shortly before the
2171 	 * overflow, and overflows and aborts again.
2172 	 */
2173 	if (unlikely(event_is_checkpointed(event))) {
2174 		/* No race with NMIs because the counter should not be armed */
2175 		wrmsrl(event->hw.event_base, 0);
2176 		local64_set(&event->hw.prev_count, 0);
2177 	}
2178 	return x86_perf_event_set_period(event);
2179 }
2180 
2181 static void intel_pmu_reset(void)
2182 {
2183 	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2184 	unsigned long flags;
2185 	int idx;
2186 
2187 	if (!x86_pmu.num_counters)
2188 		return;
2189 
2190 	local_irq_save(flags);
2191 
2192 	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2193 
2194 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2195 		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2196 		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2197 	}
2198 	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
2199 		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2200 
2201 	if (ds)
2202 		ds->bts_index = ds->bts_buffer_base;
2203 
2204 	/* Ack all overflows and disable fixed counters */
2205 	if (x86_pmu.version >= 2) {
2206 		intel_pmu_ack_status(intel_pmu_get_status());
2207 		wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2208 	}
2209 
2210 	/* Reset LBRs and LBR freezing */
2211 	if (x86_pmu.lbr_nr) {
2212 		update_debugctlmsr(get_debugctlmsr() &
2213 			~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2214 	}
2215 
2216 	local_irq_restore(flags);
2217 }
2218 
2219 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2220 {
2221 	struct perf_sample_data data;
2222 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2223 	int bit;
2224 	int handled = 0;
2225 
2226 	inc_irq_stat(apic_perf_irqs);
2227 
2228 	/*
2229 	 * Ignore a range of extra bits in status that do not indicate
2230 	 * overflow by themselves.
2231 	 */
2232 	status &= ~(GLOBAL_STATUS_COND_CHG |
2233 		    GLOBAL_STATUS_ASIF |
2234 		    GLOBAL_STATUS_LBRS_FROZEN);
2235 	if (!status)
2236 		return 0;
2237 	/*
2238 	 * In case multiple PEBS events are sampled at the same time,
2239 	 * it is possible to have GLOBAL_STATUS bit 62 set indicating
2240 	 * PEBS buffer overflow and also seeing at most 3 PEBS counters
2241 	 * having their bits set in the status register. This is a sign
2242 	 * that there was at least one PEBS record pending at the time
2243 	 * of the PMU interrupt. PEBS counters must only be processed
2244 	 * via the drain_pebs() calls and not via the regular sample
2245 	 * processing loop coming after that the function, otherwise
2246 	 * phony regular samples may be generated in the sampling buffer
2247 	 * not marked with the EXACT tag. Another possibility is to have
2248 	 * one PEBS event and at least one non-PEBS event whic hoverflows
2249 	 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2250 	 * not be set, yet the overflow status bit for the PEBS counter will
2251 	 * be on Skylake.
2252 	 *
2253 	 * To avoid this problem, we systematically ignore the PEBS-enabled
2254 	 * counters from the GLOBAL_STATUS mask and we always process PEBS
2255 	 * events via drain_pebs().
2256 	 */
2257 	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
2258 		status &= ~cpuc->pebs_enabled;
2259 	else
2260 		status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2261 
2262 	/*
2263 	 * PEBS overflow sets bit 62 in the global status register
2264 	 */
2265 	if (__test_and_clear_bit(62, (unsigned long *)&status)) {
2266 		handled++;
2267 		x86_pmu.drain_pebs(regs);
2268 		status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2269 	}
2270 
2271 	/*
2272 	 * Intel PT
2273 	 */
2274 	if (__test_and_clear_bit(55, (unsigned long *)&status)) {
2275 		handled++;
2276 		intel_pt_interrupt();
2277 	}
2278 
2279 	/*
2280 	 * Checkpointed counters can lead to 'spurious' PMIs because the
2281 	 * rollback caused by the PMI will have cleared the overflow status
2282 	 * bit. Therefore always force probe these counters.
2283 	 */
2284 	status |= cpuc->intel_cp_status;
2285 
2286 	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2287 		struct perf_event *event = cpuc->events[bit];
2288 
2289 		handled++;
2290 
2291 		if (!test_bit(bit, cpuc->active_mask))
2292 			continue;
2293 
2294 		if (!intel_pmu_save_and_restart(event))
2295 			continue;
2296 
2297 		perf_sample_data_init(&data, 0, event->hw.last_period);
2298 
2299 		if (has_branch_stack(event))
2300 			data.br_stack = &cpuc->lbr_stack;
2301 
2302 		if (perf_event_overflow(event, &data, regs))
2303 			x86_pmu_stop(event, 0);
2304 	}
2305 
2306 	return handled;
2307 }
2308 
2309 static bool disable_counter_freezing = true;
2310 static int __init intel_perf_counter_freezing_setup(char *s)
2311 {
2312 	bool res;
2313 
2314 	if (kstrtobool(s, &res))
2315 		return -EINVAL;
2316 
2317 	disable_counter_freezing = !res;
2318 	return 1;
2319 }
2320 __setup("perf_v4_pmi=", intel_perf_counter_freezing_setup);
2321 
2322 /*
2323  * Simplified handler for Arch Perfmon v4:
2324  * - We rely on counter freezing/unfreezing to enable/disable the PMU.
2325  * This is done automatically on PMU ack.
2326  * - Ack the PMU only after the APIC.
2327  */
2328 
2329 static int intel_pmu_handle_irq_v4(struct pt_regs *regs)
2330 {
2331 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2332 	int handled = 0;
2333 	bool bts = false;
2334 	u64 status;
2335 	int pmu_enabled = cpuc->enabled;
2336 	int loops = 0;
2337 
2338 	/* PMU has been disabled because of counter freezing */
2339 	cpuc->enabled = 0;
2340 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2341 		bts = true;
2342 		intel_bts_disable_local();
2343 		handled = intel_pmu_drain_bts_buffer();
2344 		handled += intel_bts_interrupt();
2345 	}
2346 	status = intel_pmu_get_status();
2347 	if (!status)
2348 		goto done;
2349 again:
2350 	intel_pmu_lbr_read();
2351 	if (++loops > 100) {
2352 		static bool warned;
2353 
2354 		if (!warned) {
2355 			WARN(1, "perfevents: irq loop stuck!\n");
2356 			perf_event_print_debug();
2357 			warned = true;
2358 		}
2359 		intel_pmu_reset();
2360 		goto done;
2361 	}
2362 
2363 
2364 	handled += handle_pmi_common(regs, status);
2365 done:
2366 	/* Ack the PMI in the APIC */
2367 	apic_write(APIC_LVTPC, APIC_DM_NMI);
2368 
2369 	/*
2370 	 * The counters start counting immediately while ack the status.
2371 	 * Make it as close as possible to IRET. This avoids bogus
2372 	 * freezing on Skylake CPUs.
2373 	 */
2374 	if (status) {
2375 		intel_pmu_ack_status(status);
2376 	} else {
2377 		/*
2378 		 * CPU may issues two PMIs very close to each other.
2379 		 * When the PMI handler services the first one, the
2380 		 * GLOBAL_STATUS is already updated to reflect both.
2381 		 * When it IRETs, the second PMI is immediately
2382 		 * handled and it sees clear status. At the meantime,
2383 		 * there may be a third PMI, because the freezing bit
2384 		 * isn't set since the ack in first PMI handlers.
2385 		 * Double check if there is more work to be done.
2386 		 */
2387 		status = intel_pmu_get_status();
2388 		if (status)
2389 			goto again;
2390 	}
2391 
2392 	if (bts)
2393 		intel_bts_enable_local();
2394 	cpuc->enabled = pmu_enabled;
2395 	return handled;
2396 }
2397 
2398 /*
2399  * This handler is triggered by the local APIC, so the APIC IRQ handling
2400  * rules apply:
2401  */
2402 static int intel_pmu_handle_irq(struct pt_regs *regs)
2403 {
2404 	struct cpu_hw_events *cpuc;
2405 	int loops;
2406 	u64 status;
2407 	int handled;
2408 	int pmu_enabled;
2409 
2410 	cpuc = this_cpu_ptr(&cpu_hw_events);
2411 
2412 	/*
2413 	 * Save the PMU state.
2414 	 * It needs to be restored when leaving the handler.
2415 	 */
2416 	pmu_enabled = cpuc->enabled;
2417 	/*
2418 	 * No known reason to not always do late ACK,
2419 	 * but just in case do it opt-in.
2420 	 */
2421 	if (!x86_pmu.late_ack)
2422 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2423 	intel_bts_disable_local();
2424 	cpuc->enabled = 0;
2425 	__intel_pmu_disable_all();
2426 	handled = intel_pmu_drain_bts_buffer();
2427 	handled += intel_bts_interrupt();
2428 	status = intel_pmu_get_status();
2429 	if (!status)
2430 		goto done;
2431 
2432 	loops = 0;
2433 again:
2434 	intel_pmu_lbr_read();
2435 	intel_pmu_ack_status(status);
2436 	if (++loops > 100) {
2437 		static bool warned;
2438 
2439 		if (!warned) {
2440 			WARN(1, "perfevents: irq loop stuck!\n");
2441 			perf_event_print_debug();
2442 			warned = true;
2443 		}
2444 		intel_pmu_reset();
2445 		goto done;
2446 	}
2447 
2448 	handled += handle_pmi_common(regs, status);
2449 
2450 	/*
2451 	 * Repeat if there is more work to be done:
2452 	 */
2453 	status = intel_pmu_get_status();
2454 	if (status)
2455 		goto again;
2456 
2457 done:
2458 	/* Only restore PMU state when it's active. See x86_pmu_disable(). */
2459 	cpuc->enabled = pmu_enabled;
2460 	if (pmu_enabled)
2461 		__intel_pmu_enable_all(0, true);
2462 	intel_bts_enable_local();
2463 
2464 	/*
2465 	 * Only unmask the NMI after the overflow counters
2466 	 * have been reset. This avoids spurious NMIs on
2467 	 * Haswell CPUs.
2468 	 */
2469 	if (x86_pmu.late_ack)
2470 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2471 	return handled;
2472 }
2473 
2474 static struct event_constraint *
2475 intel_bts_constraints(struct perf_event *event)
2476 {
2477 	if (unlikely(intel_pmu_has_bts(event)))
2478 		return &bts_constraint;
2479 
2480 	return NULL;
2481 }
2482 
2483 static int intel_alt_er(int idx, u64 config)
2484 {
2485 	int alt_idx = idx;
2486 
2487 	if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2488 		return idx;
2489 
2490 	if (idx == EXTRA_REG_RSP_0)
2491 		alt_idx = EXTRA_REG_RSP_1;
2492 
2493 	if (idx == EXTRA_REG_RSP_1)
2494 		alt_idx = EXTRA_REG_RSP_0;
2495 
2496 	if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2497 		return idx;
2498 
2499 	return alt_idx;
2500 }
2501 
2502 static void intel_fixup_er(struct perf_event *event, int idx)
2503 {
2504 	event->hw.extra_reg.idx = idx;
2505 
2506 	if (idx == EXTRA_REG_RSP_0) {
2507 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2508 		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2509 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2510 	} else if (idx == EXTRA_REG_RSP_1) {
2511 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2512 		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2513 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2514 	}
2515 }
2516 
2517 /*
2518  * manage allocation of shared extra msr for certain events
2519  *
2520  * sharing can be:
2521  * per-cpu: to be shared between the various events on a single PMU
2522  * per-core: per-cpu + shared by HT threads
2523  */
2524 static struct event_constraint *
2525 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2526 				   struct perf_event *event,
2527 				   struct hw_perf_event_extra *reg)
2528 {
2529 	struct event_constraint *c = &emptyconstraint;
2530 	struct er_account *era;
2531 	unsigned long flags;
2532 	int idx = reg->idx;
2533 
2534 	/*
2535 	 * reg->alloc can be set due to existing state, so for fake cpuc we
2536 	 * need to ignore this, otherwise we might fail to allocate proper fake
2537 	 * state for this extra reg constraint. Also see the comment below.
2538 	 */
2539 	if (reg->alloc && !cpuc->is_fake)
2540 		return NULL; /* call x86_get_event_constraint() */
2541 
2542 again:
2543 	era = &cpuc->shared_regs->regs[idx];
2544 	/*
2545 	 * we use spin_lock_irqsave() to avoid lockdep issues when
2546 	 * passing a fake cpuc
2547 	 */
2548 	raw_spin_lock_irqsave(&era->lock, flags);
2549 
2550 	if (!atomic_read(&era->ref) || era->config == reg->config) {
2551 
2552 		/*
2553 		 * If its a fake cpuc -- as per validate_{group,event}() we
2554 		 * shouldn't touch event state and we can avoid doing so
2555 		 * since both will only call get_event_constraints() once
2556 		 * on each event, this avoids the need for reg->alloc.
2557 		 *
2558 		 * Not doing the ER fixup will only result in era->reg being
2559 		 * wrong, but since we won't actually try and program hardware
2560 		 * this isn't a problem either.
2561 		 */
2562 		if (!cpuc->is_fake) {
2563 			if (idx != reg->idx)
2564 				intel_fixup_er(event, idx);
2565 
2566 			/*
2567 			 * x86_schedule_events() can call get_event_constraints()
2568 			 * multiple times on events in the case of incremental
2569 			 * scheduling(). reg->alloc ensures we only do the ER
2570 			 * allocation once.
2571 			 */
2572 			reg->alloc = 1;
2573 		}
2574 
2575 		/* lock in msr value */
2576 		era->config = reg->config;
2577 		era->reg = reg->reg;
2578 
2579 		/* one more user */
2580 		atomic_inc(&era->ref);
2581 
2582 		/*
2583 		 * need to call x86_get_event_constraint()
2584 		 * to check if associated event has constraints
2585 		 */
2586 		c = NULL;
2587 	} else {
2588 		idx = intel_alt_er(idx, reg->config);
2589 		if (idx != reg->idx) {
2590 			raw_spin_unlock_irqrestore(&era->lock, flags);
2591 			goto again;
2592 		}
2593 	}
2594 	raw_spin_unlock_irqrestore(&era->lock, flags);
2595 
2596 	return c;
2597 }
2598 
2599 static void
2600 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2601 				   struct hw_perf_event_extra *reg)
2602 {
2603 	struct er_account *era;
2604 
2605 	/*
2606 	 * Only put constraint if extra reg was actually allocated. Also takes
2607 	 * care of event which do not use an extra shared reg.
2608 	 *
2609 	 * Also, if this is a fake cpuc we shouldn't touch any event state
2610 	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2611 	 * either since it'll be thrown out.
2612 	 */
2613 	if (!reg->alloc || cpuc->is_fake)
2614 		return;
2615 
2616 	era = &cpuc->shared_regs->regs[reg->idx];
2617 
2618 	/* one fewer user */
2619 	atomic_dec(&era->ref);
2620 
2621 	/* allocate again next time */
2622 	reg->alloc = 0;
2623 }
2624 
2625 static struct event_constraint *
2626 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2627 			      struct perf_event *event)
2628 {
2629 	struct event_constraint *c = NULL, *d;
2630 	struct hw_perf_event_extra *xreg, *breg;
2631 
2632 	xreg = &event->hw.extra_reg;
2633 	if (xreg->idx != EXTRA_REG_NONE) {
2634 		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2635 		if (c == &emptyconstraint)
2636 			return c;
2637 	}
2638 	breg = &event->hw.branch_reg;
2639 	if (breg->idx != EXTRA_REG_NONE) {
2640 		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2641 		if (d == &emptyconstraint) {
2642 			__intel_shared_reg_put_constraints(cpuc, xreg);
2643 			c = d;
2644 		}
2645 	}
2646 	return c;
2647 }
2648 
2649 struct event_constraint *
2650 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2651 			  struct perf_event *event)
2652 {
2653 	struct event_constraint *c;
2654 
2655 	if (x86_pmu.event_constraints) {
2656 		for_each_event_constraint(c, x86_pmu.event_constraints) {
2657 			if ((event->hw.config & c->cmask) == c->code) {
2658 				event->hw.flags |= c->flags;
2659 				return c;
2660 			}
2661 		}
2662 	}
2663 
2664 	return &unconstrained;
2665 }
2666 
2667 static struct event_constraint *
2668 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2669 			    struct perf_event *event)
2670 {
2671 	struct event_constraint *c;
2672 
2673 	c = intel_bts_constraints(event);
2674 	if (c)
2675 		return c;
2676 
2677 	c = intel_shared_regs_constraints(cpuc, event);
2678 	if (c)
2679 		return c;
2680 
2681 	c = intel_pebs_constraints(event);
2682 	if (c)
2683 		return c;
2684 
2685 	return x86_get_event_constraints(cpuc, idx, event);
2686 }
2687 
2688 static void
2689 intel_start_scheduling(struct cpu_hw_events *cpuc)
2690 {
2691 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2692 	struct intel_excl_states *xl;
2693 	int tid = cpuc->excl_thread_id;
2694 
2695 	/*
2696 	 * nothing needed if in group validation mode
2697 	 */
2698 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2699 		return;
2700 
2701 	/*
2702 	 * no exclusion needed
2703 	 */
2704 	if (WARN_ON_ONCE(!excl_cntrs))
2705 		return;
2706 
2707 	xl = &excl_cntrs->states[tid];
2708 
2709 	xl->sched_started = true;
2710 	/*
2711 	 * lock shared state until we are done scheduling
2712 	 * in stop_event_scheduling()
2713 	 * makes scheduling appear as a transaction
2714 	 */
2715 	raw_spin_lock(&excl_cntrs->lock);
2716 }
2717 
2718 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2719 {
2720 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2721 	struct event_constraint *c = cpuc->event_constraint[idx];
2722 	struct intel_excl_states *xl;
2723 	int tid = cpuc->excl_thread_id;
2724 
2725 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2726 		return;
2727 
2728 	if (WARN_ON_ONCE(!excl_cntrs))
2729 		return;
2730 
2731 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2732 		return;
2733 
2734 	xl = &excl_cntrs->states[tid];
2735 
2736 	lockdep_assert_held(&excl_cntrs->lock);
2737 
2738 	if (c->flags & PERF_X86_EVENT_EXCL)
2739 		xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2740 	else
2741 		xl->state[cntr] = INTEL_EXCL_SHARED;
2742 }
2743 
2744 static void
2745 intel_stop_scheduling(struct cpu_hw_events *cpuc)
2746 {
2747 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2748 	struct intel_excl_states *xl;
2749 	int tid = cpuc->excl_thread_id;
2750 
2751 	/*
2752 	 * nothing needed if in group validation mode
2753 	 */
2754 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2755 		return;
2756 	/*
2757 	 * no exclusion needed
2758 	 */
2759 	if (WARN_ON_ONCE(!excl_cntrs))
2760 		return;
2761 
2762 	xl = &excl_cntrs->states[tid];
2763 
2764 	xl->sched_started = false;
2765 	/*
2766 	 * release shared state lock (acquired in intel_start_scheduling())
2767 	 */
2768 	raw_spin_unlock(&excl_cntrs->lock);
2769 }
2770 
2771 static struct event_constraint *
2772 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2773 			   int idx, struct event_constraint *c)
2774 {
2775 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2776 	struct intel_excl_states *xlo;
2777 	int tid = cpuc->excl_thread_id;
2778 	int is_excl, i;
2779 
2780 	/*
2781 	 * validating a group does not require
2782 	 * enforcing cross-thread  exclusion
2783 	 */
2784 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2785 		return c;
2786 
2787 	/*
2788 	 * no exclusion needed
2789 	 */
2790 	if (WARN_ON_ONCE(!excl_cntrs))
2791 		return c;
2792 
2793 	/*
2794 	 * because we modify the constraint, we need
2795 	 * to make a copy. Static constraints come
2796 	 * from static const tables.
2797 	 *
2798 	 * only needed when constraint has not yet
2799 	 * been cloned (marked dynamic)
2800 	 */
2801 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2802 		struct event_constraint *cx;
2803 
2804 		/*
2805 		 * grab pre-allocated constraint entry
2806 		 */
2807 		cx = &cpuc->constraint_list[idx];
2808 
2809 		/*
2810 		 * initialize dynamic constraint
2811 		 * with static constraint
2812 		 */
2813 		*cx = *c;
2814 
2815 		/*
2816 		 * mark constraint as dynamic, so we
2817 		 * can free it later on
2818 		 */
2819 		cx->flags |= PERF_X86_EVENT_DYNAMIC;
2820 		c = cx;
2821 	}
2822 
2823 	/*
2824 	 * From here on, the constraint is dynamic.
2825 	 * Either it was just allocated above, or it
2826 	 * was allocated during a earlier invocation
2827 	 * of this function
2828 	 */
2829 
2830 	/*
2831 	 * state of sibling HT
2832 	 */
2833 	xlo = &excl_cntrs->states[tid ^ 1];
2834 
2835 	/*
2836 	 * event requires exclusive counter access
2837 	 * across HT threads
2838 	 */
2839 	is_excl = c->flags & PERF_X86_EVENT_EXCL;
2840 	if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2841 		event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2842 		if (!cpuc->n_excl++)
2843 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2844 	}
2845 
2846 	/*
2847 	 * Modify static constraint with current dynamic
2848 	 * state of thread
2849 	 *
2850 	 * EXCLUSIVE: sibling counter measuring exclusive event
2851 	 * SHARED   : sibling counter measuring non-exclusive event
2852 	 * UNUSED   : sibling counter unused
2853 	 */
2854 	for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2855 		/*
2856 		 * exclusive event in sibling counter
2857 		 * our corresponding counter cannot be used
2858 		 * regardless of our event
2859 		 */
2860 		if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
2861 			__clear_bit(i, c->idxmsk);
2862 		/*
2863 		 * if measuring an exclusive event, sibling
2864 		 * measuring non-exclusive, then counter cannot
2865 		 * be used
2866 		 */
2867 		if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
2868 			__clear_bit(i, c->idxmsk);
2869 	}
2870 
2871 	/*
2872 	 * recompute actual bit weight for scheduling algorithm
2873 	 */
2874 	c->weight = hweight64(c->idxmsk64);
2875 
2876 	/*
2877 	 * if we return an empty mask, then switch
2878 	 * back to static empty constraint to avoid
2879 	 * the cost of freeing later on
2880 	 */
2881 	if (c->weight == 0)
2882 		c = &emptyconstraint;
2883 
2884 	return c;
2885 }
2886 
2887 static struct event_constraint *
2888 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2889 			    struct perf_event *event)
2890 {
2891 	struct event_constraint *c1 = NULL;
2892 	struct event_constraint *c2;
2893 
2894 	if (idx >= 0) /* fake does < 0 */
2895 		c1 = cpuc->event_constraint[idx];
2896 
2897 	/*
2898 	 * first time only
2899 	 * - static constraint: no change across incremental scheduling calls
2900 	 * - dynamic constraint: handled by intel_get_excl_constraints()
2901 	 */
2902 	c2 = __intel_get_event_constraints(cpuc, idx, event);
2903 	if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2904 		bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2905 		c1->weight = c2->weight;
2906 		c2 = c1;
2907 	}
2908 
2909 	if (cpuc->excl_cntrs)
2910 		return intel_get_excl_constraints(cpuc, event, idx, c2);
2911 
2912 	return c2;
2913 }
2914 
2915 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2916 		struct perf_event *event)
2917 {
2918 	struct hw_perf_event *hwc = &event->hw;
2919 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2920 	int tid = cpuc->excl_thread_id;
2921 	struct intel_excl_states *xl;
2922 
2923 	/*
2924 	 * nothing needed if in group validation mode
2925 	 */
2926 	if (cpuc->is_fake)
2927 		return;
2928 
2929 	if (WARN_ON_ONCE(!excl_cntrs))
2930 		return;
2931 
2932 	if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
2933 		hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
2934 		if (!--cpuc->n_excl)
2935 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
2936 	}
2937 
2938 	/*
2939 	 * If event was actually assigned, then mark the counter state as
2940 	 * unused now.
2941 	 */
2942 	if (hwc->idx >= 0) {
2943 		xl = &excl_cntrs->states[tid];
2944 
2945 		/*
2946 		 * put_constraint may be called from x86_schedule_events()
2947 		 * which already has the lock held so here make locking
2948 		 * conditional.
2949 		 */
2950 		if (!xl->sched_started)
2951 			raw_spin_lock(&excl_cntrs->lock);
2952 
2953 		xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
2954 
2955 		if (!xl->sched_started)
2956 			raw_spin_unlock(&excl_cntrs->lock);
2957 	}
2958 }
2959 
2960 static void
2961 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
2962 					struct perf_event *event)
2963 {
2964 	struct hw_perf_event_extra *reg;
2965 
2966 	reg = &event->hw.extra_reg;
2967 	if (reg->idx != EXTRA_REG_NONE)
2968 		__intel_shared_reg_put_constraints(cpuc, reg);
2969 
2970 	reg = &event->hw.branch_reg;
2971 	if (reg->idx != EXTRA_REG_NONE)
2972 		__intel_shared_reg_put_constraints(cpuc, reg);
2973 }
2974 
2975 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
2976 					struct perf_event *event)
2977 {
2978 	intel_put_shared_regs_event_constraints(cpuc, event);
2979 
2980 	/*
2981 	 * is PMU has exclusive counter restrictions, then
2982 	 * all events are subject to and must call the
2983 	 * put_excl_constraints() routine
2984 	 */
2985 	if (cpuc->excl_cntrs)
2986 		intel_put_excl_constraints(cpuc, event);
2987 }
2988 
2989 static void intel_pebs_aliases_core2(struct perf_event *event)
2990 {
2991 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2992 		/*
2993 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2994 		 * (0x003c) so that we can use it with PEBS.
2995 		 *
2996 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2997 		 * PEBS capable. However we can use INST_RETIRED.ANY_P
2998 		 * (0x00c0), which is a PEBS capable event, to get the same
2999 		 * count.
3000 		 *
3001 		 * INST_RETIRED.ANY_P counts the number of cycles that retires
3002 		 * CNTMASK instructions. By setting CNTMASK to a value (16)
3003 		 * larger than the maximum number of instructions that can be
3004 		 * retired per cycle (4) and then inverting the condition, we
3005 		 * count all cycles that retire 16 or less instructions, which
3006 		 * is every cycle.
3007 		 *
3008 		 * Thereby we gain a PEBS capable cycle counter.
3009 		 */
3010 		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3011 
3012 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3013 		event->hw.config = alt_config;
3014 	}
3015 }
3016 
3017 static void intel_pebs_aliases_snb(struct perf_event *event)
3018 {
3019 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3020 		/*
3021 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3022 		 * (0x003c) so that we can use it with PEBS.
3023 		 *
3024 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3025 		 * PEBS capable. However we can use UOPS_RETIRED.ALL
3026 		 * (0x01c2), which is a PEBS capable event, to get the same
3027 		 * count.
3028 		 *
3029 		 * UOPS_RETIRED.ALL counts the number of cycles that retires
3030 		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3031 		 * larger than the maximum number of micro-ops that can be
3032 		 * retired per cycle (4) and then inverting the condition, we
3033 		 * count all cycles that retire 16 or less micro-ops, which
3034 		 * is every cycle.
3035 		 *
3036 		 * Thereby we gain a PEBS capable cycle counter.
3037 		 */
3038 		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3039 
3040 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3041 		event->hw.config = alt_config;
3042 	}
3043 }
3044 
3045 static void intel_pebs_aliases_precdist(struct perf_event *event)
3046 {
3047 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3048 		/*
3049 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3050 		 * (0x003c) so that we can use it with PEBS.
3051 		 *
3052 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3053 		 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3054 		 * (0x01c0), which is a PEBS capable event, to get the same
3055 		 * count.
3056 		 *
3057 		 * The PREC_DIST event has special support to minimize sample
3058 		 * shadowing effects. One drawback is that it can be
3059 		 * only programmed on counter 1, but that seems like an
3060 		 * acceptable trade off.
3061 		 */
3062 		u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3063 
3064 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3065 		event->hw.config = alt_config;
3066 	}
3067 }
3068 
3069 static void intel_pebs_aliases_ivb(struct perf_event *event)
3070 {
3071 	if (event->attr.precise_ip < 3)
3072 		return intel_pebs_aliases_snb(event);
3073 	return intel_pebs_aliases_precdist(event);
3074 }
3075 
3076 static void intel_pebs_aliases_skl(struct perf_event *event)
3077 {
3078 	if (event->attr.precise_ip < 3)
3079 		return intel_pebs_aliases_core2(event);
3080 	return intel_pebs_aliases_precdist(event);
3081 }
3082 
3083 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3084 {
3085 	unsigned long flags = x86_pmu.large_pebs_flags;
3086 
3087 	if (event->attr.use_clockid)
3088 		flags &= ~PERF_SAMPLE_TIME;
3089 	if (!event->attr.exclude_kernel)
3090 		flags &= ~PERF_SAMPLE_REGS_USER;
3091 	if (event->attr.sample_regs_user & ~PEBS_REGS)
3092 		flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3093 	return flags;
3094 }
3095 
3096 static int intel_pmu_bts_config(struct perf_event *event)
3097 {
3098 	struct perf_event_attr *attr = &event->attr;
3099 
3100 	if (unlikely(intel_pmu_has_bts(event))) {
3101 		/* BTS is not supported by this architecture. */
3102 		if (!x86_pmu.bts_active)
3103 			return -EOPNOTSUPP;
3104 
3105 		/* BTS is currently only allowed for user-mode. */
3106 		if (!attr->exclude_kernel)
3107 			return -EOPNOTSUPP;
3108 
3109 		/* BTS is not allowed for precise events. */
3110 		if (attr->precise_ip)
3111 			return -EOPNOTSUPP;
3112 
3113 		/* disallow bts if conflicting events are present */
3114 		if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3115 			return -EBUSY;
3116 
3117 		event->destroy = hw_perf_lbr_event_destroy;
3118 	}
3119 
3120 	return 0;
3121 }
3122 
3123 static int core_pmu_hw_config(struct perf_event *event)
3124 {
3125 	int ret = x86_pmu_hw_config(event);
3126 
3127 	if (ret)
3128 		return ret;
3129 
3130 	return intel_pmu_bts_config(event);
3131 }
3132 
3133 static int intel_pmu_hw_config(struct perf_event *event)
3134 {
3135 	int ret = x86_pmu_hw_config(event);
3136 
3137 	if (ret)
3138 		return ret;
3139 
3140 	ret = intel_pmu_bts_config(event);
3141 	if (ret)
3142 		return ret;
3143 
3144 	if (event->attr.precise_ip) {
3145 		if (!event->attr.freq) {
3146 			event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3147 			if (!(event->attr.sample_type &
3148 			      ~intel_pmu_large_pebs_flags(event)))
3149 				event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3150 		}
3151 		if (x86_pmu.pebs_aliases)
3152 			x86_pmu.pebs_aliases(event);
3153 
3154 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3155 			event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3156 	}
3157 
3158 	if (needs_branch_stack(event)) {
3159 		ret = intel_pmu_setup_lbr_filter(event);
3160 		if (ret)
3161 			return ret;
3162 
3163 		/*
3164 		 * BTS is set up earlier in this path, so don't account twice
3165 		 */
3166 		if (!unlikely(intel_pmu_has_bts(event))) {
3167 			/* disallow lbr if conflicting events are present */
3168 			if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3169 				return -EBUSY;
3170 
3171 			event->destroy = hw_perf_lbr_event_destroy;
3172 		}
3173 	}
3174 
3175 	if (event->attr.type != PERF_TYPE_RAW)
3176 		return 0;
3177 
3178 	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3179 		return 0;
3180 
3181 	if (x86_pmu.version < 3)
3182 		return -EINVAL;
3183 
3184 	if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3185 		return -EACCES;
3186 
3187 	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3188 
3189 	return 0;
3190 }
3191 
3192 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
3193 {
3194 	if (x86_pmu.guest_get_msrs)
3195 		return x86_pmu.guest_get_msrs(nr);
3196 	*nr = 0;
3197 	return NULL;
3198 }
3199 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
3200 
3201 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3202 {
3203 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3204 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3205 
3206 	arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3207 	arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3208 	arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3209 	/*
3210 	 * If PMU counter has PEBS enabled it is not enough to disable counter
3211 	 * on a guest entry since PEBS memory write can overshoot guest entry
3212 	 * and corrupt guest memory. Disabling PEBS solves the problem.
3213 	 */
3214 	arr[1].msr = MSR_IA32_PEBS_ENABLE;
3215 	arr[1].host = cpuc->pebs_enabled;
3216 	arr[1].guest = 0;
3217 
3218 	*nr = 2;
3219 	return arr;
3220 }
3221 
3222 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3223 {
3224 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3225 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3226 	int idx;
3227 
3228 	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
3229 		struct perf_event *event = cpuc->events[idx];
3230 
3231 		arr[idx].msr = x86_pmu_config_addr(idx);
3232 		arr[idx].host = arr[idx].guest = 0;
3233 
3234 		if (!test_bit(idx, cpuc->active_mask))
3235 			continue;
3236 
3237 		arr[idx].host = arr[idx].guest =
3238 			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3239 
3240 		if (event->attr.exclude_host)
3241 			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3242 		else if (event->attr.exclude_guest)
3243 			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3244 	}
3245 
3246 	*nr = x86_pmu.num_counters;
3247 	return arr;
3248 }
3249 
3250 static void core_pmu_enable_event(struct perf_event *event)
3251 {
3252 	if (!event->attr.exclude_host)
3253 		x86_pmu_enable_event(event);
3254 }
3255 
3256 static void core_pmu_enable_all(int added)
3257 {
3258 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3259 	int idx;
3260 
3261 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3262 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
3263 
3264 		if (!test_bit(idx, cpuc->active_mask) ||
3265 				cpuc->events[idx]->attr.exclude_host)
3266 			continue;
3267 
3268 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
3269 	}
3270 }
3271 
3272 static int hsw_hw_config(struct perf_event *event)
3273 {
3274 	int ret = intel_pmu_hw_config(event);
3275 
3276 	if (ret)
3277 		return ret;
3278 	if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
3279 		return 0;
3280 	event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
3281 
3282 	/*
3283 	 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3284 	 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3285 	 * this combination.
3286 	 */
3287 	if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
3288 	     ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
3289 	      event->attr.precise_ip > 0))
3290 		return -EOPNOTSUPP;
3291 
3292 	if (event_is_checkpointed(event)) {
3293 		/*
3294 		 * Sampling of checkpointed events can cause situations where
3295 		 * the CPU constantly aborts because of a overflow, which is
3296 		 * then checkpointed back and ignored. Forbid checkpointing
3297 		 * for sampling.
3298 		 *
3299 		 * But still allow a long sampling period, so that perf stat
3300 		 * from KVM works.
3301 		 */
3302 		if (event->attr.sample_period > 0 &&
3303 		    event->attr.sample_period < 0x7fffffff)
3304 			return -EOPNOTSUPP;
3305 	}
3306 	return 0;
3307 }
3308 
3309 static struct event_constraint counter0_constraint =
3310 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3311 
3312 static struct event_constraint counter2_constraint =
3313 			EVENT_CONSTRAINT(0, 0x4, 0);
3314 
3315 static struct event_constraint *
3316 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3317 			  struct perf_event *event)
3318 {
3319 	struct event_constraint *c;
3320 
3321 	c = intel_get_event_constraints(cpuc, idx, event);
3322 
3323 	/* Handle special quirk on in_tx_checkpointed only in counter 2 */
3324 	if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
3325 		if (c->idxmsk64 & (1U << 2))
3326 			return &counter2_constraint;
3327 		return &emptyconstraint;
3328 	}
3329 
3330 	return c;
3331 }
3332 
3333 static struct event_constraint *
3334 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3335 			  struct perf_event *event)
3336 {
3337 	struct event_constraint *c;
3338 
3339 	/* :ppp means to do reduced skid PEBS which is PMC0 only. */
3340 	if (event->attr.precise_ip == 3)
3341 		return &counter0_constraint;
3342 
3343 	c = intel_get_event_constraints(cpuc, idx, event);
3344 
3345 	return c;
3346 }
3347 
3348 /*
3349  * Broadwell:
3350  *
3351  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
3352  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
3353  * the two to enforce a minimum period of 128 (the smallest value that has bits
3354  * 0-5 cleared and >= 100).
3355  *
3356  * Because of how the code in x86_perf_event_set_period() works, the truncation
3357  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
3358  * to make up for the 'lost' events due to carrying the 'error' in period_left.
3359  *
3360  * Therefore the effective (average) period matches the requested period,
3361  * despite coarser hardware granularity.
3362  */
3363 static u64 bdw_limit_period(struct perf_event *event, u64 left)
3364 {
3365 	if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
3366 			X86_CONFIG(.event=0xc0, .umask=0x01)) {
3367 		if (left < 128)
3368 			left = 128;
3369 		left &= ~0x3fULL;
3370 	}
3371 	return left;
3372 }
3373 
3374 PMU_FORMAT_ATTR(event,	"config:0-7"	);
3375 PMU_FORMAT_ATTR(umask,	"config:8-15"	);
3376 PMU_FORMAT_ATTR(edge,	"config:18"	);
3377 PMU_FORMAT_ATTR(pc,	"config:19"	);
3378 PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
3379 PMU_FORMAT_ATTR(inv,	"config:23"	);
3380 PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
3381 PMU_FORMAT_ATTR(in_tx,  "config:32");
3382 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
3383 
3384 static struct attribute *intel_arch_formats_attr[] = {
3385 	&format_attr_event.attr,
3386 	&format_attr_umask.attr,
3387 	&format_attr_edge.attr,
3388 	&format_attr_pc.attr,
3389 	&format_attr_inv.attr,
3390 	&format_attr_cmask.attr,
3391 	NULL,
3392 };
3393 
3394 ssize_t intel_event_sysfs_show(char *page, u64 config)
3395 {
3396 	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
3397 
3398 	return x86_event_sysfs_show(page, config, event);
3399 }
3400 
3401 struct intel_shared_regs *allocate_shared_regs(int cpu)
3402 {
3403 	struct intel_shared_regs *regs;
3404 	int i;
3405 
3406 	regs = kzalloc_node(sizeof(struct intel_shared_regs),
3407 			    GFP_KERNEL, cpu_to_node(cpu));
3408 	if (regs) {
3409 		/*
3410 		 * initialize the locks to keep lockdep happy
3411 		 */
3412 		for (i = 0; i < EXTRA_REG_MAX; i++)
3413 			raw_spin_lock_init(&regs->regs[i].lock);
3414 
3415 		regs->core_id = -1;
3416 	}
3417 	return regs;
3418 }
3419 
3420 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
3421 {
3422 	struct intel_excl_cntrs *c;
3423 
3424 	c = kzalloc_node(sizeof(struct intel_excl_cntrs),
3425 			 GFP_KERNEL, cpu_to_node(cpu));
3426 	if (c) {
3427 		raw_spin_lock_init(&c->lock);
3428 		c->core_id = -1;
3429 	}
3430 	return c;
3431 }
3432 
3433 static int intel_pmu_cpu_prepare(int cpu)
3434 {
3435 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3436 
3437 	if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
3438 		cpuc->shared_regs = allocate_shared_regs(cpu);
3439 		if (!cpuc->shared_regs)
3440 			goto err;
3441 	}
3442 
3443 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3444 		size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
3445 
3446 		cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
3447 		if (!cpuc->constraint_list)
3448 			goto err_shared_regs;
3449 
3450 		cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
3451 		if (!cpuc->excl_cntrs)
3452 			goto err_constraint_list;
3453 
3454 		cpuc->excl_thread_id = 0;
3455 	}
3456 
3457 	return 0;
3458 
3459 err_constraint_list:
3460 	kfree(cpuc->constraint_list);
3461 	cpuc->constraint_list = NULL;
3462 
3463 err_shared_regs:
3464 	kfree(cpuc->shared_regs);
3465 	cpuc->shared_regs = NULL;
3466 
3467 err:
3468 	return -ENOMEM;
3469 }
3470 
3471 static void flip_smm_bit(void *data)
3472 {
3473 	unsigned long set = *(unsigned long *)data;
3474 
3475 	if (set > 0) {
3476 		msr_set_bit(MSR_IA32_DEBUGCTLMSR,
3477 			    DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3478 	} else {
3479 		msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
3480 			      DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3481 	}
3482 }
3483 
3484 static void intel_pmu_cpu_starting(int cpu)
3485 {
3486 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3487 	int core_id = topology_core_id(cpu);
3488 	int i;
3489 
3490 	init_debug_store_on_cpu(cpu);
3491 	/*
3492 	 * Deal with CPUs that don't clear their LBRs on power-up.
3493 	 */
3494 	intel_pmu_lbr_reset();
3495 
3496 	cpuc->lbr_sel = NULL;
3497 
3498 	if (x86_pmu.version > 1)
3499 		flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
3500 
3501 	if (x86_pmu.counter_freezing)
3502 		enable_counter_freeze();
3503 
3504 	if (!cpuc->shared_regs)
3505 		return;
3506 
3507 	if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
3508 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3509 			struct intel_shared_regs *pc;
3510 
3511 			pc = per_cpu(cpu_hw_events, i).shared_regs;
3512 			if (pc && pc->core_id == core_id) {
3513 				cpuc->kfree_on_online[0] = cpuc->shared_regs;
3514 				cpuc->shared_regs = pc;
3515 				break;
3516 			}
3517 		}
3518 		cpuc->shared_regs->core_id = core_id;
3519 		cpuc->shared_regs->refcnt++;
3520 	}
3521 
3522 	if (x86_pmu.lbr_sel_map)
3523 		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
3524 
3525 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3526 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3527 			struct cpu_hw_events *sibling;
3528 			struct intel_excl_cntrs *c;
3529 
3530 			sibling = &per_cpu(cpu_hw_events, i);
3531 			c = sibling->excl_cntrs;
3532 			if (c && c->core_id == core_id) {
3533 				cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
3534 				cpuc->excl_cntrs = c;
3535 				if (!sibling->excl_thread_id)
3536 					cpuc->excl_thread_id = 1;
3537 				break;
3538 			}
3539 		}
3540 		cpuc->excl_cntrs->core_id = core_id;
3541 		cpuc->excl_cntrs->refcnt++;
3542 	}
3543 }
3544 
3545 static void free_excl_cntrs(int cpu)
3546 {
3547 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3548 	struct intel_excl_cntrs *c;
3549 
3550 	c = cpuc->excl_cntrs;
3551 	if (c) {
3552 		if (c->core_id == -1 || --c->refcnt == 0)
3553 			kfree(c);
3554 		cpuc->excl_cntrs = NULL;
3555 		kfree(cpuc->constraint_list);
3556 		cpuc->constraint_list = NULL;
3557 	}
3558 }
3559 
3560 static void intel_pmu_cpu_dying(int cpu)
3561 {
3562 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3563 	struct intel_shared_regs *pc;
3564 
3565 	pc = cpuc->shared_regs;
3566 	if (pc) {
3567 		if (pc->core_id == -1 || --pc->refcnt == 0)
3568 			kfree(pc);
3569 		cpuc->shared_regs = NULL;
3570 	}
3571 
3572 	free_excl_cntrs(cpu);
3573 
3574 	fini_debug_store_on_cpu(cpu);
3575 
3576 	if (x86_pmu.counter_freezing)
3577 		disable_counter_freeze();
3578 }
3579 
3580 static void intel_pmu_sched_task(struct perf_event_context *ctx,
3581 				 bool sched_in)
3582 {
3583 	intel_pmu_pebs_sched_task(ctx, sched_in);
3584 	intel_pmu_lbr_sched_task(ctx, sched_in);
3585 }
3586 
3587 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
3588 
3589 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
3590 
3591 PMU_FORMAT_ATTR(frontend, "config1:0-23");
3592 
3593 static struct attribute *intel_arch3_formats_attr[] = {
3594 	&format_attr_event.attr,
3595 	&format_attr_umask.attr,
3596 	&format_attr_edge.attr,
3597 	&format_attr_pc.attr,
3598 	&format_attr_any.attr,
3599 	&format_attr_inv.attr,
3600 	&format_attr_cmask.attr,
3601 	NULL,
3602 };
3603 
3604 static struct attribute *hsw_format_attr[] = {
3605 	&format_attr_in_tx.attr,
3606 	&format_attr_in_tx_cp.attr,
3607 	&format_attr_offcore_rsp.attr,
3608 	&format_attr_ldlat.attr,
3609 	NULL
3610 };
3611 
3612 static struct attribute *nhm_format_attr[] = {
3613 	&format_attr_offcore_rsp.attr,
3614 	&format_attr_ldlat.attr,
3615 	NULL
3616 };
3617 
3618 static struct attribute *slm_format_attr[] = {
3619 	&format_attr_offcore_rsp.attr,
3620 	NULL
3621 };
3622 
3623 static struct attribute *skl_format_attr[] = {
3624 	&format_attr_frontend.attr,
3625 	NULL,
3626 };
3627 
3628 static __initconst const struct x86_pmu core_pmu = {
3629 	.name			= "core",
3630 	.handle_irq		= x86_pmu_handle_irq,
3631 	.disable_all		= x86_pmu_disable_all,
3632 	.enable_all		= core_pmu_enable_all,
3633 	.enable			= core_pmu_enable_event,
3634 	.disable		= x86_pmu_disable_event,
3635 	.hw_config		= core_pmu_hw_config,
3636 	.schedule_events	= x86_schedule_events,
3637 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
3638 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
3639 	.event_map		= intel_pmu_event_map,
3640 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
3641 	.apic			= 1,
3642 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
3643 
3644 	/*
3645 	 * Intel PMCs cannot be accessed sanely above 32-bit width,
3646 	 * so we install an artificial 1<<31 period regardless of
3647 	 * the generic event period:
3648 	 */
3649 	.max_period		= (1ULL<<31) - 1,
3650 	.get_event_constraints	= intel_get_event_constraints,
3651 	.put_event_constraints	= intel_put_event_constraints,
3652 	.event_constraints	= intel_core_event_constraints,
3653 	.guest_get_msrs		= core_guest_get_msrs,
3654 	.format_attrs		= intel_arch_formats_attr,
3655 	.events_sysfs_show	= intel_event_sysfs_show,
3656 
3657 	/*
3658 	 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
3659 	 * together with PMU version 1 and thus be using core_pmu with
3660 	 * shared_regs. We need following callbacks here to allocate
3661 	 * it properly.
3662 	 */
3663 	.cpu_prepare		= intel_pmu_cpu_prepare,
3664 	.cpu_starting		= intel_pmu_cpu_starting,
3665 	.cpu_dying		= intel_pmu_cpu_dying,
3666 };
3667 
3668 static struct attribute *intel_pmu_attrs[];
3669 
3670 static __initconst const struct x86_pmu intel_pmu = {
3671 	.name			= "Intel",
3672 	.handle_irq		= intel_pmu_handle_irq,
3673 	.disable_all		= intel_pmu_disable_all,
3674 	.enable_all		= intel_pmu_enable_all,
3675 	.enable			= intel_pmu_enable_event,
3676 	.disable		= intel_pmu_disable_event,
3677 	.add			= intel_pmu_add_event,
3678 	.del			= intel_pmu_del_event,
3679 	.read			= intel_pmu_read_event,
3680 	.hw_config		= intel_pmu_hw_config,
3681 	.schedule_events	= x86_schedule_events,
3682 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
3683 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
3684 	.event_map		= intel_pmu_event_map,
3685 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
3686 	.apic			= 1,
3687 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
3688 	/*
3689 	 * Intel PMCs cannot be accessed sanely above 32 bit width,
3690 	 * so we install an artificial 1<<31 period regardless of
3691 	 * the generic event period:
3692 	 */
3693 	.max_period		= (1ULL << 31) - 1,
3694 	.get_event_constraints	= intel_get_event_constraints,
3695 	.put_event_constraints	= intel_put_event_constraints,
3696 	.pebs_aliases		= intel_pebs_aliases_core2,
3697 
3698 	.format_attrs		= intel_arch3_formats_attr,
3699 	.events_sysfs_show	= intel_event_sysfs_show,
3700 
3701 	.attrs			= intel_pmu_attrs,
3702 
3703 	.cpu_prepare		= intel_pmu_cpu_prepare,
3704 	.cpu_starting		= intel_pmu_cpu_starting,
3705 	.cpu_dying		= intel_pmu_cpu_dying,
3706 	.guest_get_msrs		= intel_guest_get_msrs,
3707 	.sched_task		= intel_pmu_sched_task,
3708 };
3709 
3710 static __init void intel_clovertown_quirk(void)
3711 {
3712 	/*
3713 	 * PEBS is unreliable due to:
3714 	 *
3715 	 *   AJ67  - PEBS may experience CPL leaks
3716 	 *   AJ68  - PEBS PMI may be delayed by one event
3717 	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
3718 	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
3719 	 *
3720 	 * AJ67 could be worked around by restricting the OS/USR flags.
3721 	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
3722 	 *
3723 	 * AJ106 could possibly be worked around by not allowing LBR
3724 	 *       usage from PEBS, including the fixup.
3725 	 * AJ68  could possibly be worked around by always programming
3726 	 *	 a pebs_event_reset[0] value and coping with the lost events.
3727 	 *
3728 	 * But taken together it might just make sense to not enable PEBS on
3729 	 * these chips.
3730 	 */
3731 	pr_warn("PEBS disabled due to CPU errata\n");
3732 	x86_pmu.pebs = 0;
3733 	x86_pmu.pebs_constraints = NULL;
3734 }
3735 
3736 static int intel_snb_pebs_broken(int cpu)
3737 {
3738 	u32 rev = UINT_MAX; /* default to broken for unknown models */
3739 
3740 	switch (cpu_data(cpu).x86_model) {
3741 	case INTEL_FAM6_SANDYBRIDGE:
3742 		rev = 0x28;
3743 		break;
3744 
3745 	case INTEL_FAM6_SANDYBRIDGE_X:
3746 		switch (cpu_data(cpu).x86_stepping) {
3747 		case 6: rev = 0x618; break;
3748 		case 7: rev = 0x70c; break;
3749 		}
3750 	}
3751 
3752 	return (cpu_data(cpu).microcode < rev);
3753 }
3754 
3755 static void intel_snb_check_microcode(void)
3756 {
3757 	int pebs_broken = 0;
3758 	int cpu;
3759 
3760 	for_each_online_cpu(cpu) {
3761 		if ((pebs_broken = intel_snb_pebs_broken(cpu)))
3762 			break;
3763 	}
3764 
3765 	if (pebs_broken == x86_pmu.pebs_broken)
3766 		return;
3767 
3768 	/*
3769 	 * Serialized by the microcode lock..
3770 	 */
3771 	if (x86_pmu.pebs_broken) {
3772 		pr_info("PEBS enabled due to microcode update\n");
3773 		x86_pmu.pebs_broken = 0;
3774 	} else {
3775 		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
3776 		x86_pmu.pebs_broken = 1;
3777 	}
3778 }
3779 
3780 static bool is_lbr_from(unsigned long msr)
3781 {
3782 	unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
3783 
3784 	return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
3785 }
3786 
3787 /*
3788  * Under certain circumstances, access certain MSR may cause #GP.
3789  * The function tests if the input MSR can be safely accessed.
3790  */
3791 static bool check_msr(unsigned long msr, u64 mask)
3792 {
3793 	u64 val_old, val_new, val_tmp;
3794 
3795 	/*
3796 	 * Read the current value, change it and read it back to see if it
3797 	 * matches, this is needed to detect certain hardware emulators
3798 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
3799 	 */
3800 	if (rdmsrl_safe(msr, &val_old))
3801 		return false;
3802 
3803 	/*
3804 	 * Only change the bits which can be updated by wrmsrl.
3805 	 */
3806 	val_tmp = val_old ^ mask;
3807 
3808 	if (is_lbr_from(msr))
3809 		val_tmp = lbr_from_signext_quirk_wr(val_tmp);
3810 
3811 	if (wrmsrl_safe(msr, val_tmp) ||
3812 	    rdmsrl_safe(msr, &val_new))
3813 		return false;
3814 
3815 	/*
3816 	 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
3817 	 * should equal rdmsrl()'s even with the quirk.
3818 	 */
3819 	if (val_new != val_tmp)
3820 		return false;
3821 
3822 	if (is_lbr_from(msr))
3823 		val_old = lbr_from_signext_quirk_wr(val_old);
3824 
3825 	/* Here it's sure that the MSR can be safely accessed.
3826 	 * Restore the old value and return.
3827 	 */
3828 	wrmsrl(msr, val_old);
3829 
3830 	return true;
3831 }
3832 
3833 static __init void intel_sandybridge_quirk(void)
3834 {
3835 	x86_pmu.check_microcode = intel_snb_check_microcode;
3836 	cpus_read_lock();
3837 	intel_snb_check_microcode();
3838 	cpus_read_unlock();
3839 }
3840 
3841 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
3842 	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
3843 	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
3844 	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
3845 	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
3846 	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
3847 	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
3848 	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
3849 };
3850 
3851 static __init void intel_arch_events_quirk(void)
3852 {
3853 	int bit;
3854 
3855 	/* disable event that reported as not presend by cpuid */
3856 	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
3857 		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
3858 		pr_warn("CPUID marked event: \'%s\' unavailable\n",
3859 			intel_arch_events_map[bit].name);
3860 	}
3861 }
3862 
3863 static __init void intel_nehalem_quirk(void)
3864 {
3865 	union cpuid10_ebx ebx;
3866 
3867 	ebx.full = x86_pmu.events_maskl;
3868 	if (ebx.split.no_branch_misses_retired) {
3869 		/*
3870 		 * Erratum AAJ80 detected, we work it around by using
3871 		 * the BR_MISP_EXEC.ANY event. This will over-count
3872 		 * branch-misses, but it's still much better than the
3873 		 * architectural event which is often completely bogus:
3874 		 */
3875 		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
3876 		ebx.split.no_branch_misses_retired = 0;
3877 		x86_pmu.events_maskl = ebx.full;
3878 		pr_info("CPU erratum AAJ80 worked around\n");
3879 	}
3880 }
3881 
3882 static bool intel_glp_counter_freezing_broken(int cpu)
3883 {
3884 	u32 rev = UINT_MAX; /* default to broken for unknown stepping */
3885 
3886 	switch (cpu_data(cpu).x86_stepping) {
3887 	case 1:
3888 		rev = 0x28;
3889 		break;
3890 	case 8:
3891 		rev = 0x6;
3892 		break;
3893 	}
3894 
3895 	return (cpu_data(cpu).microcode < rev);
3896 }
3897 
3898 static __init void intel_glp_counter_freezing_quirk(void)
3899 {
3900 	/* Check if it's already disabled */
3901 	if (disable_counter_freezing)
3902 		return;
3903 
3904 	/*
3905 	 * If the system starts with the wrong ucode, leave the
3906 	 * counter-freezing feature permanently disabled.
3907 	 */
3908 	if (intel_glp_counter_freezing_broken(raw_smp_processor_id())) {
3909 		pr_info("PMU counter freezing disabled due to CPU errata,"
3910 			"please upgrade microcode\n");
3911 		x86_pmu.counter_freezing = false;
3912 		x86_pmu.handle_irq = intel_pmu_handle_irq;
3913 	}
3914 }
3915 
3916 /*
3917  * enable software workaround for errata:
3918  * SNB: BJ122
3919  * IVB: BV98
3920  * HSW: HSD29
3921  *
3922  * Only needed when HT is enabled. However detecting
3923  * if HT is enabled is difficult (model specific). So instead,
3924  * we enable the workaround in the early boot, and verify if
3925  * it is needed in a later initcall phase once we have valid
3926  * topology information to check if HT is actually enabled
3927  */
3928 static __init void intel_ht_bug(void)
3929 {
3930 	x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
3931 
3932 	x86_pmu.start_scheduling = intel_start_scheduling;
3933 	x86_pmu.commit_scheduling = intel_commit_scheduling;
3934 	x86_pmu.stop_scheduling = intel_stop_scheduling;
3935 }
3936 
3937 EVENT_ATTR_STR(mem-loads,	mem_ld_hsw,	"event=0xcd,umask=0x1,ldlat=3");
3938 EVENT_ATTR_STR(mem-stores,	mem_st_hsw,	"event=0xd0,umask=0x82")
3939 
3940 /* Haswell special events */
3941 EVENT_ATTR_STR(tx-start,	tx_start,	"event=0xc9,umask=0x1");
3942 EVENT_ATTR_STR(tx-commit,	tx_commit,	"event=0xc9,umask=0x2");
3943 EVENT_ATTR_STR(tx-abort,	tx_abort,	"event=0xc9,umask=0x4");
3944 EVENT_ATTR_STR(tx-capacity,	tx_capacity,	"event=0x54,umask=0x2");
3945 EVENT_ATTR_STR(tx-conflict,	tx_conflict,	"event=0x54,umask=0x1");
3946 EVENT_ATTR_STR(el-start,	el_start,	"event=0xc8,umask=0x1");
3947 EVENT_ATTR_STR(el-commit,	el_commit,	"event=0xc8,umask=0x2");
3948 EVENT_ATTR_STR(el-abort,	el_abort,	"event=0xc8,umask=0x4");
3949 EVENT_ATTR_STR(el-capacity,	el_capacity,	"event=0x54,umask=0x2");
3950 EVENT_ATTR_STR(el-conflict,	el_conflict,	"event=0x54,umask=0x1");
3951 EVENT_ATTR_STR(cycles-t,	cycles_t,	"event=0x3c,in_tx=1");
3952 EVENT_ATTR_STR(cycles-ct,	cycles_ct,	"event=0x3c,in_tx=1,in_tx_cp=1");
3953 
3954 static struct attribute *hsw_events_attrs[] = {
3955 	EVENT_PTR(td_slots_issued),
3956 	EVENT_PTR(td_slots_retired),
3957 	EVENT_PTR(td_fetch_bubbles),
3958 	EVENT_PTR(td_total_slots),
3959 	EVENT_PTR(td_total_slots_scale),
3960 	EVENT_PTR(td_recovery_bubbles),
3961 	EVENT_PTR(td_recovery_bubbles_scale),
3962 	NULL
3963 };
3964 
3965 static struct attribute *hsw_mem_events_attrs[] = {
3966 	EVENT_PTR(mem_ld_hsw),
3967 	EVENT_PTR(mem_st_hsw),
3968 	NULL,
3969 };
3970 
3971 static struct attribute *hsw_tsx_events_attrs[] = {
3972 	EVENT_PTR(tx_start),
3973 	EVENT_PTR(tx_commit),
3974 	EVENT_PTR(tx_abort),
3975 	EVENT_PTR(tx_capacity),
3976 	EVENT_PTR(tx_conflict),
3977 	EVENT_PTR(el_start),
3978 	EVENT_PTR(el_commit),
3979 	EVENT_PTR(el_abort),
3980 	EVENT_PTR(el_capacity),
3981 	EVENT_PTR(el_conflict),
3982 	EVENT_PTR(cycles_t),
3983 	EVENT_PTR(cycles_ct),
3984 	NULL
3985 };
3986 
3987 static ssize_t freeze_on_smi_show(struct device *cdev,
3988 				  struct device_attribute *attr,
3989 				  char *buf)
3990 {
3991 	return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
3992 }
3993 
3994 static DEFINE_MUTEX(freeze_on_smi_mutex);
3995 
3996 static ssize_t freeze_on_smi_store(struct device *cdev,
3997 				   struct device_attribute *attr,
3998 				   const char *buf, size_t count)
3999 {
4000 	unsigned long val;
4001 	ssize_t ret;
4002 
4003 	ret = kstrtoul(buf, 0, &val);
4004 	if (ret)
4005 		return ret;
4006 
4007 	if (val > 1)
4008 		return -EINVAL;
4009 
4010 	mutex_lock(&freeze_on_smi_mutex);
4011 
4012 	if (x86_pmu.attr_freeze_on_smi == val)
4013 		goto done;
4014 
4015 	x86_pmu.attr_freeze_on_smi = val;
4016 
4017 	get_online_cpus();
4018 	on_each_cpu(flip_smm_bit, &val, 1);
4019 	put_online_cpus();
4020 done:
4021 	mutex_unlock(&freeze_on_smi_mutex);
4022 
4023 	return count;
4024 }
4025 
4026 static DEVICE_ATTR_RW(freeze_on_smi);
4027 
4028 static ssize_t branches_show(struct device *cdev,
4029 			     struct device_attribute *attr,
4030 			     char *buf)
4031 {
4032 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
4033 }
4034 
4035 static DEVICE_ATTR_RO(branches);
4036 
4037 static struct attribute *lbr_attrs[] = {
4038 	&dev_attr_branches.attr,
4039 	NULL
4040 };
4041 
4042 static char pmu_name_str[30];
4043 
4044 static ssize_t pmu_name_show(struct device *cdev,
4045 			     struct device_attribute *attr,
4046 			     char *buf)
4047 {
4048 	return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
4049 }
4050 
4051 static DEVICE_ATTR_RO(pmu_name);
4052 
4053 static struct attribute *intel_pmu_caps_attrs[] = {
4054        &dev_attr_pmu_name.attr,
4055        NULL
4056 };
4057 
4058 static struct attribute *intel_pmu_attrs[] = {
4059 	&dev_attr_freeze_on_smi.attr,
4060 	NULL,
4061 };
4062 
4063 static __init struct attribute **
4064 get_events_attrs(struct attribute **base,
4065 		 struct attribute **mem,
4066 		 struct attribute **tsx)
4067 {
4068 	struct attribute **attrs = base;
4069 	struct attribute **old;
4070 
4071 	if (mem && x86_pmu.pebs)
4072 		attrs = merge_attr(attrs, mem);
4073 
4074 	if (tsx && boot_cpu_has(X86_FEATURE_RTM)) {
4075 		old = attrs;
4076 		attrs = merge_attr(attrs, tsx);
4077 		if (old != base)
4078 			kfree(old);
4079 	}
4080 
4081 	return attrs;
4082 }
4083 
4084 __init int intel_pmu_init(void)
4085 {
4086 	struct attribute **extra_attr = NULL;
4087 	struct attribute **mem_attr = NULL;
4088 	struct attribute **tsx_attr = NULL;
4089 	struct attribute **to_free = NULL;
4090 	union cpuid10_edx edx;
4091 	union cpuid10_eax eax;
4092 	union cpuid10_ebx ebx;
4093 	struct event_constraint *c;
4094 	unsigned int unused;
4095 	struct extra_reg *er;
4096 	int version, i;
4097 	char *name;
4098 
4099 	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
4100 		switch (boot_cpu_data.x86) {
4101 		case 0x6:
4102 			return p6_pmu_init();
4103 		case 0xb:
4104 			return knc_pmu_init();
4105 		case 0xf:
4106 			return p4_pmu_init();
4107 		}
4108 		return -ENODEV;
4109 	}
4110 
4111 	/*
4112 	 * Check whether the Architectural PerfMon supports
4113 	 * Branch Misses Retired hw_event or not.
4114 	 */
4115 	cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
4116 	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
4117 		return -ENODEV;
4118 
4119 	version = eax.split.version_id;
4120 	if (version < 2)
4121 		x86_pmu = core_pmu;
4122 	else
4123 		x86_pmu = intel_pmu;
4124 
4125 	x86_pmu.version			= version;
4126 	x86_pmu.num_counters		= eax.split.num_counters;
4127 	x86_pmu.cntval_bits		= eax.split.bit_width;
4128 	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
4129 
4130 	x86_pmu.events_maskl		= ebx.full;
4131 	x86_pmu.events_mask_len		= eax.split.mask_length;
4132 
4133 	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
4134 
4135 	/*
4136 	 * Quirk: v2 perfmon does not report fixed-purpose events, so
4137 	 * assume at least 3 events, when not running in a hypervisor:
4138 	 */
4139 	if (version > 1) {
4140 		int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
4141 
4142 		x86_pmu.num_counters_fixed =
4143 			max((int)edx.split.num_counters_fixed, assume);
4144 	}
4145 
4146 	if (version >= 4)
4147 		x86_pmu.counter_freezing = !disable_counter_freezing;
4148 
4149 	if (boot_cpu_has(X86_FEATURE_PDCM)) {
4150 		u64 capabilities;
4151 
4152 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
4153 		x86_pmu.intel_cap.capabilities = capabilities;
4154 	}
4155 
4156 	intel_ds_init();
4157 
4158 	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
4159 
4160 	/*
4161 	 * Install the hw-cache-events table:
4162 	 */
4163 	switch (boot_cpu_data.x86_model) {
4164 	case INTEL_FAM6_CORE_YONAH:
4165 		pr_cont("Core events, ");
4166 		name = "core";
4167 		break;
4168 
4169 	case INTEL_FAM6_CORE2_MEROM:
4170 		x86_add_quirk(intel_clovertown_quirk);
4171 	case INTEL_FAM6_CORE2_MEROM_L:
4172 	case INTEL_FAM6_CORE2_PENRYN:
4173 	case INTEL_FAM6_CORE2_DUNNINGTON:
4174 		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
4175 		       sizeof(hw_cache_event_ids));
4176 
4177 		intel_pmu_lbr_init_core();
4178 
4179 		x86_pmu.event_constraints = intel_core2_event_constraints;
4180 		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
4181 		pr_cont("Core2 events, ");
4182 		name = "core2";
4183 		break;
4184 
4185 	case INTEL_FAM6_NEHALEM:
4186 	case INTEL_FAM6_NEHALEM_EP:
4187 	case INTEL_FAM6_NEHALEM_EX:
4188 		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
4189 		       sizeof(hw_cache_event_ids));
4190 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
4191 		       sizeof(hw_cache_extra_regs));
4192 
4193 		intel_pmu_lbr_init_nhm();
4194 
4195 		x86_pmu.event_constraints = intel_nehalem_event_constraints;
4196 		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
4197 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
4198 		x86_pmu.extra_regs = intel_nehalem_extra_regs;
4199 
4200 		mem_attr = nhm_mem_events_attrs;
4201 
4202 		/* UOPS_ISSUED.STALLED_CYCLES */
4203 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4204 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4205 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4206 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4207 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
4208 
4209 		intel_pmu_pebs_data_source_nhm();
4210 		x86_add_quirk(intel_nehalem_quirk);
4211 		x86_pmu.pebs_no_tlb = 1;
4212 		extra_attr = nhm_format_attr;
4213 
4214 		pr_cont("Nehalem events, ");
4215 		name = "nehalem";
4216 		break;
4217 
4218 	case INTEL_FAM6_ATOM_BONNELL:
4219 	case INTEL_FAM6_ATOM_BONNELL_MID:
4220 	case INTEL_FAM6_ATOM_SALTWELL:
4221 	case INTEL_FAM6_ATOM_SALTWELL_MID:
4222 	case INTEL_FAM6_ATOM_SALTWELL_TABLET:
4223 		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
4224 		       sizeof(hw_cache_event_ids));
4225 
4226 		intel_pmu_lbr_init_atom();
4227 
4228 		x86_pmu.event_constraints = intel_gen_event_constraints;
4229 		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
4230 		x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
4231 		pr_cont("Atom events, ");
4232 		name = "bonnell";
4233 		break;
4234 
4235 	case INTEL_FAM6_ATOM_SILVERMONT:
4236 	case INTEL_FAM6_ATOM_SILVERMONT_X:
4237 	case INTEL_FAM6_ATOM_SILVERMONT_MID:
4238 	case INTEL_FAM6_ATOM_AIRMONT:
4239 	case INTEL_FAM6_ATOM_AIRMONT_MID:
4240 		memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
4241 			sizeof(hw_cache_event_ids));
4242 		memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
4243 		       sizeof(hw_cache_extra_regs));
4244 
4245 		intel_pmu_lbr_init_slm();
4246 
4247 		x86_pmu.event_constraints = intel_slm_event_constraints;
4248 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4249 		x86_pmu.extra_regs = intel_slm_extra_regs;
4250 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4251 		x86_pmu.cpu_events = slm_events_attrs;
4252 		extra_attr = slm_format_attr;
4253 		pr_cont("Silvermont events, ");
4254 		name = "silvermont";
4255 		break;
4256 
4257 	case INTEL_FAM6_ATOM_GOLDMONT:
4258 	case INTEL_FAM6_ATOM_GOLDMONT_X:
4259 		memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
4260 		       sizeof(hw_cache_event_ids));
4261 		memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
4262 		       sizeof(hw_cache_extra_regs));
4263 
4264 		intel_pmu_lbr_init_skl();
4265 
4266 		x86_pmu.event_constraints = intel_slm_event_constraints;
4267 		x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
4268 		x86_pmu.extra_regs = intel_glm_extra_regs;
4269 		/*
4270 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4271 		 * for precise cycles.
4272 		 * :pp is identical to :ppp
4273 		 */
4274 		x86_pmu.pebs_aliases = NULL;
4275 		x86_pmu.pebs_prec_dist = true;
4276 		x86_pmu.lbr_pt_coexist = true;
4277 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4278 		x86_pmu.cpu_events = glm_events_attrs;
4279 		extra_attr = slm_format_attr;
4280 		pr_cont("Goldmont events, ");
4281 		name = "goldmont";
4282 		break;
4283 
4284 	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
4285 		x86_add_quirk(intel_glp_counter_freezing_quirk);
4286 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
4287 		       sizeof(hw_cache_event_ids));
4288 		memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
4289 		       sizeof(hw_cache_extra_regs));
4290 
4291 		intel_pmu_lbr_init_skl();
4292 
4293 		x86_pmu.event_constraints = intel_slm_event_constraints;
4294 		x86_pmu.extra_regs = intel_glm_extra_regs;
4295 		/*
4296 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4297 		 * for precise cycles.
4298 		 */
4299 		x86_pmu.pebs_aliases = NULL;
4300 		x86_pmu.pebs_prec_dist = true;
4301 		x86_pmu.lbr_pt_coexist = true;
4302 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4303 		x86_pmu.flags |= PMU_FL_PEBS_ALL;
4304 		x86_pmu.get_event_constraints = glp_get_event_constraints;
4305 		x86_pmu.cpu_events = glm_events_attrs;
4306 		/* Goldmont Plus has 4-wide pipeline */
4307 		event_attr_td_total_slots_scale_glm.event_str = "4";
4308 		extra_attr = slm_format_attr;
4309 		pr_cont("Goldmont plus events, ");
4310 		name = "goldmont_plus";
4311 		break;
4312 
4313 	case INTEL_FAM6_WESTMERE:
4314 	case INTEL_FAM6_WESTMERE_EP:
4315 	case INTEL_FAM6_WESTMERE_EX:
4316 		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
4317 		       sizeof(hw_cache_event_ids));
4318 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
4319 		       sizeof(hw_cache_extra_regs));
4320 
4321 		intel_pmu_lbr_init_nhm();
4322 
4323 		x86_pmu.event_constraints = intel_westmere_event_constraints;
4324 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
4325 		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
4326 		x86_pmu.extra_regs = intel_westmere_extra_regs;
4327 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4328 
4329 		mem_attr = nhm_mem_events_attrs;
4330 
4331 		/* UOPS_ISSUED.STALLED_CYCLES */
4332 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4333 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4334 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4335 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4336 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
4337 
4338 		intel_pmu_pebs_data_source_nhm();
4339 		extra_attr = nhm_format_attr;
4340 		pr_cont("Westmere events, ");
4341 		name = "westmere";
4342 		break;
4343 
4344 	case INTEL_FAM6_SANDYBRIDGE:
4345 	case INTEL_FAM6_SANDYBRIDGE_X:
4346 		x86_add_quirk(intel_sandybridge_quirk);
4347 		x86_add_quirk(intel_ht_bug);
4348 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4349 		       sizeof(hw_cache_event_ids));
4350 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4351 		       sizeof(hw_cache_extra_regs));
4352 
4353 		intel_pmu_lbr_init_snb();
4354 
4355 		x86_pmu.event_constraints = intel_snb_event_constraints;
4356 		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
4357 		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
4358 		if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
4359 			x86_pmu.extra_regs = intel_snbep_extra_regs;
4360 		else
4361 			x86_pmu.extra_regs = intel_snb_extra_regs;
4362 
4363 
4364 		/* all extra regs are per-cpu when HT is on */
4365 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4366 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4367 
4368 		x86_pmu.cpu_events = snb_events_attrs;
4369 		mem_attr = snb_mem_events_attrs;
4370 
4371 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4372 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4373 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4374 		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
4375 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4376 			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
4377 
4378 		extra_attr = nhm_format_attr;
4379 
4380 		pr_cont("SandyBridge events, ");
4381 		name = "sandybridge";
4382 		break;
4383 
4384 	case INTEL_FAM6_IVYBRIDGE:
4385 	case INTEL_FAM6_IVYBRIDGE_X:
4386 		x86_add_quirk(intel_ht_bug);
4387 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4388 		       sizeof(hw_cache_event_ids));
4389 		/* dTLB-load-misses on IVB is different than SNB */
4390 		hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
4391 
4392 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4393 		       sizeof(hw_cache_extra_regs));
4394 
4395 		intel_pmu_lbr_init_snb();
4396 
4397 		x86_pmu.event_constraints = intel_ivb_event_constraints;
4398 		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
4399 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4400 		x86_pmu.pebs_prec_dist = true;
4401 		if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
4402 			x86_pmu.extra_regs = intel_snbep_extra_regs;
4403 		else
4404 			x86_pmu.extra_regs = intel_snb_extra_regs;
4405 		/* all extra regs are per-cpu when HT is on */
4406 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4407 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4408 
4409 		x86_pmu.cpu_events = snb_events_attrs;
4410 		mem_attr = snb_mem_events_attrs;
4411 
4412 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4413 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4414 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4415 
4416 		extra_attr = nhm_format_attr;
4417 
4418 		pr_cont("IvyBridge events, ");
4419 		name = "ivybridge";
4420 		break;
4421 
4422 
4423 	case INTEL_FAM6_HASWELL_CORE:
4424 	case INTEL_FAM6_HASWELL_X:
4425 	case INTEL_FAM6_HASWELL_ULT:
4426 	case INTEL_FAM6_HASWELL_GT3E:
4427 		x86_add_quirk(intel_ht_bug);
4428 		x86_pmu.late_ack = true;
4429 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4430 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4431 
4432 		intel_pmu_lbr_init_hsw();
4433 
4434 		x86_pmu.event_constraints = intel_hsw_event_constraints;
4435 		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
4436 		x86_pmu.extra_regs = intel_snbep_extra_regs;
4437 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4438 		x86_pmu.pebs_prec_dist = true;
4439 		/* all extra regs are per-cpu when HT is on */
4440 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4441 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4442 
4443 		x86_pmu.hw_config = hsw_hw_config;
4444 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
4445 		x86_pmu.cpu_events = hsw_events_attrs;
4446 		x86_pmu.lbr_double_abort = true;
4447 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4448 			hsw_format_attr : nhm_format_attr;
4449 		mem_attr = hsw_mem_events_attrs;
4450 		tsx_attr = hsw_tsx_events_attrs;
4451 		pr_cont("Haswell events, ");
4452 		name = "haswell";
4453 		break;
4454 
4455 	case INTEL_FAM6_BROADWELL_CORE:
4456 	case INTEL_FAM6_BROADWELL_XEON_D:
4457 	case INTEL_FAM6_BROADWELL_GT3E:
4458 	case INTEL_FAM6_BROADWELL_X:
4459 		x86_pmu.late_ack = true;
4460 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4461 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4462 
4463 		/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
4464 		hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
4465 									 BDW_L3_MISS|HSW_SNOOP_DRAM;
4466 		hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
4467 									  HSW_SNOOP_DRAM;
4468 		hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
4469 									     BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
4470 		hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
4471 									      BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
4472 
4473 		intel_pmu_lbr_init_hsw();
4474 
4475 		x86_pmu.event_constraints = intel_bdw_event_constraints;
4476 		x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
4477 		x86_pmu.extra_regs = intel_snbep_extra_regs;
4478 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4479 		x86_pmu.pebs_prec_dist = true;
4480 		/* all extra regs are per-cpu when HT is on */
4481 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4482 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4483 
4484 		x86_pmu.hw_config = hsw_hw_config;
4485 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
4486 		x86_pmu.cpu_events = hsw_events_attrs;
4487 		x86_pmu.limit_period = bdw_limit_period;
4488 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4489 			hsw_format_attr : nhm_format_attr;
4490 		mem_attr = hsw_mem_events_attrs;
4491 		tsx_attr = hsw_tsx_events_attrs;
4492 		pr_cont("Broadwell events, ");
4493 		name = "broadwell";
4494 		break;
4495 
4496 	case INTEL_FAM6_XEON_PHI_KNL:
4497 	case INTEL_FAM6_XEON_PHI_KNM:
4498 		memcpy(hw_cache_event_ids,
4499 		       slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4500 		memcpy(hw_cache_extra_regs,
4501 		       knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4502 		intel_pmu_lbr_init_knl();
4503 
4504 		x86_pmu.event_constraints = intel_slm_event_constraints;
4505 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4506 		x86_pmu.extra_regs = intel_knl_extra_regs;
4507 
4508 		/* all extra regs are per-cpu when HT is on */
4509 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4510 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4511 		extra_attr = slm_format_attr;
4512 		pr_cont("Knights Landing/Mill events, ");
4513 		name = "knights-landing";
4514 		break;
4515 
4516 	case INTEL_FAM6_SKYLAKE_MOBILE:
4517 	case INTEL_FAM6_SKYLAKE_DESKTOP:
4518 	case INTEL_FAM6_SKYLAKE_X:
4519 	case INTEL_FAM6_KABYLAKE_MOBILE:
4520 	case INTEL_FAM6_KABYLAKE_DESKTOP:
4521 		x86_pmu.late_ack = true;
4522 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4523 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4524 		intel_pmu_lbr_init_skl();
4525 
4526 		/* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
4527 		event_attr_td_recovery_bubbles.event_str_noht =
4528 			"event=0xd,umask=0x1,cmask=1";
4529 		event_attr_td_recovery_bubbles.event_str_ht =
4530 			"event=0xd,umask=0x1,cmask=1,any=1";
4531 
4532 		x86_pmu.event_constraints = intel_skl_event_constraints;
4533 		x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
4534 		x86_pmu.extra_regs = intel_skl_extra_regs;
4535 		x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
4536 		x86_pmu.pebs_prec_dist = true;
4537 		/* all extra regs are per-cpu when HT is on */
4538 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4539 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4540 
4541 		x86_pmu.hw_config = hsw_hw_config;
4542 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
4543 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4544 			hsw_format_attr : nhm_format_attr;
4545 		extra_attr = merge_attr(extra_attr, skl_format_attr);
4546 		to_free = extra_attr;
4547 		x86_pmu.cpu_events = hsw_events_attrs;
4548 		mem_attr = hsw_mem_events_attrs;
4549 		tsx_attr = hsw_tsx_events_attrs;
4550 		intel_pmu_pebs_data_source_skl(
4551 			boot_cpu_data.x86_model == INTEL_FAM6_SKYLAKE_X);
4552 		pr_cont("Skylake events, ");
4553 		name = "skylake";
4554 		break;
4555 
4556 	default:
4557 		switch (x86_pmu.version) {
4558 		case 1:
4559 			x86_pmu.event_constraints = intel_v1_event_constraints;
4560 			pr_cont("generic architected perfmon v1, ");
4561 			name = "generic_arch_v1";
4562 			break;
4563 		default:
4564 			/*
4565 			 * default constraints for v2 and up
4566 			 */
4567 			x86_pmu.event_constraints = intel_gen_event_constraints;
4568 			pr_cont("generic architected perfmon, ");
4569 			name = "generic_arch_v2+";
4570 			break;
4571 		}
4572 	}
4573 
4574 	snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
4575 
4576 	if (version >= 2 && extra_attr) {
4577 		x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr,
4578 						  extra_attr);
4579 		WARN_ON(!x86_pmu.format_attrs);
4580 	}
4581 
4582 	x86_pmu.cpu_events = get_events_attrs(x86_pmu.cpu_events,
4583 					      mem_attr, tsx_attr);
4584 
4585 	if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
4586 		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
4587 		     x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
4588 		x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
4589 	}
4590 	x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1;
4591 
4592 	if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
4593 		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
4594 		     x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
4595 		x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
4596 	}
4597 
4598 	x86_pmu.intel_ctrl |=
4599 		((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
4600 
4601 	if (x86_pmu.event_constraints) {
4602 		/*
4603 		 * event on fixed counter2 (REF_CYCLES) only works on this
4604 		 * counter, so do not extend mask to generic counters
4605 		 */
4606 		for_each_event_constraint(c, x86_pmu.event_constraints) {
4607 			if (c->cmask == FIXED_EVENT_FLAGS
4608 			    && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
4609 				c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
4610 			}
4611 			c->idxmsk64 &=
4612 				~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
4613 			c->weight = hweight64(c->idxmsk64);
4614 		}
4615 	}
4616 
4617 	/*
4618 	 * Access LBR MSR may cause #GP under certain circumstances.
4619 	 * E.g. KVM doesn't support LBR MSR
4620 	 * Check all LBT MSR here.
4621 	 * Disable LBR access if any LBR MSRs can not be accessed.
4622 	 */
4623 	if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
4624 		x86_pmu.lbr_nr = 0;
4625 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
4626 		if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
4627 		      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
4628 			x86_pmu.lbr_nr = 0;
4629 	}
4630 
4631 	x86_pmu.caps_attrs = intel_pmu_caps_attrs;
4632 
4633 	if (x86_pmu.lbr_nr) {
4634 		x86_pmu.caps_attrs = merge_attr(x86_pmu.caps_attrs, lbr_attrs);
4635 		pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
4636 	}
4637 
4638 	/*
4639 	 * Access extra MSR may cause #GP under certain circumstances.
4640 	 * E.g. KVM doesn't support offcore event
4641 	 * Check all extra_regs here.
4642 	 */
4643 	if (x86_pmu.extra_regs) {
4644 		for (er = x86_pmu.extra_regs; er->msr; er++) {
4645 			er->extra_msr_access = check_msr(er->msr, 0x11UL);
4646 			/* Disable LBR select mapping */
4647 			if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
4648 				x86_pmu.lbr_sel_map = NULL;
4649 		}
4650 	}
4651 
4652 	/* Support full width counters using alternative MSR range */
4653 	if (x86_pmu.intel_cap.full_width_write) {
4654 		x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
4655 		x86_pmu.perfctr = MSR_IA32_PMC0;
4656 		pr_cont("full-width counters, ");
4657 	}
4658 
4659 	/*
4660 	 * For arch perfmon 4 use counter freezing to avoid
4661 	 * several MSR accesses in the PMI.
4662 	 */
4663 	if (x86_pmu.counter_freezing)
4664 		x86_pmu.handle_irq = intel_pmu_handle_irq_v4;
4665 
4666 	kfree(to_free);
4667 	return 0;
4668 }
4669 
4670 /*
4671  * HT bug: phase 2 init
4672  * Called once we have valid topology information to check
4673  * whether or not HT is enabled
4674  * If HT is off, then we disable the workaround
4675  */
4676 static __init int fixup_ht_bug(void)
4677 {
4678 	int c;
4679 	/*
4680 	 * problem not present on this CPU model, nothing to do
4681 	 */
4682 	if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
4683 		return 0;
4684 
4685 	if (topology_max_smt_threads() > 1) {
4686 		pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
4687 		return 0;
4688 	}
4689 
4690 	cpus_read_lock();
4691 
4692 	hardlockup_detector_perf_stop();
4693 
4694 	x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
4695 
4696 	x86_pmu.start_scheduling = NULL;
4697 	x86_pmu.commit_scheduling = NULL;
4698 	x86_pmu.stop_scheduling = NULL;
4699 
4700 	hardlockup_detector_perf_restart();
4701 
4702 	for_each_online_cpu(c)
4703 		free_excl_cntrs(c);
4704 
4705 	cpus_read_unlock();
4706 	pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
4707 	return 0;
4708 }
4709 subsys_initcall(fixup_ht_bug)
4710