xref: /openbmc/linux/arch/x86/events/intel/core.c (revision 5303b8d3)
1 /*
2  * Per core/cpu state
3  *
4  * Used to coordinate shared registers between HT threads or
5  * among events on a single PMU.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/nmi.h>
16 
17 #include <asm/cpufeature.h>
18 #include <asm/hardirq.h>
19 #include <asm/intel-family.h>
20 #include <asm/apic.h>
21 
22 #include "../perf_event.h"
23 
24 /*
25  * Intel PerfMon, used on Core and later.
26  */
27 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
28 {
29 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
30 	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
31 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
32 	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
33 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
34 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
35 	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
36 	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
37 };
38 
39 static struct event_constraint intel_core_event_constraints[] __read_mostly =
40 {
41 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
42 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
43 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
44 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
45 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
46 	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
47 	EVENT_CONSTRAINT_END
48 };
49 
50 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
51 {
52 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
53 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
54 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
55 	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
56 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
57 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
58 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
59 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
60 	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
61 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
62 	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
63 	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
64 	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
65 	EVENT_CONSTRAINT_END
66 };
67 
68 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
69 {
70 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
71 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
72 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
73 	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
74 	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
75 	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
76 	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
77 	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
78 	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
79 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
80 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
81 	EVENT_CONSTRAINT_END
82 };
83 
84 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
85 {
86 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
87 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
88 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
89 	EVENT_EXTRA_END
90 };
91 
92 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
93 {
94 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
95 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
96 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
97 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
98 	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
99 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
100 	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
101 	EVENT_CONSTRAINT_END
102 };
103 
104 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
105 {
106 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
107 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
108 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
109 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
110 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
111 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
112 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
113 	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
114 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
115 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
116 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
117 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
118 
119 	/*
120 	 * When HT is off these events can only run on the bottom 4 counters
121 	 * When HT is on, they are impacted by the HT bug and require EXCL access
122 	 */
123 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
124 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
125 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
126 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
127 
128 	EVENT_CONSTRAINT_END
129 };
130 
131 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
132 {
133 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
134 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
135 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
136 	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
137 	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
138 	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
139 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
140 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
141 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
142 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
143 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
144 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
145 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
146 
147 	/*
148 	 * When HT is off these events can only run on the bottom 4 counters
149 	 * When HT is on, they are impacted by the HT bug and require EXCL access
150 	 */
151 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
152 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
153 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
154 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
155 
156 	EVENT_CONSTRAINT_END
157 };
158 
159 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
160 {
161 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
162 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
163 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
164 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
165 	EVENT_EXTRA_END
166 };
167 
168 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
169 {
170 	EVENT_CONSTRAINT_END
171 };
172 
173 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
174 {
175 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
176 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
177 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
178 	EVENT_CONSTRAINT_END
179 };
180 
181 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
182 {
183 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
184 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
185 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
186 	EVENT_CONSTRAINT_END
187 };
188 
189 static struct event_constraint intel_skl_event_constraints[] = {
190 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
191 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
192 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
193 	INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
194 
195 	/*
196 	 * when HT is off, these can only run on the bottom 4 counters
197 	 */
198 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
199 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
200 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
201 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
202 	INTEL_EVENT_CONSTRAINT(0xc6, 0xf),	/* FRONTEND_RETIRED.* */
203 
204 	EVENT_CONSTRAINT_END
205 };
206 
207 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
208 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
209 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
210 	EVENT_EXTRA_END
211 };
212 
213 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
214 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
215 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
216 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
217 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
218 	EVENT_EXTRA_END
219 };
220 
221 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
222 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
223 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
224 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
225 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
226 	EVENT_EXTRA_END
227 };
228 
229 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
230 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
231 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
232 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
233 	/*
234 	 * Note the low 8 bits eventsel code is not a continuous field, containing
235 	 * some #GPing bits. These are masked out.
236 	 */
237 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
238 	EVENT_EXTRA_END
239 };
240 
241 EVENT_ATTR_STR(mem-loads,	mem_ld_nhm,	"event=0x0b,umask=0x10,ldlat=3");
242 EVENT_ATTR_STR(mem-loads,	mem_ld_snb,	"event=0xcd,umask=0x1,ldlat=3");
243 EVENT_ATTR_STR(mem-stores,	mem_st_snb,	"event=0xcd,umask=0x2");
244 
245 static struct attribute *nhm_events_attrs[] = {
246 	EVENT_PTR(mem_ld_nhm),
247 	NULL,
248 };
249 
250 /*
251  * topdown events for Intel Core CPUs.
252  *
253  * The events are all in slots, which is a free slot in a 4 wide
254  * pipeline. Some events are already reported in slots, for cycle
255  * events we multiply by the pipeline width (4).
256  *
257  * With Hyper Threading on, topdown metrics are either summed or averaged
258  * between the threads of a core: (count_t0 + count_t1).
259  *
260  * For the average case the metric is always scaled to pipeline width,
261  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
262  */
263 
264 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
265 	"event=0x3c,umask=0x0",			/* cpu_clk_unhalted.thread */
266 	"event=0x3c,umask=0x0,any=1");		/* cpu_clk_unhalted.thread_any */
267 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
268 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
269 	"event=0xe,umask=0x1");			/* uops_issued.any */
270 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
271 	"event=0xc2,umask=0x2");		/* uops_retired.retire_slots */
272 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
273 	"event=0x9c,umask=0x1");		/* idq_uops_not_delivered_core */
274 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
275 	"event=0xd,umask=0x3,cmask=1",		/* int_misc.recovery_cycles */
276 	"event=0xd,umask=0x3,cmask=1,any=1");	/* int_misc.recovery_cycles_any */
277 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
278 	"4", "2");
279 
280 static struct attribute *snb_events_attrs[] = {
281 	EVENT_PTR(mem_ld_snb),
282 	EVENT_PTR(mem_st_snb),
283 	EVENT_PTR(td_slots_issued),
284 	EVENT_PTR(td_slots_retired),
285 	EVENT_PTR(td_fetch_bubbles),
286 	EVENT_PTR(td_total_slots),
287 	EVENT_PTR(td_total_slots_scale),
288 	EVENT_PTR(td_recovery_bubbles),
289 	EVENT_PTR(td_recovery_bubbles_scale),
290 	NULL,
291 };
292 
293 static struct event_constraint intel_hsw_event_constraints[] = {
294 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
295 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
296 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
297 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
298 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
299 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
300 	/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
301 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
302 	/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
303 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
304 	/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
305 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
306 
307 	/*
308 	 * When HT is off these events can only run on the bottom 4 counters
309 	 * When HT is on, they are impacted by the HT bug and require EXCL access
310 	 */
311 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
312 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
313 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
314 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
315 
316 	EVENT_CONSTRAINT_END
317 };
318 
319 static struct event_constraint intel_bdw_event_constraints[] = {
320 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
321 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
322 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
323 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
324 	INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),	/* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
325 	/*
326 	 * when HT is off, these can only run on the bottom 4 counters
327 	 */
328 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
329 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
330 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
331 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
332 	EVENT_CONSTRAINT_END
333 };
334 
335 static u64 intel_pmu_event_map(int hw_event)
336 {
337 	return intel_perfmon_event_map[hw_event];
338 }
339 
340 /*
341  * Notes on the events:
342  * - data reads do not include code reads (comparable to earlier tables)
343  * - data counts include speculative execution (except L1 write, dtlb, bpu)
344  * - remote node access includes remote memory, remote cache, remote mmio.
345  * - prefetches are not included in the counts.
346  * - icache miss does not include decoded icache
347  */
348 
349 #define SKL_DEMAND_DATA_RD		BIT_ULL(0)
350 #define SKL_DEMAND_RFO			BIT_ULL(1)
351 #define SKL_ANY_RESPONSE		BIT_ULL(16)
352 #define SKL_SUPPLIER_NONE		BIT_ULL(17)
353 #define SKL_L3_MISS_LOCAL_DRAM		BIT_ULL(26)
354 #define SKL_L3_MISS_REMOTE_HOP0_DRAM	BIT_ULL(27)
355 #define SKL_L3_MISS_REMOTE_HOP1_DRAM	BIT_ULL(28)
356 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM	BIT_ULL(29)
357 #define SKL_L3_MISS			(SKL_L3_MISS_LOCAL_DRAM| \
358 					 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
359 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
360 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
361 #define SKL_SPL_HIT			BIT_ULL(30)
362 #define SKL_SNOOP_NONE			BIT_ULL(31)
363 #define SKL_SNOOP_NOT_NEEDED		BIT_ULL(32)
364 #define SKL_SNOOP_MISS			BIT_ULL(33)
365 #define SKL_SNOOP_HIT_NO_FWD		BIT_ULL(34)
366 #define SKL_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
367 #define SKL_SNOOP_HITM			BIT_ULL(36)
368 #define SKL_SNOOP_NON_DRAM		BIT_ULL(37)
369 #define SKL_ANY_SNOOP			(SKL_SPL_HIT|SKL_SNOOP_NONE| \
370 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
371 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
372 					 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
373 #define SKL_DEMAND_READ			SKL_DEMAND_DATA_RD
374 #define SKL_SNOOP_DRAM			(SKL_SNOOP_NONE| \
375 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
376 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
377 					 SKL_SNOOP_HITM|SKL_SPL_HIT)
378 #define SKL_DEMAND_WRITE		SKL_DEMAND_RFO
379 #define SKL_LLC_ACCESS			SKL_ANY_RESPONSE
380 #define SKL_L3_MISS_REMOTE		(SKL_L3_MISS_REMOTE_HOP0_DRAM| \
381 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
382 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
383 
384 static __initconst const u64 skl_hw_cache_event_ids
385 				[PERF_COUNT_HW_CACHE_MAX]
386 				[PERF_COUNT_HW_CACHE_OP_MAX]
387 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
388 {
389  [ C(L1D ) ] = {
390 	[ C(OP_READ) ] = {
391 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
392 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
393 	},
394 	[ C(OP_WRITE) ] = {
395 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
396 		[ C(RESULT_MISS)   ] = 0x0,
397 	},
398 	[ C(OP_PREFETCH) ] = {
399 		[ C(RESULT_ACCESS) ] = 0x0,
400 		[ C(RESULT_MISS)   ] = 0x0,
401 	},
402  },
403  [ C(L1I ) ] = {
404 	[ C(OP_READ) ] = {
405 		[ C(RESULT_ACCESS) ] = 0x0,
406 		[ C(RESULT_MISS)   ] = 0x283,	/* ICACHE_64B.MISS */
407 	},
408 	[ C(OP_WRITE) ] = {
409 		[ C(RESULT_ACCESS) ] = -1,
410 		[ C(RESULT_MISS)   ] = -1,
411 	},
412 	[ C(OP_PREFETCH) ] = {
413 		[ C(RESULT_ACCESS) ] = 0x0,
414 		[ C(RESULT_MISS)   ] = 0x0,
415 	},
416  },
417  [ C(LL  ) ] = {
418 	[ C(OP_READ) ] = {
419 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
420 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
421 	},
422 	[ C(OP_WRITE) ] = {
423 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
424 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
425 	},
426 	[ C(OP_PREFETCH) ] = {
427 		[ C(RESULT_ACCESS) ] = 0x0,
428 		[ C(RESULT_MISS)   ] = 0x0,
429 	},
430  },
431  [ C(DTLB) ] = {
432 	[ C(OP_READ) ] = {
433 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
434 		[ C(RESULT_MISS)   ] = 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
435 	},
436 	[ C(OP_WRITE) ] = {
437 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
438 		[ C(RESULT_MISS)   ] = 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
439 	},
440 	[ C(OP_PREFETCH) ] = {
441 		[ C(RESULT_ACCESS) ] = 0x0,
442 		[ C(RESULT_MISS)   ] = 0x0,
443 	},
444  },
445  [ C(ITLB) ] = {
446 	[ C(OP_READ) ] = {
447 		[ C(RESULT_ACCESS) ] = 0x2085,	/* ITLB_MISSES.STLB_HIT */
448 		[ C(RESULT_MISS)   ] = 0xe85,	/* ITLB_MISSES.WALK_COMPLETED */
449 	},
450 	[ C(OP_WRITE) ] = {
451 		[ C(RESULT_ACCESS) ] = -1,
452 		[ C(RESULT_MISS)   ] = -1,
453 	},
454 	[ C(OP_PREFETCH) ] = {
455 		[ C(RESULT_ACCESS) ] = -1,
456 		[ C(RESULT_MISS)   ] = -1,
457 	},
458  },
459  [ C(BPU ) ] = {
460 	[ C(OP_READ) ] = {
461 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
462 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
463 	},
464 	[ C(OP_WRITE) ] = {
465 		[ C(RESULT_ACCESS) ] = -1,
466 		[ C(RESULT_MISS)   ] = -1,
467 	},
468 	[ C(OP_PREFETCH) ] = {
469 		[ C(RESULT_ACCESS) ] = -1,
470 		[ C(RESULT_MISS)   ] = -1,
471 	},
472  },
473  [ C(NODE) ] = {
474 	[ C(OP_READ) ] = {
475 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
476 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
477 	},
478 	[ C(OP_WRITE) ] = {
479 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
480 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
481 	},
482 	[ C(OP_PREFETCH) ] = {
483 		[ C(RESULT_ACCESS) ] = 0x0,
484 		[ C(RESULT_MISS)   ] = 0x0,
485 	},
486  },
487 };
488 
489 static __initconst const u64 skl_hw_cache_extra_regs
490 				[PERF_COUNT_HW_CACHE_MAX]
491 				[PERF_COUNT_HW_CACHE_OP_MAX]
492 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
493 {
494  [ C(LL  ) ] = {
495 	[ C(OP_READ) ] = {
496 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
497 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
498 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
499 				       SKL_L3_MISS|SKL_ANY_SNOOP|
500 				       SKL_SUPPLIER_NONE,
501 	},
502 	[ C(OP_WRITE) ] = {
503 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
504 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
505 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
506 				       SKL_L3_MISS|SKL_ANY_SNOOP|
507 				       SKL_SUPPLIER_NONE,
508 	},
509 	[ C(OP_PREFETCH) ] = {
510 		[ C(RESULT_ACCESS) ] = 0x0,
511 		[ C(RESULT_MISS)   ] = 0x0,
512 	},
513  },
514  [ C(NODE) ] = {
515 	[ C(OP_READ) ] = {
516 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
517 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
518 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
519 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
520 	},
521 	[ C(OP_WRITE) ] = {
522 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
523 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
524 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
525 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
526 	},
527 	[ C(OP_PREFETCH) ] = {
528 		[ C(RESULT_ACCESS) ] = 0x0,
529 		[ C(RESULT_MISS)   ] = 0x0,
530 	},
531  },
532 };
533 
534 #define SNB_DMND_DATA_RD	(1ULL << 0)
535 #define SNB_DMND_RFO		(1ULL << 1)
536 #define SNB_DMND_IFETCH		(1ULL << 2)
537 #define SNB_DMND_WB		(1ULL << 3)
538 #define SNB_PF_DATA_RD		(1ULL << 4)
539 #define SNB_PF_RFO		(1ULL << 5)
540 #define SNB_PF_IFETCH		(1ULL << 6)
541 #define SNB_LLC_DATA_RD		(1ULL << 7)
542 #define SNB_LLC_RFO		(1ULL << 8)
543 #define SNB_LLC_IFETCH		(1ULL << 9)
544 #define SNB_BUS_LOCKS		(1ULL << 10)
545 #define SNB_STRM_ST		(1ULL << 11)
546 #define SNB_OTHER		(1ULL << 15)
547 #define SNB_RESP_ANY		(1ULL << 16)
548 #define SNB_NO_SUPP		(1ULL << 17)
549 #define SNB_LLC_HITM		(1ULL << 18)
550 #define SNB_LLC_HITE		(1ULL << 19)
551 #define SNB_LLC_HITS		(1ULL << 20)
552 #define SNB_LLC_HITF		(1ULL << 21)
553 #define SNB_LOCAL		(1ULL << 22)
554 #define SNB_REMOTE		(0xffULL << 23)
555 #define SNB_SNP_NONE		(1ULL << 31)
556 #define SNB_SNP_NOT_NEEDED	(1ULL << 32)
557 #define SNB_SNP_MISS		(1ULL << 33)
558 #define SNB_NO_FWD		(1ULL << 34)
559 #define SNB_SNP_FWD		(1ULL << 35)
560 #define SNB_HITM		(1ULL << 36)
561 #define SNB_NON_DRAM		(1ULL << 37)
562 
563 #define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
564 #define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
565 #define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
566 
567 #define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
568 				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
569 				 SNB_HITM)
570 
571 #define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
572 #define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)
573 
574 #define SNB_L3_ACCESS		SNB_RESP_ANY
575 #define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)
576 
577 static __initconst const u64 snb_hw_cache_extra_regs
578 				[PERF_COUNT_HW_CACHE_MAX]
579 				[PERF_COUNT_HW_CACHE_OP_MAX]
580 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
581 {
582  [ C(LL  ) ] = {
583 	[ C(OP_READ) ] = {
584 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
585 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
586 	},
587 	[ C(OP_WRITE) ] = {
588 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
589 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
590 	},
591 	[ C(OP_PREFETCH) ] = {
592 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
593 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
594 	},
595  },
596  [ C(NODE) ] = {
597 	[ C(OP_READ) ] = {
598 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
599 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
600 	},
601 	[ C(OP_WRITE) ] = {
602 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
603 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
604 	},
605 	[ C(OP_PREFETCH) ] = {
606 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
607 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
608 	},
609  },
610 };
611 
612 static __initconst const u64 snb_hw_cache_event_ids
613 				[PERF_COUNT_HW_CACHE_MAX]
614 				[PERF_COUNT_HW_CACHE_OP_MAX]
615 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
616 {
617  [ C(L1D) ] = {
618 	[ C(OP_READ) ] = {
619 		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
620 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
621 	},
622 	[ C(OP_WRITE) ] = {
623 		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
624 		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
625 	},
626 	[ C(OP_PREFETCH) ] = {
627 		[ C(RESULT_ACCESS) ] = 0x0,
628 		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
629 	},
630  },
631  [ C(L1I ) ] = {
632 	[ C(OP_READ) ] = {
633 		[ C(RESULT_ACCESS) ] = 0x0,
634 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
635 	},
636 	[ C(OP_WRITE) ] = {
637 		[ C(RESULT_ACCESS) ] = -1,
638 		[ C(RESULT_MISS)   ] = -1,
639 	},
640 	[ C(OP_PREFETCH) ] = {
641 		[ C(RESULT_ACCESS) ] = 0x0,
642 		[ C(RESULT_MISS)   ] = 0x0,
643 	},
644  },
645  [ C(LL  ) ] = {
646 	[ C(OP_READ) ] = {
647 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
648 		[ C(RESULT_ACCESS) ] = 0x01b7,
649 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
650 		[ C(RESULT_MISS)   ] = 0x01b7,
651 	},
652 	[ C(OP_WRITE) ] = {
653 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
654 		[ C(RESULT_ACCESS) ] = 0x01b7,
655 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
656 		[ C(RESULT_MISS)   ] = 0x01b7,
657 	},
658 	[ C(OP_PREFETCH) ] = {
659 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
660 		[ C(RESULT_ACCESS) ] = 0x01b7,
661 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
662 		[ C(RESULT_MISS)   ] = 0x01b7,
663 	},
664  },
665  [ C(DTLB) ] = {
666 	[ C(OP_READ) ] = {
667 		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
668 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
669 	},
670 	[ C(OP_WRITE) ] = {
671 		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
672 		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
673 	},
674 	[ C(OP_PREFETCH) ] = {
675 		[ C(RESULT_ACCESS) ] = 0x0,
676 		[ C(RESULT_MISS)   ] = 0x0,
677 	},
678  },
679  [ C(ITLB) ] = {
680 	[ C(OP_READ) ] = {
681 		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
682 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
683 	},
684 	[ C(OP_WRITE) ] = {
685 		[ C(RESULT_ACCESS) ] = -1,
686 		[ C(RESULT_MISS)   ] = -1,
687 	},
688 	[ C(OP_PREFETCH) ] = {
689 		[ C(RESULT_ACCESS) ] = -1,
690 		[ C(RESULT_MISS)   ] = -1,
691 	},
692  },
693  [ C(BPU ) ] = {
694 	[ C(OP_READ) ] = {
695 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
696 		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
697 	},
698 	[ C(OP_WRITE) ] = {
699 		[ C(RESULT_ACCESS) ] = -1,
700 		[ C(RESULT_MISS)   ] = -1,
701 	},
702 	[ C(OP_PREFETCH) ] = {
703 		[ C(RESULT_ACCESS) ] = -1,
704 		[ C(RESULT_MISS)   ] = -1,
705 	},
706  },
707  [ C(NODE) ] = {
708 	[ C(OP_READ) ] = {
709 		[ C(RESULT_ACCESS) ] = 0x01b7,
710 		[ C(RESULT_MISS)   ] = 0x01b7,
711 	},
712 	[ C(OP_WRITE) ] = {
713 		[ C(RESULT_ACCESS) ] = 0x01b7,
714 		[ C(RESULT_MISS)   ] = 0x01b7,
715 	},
716 	[ C(OP_PREFETCH) ] = {
717 		[ C(RESULT_ACCESS) ] = 0x01b7,
718 		[ C(RESULT_MISS)   ] = 0x01b7,
719 	},
720  },
721 
722 };
723 
724 /*
725  * Notes on the events:
726  * - data reads do not include code reads (comparable to earlier tables)
727  * - data counts include speculative execution (except L1 write, dtlb, bpu)
728  * - remote node access includes remote memory, remote cache, remote mmio.
729  * - prefetches are not included in the counts because they are not
730  *   reliably counted.
731  */
732 
733 #define HSW_DEMAND_DATA_RD		BIT_ULL(0)
734 #define HSW_DEMAND_RFO			BIT_ULL(1)
735 #define HSW_ANY_RESPONSE		BIT_ULL(16)
736 #define HSW_SUPPLIER_NONE		BIT_ULL(17)
737 #define HSW_L3_MISS_LOCAL_DRAM		BIT_ULL(22)
738 #define HSW_L3_MISS_REMOTE_HOP0		BIT_ULL(27)
739 #define HSW_L3_MISS_REMOTE_HOP1		BIT_ULL(28)
740 #define HSW_L3_MISS_REMOTE_HOP2P	BIT_ULL(29)
741 #define HSW_L3_MISS			(HSW_L3_MISS_LOCAL_DRAM| \
742 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
743 					 HSW_L3_MISS_REMOTE_HOP2P)
744 #define HSW_SNOOP_NONE			BIT_ULL(31)
745 #define HSW_SNOOP_NOT_NEEDED		BIT_ULL(32)
746 #define HSW_SNOOP_MISS			BIT_ULL(33)
747 #define HSW_SNOOP_HIT_NO_FWD		BIT_ULL(34)
748 #define HSW_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
749 #define HSW_SNOOP_HITM			BIT_ULL(36)
750 #define HSW_SNOOP_NON_DRAM		BIT_ULL(37)
751 #define HSW_ANY_SNOOP			(HSW_SNOOP_NONE| \
752 					 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
753 					 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
754 					 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
755 #define HSW_SNOOP_DRAM			(HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
756 #define HSW_DEMAND_READ			HSW_DEMAND_DATA_RD
757 #define HSW_DEMAND_WRITE		HSW_DEMAND_RFO
758 #define HSW_L3_MISS_REMOTE		(HSW_L3_MISS_REMOTE_HOP0|\
759 					 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
760 #define HSW_LLC_ACCESS			HSW_ANY_RESPONSE
761 
762 #define BDW_L3_MISS_LOCAL		BIT(26)
763 #define BDW_L3_MISS			(BDW_L3_MISS_LOCAL| \
764 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
765 					 HSW_L3_MISS_REMOTE_HOP2P)
766 
767 
768 static __initconst const u64 hsw_hw_cache_event_ids
769 				[PERF_COUNT_HW_CACHE_MAX]
770 				[PERF_COUNT_HW_CACHE_OP_MAX]
771 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
772 {
773  [ C(L1D ) ] = {
774 	[ C(OP_READ) ] = {
775 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
776 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
777 	},
778 	[ C(OP_WRITE) ] = {
779 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
780 		[ C(RESULT_MISS)   ] = 0x0,
781 	},
782 	[ C(OP_PREFETCH) ] = {
783 		[ C(RESULT_ACCESS) ] = 0x0,
784 		[ C(RESULT_MISS)   ] = 0x0,
785 	},
786  },
787  [ C(L1I ) ] = {
788 	[ C(OP_READ) ] = {
789 		[ C(RESULT_ACCESS) ] = 0x0,
790 		[ C(RESULT_MISS)   ] = 0x280,	/* ICACHE.MISSES */
791 	},
792 	[ C(OP_WRITE) ] = {
793 		[ C(RESULT_ACCESS) ] = -1,
794 		[ C(RESULT_MISS)   ] = -1,
795 	},
796 	[ C(OP_PREFETCH) ] = {
797 		[ C(RESULT_ACCESS) ] = 0x0,
798 		[ C(RESULT_MISS)   ] = 0x0,
799 	},
800  },
801  [ C(LL  ) ] = {
802 	[ C(OP_READ) ] = {
803 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
804 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
805 	},
806 	[ C(OP_WRITE) ] = {
807 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
808 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
809 	},
810 	[ C(OP_PREFETCH) ] = {
811 		[ C(RESULT_ACCESS) ] = 0x0,
812 		[ C(RESULT_MISS)   ] = 0x0,
813 	},
814  },
815  [ C(DTLB) ] = {
816 	[ C(OP_READ) ] = {
817 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
818 		[ C(RESULT_MISS)   ] = 0x108,	/* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
819 	},
820 	[ C(OP_WRITE) ] = {
821 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
822 		[ C(RESULT_MISS)   ] = 0x149,	/* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
823 	},
824 	[ C(OP_PREFETCH) ] = {
825 		[ C(RESULT_ACCESS) ] = 0x0,
826 		[ C(RESULT_MISS)   ] = 0x0,
827 	},
828  },
829  [ C(ITLB) ] = {
830 	[ C(OP_READ) ] = {
831 		[ C(RESULT_ACCESS) ] = 0x6085,	/* ITLB_MISSES.STLB_HIT */
832 		[ C(RESULT_MISS)   ] = 0x185,	/* ITLB_MISSES.MISS_CAUSES_A_WALK */
833 	},
834 	[ C(OP_WRITE) ] = {
835 		[ C(RESULT_ACCESS) ] = -1,
836 		[ C(RESULT_MISS)   ] = -1,
837 	},
838 	[ C(OP_PREFETCH) ] = {
839 		[ C(RESULT_ACCESS) ] = -1,
840 		[ C(RESULT_MISS)   ] = -1,
841 	},
842  },
843  [ C(BPU ) ] = {
844 	[ C(OP_READ) ] = {
845 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
846 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
847 	},
848 	[ C(OP_WRITE) ] = {
849 		[ C(RESULT_ACCESS) ] = -1,
850 		[ C(RESULT_MISS)   ] = -1,
851 	},
852 	[ C(OP_PREFETCH) ] = {
853 		[ C(RESULT_ACCESS) ] = -1,
854 		[ C(RESULT_MISS)   ] = -1,
855 	},
856  },
857  [ C(NODE) ] = {
858 	[ C(OP_READ) ] = {
859 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
860 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
861 	},
862 	[ C(OP_WRITE) ] = {
863 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
864 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
865 	},
866 	[ C(OP_PREFETCH) ] = {
867 		[ C(RESULT_ACCESS) ] = 0x0,
868 		[ C(RESULT_MISS)   ] = 0x0,
869 	},
870  },
871 };
872 
873 static __initconst const u64 hsw_hw_cache_extra_regs
874 				[PERF_COUNT_HW_CACHE_MAX]
875 				[PERF_COUNT_HW_CACHE_OP_MAX]
876 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
877 {
878  [ C(LL  ) ] = {
879 	[ C(OP_READ) ] = {
880 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
881 				       HSW_LLC_ACCESS,
882 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
883 				       HSW_L3_MISS|HSW_ANY_SNOOP,
884 	},
885 	[ C(OP_WRITE) ] = {
886 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
887 				       HSW_LLC_ACCESS,
888 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
889 				       HSW_L3_MISS|HSW_ANY_SNOOP,
890 	},
891 	[ C(OP_PREFETCH) ] = {
892 		[ C(RESULT_ACCESS) ] = 0x0,
893 		[ C(RESULT_MISS)   ] = 0x0,
894 	},
895  },
896  [ C(NODE) ] = {
897 	[ C(OP_READ) ] = {
898 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
899 				       HSW_L3_MISS_LOCAL_DRAM|
900 				       HSW_SNOOP_DRAM,
901 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
902 				       HSW_L3_MISS_REMOTE|
903 				       HSW_SNOOP_DRAM,
904 	},
905 	[ C(OP_WRITE) ] = {
906 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
907 				       HSW_L3_MISS_LOCAL_DRAM|
908 				       HSW_SNOOP_DRAM,
909 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
910 				       HSW_L3_MISS_REMOTE|
911 				       HSW_SNOOP_DRAM,
912 	},
913 	[ C(OP_PREFETCH) ] = {
914 		[ C(RESULT_ACCESS) ] = 0x0,
915 		[ C(RESULT_MISS)   ] = 0x0,
916 	},
917  },
918 };
919 
920 static __initconst const u64 westmere_hw_cache_event_ids
921 				[PERF_COUNT_HW_CACHE_MAX]
922 				[PERF_COUNT_HW_CACHE_OP_MAX]
923 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
924 {
925  [ C(L1D) ] = {
926 	[ C(OP_READ) ] = {
927 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
928 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
929 	},
930 	[ C(OP_WRITE) ] = {
931 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
932 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
933 	},
934 	[ C(OP_PREFETCH) ] = {
935 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
936 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
937 	},
938  },
939  [ C(L1I ) ] = {
940 	[ C(OP_READ) ] = {
941 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
942 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
943 	},
944 	[ C(OP_WRITE) ] = {
945 		[ C(RESULT_ACCESS) ] = -1,
946 		[ C(RESULT_MISS)   ] = -1,
947 	},
948 	[ C(OP_PREFETCH) ] = {
949 		[ C(RESULT_ACCESS) ] = 0x0,
950 		[ C(RESULT_MISS)   ] = 0x0,
951 	},
952  },
953  [ C(LL  ) ] = {
954 	[ C(OP_READ) ] = {
955 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
956 		[ C(RESULT_ACCESS) ] = 0x01b7,
957 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
958 		[ C(RESULT_MISS)   ] = 0x01b7,
959 	},
960 	/*
961 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
962 	 * on RFO.
963 	 */
964 	[ C(OP_WRITE) ] = {
965 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
966 		[ C(RESULT_ACCESS) ] = 0x01b7,
967 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
968 		[ C(RESULT_MISS)   ] = 0x01b7,
969 	},
970 	[ C(OP_PREFETCH) ] = {
971 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
972 		[ C(RESULT_ACCESS) ] = 0x01b7,
973 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
974 		[ C(RESULT_MISS)   ] = 0x01b7,
975 	},
976  },
977  [ C(DTLB) ] = {
978 	[ C(OP_READ) ] = {
979 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
980 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
981 	},
982 	[ C(OP_WRITE) ] = {
983 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
984 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
985 	},
986 	[ C(OP_PREFETCH) ] = {
987 		[ C(RESULT_ACCESS) ] = 0x0,
988 		[ C(RESULT_MISS)   ] = 0x0,
989 	},
990  },
991  [ C(ITLB) ] = {
992 	[ C(OP_READ) ] = {
993 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
994 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
995 	},
996 	[ C(OP_WRITE) ] = {
997 		[ C(RESULT_ACCESS) ] = -1,
998 		[ C(RESULT_MISS)   ] = -1,
999 	},
1000 	[ C(OP_PREFETCH) ] = {
1001 		[ C(RESULT_ACCESS) ] = -1,
1002 		[ C(RESULT_MISS)   ] = -1,
1003 	},
1004  },
1005  [ C(BPU ) ] = {
1006 	[ C(OP_READ) ] = {
1007 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1008 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1009 	},
1010 	[ C(OP_WRITE) ] = {
1011 		[ C(RESULT_ACCESS) ] = -1,
1012 		[ C(RESULT_MISS)   ] = -1,
1013 	},
1014 	[ C(OP_PREFETCH) ] = {
1015 		[ C(RESULT_ACCESS) ] = -1,
1016 		[ C(RESULT_MISS)   ] = -1,
1017 	},
1018  },
1019  [ C(NODE) ] = {
1020 	[ C(OP_READ) ] = {
1021 		[ C(RESULT_ACCESS) ] = 0x01b7,
1022 		[ C(RESULT_MISS)   ] = 0x01b7,
1023 	},
1024 	[ C(OP_WRITE) ] = {
1025 		[ C(RESULT_ACCESS) ] = 0x01b7,
1026 		[ C(RESULT_MISS)   ] = 0x01b7,
1027 	},
1028 	[ C(OP_PREFETCH) ] = {
1029 		[ C(RESULT_ACCESS) ] = 0x01b7,
1030 		[ C(RESULT_MISS)   ] = 0x01b7,
1031 	},
1032  },
1033 };
1034 
1035 /*
1036  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1037  * See IA32 SDM Vol 3B 30.6.1.3
1038  */
1039 
1040 #define NHM_DMND_DATA_RD	(1 << 0)
1041 #define NHM_DMND_RFO		(1 << 1)
1042 #define NHM_DMND_IFETCH		(1 << 2)
1043 #define NHM_DMND_WB		(1 << 3)
1044 #define NHM_PF_DATA_RD		(1 << 4)
1045 #define NHM_PF_DATA_RFO		(1 << 5)
1046 #define NHM_PF_IFETCH		(1 << 6)
1047 #define NHM_OFFCORE_OTHER	(1 << 7)
1048 #define NHM_UNCORE_HIT		(1 << 8)
1049 #define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
1050 #define NHM_OTHER_CORE_HITM	(1 << 10)
1051         			/* reserved */
1052 #define NHM_REMOTE_CACHE_FWD	(1 << 12)
1053 #define NHM_REMOTE_DRAM		(1 << 13)
1054 #define NHM_LOCAL_DRAM		(1 << 14)
1055 #define NHM_NON_DRAM		(1 << 15)
1056 
1057 #define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1058 #define NHM_REMOTE		(NHM_REMOTE_DRAM)
1059 
1060 #define NHM_DMND_READ		(NHM_DMND_DATA_RD)
1061 #define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
1062 #define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1063 
1064 #define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1065 #define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1066 #define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
1067 
1068 static __initconst const u64 nehalem_hw_cache_extra_regs
1069 				[PERF_COUNT_HW_CACHE_MAX]
1070 				[PERF_COUNT_HW_CACHE_OP_MAX]
1071 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1072 {
1073  [ C(LL  ) ] = {
1074 	[ C(OP_READ) ] = {
1075 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1076 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1077 	},
1078 	[ C(OP_WRITE) ] = {
1079 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1080 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1081 	},
1082 	[ C(OP_PREFETCH) ] = {
1083 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1084 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1085 	},
1086  },
1087  [ C(NODE) ] = {
1088 	[ C(OP_READ) ] = {
1089 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1090 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1091 	},
1092 	[ C(OP_WRITE) ] = {
1093 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1094 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1095 	},
1096 	[ C(OP_PREFETCH) ] = {
1097 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1098 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1099 	},
1100  },
1101 };
1102 
1103 static __initconst const u64 nehalem_hw_cache_event_ids
1104 				[PERF_COUNT_HW_CACHE_MAX]
1105 				[PERF_COUNT_HW_CACHE_OP_MAX]
1106 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1107 {
1108  [ C(L1D) ] = {
1109 	[ C(OP_READ) ] = {
1110 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1111 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1112 	},
1113 	[ C(OP_WRITE) ] = {
1114 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1115 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1116 	},
1117 	[ C(OP_PREFETCH) ] = {
1118 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1119 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1120 	},
1121  },
1122  [ C(L1I ) ] = {
1123 	[ C(OP_READ) ] = {
1124 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1125 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1126 	},
1127 	[ C(OP_WRITE) ] = {
1128 		[ C(RESULT_ACCESS) ] = -1,
1129 		[ C(RESULT_MISS)   ] = -1,
1130 	},
1131 	[ C(OP_PREFETCH) ] = {
1132 		[ C(RESULT_ACCESS) ] = 0x0,
1133 		[ C(RESULT_MISS)   ] = 0x0,
1134 	},
1135  },
1136  [ C(LL  ) ] = {
1137 	[ C(OP_READ) ] = {
1138 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1139 		[ C(RESULT_ACCESS) ] = 0x01b7,
1140 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1141 		[ C(RESULT_MISS)   ] = 0x01b7,
1142 	},
1143 	/*
1144 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1145 	 * on RFO.
1146 	 */
1147 	[ C(OP_WRITE) ] = {
1148 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1149 		[ C(RESULT_ACCESS) ] = 0x01b7,
1150 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1151 		[ C(RESULT_MISS)   ] = 0x01b7,
1152 	},
1153 	[ C(OP_PREFETCH) ] = {
1154 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1155 		[ C(RESULT_ACCESS) ] = 0x01b7,
1156 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1157 		[ C(RESULT_MISS)   ] = 0x01b7,
1158 	},
1159  },
1160  [ C(DTLB) ] = {
1161 	[ C(OP_READ) ] = {
1162 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1163 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1164 	},
1165 	[ C(OP_WRITE) ] = {
1166 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1167 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1168 	},
1169 	[ C(OP_PREFETCH) ] = {
1170 		[ C(RESULT_ACCESS) ] = 0x0,
1171 		[ C(RESULT_MISS)   ] = 0x0,
1172 	},
1173  },
1174  [ C(ITLB) ] = {
1175 	[ C(OP_READ) ] = {
1176 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1177 		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1178 	},
1179 	[ C(OP_WRITE) ] = {
1180 		[ C(RESULT_ACCESS) ] = -1,
1181 		[ C(RESULT_MISS)   ] = -1,
1182 	},
1183 	[ C(OP_PREFETCH) ] = {
1184 		[ C(RESULT_ACCESS) ] = -1,
1185 		[ C(RESULT_MISS)   ] = -1,
1186 	},
1187  },
1188  [ C(BPU ) ] = {
1189 	[ C(OP_READ) ] = {
1190 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1191 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1192 	},
1193 	[ C(OP_WRITE) ] = {
1194 		[ C(RESULT_ACCESS) ] = -1,
1195 		[ C(RESULT_MISS)   ] = -1,
1196 	},
1197 	[ C(OP_PREFETCH) ] = {
1198 		[ C(RESULT_ACCESS) ] = -1,
1199 		[ C(RESULT_MISS)   ] = -1,
1200 	},
1201  },
1202  [ C(NODE) ] = {
1203 	[ C(OP_READ) ] = {
1204 		[ C(RESULT_ACCESS) ] = 0x01b7,
1205 		[ C(RESULT_MISS)   ] = 0x01b7,
1206 	},
1207 	[ C(OP_WRITE) ] = {
1208 		[ C(RESULT_ACCESS) ] = 0x01b7,
1209 		[ C(RESULT_MISS)   ] = 0x01b7,
1210 	},
1211 	[ C(OP_PREFETCH) ] = {
1212 		[ C(RESULT_ACCESS) ] = 0x01b7,
1213 		[ C(RESULT_MISS)   ] = 0x01b7,
1214 	},
1215  },
1216 };
1217 
1218 static __initconst const u64 core2_hw_cache_event_ids
1219 				[PERF_COUNT_HW_CACHE_MAX]
1220 				[PERF_COUNT_HW_CACHE_OP_MAX]
1221 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1222 {
1223  [ C(L1D) ] = {
1224 	[ C(OP_READ) ] = {
1225 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1226 		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1227 	},
1228 	[ C(OP_WRITE) ] = {
1229 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1230 		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1231 	},
1232 	[ C(OP_PREFETCH) ] = {
1233 		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1234 		[ C(RESULT_MISS)   ] = 0,
1235 	},
1236  },
1237  [ C(L1I ) ] = {
1238 	[ C(OP_READ) ] = {
1239 		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1240 		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1241 	},
1242 	[ C(OP_WRITE) ] = {
1243 		[ C(RESULT_ACCESS) ] = -1,
1244 		[ C(RESULT_MISS)   ] = -1,
1245 	},
1246 	[ C(OP_PREFETCH) ] = {
1247 		[ C(RESULT_ACCESS) ] = 0,
1248 		[ C(RESULT_MISS)   ] = 0,
1249 	},
1250  },
1251  [ C(LL  ) ] = {
1252 	[ C(OP_READ) ] = {
1253 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1254 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1255 	},
1256 	[ C(OP_WRITE) ] = {
1257 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1258 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1259 	},
1260 	[ C(OP_PREFETCH) ] = {
1261 		[ C(RESULT_ACCESS) ] = 0,
1262 		[ C(RESULT_MISS)   ] = 0,
1263 	},
1264  },
1265  [ C(DTLB) ] = {
1266 	[ C(OP_READ) ] = {
1267 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1268 		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1269 	},
1270 	[ C(OP_WRITE) ] = {
1271 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1272 		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1273 	},
1274 	[ C(OP_PREFETCH) ] = {
1275 		[ C(RESULT_ACCESS) ] = 0,
1276 		[ C(RESULT_MISS)   ] = 0,
1277 	},
1278  },
1279  [ C(ITLB) ] = {
1280 	[ C(OP_READ) ] = {
1281 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1282 		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1283 	},
1284 	[ C(OP_WRITE) ] = {
1285 		[ C(RESULT_ACCESS) ] = -1,
1286 		[ C(RESULT_MISS)   ] = -1,
1287 	},
1288 	[ C(OP_PREFETCH) ] = {
1289 		[ C(RESULT_ACCESS) ] = -1,
1290 		[ C(RESULT_MISS)   ] = -1,
1291 	},
1292  },
1293  [ C(BPU ) ] = {
1294 	[ C(OP_READ) ] = {
1295 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1296 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1297 	},
1298 	[ C(OP_WRITE) ] = {
1299 		[ C(RESULT_ACCESS) ] = -1,
1300 		[ C(RESULT_MISS)   ] = -1,
1301 	},
1302 	[ C(OP_PREFETCH) ] = {
1303 		[ C(RESULT_ACCESS) ] = -1,
1304 		[ C(RESULT_MISS)   ] = -1,
1305 	},
1306  },
1307 };
1308 
1309 static __initconst const u64 atom_hw_cache_event_ids
1310 				[PERF_COUNT_HW_CACHE_MAX]
1311 				[PERF_COUNT_HW_CACHE_OP_MAX]
1312 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1313 {
1314  [ C(L1D) ] = {
1315 	[ C(OP_READ) ] = {
1316 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1317 		[ C(RESULT_MISS)   ] = 0,
1318 	},
1319 	[ C(OP_WRITE) ] = {
1320 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1321 		[ C(RESULT_MISS)   ] = 0,
1322 	},
1323 	[ C(OP_PREFETCH) ] = {
1324 		[ C(RESULT_ACCESS) ] = 0x0,
1325 		[ C(RESULT_MISS)   ] = 0,
1326 	},
1327  },
1328  [ C(L1I ) ] = {
1329 	[ C(OP_READ) ] = {
1330 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1331 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1332 	},
1333 	[ C(OP_WRITE) ] = {
1334 		[ C(RESULT_ACCESS) ] = -1,
1335 		[ C(RESULT_MISS)   ] = -1,
1336 	},
1337 	[ C(OP_PREFETCH) ] = {
1338 		[ C(RESULT_ACCESS) ] = 0,
1339 		[ C(RESULT_MISS)   ] = 0,
1340 	},
1341  },
1342  [ C(LL  ) ] = {
1343 	[ C(OP_READ) ] = {
1344 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1345 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1346 	},
1347 	[ C(OP_WRITE) ] = {
1348 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1349 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1350 	},
1351 	[ C(OP_PREFETCH) ] = {
1352 		[ C(RESULT_ACCESS) ] = 0,
1353 		[ C(RESULT_MISS)   ] = 0,
1354 	},
1355  },
1356  [ C(DTLB) ] = {
1357 	[ C(OP_READ) ] = {
1358 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1359 		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1360 	},
1361 	[ C(OP_WRITE) ] = {
1362 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1363 		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1364 	},
1365 	[ C(OP_PREFETCH) ] = {
1366 		[ C(RESULT_ACCESS) ] = 0,
1367 		[ C(RESULT_MISS)   ] = 0,
1368 	},
1369  },
1370  [ C(ITLB) ] = {
1371 	[ C(OP_READ) ] = {
1372 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1373 		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1374 	},
1375 	[ C(OP_WRITE) ] = {
1376 		[ C(RESULT_ACCESS) ] = -1,
1377 		[ C(RESULT_MISS)   ] = -1,
1378 	},
1379 	[ C(OP_PREFETCH) ] = {
1380 		[ C(RESULT_ACCESS) ] = -1,
1381 		[ C(RESULT_MISS)   ] = -1,
1382 	},
1383  },
1384  [ C(BPU ) ] = {
1385 	[ C(OP_READ) ] = {
1386 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1387 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1388 	},
1389 	[ C(OP_WRITE) ] = {
1390 		[ C(RESULT_ACCESS) ] = -1,
1391 		[ C(RESULT_MISS)   ] = -1,
1392 	},
1393 	[ C(OP_PREFETCH) ] = {
1394 		[ C(RESULT_ACCESS) ] = -1,
1395 		[ C(RESULT_MISS)   ] = -1,
1396 	},
1397  },
1398 };
1399 
1400 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1401 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1402 /* no_alloc_cycles.not_delivered */
1403 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1404 	       "event=0xca,umask=0x50");
1405 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1406 /* uops_retired.all */
1407 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1408 	       "event=0xc2,umask=0x10");
1409 /* uops_retired.all */
1410 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1411 	       "event=0xc2,umask=0x10");
1412 
1413 static struct attribute *slm_events_attrs[] = {
1414 	EVENT_PTR(td_total_slots_slm),
1415 	EVENT_PTR(td_total_slots_scale_slm),
1416 	EVENT_PTR(td_fetch_bubbles_slm),
1417 	EVENT_PTR(td_fetch_bubbles_scale_slm),
1418 	EVENT_PTR(td_slots_issued_slm),
1419 	EVENT_PTR(td_slots_retired_slm),
1420 	NULL
1421 };
1422 
1423 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1424 {
1425 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1426 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1427 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1428 	EVENT_EXTRA_END
1429 };
1430 
1431 #define SLM_DMND_READ		SNB_DMND_DATA_RD
1432 #define SLM_DMND_WRITE		SNB_DMND_RFO
1433 #define SLM_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
1434 
1435 #define SLM_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1436 #define SLM_LLC_ACCESS		SNB_RESP_ANY
1437 #define SLM_LLC_MISS		(SLM_SNP_ANY|SNB_NON_DRAM)
1438 
1439 static __initconst const u64 slm_hw_cache_extra_regs
1440 				[PERF_COUNT_HW_CACHE_MAX]
1441 				[PERF_COUNT_HW_CACHE_OP_MAX]
1442 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1443 {
1444  [ C(LL  ) ] = {
1445 	[ C(OP_READ) ] = {
1446 		[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1447 		[ C(RESULT_MISS)   ] = 0,
1448 	},
1449 	[ C(OP_WRITE) ] = {
1450 		[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1451 		[ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1452 	},
1453 	[ C(OP_PREFETCH) ] = {
1454 		[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1455 		[ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1456 	},
1457  },
1458 };
1459 
1460 static __initconst const u64 slm_hw_cache_event_ids
1461 				[PERF_COUNT_HW_CACHE_MAX]
1462 				[PERF_COUNT_HW_CACHE_OP_MAX]
1463 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1464 {
1465  [ C(L1D) ] = {
1466 	[ C(OP_READ) ] = {
1467 		[ C(RESULT_ACCESS) ] = 0,
1468 		[ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1469 	},
1470 	[ C(OP_WRITE) ] = {
1471 		[ C(RESULT_ACCESS) ] = 0,
1472 		[ C(RESULT_MISS)   ] = 0,
1473 	},
1474 	[ C(OP_PREFETCH) ] = {
1475 		[ C(RESULT_ACCESS) ] = 0,
1476 		[ C(RESULT_MISS)   ] = 0,
1477 	},
1478  },
1479  [ C(L1I ) ] = {
1480 	[ C(OP_READ) ] = {
1481 		[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1482 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1483 	},
1484 	[ C(OP_WRITE) ] = {
1485 		[ C(RESULT_ACCESS) ] = -1,
1486 		[ C(RESULT_MISS)   ] = -1,
1487 	},
1488 	[ C(OP_PREFETCH) ] = {
1489 		[ C(RESULT_ACCESS) ] = 0,
1490 		[ C(RESULT_MISS)   ] = 0,
1491 	},
1492  },
1493  [ C(LL  ) ] = {
1494 	[ C(OP_READ) ] = {
1495 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1496 		[ C(RESULT_ACCESS) ] = 0x01b7,
1497 		[ C(RESULT_MISS)   ] = 0,
1498 	},
1499 	[ C(OP_WRITE) ] = {
1500 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1501 		[ C(RESULT_ACCESS) ] = 0x01b7,
1502 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1503 		[ C(RESULT_MISS)   ] = 0x01b7,
1504 	},
1505 	[ C(OP_PREFETCH) ] = {
1506 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1507 		[ C(RESULT_ACCESS) ] = 0x01b7,
1508 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1509 		[ C(RESULT_MISS)   ] = 0x01b7,
1510 	},
1511  },
1512  [ C(DTLB) ] = {
1513 	[ C(OP_READ) ] = {
1514 		[ C(RESULT_ACCESS) ] = 0,
1515 		[ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1516 	},
1517 	[ C(OP_WRITE) ] = {
1518 		[ C(RESULT_ACCESS) ] = 0,
1519 		[ C(RESULT_MISS)   ] = 0,
1520 	},
1521 	[ C(OP_PREFETCH) ] = {
1522 		[ C(RESULT_ACCESS) ] = 0,
1523 		[ C(RESULT_MISS)   ] = 0,
1524 	},
1525  },
1526  [ C(ITLB) ] = {
1527 	[ C(OP_READ) ] = {
1528 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1529 		[ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1530 	},
1531 	[ C(OP_WRITE) ] = {
1532 		[ C(RESULT_ACCESS) ] = -1,
1533 		[ C(RESULT_MISS)   ] = -1,
1534 	},
1535 	[ C(OP_PREFETCH) ] = {
1536 		[ C(RESULT_ACCESS) ] = -1,
1537 		[ C(RESULT_MISS)   ] = -1,
1538 	},
1539  },
1540  [ C(BPU ) ] = {
1541 	[ C(OP_READ) ] = {
1542 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1543 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1544 	},
1545 	[ C(OP_WRITE) ] = {
1546 		[ C(RESULT_ACCESS) ] = -1,
1547 		[ C(RESULT_MISS)   ] = -1,
1548 	},
1549 	[ C(OP_PREFETCH) ] = {
1550 		[ C(RESULT_ACCESS) ] = -1,
1551 		[ C(RESULT_MISS)   ] = -1,
1552 	},
1553  },
1554 };
1555 
1556 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1557 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1558 /* UOPS_NOT_DELIVERED.ANY */
1559 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1560 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1561 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1562 /* UOPS_RETIRED.ANY */
1563 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1564 /* UOPS_ISSUED.ANY */
1565 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1566 
1567 static struct attribute *glm_events_attrs[] = {
1568 	EVENT_PTR(td_total_slots_glm),
1569 	EVENT_PTR(td_total_slots_scale_glm),
1570 	EVENT_PTR(td_fetch_bubbles_glm),
1571 	EVENT_PTR(td_recovery_bubbles_glm),
1572 	EVENT_PTR(td_slots_issued_glm),
1573 	EVENT_PTR(td_slots_retired_glm),
1574 	NULL
1575 };
1576 
1577 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1578 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1579 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1580 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1581 	EVENT_EXTRA_END
1582 };
1583 
1584 #define GLM_DEMAND_DATA_RD		BIT_ULL(0)
1585 #define GLM_DEMAND_RFO			BIT_ULL(1)
1586 #define GLM_ANY_RESPONSE		BIT_ULL(16)
1587 #define GLM_SNP_NONE_OR_MISS		BIT_ULL(33)
1588 #define GLM_DEMAND_READ			GLM_DEMAND_DATA_RD
1589 #define GLM_DEMAND_WRITE		GLM_DEMAND_RFO
1590 #define GLM_DEMAND_PREFETCH		(SNB_PF_DATA_RD|SNB_PF_RFO)
1591 #define GLM_LLC_ACCESS			GLM_ANY_RESPONSE
1592 #define GLM_SNP_ANY			(GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1593 #define GLM_LLC_MISS			(GLM_SNP_ANY|SNB_NON_DRAM)
1594 
1595 static __initconst const u64 glm_hw_cache_event_ids
1596 				[PERF_COUNT_HW_CACHE_MAX]
1597 				[PERF_COUNT_HW_CACHE_OP_MAX]
1598 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1599 	[C(L1D)] = {
1600 		[C(OP_READ)] = {
1601 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1602 			[C(RESULT_MISS)]	= 0x0,
1603 		},
1604 		[C(OP_WRITE)] = {
1605 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1606 			[C(RESULT_MISS)]	= 0x0,
1607 		},
1608 		[C(OP_PREFETCH)] = {
1609 			[C(RESULT_ACCESS)]	= 0x0,
1610 			[C(RESULT_MISS)]	= 0x0,
1611 		},
1612 	},
1613 	[C(L1I)] = {
1614 		[C(OP_READ)] = {
1615 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1616 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1617 		},
1618 		[C(OP_WRITE)] = {
1619 			[C(RESULT_ACCESS)]	= -1,
1620 			[C(RESULT_MISS)]	= -1,
1621 		},
1622 		[C(OP_PREFETCH)] = {
1623 			[C(RESULT_ACCESS)]	= 0x0,
1624 			[C(RESULT_MISS)]	= 0x0,
1625 		},
1626 	},
1627 	[C(LL)] = {
1628 		[C(OP_READ)] = {
1629 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1630 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1631 		},
1632 		[C(OP_WRITE)] = {
1633 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1634 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1635 		},
1636 		[C(OP_PREFETCH)] = {
1637 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1638 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1639 		},
1640 	},
1641 	[C(DTLB)] = {
1642 		[C(OP_READ)] = {
1643 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1644 			[C(RESULT_MISS)]	= 0x0,
1645 		},
1646 		[C(OP_WRITE)] = {
1647 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1648 			[C(RESULT_MISS)]	= 0x0,
1649 		},
1650 		[C(OP_PREFETCH)] = {
1651 			[C(RESULT_ACCESS)]	= 0x0,
1652 			[C(RESULT_MISS)]	= 0x0,
1653 		},
1654 	},
1655 	[C(ITLB)] = {
1656 		[C(OP_READ)] = {
1657 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1658 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1659 		},
1660 		[C(OP_WRITE)] = {
1661 			[C(RESULT_ACCESS)]	= -1,
1662 			[C(RESULT_MISS)]	= -1,
1663 		},
1664 		[C(OP_PREFETCH)] = {
1665 			[C(RESULT_ACCESS)]	= -1,
1666 			[C(RESULT_MISS)]	= -1,
1667 		},
1668 	},
1669 	[C(BPU)] = {
1670 		[C(OP_READ)] = {
1671 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1672 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1673 		},
1674 		[C(OP_WRITE)] = {
1675 			[C(RESULT_ACCESS)]	= -1,
1676 			[C(RESULT_MISS)]	= -1,
1677 		},
1678 		[C(OP_PREFETCH)] = {
1679 			[C(RESULT_ACCESS)]	= -1,
1680 			[C(RESULT_MISS)]	= -1,
1681 		},
1682 	},
1683 };
1684 
1685 static __initconst const u64 glm_hw_cache_extra_regs
1686 				[PERF_COUNT_HW_CACHE_MAX]
1687 				[PERF_COUNT_HW_CACHE_OP_MAX]
1688 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1689 	[C(LL)] = {
1690 		[C(OP_READ)] = {
1691 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
1692 						  GLM_LLC_ACCESS,
1693 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
1694 						  GLM_LLC_MISS,
1695 		},
1696 		[C(OP_WRITE)] = {
1697 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
1698 						  GLM_LLC_ACCESS,
1699 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
1700 						  GLM_LLC_MISS,
1701 		},
1702 		[C(OP_PREFETCH)] = {
1703 			[C(RESULT_ACCESS)]	= GLM_DEMAND_PREFETCH|
1704 						  GLM_LLC_ACCESS,
1705 			[C(RESULT_MISS)]	= GLM_DEMAND_PREFETCH|
1706 						  GLM_LLC_MISS,
1707 		},
1708 	},
1709 };
1710 
1711 #define KNL_OT_L2_HITE		BIT_ULL(19) /* Other Tile L2 Hit */
1712 #define KNL_OT_L2_HITF		BIT_ULL(20) /* Other Tile L2 Hit */
1713 #define KNL_MCDRAM_LOCAL	BIT_ULL(21)
1714 #define KNL_MCDRAM_FAR		BIT_ULL(22)
1715 #define KNL_DDR_LOCAL		BIT_ULL(23)
1716 #define KNL_DDR_FAR		BIT_ULL(24)
1717 #define KNL_DRAM_ANY		(KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1718 				    KNL_DDR_LOCAL | KNL_DDR_FAR)
1719 #define KNL_L2_READ		SLM_DMND_READ
1720 #define KNL_L2_WRITE		SLM_DMND_WRITE
1721 #define KNL_L2_PREFETCH		SLM_DMND_PREFETCH
1722 #define KNL_L2_ACCESS		SLM_LLC_ACCESS
1723 #define KNL_L2_MISS		(KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1724 				   KNL_DRAM_ANY | SNB_SNP_ANY | \
1725 						  SNB_NON_DRAM)
1726 
1727 static __initconst const u64 knl_hw_cache_extra_regs
1728 				[PERF_COUNT_HW_CACHE_MAX]
1729 				[PERF_COUNT_HW_CACHE_OP_MAX]
1730 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1731 	[C(LL)] = {
1732 		[C(OP_READ)] = {
1733 			[C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1734 			[C(RESULT_MISS)]   = 0,
1735 		},
1736 		[C(OP_WRITE)] = {
1737 			[C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1738 			[C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
1739 		},
1740 		[C(OP_PREFETCH)] = {
1741 			[C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1742 			[C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
1743 		},
1744 	},
1745 };
1746 
1747 /*
1748  * Used from PMIs where the LBRs are already disabled.
1749  *
1750  * This function could be called consecutively. It is required to remain in
1751  * disabled state if called consecutively.
1752  *
1753  * During consecutive calls, the same disable value will be written to related
1754  * registers, so the PMU state remains unchanged.
1755  *
1756  * intel_bts events don't coexist with intel PMU's BTS events because of
1757  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
1758  * disabled around intel PMU's event batching etc, only inside the PMI handler.
1759  */
1760 static void __intel_pmu_disable_all(void)
1761 {
1762 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1763 
1764 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1765 
1766 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1767 		intel_pmu_disable_bts();
1768 
1769 	intel_pmu_pebs_disable_all();
1770 }
1771 
1772 static void intel_pmu_disable_all(void)
1773 {
1774 	__intel_pmu_disable_all();
1775 	intel_pmu_lbr_disable_all();
1776 }
1777 
1778 static void __intel_pmu_enable_all(int added, bool pmi)
1779 {
1780 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1781 
1782 	intel_pmu_pebs_enable_all();
1783 	intel_pmu_lbr_enable_all(pmi);
1784 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1785 			x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1786 
1787 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1788 		struct perf_event *event =
1789 			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1790 
1791 		if (WARN_ON_ONCE(!event))
1792 			return;
1793 
1794 		intel_pmu_enable_bts(event->hw.config);
1795 	}
1796 }
1797 
1798 static void intel_pmu_enable_all(int added)
1799 {
1800 	__intel_pmu_enable_all(added, false);
1801 }
1802 
1803 /*
1804  * Workaround for:
1805  *   Intel Errata AAK100 (model 26)
1806  *   Intel Errata AAP53  (model 30)
1807  *   Intel Errata BD53   (model 44)
1808  *
1809  * The official story:
1810  *   These chips need to be 'reset' when adding counters by programming the
1811  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1812  *   in sequence on the same PMC or on different PMCs.
1813  *
1814  * In practise it appears some of these events do in fact count, and
1815  * we need to programm all 4 events.
1816  */
1817 static void intel_pmu_nhm_workaround(void)
1818 {
1819 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1820 	static const unsigned long nhm_magic[4] = {
1821 		0x4300B5,
1822 		0x4300D2,
1823 		0x4300B1,
1824 		0x4300B1
1825 	};
1826 	struct perf_event *event;
1827 	int i;
1828 
1829 	/*
1830 	 * The Errata requires below steps:
1831 	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1832 	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
1833 	 *    the corresponding PMCx;
1834 	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1835 	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1836 	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1837 	 */
1838 
1839 	/*
1840 	 * The real steps we choose are a little different from above.
1841 	 * A) To reduce MSR operations, we don't run step 1) as they
1842 	 *    are already cleared before this function is called;
1843 	 * B) Call x86_perf_event_update to save PMCx before configuring
1844 	 *    PERFEVTSELx with magic number;
1845 	 * C) With step 5), we do clear only when the PERFEVTSELx is
1846 	 *    not used currently.
1847 	 * D) Call x86_perf_event_set_period to restore PMCx;
1848 	 */
1849 
1850 	/* We always operate 4 pairs of PERF Counters */
1851 	for (i = 0; i < 4; i++) {
1852 		event = cpuc->events[i];
1853 		if (event)
1854 			x86_perf_event_update(event);
1855 	}
1856 
1857 	for (i = 0; i < 4; i++) {
1858 		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1859 		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1860 	}
1861 
1862 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1863 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1864 
1865 	for (i = 0; i < 4; i++) {
1866 		event = cpuc->events[i];
1867 
1868 		if (event) {
1869 			x86_perf_event_set_period(event);
1870 			__x86_pmu_enable_event(&event->hw,
1871 					ARCH_PERFMON_EVENTSEL_ENABLE);
1872 		} else
1873 			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1874 	}
1875 }
1876 
1877 static void intel_pmu_nhm_enable_all(int added)
1878 {
1879 	if (added)
1880 		intel_pmu_nhm_workaround();
1881 	intel_pmu_enable_all(added);
1882 }
1883 
1884 static inline u64 intel_pmu_get_status(void)
1885 {
1886 	u64 status;
1887 
1888 	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1889 
1890 	return status;
1891 }
1892 
1893 static inline void intel_pmu_ack_status(u64 ack)
1894 {
1895 	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1896 }
1897 
1898 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
1899 {
1900 	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1901 	u64 ctrl_val, mask;
1902 
1903 	mask = 0xfULL << (idx * 4);
1904 
1905 	rdmsrl(hwc->config_base, ctrl_val);
1906 	ctrl_val &= ~mask;
1907 	wrmsrl(hwc->config_base, ctrl_val);
1908 }
1909 
1910 static inline bool event_is_checkpointed(struct perf_event *event)
1911 {
1912 	return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
1913 }
1914 
1915 static void intel_pmu_disable_event(struct perf_event *event)
1916 {
1917 	struct hw_perf_event *hwc = &event->hw;
1918 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1919 
1920 	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1921 		intel_pmu_disable_bts();
1922 		intel_pmu_drain_bts_buffer();
1923 		return;
1924 	}
1925 
1926 	cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
1927 	cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
1928 	cpuc->intel_cp_status &= ~(1ull << hwc->idx);
1929 
1930 	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1931 		intel_pmu_disable_fixed(hwc);
1932 		return;
1933 	}
1934 
1935 	x86_pmu_disable_event(event);
1936 
1937 	if (unlikely(event->attr.precise_ip))
1938 		intel_pmu_pebs_disable(event);
1939 }
1940 
1941 static void intel_pmu_del_event(struct perf_event *event)
1942 {
1943 	if (needs_branch_stack(event))
1944 		intel_pmu_lbr_del(event);
1945 	if (event->attr.precise_ip)
1946 		intel_pmu_pebs_del(event);
1947 }
1948 
1949 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
1950 {
1951 	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1952 	u64 ctrl_val, bits, mask;
1953 
1954 	/*
1955 	 * Enable IRQ generation (0x8),
1956 	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1957 	 * if requested:
1958 	 */
1959 	bits = 0x8ULL;
1960 	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1961 		bits |= 0x2;
1962 	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1963 		bits |= 0x1;
1964 
1965 	/*
1966 	 * ANY bit is supported in v3 and up
1967 	 */
1968 	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1969 		bits |= 0x4;
1970 
1971 	bits <<= (idx * 4);
1972 	mask = 0xfULL << (idx * 4);
1973 
1974 	rdmsrl(hwc->config_base, ctrl_val);
1975 	ctrl_val &= ~mask;
1976 	ctrl_val |= bits;
1977 	wrmsrl(hwc->config_base, ctrl_val);
1978 }
1979 
1980 static void intel_pmu_enable_event(struct perf_event *event)
1981 {
1982 	struct hw_perf_event *hwc = &event->hw;
1983 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1984 
1985 	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1986 		if (!__this_cpu_read(cpu_hw_events.enabled))
1987 			return;
1988 
1989 		intel_pmu_enable_bts(hwc->config);
1990 		return;
1991 	}
1992 
1993 	if (event->attr.exclude_host)
1994 		cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1995 	if (event->attr.exclude_guest)
1996 		cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1997 
1998 	if (unlikely(event_is_checkpointed(event)))
1999 		cpuc->intel_cp_status |= (1ull << hwc->idx);
2000 
2001 	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2002 		intel_pmu_enable_fixed(hwc);
2003 		return;
2004 	}
2005 
2006 	if (unlikely(event->attr.precise_ip))
2007 		intel_pmu_pebs_enable(event);
2008 
2009 	__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2010 }
2011 
2012 static void intel_pmu_add_event(struct perf_event *event)
2013 {
2014 	if (event->attr.precise_ip)
2015 		intel_pmu_pebs_add(event);
2016 	if (needs_branch_stack(event))
2017 		intel_pmu_lbr_add(event);
2018 }
2019 
2020 /*
2021  * Save and restart an expired event. Called by NMI contexts,
2022  * so it has to be careful about preempting normal event ops:
2023  */
2024 int intel_pmu_save_and_restart(struct perf_event *event)
2025 {
2026 	x86_perf_event_update(event);
2027 	/*
2028 	 * For a checkpointed counter always reset back to 0.  This
2029 	 * avoids a situation where the counter overflows, aborts the
2030 	 * transaction and is then set back to shortly before the
2031 	 * overflow, and overflows and aborts again.
2032 	 */
2033 	if (unlikely(event_is_checkpointed(event))) {
2034 		/* No race with NMIs because the counter should not be armed */
2035 		wrmsrl(event->hw.event_base, 0);
2036 		local64_set(&event->hw.prev_count, 0);
2037 	}
2038 	return x86_perf_event_set_period(event);
2039 }
2040 
2041 static void intel_pmu_reset(void)
2042 {
2043 	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2044 	unsigned long flags;
2045 	int idx;
2046 
2047 	if (!x86_pmu.num_counters)
2048 		return;
2049 
2050 	local_irq_save(flags);
2051 
2052 	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2053 
2054 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2055 		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2056 		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2057 	}
2058 	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
2059 		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2060 
2061 	if (ds)
2062 		ds->bts_index = ds->bts_buffer_base;
2063 
2064 	/* Ack all overflows and disable fixed counters */
2065 	if (x86_pmu.version >= 2) {
2066 		intel_pmu_ack_status(intel_pmu_get_status());
2067 		wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2068 	}
2069 
2070 	/* Reset LBRs and LBR freezing */
2071 	if (x86_pmu.lbr_nr) {
2072 		update_debugctlmsr(get_debugctlmsr() &
2073 			~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2074 	}
2075 
2076 	local_irq_restore(flags);
2077 }
2078 
2079 /*
2080  * This handler is triggered by the local APIC, so the APIC IRQ handling
2081  * rules apply:
2082  */
2083 static int intel_pmu_handle_irq(struct pt_regs *regs)
2084 {
2085 	struct perf_sample_data data;
2086 	struct cpu_hw_events *cpuc;
2087 	int bit, loops;
2088 	u64 status;
2089 	int handled;
2090 
2091 	cpuc = this_cpu_ptr(&cpu_hw_events);
2092 
2093 	/*
2094 	 * No known reason to not always do late ACK,
2095 	 * but just in case do it opt-in.
2096 	 */
2097 	if (!x86_pmu.late_ack)
2098 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2099 	intel_bts_disable_local();
2100 	__intel_pmu_disable_all();
2101 	handled = intel_pmu_drain_bts_buffer();
2102 	handled += intel_bts_interrupt();
2103 	status = intel_pmu_get_status();
2104 	if (!status)
2105 		goto done;
2106 
2107 	loops = 0;
2108 again:
2109 	intel_pmu_lbr_read();
2110 	intel_pmu_ack_status(status);
2111 	if (++loops > 100) {
2112 		static bool warned = false;
2113 		if (!warned) {
2114 			WARN(1, "perfevents: irq loop stuck!\n");
2115 			perf_event_print_debug();
2116 			warned = true;
2117 		}
2118 		intel_pmu_reset();
2119 		goto done;
2120 	}
2121 
2122 	inc_irq_stat(apic_perf_irqs);
2123 
2124 
2125 	/*
2126 	 * Ignore a range of extra bits in status that do not indicate
2127 	 * overflow by themselves.
2128 	 */
2129 	status &= ~(GLOBAL_STATUS_COND_CHG |
2130 		    GLOBAL_STATUS_ASIF |
2131 		    GLOBAL_STATUS_LBRS_FROZEN);
2132 	if (!status)
2133 		goto done;
2134 	/*
2135 	 * In case multiple PEBS events are sampled at the same time,
2136 	 * it is possible to have GLOBAL_STATUS bit 62 set indicating
2137 	 * PEBS buffer overflow and also seeing at most 3 PEBS counters
2138 	 * having their bits set in the status register. This is a sign
2139 	 * that there was at least one PEBS record pending at the time
2140 	 * of the PMU interrupt. PEBS counters must only be processed
2141 	 * via the drain_pebs() calls and not via the regular sample
2142 	 * processing loop coming after that the function, otherwise
2143 	 * phony regular samples may be generated in the sampling buffer
2144 	 * not marked with the EXACT tag. Another possibility is to have
2145 	 * one PEBS event and at least one non-PEBS event whic hoverflows
2146 	 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2147 	 * not be set, yet the overflow status bit for the PEBS counter will
2148 	 * be on Skylake.
2149 	 *
2150 	 * To avoid this problem, we systematically ignore the PEBS-enabled
2151 	 * counters from the GLOBAL_STATUS mask and we always process PEBS
2152 	 * events via drain_pebs().
2153 	 */
2154 	status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2155 
2156 	/*
2157 	 * PEBS overflow sets bit 62 in the global status register
2158 	 */
2159 	if (__test_and_clear_bit(62, (unsigned long *)&status)) {
2160 		handled++;
2161 		x86_pmu.drain_pebs(regs);
2162 		status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2163 	}
2164 
2165 	/*
2166 	 * Intel PT
2167 	 */
2168 	if (__test_and_clear_bit(55, (unsigned long *)&status)) {
2169 		handled++;
2170 		intel_pt_interrupt();
2171 	}
2172 
2173 	/*
2174 	 * Checkpointed counters can lead to 'spurious' PMIs because the
2175 	 * rollback caused by the PMI will have cleared the overflow status
2176 	 * bit. Therefore always force probe these counters.
2177 	 */
2178 	status |= cpuc->intel_cp_status;
2179 
2180 	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2181 		struct perf_event *event = cpuc->events[bit];
2182 
2183 		handled++;
2184 
2185 		if (!test_bit(bit, cpuc->active_mask))
2186 			continue;
2187 
2188 		if (!intel_pmu_save_and_restart(event))
2189 			continue;
2190 
2191 		perf_sample_data_init(&data, 0, event->hw.last_period);
2192 
2193 		if (has_branch_stack(event))
2194 			data.br_stack = &cpuc->lbr_stack;
2195 
2196 		if (perf_event_overflow(event, &data, regs))
2197 			x86_pmu_stop(event, 0);
2198 	}
2199 
2200 	/*
2201 	 * Repeat if there is more work to be done:
2202 	 */
2203 	status = intel_pmu_get_status();
2204 	if (status)
2205 		goto again;
2206 
2207 done:
2208 	/* Only restore PMU state when it's active. See x86_pmu_disable(). */
2209 	if (cpuc->enabled)
2210 		__intel_pmu_enable_all(0, true);
2211 	intel_bts_enable_local();
2212 
2213 	/*
2214 	 * Only unmask the NMI after the overflow counters
2215 	 * have been reset. This avoids spurious NMIs on
2216 	 * Haswell CPUs.
2217 	 */
2218 	if (x86_pmu.late_ack)
2219 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2220 	return handled;
2221 }
2222 
2223 static struct event_constraint *
2224 intel_bts_constraints(struct perf_event *event)
2225 {
2226 	struct hw_perf_event *hwc = &event->hw;
2227 	unsigned int hw_event, bts_event;
2228 
2229 	if (event->attr.freq)
2230 		return NULL;
2231 
2232 	hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
2233 	bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
2234 
2235 	if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
2236 		return &bts_constraint;
2237 
2238 	return NULL;
2239 }
2240 
2241 static int intel_alt_er(int idx, u64 config)
2242 {
2243 	int alt_idx = idx;
2244 
2245 	if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2246 		return idx;
2247 
2248 	if (idx == EXTRA_REG_RSP_0)
2249 		alt_idx = EXTRA_REG_RSP_1;
2250 
2251 	if (idx == EXTRA_REG_RSP_1)
2252 		alt_idx = EXTRA_REG_RSP_0;
2253 
2254 	if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2255 		return idx;
2256 
2257 	return alt_idx;
2258 }
2259 
2260 static void intel_fixup_er(struct perf_event *event, int idx)
2261 {
2262 	event->hw.extra_reg.idx = idx;
2263 
2264 	if (idx == EXTRA_REG_RSP_0) {
2265 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2266 		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2267 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2268 	} else if (idx == EXTRA_REG_RSP_1) {
2269 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2270 		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2271 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2272 	}
2273 }
2274 
2275 /*
2276  * manage allocation of shared extra msr for certain events
2277  *
2278  * sharing can be:
2279  * per-cpu: to be shared between the various events on a single PMU
2280  * per-core: per-cpu + shared by HT threads
2281  */
2282 static struct event_constraint *
2283 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2284 				   struct perf_event *event,
2285 				   struct hw_perf_event_extra *reg)
2286 {
2287 	struct event_constraint *c = &emptyconstraint;
2288 	struct er_account *era;
2289 	unsigned long flags;
2290 	int idx = reg->idx;
2291 
2292 	/*
2293 	 * reg->alloc can be set due to existing state, so for fake cpuc we
2294 	 * need to ignore this, otherwise we might fail to allocate proper fake
2295 	 * state for this extra reg constraint. Also see the comment below.
2296 	 */
2297 	if (reg->alloc && !cpuc->is_fake)
2298 		return NULL; /* call x86_get_event_constraint() */
2299 
2300 again:
2301 	era = &cpuc->shared_regs->regs[idx];
2302 	/*
2303 	 * we use spin_lock_irqsave() to avoid lockdep issues when
2304 	 * passing a fake cpuc
2305 	 */
2306 	raw_spin_lock_irqsave(&era->lock, flags);
2307 
2308 	if (!atomic_read(&era->ref) || era->config == reg->config) {
2309 
2310 		/*
2311 		 * If its a fake cpuc -- as per validate_{group,event}() we
2312 		 * shouldn't touch event state and we can avoid doing so
2313 		 * since both will only call get_event_constraints() once
2314 		 * on each event, this avoids the need for reg->alloc.
2315 		 *
2316 		 * Not doing the ER fixup will only result in era->reg being
2317 		 * wrong, but since we won't actually try and program hardware
2318 		 * this isn't a problem either.
2319 		 */
2320 		if (!cpuc->is_fake) {
2321 			if (idx != reg->idx)
2322 				intel_fixup_er(event, idx);
2323 
2324 			/*
2325 			 * x86_schedule_events() can call get_event_constraints()
2326 			 * multiple times on events in the case of incremental
2327 			 * scheduling(). reg->alloc ensures we only do the ER
2328 			 * allocation once.
2329 			 */
2330 			reg->alloc = 1;
2331 		}
2332 
2333 		/* lock in msr value */
2334 		era->config = reg->config;
2335 		era->reg = reg->reg;
2336 
2337 		/* one more user */
2338 		atomic_inc(&era->ref);
2339 
2340 		/*
2341 		 * need to call x86_get_event_constraint()
2342 		 * to check if associated event has constraints
2343 		 */
2344 		c = NULL;
2345 	} else {
2346 		idx = intel_alt_er(idx, reg->config);
2347 		if (idx != reg->idx) {
2348 			raw_spin_unlock_irqrestore(&era->lock, flags);
2349 			goto again;
2350 		}
2351 	}
2352 	raw_spin_unlock_irqrestore(&era->lock, flags);
2353 
2354 	return c;
2355 }
2356 
2357 static void
2358 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2359 				   struct hw_perf_event_extra *reg)
2360 {
2361 	struct er_account *era;
2362 
2363 	/*
2364 	 * Only put constraint if extra reg was actually allocated. Also takes
2365 	 * care of event which do not use an extra shared reg.
2366 	 *
2367 	 * Also, if this is a fake cpuc we shouldn't touch any event state
2368 	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2369 	 * either since it'll be thrown out.
2370 	 */
2371 	if (!reg->alloc || cpuc->is_fake)
2372 		return;
2373 
2374 	era = &cpuc->shared_regs->regs[reg->idx];
2375 
2376 	/* one fewer user */
2377 	atomic_dec(&era->ref);
2378 
2379 	/* allocate again next time */
2380 	reg->alloc = 0;
2381 }
2382 
2383 static struct event_constraint *
2384 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2385 			      struct perf_event *event)
2386 {
2387 	struct event_constraint *c = NULL, *d;
2388 	struct hw_perf_event_extra *xreg, *breg;
2389 
2390 	xreg = &event->hw.extra_reg;
2391 	if (xreg->idx != EXTRA_REG_NONE) {
2392 		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2393 		if (c == &emptyconstraint)
2394 			return c;
2395 	}
2396 	breg = &event->hw.branch_reg;
2397 	if (breg->idx != EXTRA_REG_NONE) {
2398 		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2399 		if (d == &emptyconstraint) {
2400 			__intel_shared_reg_put_constraints(cpuc, xreg);
2401 			c = d;
2402 		}
2403 	}
2404 	return c;
2405 }
2406 
2407 struct event_constraint *
2408 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2409 			  struct perf_event *event)
2410 {
2411 	struct event_constraint *c;
2412 
2413 	if (x86_pmu.event_constraints) {
2414 		for_each_event_constraint(c, x86_pmu.event_constraints) {
2415 			if ((event->hw.config & c->cmask) == c->code) {
2416 				event->hw.flags |= c->flags;
2417 				return c;
2418 			}
2419 		}
2420 	}
2421 
2422 	return &unconstrained;
2423 }
2424 
2425 static struct event_constraint *
2426 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2427 			    struct perf_event *event)
2428 {
2429 	struct event_constraint *c;
2430 
2431 	c = intel_bts_constraints(event);
2432 	if (c)
2433 		return c;
2434 
2435 	c = intel_shared_regs_constraints(cpuc, event);
2436 	if (c)
2437 		return c;
2438 
2439 	c = intel_pebs_constraints(event);
2440 	if (c)
2441 		return c;
2442 
2443 	return x86_get_event_constraints(cpuc, idx, event);
2444 }
2445 
2446 static void
2447 intel_start_scheduling(struct cpu_hw_events *cpuc)
2448 {
2449 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2450 	struct intel_excl_states *xl;
2451 	int tid = cpuc->excl_thread_id;
2452 
2453 	/*
2454 	 * nothing needed if in group validation mode
2455 	 */
2456 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2457 		return;
2458 
2459 	/*
2460 	 * no exclusion needed
2461 	 */
2462 	if (WARN_ON_ONCE(!excl_cntrs))
2463 		return;
2464 
2465 	xl = &excl_cntrs->states[tid];
2466 
2467 	xl->sched_started = true;
2468 	/*
2469 	 * lock shared state until we are done scheduling
2470 	 * in stop_event_scheduling()
2471 	 * makes scheduling appear as a transaction
2472 	 */
2473 	raw_spin_lock(&excl_cntrs->lock);
2474 }
2475 
2476 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2477 {
2478 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2479 	struct event_constraint *c = cpuc->event_constraint[idx];
2480 	struct intel_excl_states *xl;
2481 	int tid = cpuc->excl_thread_id;
2482 
2483 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2484 		return;
2485 
2486 	if (WARN_ON_ONCE(!excl_cntrs))
2487 		return;
2488 
2489 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2490 		return;
2491 
2492 	xl = &excl_cntrs->states[tid];
2493 
2494 	lockdep_assert_held(&excl_cntrs->lock);
2495 
2496 	if (c->flags & PERF_X86_EVENT_EXCL)
2497 		xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2498 	else
2499 		xl->state[cntr] = INTEL_EXCL_SHARED;
2500 }
2501 
2502 static void
2503 intel_stop_scheduling(struct cpu_hw_events *cpuc)
2504 {
2505 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2506 	struct intel_excl_states *xl;
2507 	int tid = cpuc->excl_thread_id;
2508 
2509 	/*
2510 	 * nothing needed if in group validation mode
2511 	 */
2512 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2513 		return;
2514 	/*
2515 	 * no exclusion needed
2516 	 */
2517 	if (WARN_ON_ONCE(!excl_cntrs))
2518 		return;
2519 
2520 	xl = &excl_cntrs->states[tid];
2521 
2522 	xl->sched_started = false;
2523 	/*
2524 	 * release shared state lock (acquired in intel_start_scheduling())
2525 	 */
2526 	raw_spin_unlock(&excl_cntrs->lock);
2527 }
2528 
2529 static struct event_constraint *
2530 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2531 			   int idx, struct event_constraint *c)
2532 {
2533 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2534 	struct intel_excl_states *xlo;
2535 	int tid = cpuc->excl_thread_id;
2536 	int is_excl, i;
2537 
2538 	/*
2539 	 * validating a group does not require
2540 	 * enforcing cross-thread  exclusion
2541 	 */
2542 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2543 		return c;
2544 
2545 	/*
2546 	 * no exclusion needed
2547 	 */
2548 	if (WARN_ON_ONCE(!excl_cntrs))
2549 		return c;
2550 
2551 	/*
2552 	 * because we modify the constraint, we need
2553 	 * to make a copy. Static constraints come
2554 	 * from static const tables.
2555 	 *
2556 	 * only needed when constraint has not yet
2557 	 * been cloned (marked dynamic)
2558 	 */
2559 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2560 		struct event_constraint *cx;
2561 
2562 		/*
2563 		 * grab pre-allocated constraint entry
2564 		 */
2565 		cx = &cpuc->constraint_list[idx];
2566 
2567 		/*
2568 		 * initialize dynamic constraint
2569 		 * with static constraint
2570 		 */
2571 		*cx = *c;
2572 
2573 		/*
2574 		 * mark constraint as dynamic, so we
2575 		 * can free it later on
2576 		 */
2577 		cx->flags |= PERF_X86_EVENT_DYNAMIC;
2578 		c = cx;
2579 	}
2580 
2581 	/*
2582 	 * From here on, the constraint is dynamic.
2583 	 * Either it was just allocated above, or it
2584 	 * was allocated during a earlier invocation
2585 	 * of this function
2586 	 */
2587 
2588 	/*
2589 	 * state of sibling HT
2590 	 */
2591 	xlo = &excl_cntrs->states[tid ^ 1];
2592 
2593 	/*
2594 	 * event requires exclusive counter access
2595 	 * across HT threads
2596 	 */
2597 	is_excl = c->flags & PERF_X86_EVENT_EXCL;
2598 	if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2599 		event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2600 		if (!cpuc->n_excl++)
2601 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2602 	}
2603 
2604 	/*
2605 	 * Modify static constraint with current dynamic
2606 	 * state of thread
2607 	 *
2608 	 * EXCLUSIVE: sibling counter measuring exclusive event
2609 	 * SHARED   : sibling counter measuring non-exclusive event
2610 	 * UNUSED   : sibling counter unused
2611 	 */
2612 	for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2613 		/*
2614 		 * exclusive event in sibling counter
2615 		 * our corresponding counter cannot be used
2616 		 * regardless of our event
2617 		 */
2618 		if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
2619 			__clear_bit(i, c->idxmsk);
2620 		/*
2621 		 * if measuring an exclusive event, sibling
2622 		 * measuring non-exclusive, then counter cannot
2623 		 * be used
2624 		 */
2625 		if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
2626 			__clear_bit(i, c->idxmsk);
2627 	}
2628 
2629 	/*
2630 	 * recompute actual bit weight for scheduling algorithm
2631 	 */
2632 	c->weight = hweight64(c->idxmsk64);
2633 
2634 	/*
2635 	 * if we return an empty mask, then switch
2636 	 * back to static empty constraint to avoid
2637 	 * the cost of freeing later on
2638 	 */
2639 	if (c->weight == 0)
2640 		c = &emptyconstraint;
2641 
2642 	return c;
2643 }
2644 
2645 static struct event_constraint *
2646 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2647 			    struct perf_event *event)
2648 {
2649 	struct event_constraint *c1 = NULL;
2650 	struct event_constraint *c2;
2651 
2652 	if (idx >= 0) /* fake does < 0 */
2653 		c1 = cpuc->event_constraint[idx];
2654 
2655 	/*
2656 	 * first time only
2657 	 * - static constraint: no change across incremental scheduling calls
2658 	 * - dynamic constraint: handled by intel_get_excl_constraints()
2659 	 */
2660 	c2 = __intel_get_event_constraints(cpuc, idx, event);
2661 	if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2662 		bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2663 		c1->weight = c2->weight;
2664 		c2 = c1;
2665 	}
2666 
2667 	if (cpuc->excl_cntrs)
2668 		return intel_get_excl_constraints(cpuc, event, idx, c2);
2669 
2670 	return c2;
2671 }
2672 
2673 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2674 		struct perf_event *event)
2675 {
2676 	struct hw_perf_event *hwc = &event->hw;
2677 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2678 	int tid = cpuc->excl_thread_id;
2679 	struct intel_excl_states *xl;
2680 
2681 	/*
2682 	 * nothing needed if in group validation mode
2683 	 */
2684 	if (cpuc->is_fake)
2685 		return;
2686 
2687 	if (WARN_ON_ONCE(!excl_cntrs))
2688 		return;
2689 
2690 	if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
2691 		hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
2692 		if (!--cpuc->n_excl)
2693 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
2694 	}
2695 
2696 	/*
2697 	 * If event was actually assigned, then mark the counter state as
2698 	 * unused now.
2699 	 */
2700 	if (hwc->idx >= 0) {
2701 		xl = &excl_cntrs->states[tid];
2702 
2703 		/*
2704 		 * put_constraint may be called from x86_schedule_events()
2705 		 * which already has the lock held so here make locking
2706 		 * conditional.
2707 		 */
2708 		if (!xl->sched_started)
2709 			raw_spin_lock(&excl_cntrs->lock);
2710 
2711 		xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
2712 
2713 		if (!xl->sched_started)
2714 			raw_spin_unlock(&excl_cntrs->lock);
2715 	}
2716 }
2717 
2718 static void
2719 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
2720 					struct perf_event *event)
2721 {
2722 	struct hw_perf_event_extra *reg;
2723 
2724 	reg = &event->hw.extra_reg;
2725 	if (reg->idx != EXTRA_REG_NONE)
2726 		__intel_shared_reg_put_constraints(cpuc, reg);
2727 
2728 	reg = &event->hw.branch_reg;
2729 	if (reg->idx != EXTRA_REG_NONE)
2730 		__intel_shared_reg_put_constraints(cpuc, reg);
2731 }
2732 
2733 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
2734 					struct perf_event *event)
2735 {
2736 	intel_put_shared_regs_event_constraints(cpuc, event);
2737 
2738 	/*
2739 	 * is PMU has exclusive counter restrictions, then
2740 	 * all events are subject to and must call the
2741 	 * put_excl_constraints() routine
2742 	 */
2743 	if (cpuc->excl_cntrs)
2744 		intel_put_excl_constraints(cpuc, event);
2745 }
2746 
2747 static void intel_pebs_aliases_core2(struct perf_event *event)
2748 {
2749 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2750 		/*
2751 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2752 		 * (0x003c) so that we can use it with PEBS.
2753 		 *
2754 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2755 		 * PEBS capable. However we can use INST_RETIRED.ANY_P
2756 		 * (0x00c0), which is a PEBS capable event, to get the same
2757 		 * count.
2758 		 *
2759 		 * INST_RETIRED.ANY_P counts the number of cycles that retires
2760 		 * CNTMASK instructions. By setting CNTMASK to a value (16)
2761 		 * larger than the maximum number of instructions that can be
2762 		 * retired per cycle (4) and then inverting the condition, we
2763 		 * count all cycles that retire 16 or less instructions, which
2764 		 * is every cycle.
2765 		 *
2766 		 * Thereby we gain a PEBS capable cycle counter.
2767 		 */
2768 		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
2769 
2770 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2771 		event->hw.config = alt_config;
2772 	}
2773 }
2774 
2775 static void intel_pebs_aliases_snb(struct perf_event *event)
2776 {
2777 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2778 		/*
2779 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2780 		 * (0x003c) so that we can use it with PEBS.
2781 		 *
2782 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2783 		 * PEBS capable. However we can use UOPS_RETIRED.ALL
2784 		 * (0x01c2), which is a PEBS capable event, to get the same
2785 		 * count.
2786 		 *
2787 		 * UOPS_RETIRED.ALL counts the number of cycles that retires
2788 		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
2789 		 * larger than the maximum number of micro-ops that can be
2790 		 * retired per cycle (4) and then inverting the condition, we
2791 		 * count all cycles that retire 16 or less micro-ops, which
2792 		 * is every cycle.
2793 		 *
2794 		 * Thereby we gain a PEBS capable cycle counter.
2795 		 */
2796 		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
2797 
2798 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2799 		event->hw.config = alt_config;
2800 	}
2801 }
2802 
2803 static void intel_pebs_aliases_precdist(struct perf_event *event)
2804 {
2805 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2806 		/*
2807 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2808 		 * (0x003c) so that we can use it with PEBS.
2809 		 *
2810 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2811 		 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
2812 		 * (0x01c0), which is a PEBS capable event, to get the same
2813 		 * count.
2814 		 *
2815 		 * The PREC_DIST event has special support to minimize sample
2816 		 * shadowing effects. One drawback is that it can be
2817 		 * only programmed on counter 1, but that seems like an
2818 		 * acceptable trade off.
2819 		 */
2820 		u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
2821 
2822 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2823 		event->hw.config = alt_config;
2824 	}
2825 }
2826 
2827 static void intel_pebs_aliases_ivb(struct perf_event *event)
2828 {
2829 	if (event->attr.precise_ip < 3)
2830 		return intel_pebs_aliases_snb(event);
2831 	return intel_pebs_aliases_precdist(event);
2832 }
2833 
2834 static void intel_pebs_aliases_skl(struct perf_event *event)
2835 {
2836 	if (event->attr.precise_ip < 3)
2837 		return intel_pebs_aliases_core2(event);
2838 	return intel_pebs_aliases_precdist(event);
2839 }
2840 
2841 static unsigned long intel_pmu_free_running_flags(struct perf_event *event)
2842 {
2843 	unsigned long flags = x86_pmu.free_running_flags;
2844 
2845 	if (event->attr.use_clockid)
2846 		flags &= ~PERF_SAMPLE_TIME;
2847 	return flags;
2848 }
2849 
2850 static int intel_pmu_hw_config(struct perf_event *event)
2851 {
2852 	int ret = x86_pmu_hw_config(event);
2853 
2854 	if (ret)
2855 		return ret;
2856 
2857 	if (event->attr.precise_ip) {
2858 		if (!event->attr.freq) {
2859 			event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
2860 			if (!(event->attr.sample_type &
2861 			      ~intel_pmu_free_running_flags(event)))
2862 				event->hw.flags |= PERF_X86_EVENT_FREERUNNING;
2863 		}
2864 		if (x86_pmu.pebs_aliases)
2865 			x86_pmu.pebs_aliases(event);
2866 	}
2867 
2868 	if (needs_branch_stack(event)) {
2869 		ret = intel_pmu_setup_lbr_filter(event);
2870 		if (ret)
2871 			return ret;
2872 
2873 		/*
2874 		 * BTS is set up earlier in this path, so don't account twice
2875 		 */
2876 		if (!intel_pmu_has_bts(event)) {
2877 			/* disallow lbr if conflicting events are present */
2878 			if (x86_add_exclusive(x86_lbr_exclusive_lbr))
2879 				return -EBUSY;
2880 
2881 			event->destroy = hw_perf_lbr_event_destroy;
2882 		}
2883 	}
2884 
2885 	if (event->attr.type != PERF_TYPE_RAW)
2886 		return 0;
2887 
2888 	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
2889 		return 0;
2890 
2891 	if (x86_pmu.version < 3)
2892 		return -EINVAL;
2893 
2894 	if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2895 		return -EACCES;
2896 
2897 	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
2898 
2899 	return 0;
2900 }
2901 
2902 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
2903 {
2904 	if (x86_pmu.guest_get_msrs)
2905 		return x86_pmu.guest_get_msrs(nr);
2906 	*nr = 0;
2907 	return NULL;
2908 }
2909 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
2910 
2911 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
2912 {
2913 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2914 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2915 
2916 	arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
2917 	arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
2918 	arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
2919 	/*
2920 	 * If PMU counter has PEBS enabled it is not enough to disable counter
2921 	 * on a guest entry since PEBS memory write can overshoot guest entry
2922 	 * and corrupt guest memory. Disabling PEBS solves the problem.
2923 	 */
2924 	arr[1].msr = MSR_IA32_PEBS_ENABLE;
2925 	arr[1].host = cpuc->pebs_enabled;
2926 	arr[1].guest = 0;
2927 
2928 	*nr = 2;
2929 	return arr;
2930 }
2931 
2932 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
2933 {
2934 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2935 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2936 	int idx;
2937 
2938 	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
2939 		struct perf_event *event = cpuc->events[idx];
2940 
2941 		arr[idx].msr = x86_pmu_config_addr(idx);
2942 		arr[idx].host = arr[idx].guest = 0;
2943 
2944 		if (!test_bit(idx, cpuc->active_mask))
2945 			continue;
2946 
2947 		arr[idx].host = arr[idx].guest =
2948 			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
2949 
2950 		if (event->attr.exclude_host)
2951 			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2952 		else if (event->attr.exclude_guest)
2953 			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2954 	}
2955 
2956 	*nr = x86_pmu.num_counters;
2957 	return arr;
2958 }
2959 
2960 static void core_pmu_enable_event(struct perf_event *event)
2961 {
2962 	if (!event->attr.exclude_host)
2963 		x86_pmu_enable_event(event);
2964 }
2965 
2966 static void core_pmu_enable_all(int added)
2967 {
2968 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2969 	int idx;
2970 
2971 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2972 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
2973 
2974 		if (!test_bit(idx, cpuc->active_mask) ||
2975 				cpuc->events[idx]->attr.exclude_host)
2976 			continue;
2977 
2978 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2979 	}
2980 }
2981 
2982 static int hsw_hw_config(struct perf_event *event)
2983 {
2984 	int ret = intel_pmu_hw_config(event);
2985 
2986 	if (ret)
2987 		return ret;
2988 	if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
2989 		return 0;
2990 	event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
2991 
2992 	/*
2993 	 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
2994 	 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
2995 	 * this combination.
2996 	 */
2997 	if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
2998 	     ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
2999 	      event->attr.precise_ip > 0))
3000 		return -EOPNOTSUPP;
3001 
3002 	if (event_is_checkpointed(event)) {
3003 		/*
3004 		 * Sampling of checkpointed events can cause situations where
3005 		 * the CPU constantly aborts because of a overflow, which is
3006 		 * then checkpointed back and ignored. Forbid checkpointing
3007 		 * for sampling.
3008 		 *
3009 		 * But still allow a long sampling period, so that perf stat
3010 		 * from KVM works.
3011 		 */
3012 		if (event->attr.sample_period > 0 &&
3013 		    event->attr.sample_period < 0x7fffffff)
3014 			return -EOPNOTSUPP;
3015 	}
3016 	return 0;
3017 }
3018 
3019 static struct event_constraint counter2_constraint =
3020 			EVENT_CONSTRAINT(0, 0x4, 0);
3021 
3022 static struct event_constraint *
3023 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3024 			  struct perf_event *event)
3025 {
3026 	struct event_constraint *c;
3027 
3028 	c = intel_get_event_constraints(cpuc, idx, event);
3029 
3030 	/* Handle special quirk on in_tx_checkpointed only in counter 2 */
3031 	if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
3032 		if (c->idxmsk64 & (1U << 2))
3033 			return &counter2_constraint;
3034 		return &emptyconstraint;
3035 	}
3036 
3037 	return c;
3038 }
3039 
3040 /*
3041  * Broadwell:
3042  *
3043  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
3044  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
3045  * the two to enforce a minimum period of 128 (the smallest value that has bits
3046  * 0-5 cleared and >= 100).
3047  *
3048  * Because of how the code in x86_perf_event_set_period() works, the truncation
3049  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
3050  * to make up for the 'lost' events due to carrying the 'error' in period_left.
3051  *
3052  * Therefore the effective (average) period matches the requested period,
3053  * despite coarser hardware granularity.
3054  */
3055 static unsigned bdw_limit_period(struct perf_event *event, unsigned left)
3056 {
3057 	if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
3058 			X86_CONFIG(.event=0xc0, .umask=0x01)) {
3059 		if (left < 128)
3060 			left = 128;
3061 		left &= ~0x3fu;
3062 	}
3063 	return left;
3064 }
3065 
3066 PMU_FORMAT_ATTR(event,	"config:0-7"	);
3067 PMU_FORMAT_ATTR(umask,	"config:8-15"	);
3068 PMU_FORMAT_ATTR(edge,	"config:18"	);
3069 PMU_FORMAT_ATTR(pc,	"config:19"	);
3070 PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
3071 PMU_FORMAT_ATTR(inv,	"config:23"	);
3072 PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
3073 PMU_FORMAT_ATTR(in_tx,  "config:32");
3074 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
3075 
3076 static struct attribute *intel_arch_formats_attr[] = {
3077 	&format_attr_event.attr,
3078 	&format_attr_umask.attr,
3079 	&format_attr_edge.attr,
3080 	&format_attr_pc.attr,
3081 	&format_attr_inv.attr,
3082 	&format_attr_cmask.attr,
3083 	NULL,
3084 };
3085 
3086 ssize_t intel_event_sysfs_show(char *page, u64 config)
3087 {
3088 	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
3089 
3090 	return x86_event_sysfs_show(page, config, event);
3091 }
3092 
3093 struct intel_shared_regs *allocate_shared_regs(int cpu)
3094 {
3095 	struct intel_shared_regs *regs;
3096 	int i;
3097 
3098 	regs = kzalloc_node(sizeof(struct intel_shared_regs),
3099 			    GFP_KERNEL, cpu_to_node(cpu));
3100 	if (regs) {
3101 		/*
3102 		 * initialize the locks to keep lockdep happy
3103 		 */
3104 		for (i = 0; i < EXTRA_REG_MAX; i++)
3105 			raw_spin_lock_init(&regs->regs[i].lock);
3106 
3107 		regs->core_id = -1;
3108 	}
3109 	return regs;
3110 }
3111 
3112 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
3113 {
3114 	struct intel_excl_cntrs *c;
3115 
3116 	c = kzalloc_node(sizeof(struct intel_excl_cntrs),
3117 			 GFP_KERNEL, cpu_to_node(cpu));
3118 	if (c) {
3119 		raw_spin_lock_init(&c->lock);
3120 		c->core_id = -1;
3121 	}
3122 	return c;
3123 }
3124 
3125 static int intel_pmu_cpu_prepare(int cpu)
3126 {
3127 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3128 
3129 	if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
3130 		cpuc->shared_regs = allocate_shared_regs(cpu);
3131 		if (!cpuc->shared_regs)
3132 			goto err;
3133 	}
3134 
3135 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3136 		size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
3137 
3138 		cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
3139 		if (!cpuc->constraint_list)
3140 			goto err_shared_regs;
3141 
3142 		cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
3143 		if (!cpuc->excl_cntrs)
3144 			goto err_constraint_list;
3145 
3146 		cpuc->excl_thread_id = 0;
3147 	}
3148 
3149 	return 0;
3150 
3151 err_constraint_list:
3152 	kfree(cpuc->constraint_list);
3153 	cpuc->constraint_list = NULL;
3154 
3155 err_shared_regs:
3156 	kfree(cpuc->shared_regs);
3157 	cpuc->shared_regs = NULL;
3158 
3159 err:
3160 	return -ENOMEM;
3161 }
3162 
3163 static void flip_smm_bit(void *data)
3164 {
3165 	unsigned long set = *(unsigned long *)data;
3166 
3167 	if (set > 0) {
3168 		msr_set_bit(MSR_IA32_DEBUGCTLMSR,
3169 			    DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3170 	} else {
3171 		msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
3172 			      DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3173 	}
3174 }
3175 
3176 static void intel_pmu_cpu_starting(int cpu)
3177 {
3178 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3179 	int core_id = topology_core_id(cpu);
3180 	int i;
3181 
3182 	init_debug_store_on_cpu(cpu);
3183 	/*
3184 	 * Deal with CPUs that don't clear their LBRs on power-up.
3185 	 */
3186 	intel_pmu_lbr_reset();
3187 
3188 	cpuc->lbr_sel = NULL;
3189 
3190 	flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
3191 
3192 	if (!cpuc->shared_regs)
3193 		return;
3194 
3195 	if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
3196 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3197 			struct intel_shared_regs *pc;
3198 
3199 			pc = per_cpu(cpu_hw_events, i).shared_regs;
3200 			if (pc && pc->core_id == core_id) {
3201 				cpuc->kfree_on_online[0] = cpuc->shared_regs;
3202 				cpuc->shared_regs = pc;
3203 				break;
3204 			}
3205 		}
3206 		cpuc->shared_regs->core_id = core_id;
3207 		cpuc->shared_regs->refcnt++;
3208 	}
3209 
3210 	if (x86_pmu.lbr_sel_map)
3211 		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
3212 
3213 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3214 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3215 			struct cpu_hw_events *sibling;
3216 			struct intel_excl_cntrs *c;
3217 
3218 			sibling = &per_cpu(cpu_hw_events, i);
3219 			c = sibling->excl_cntrs;
3220 			if (c && c->core_id == core_id) {
3221 				cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
3222 				cpuc->excl_cntrs = c;
3223 				if (!sibling->excl_thread_id)
3224 					cpuc->excl_thread_id = 1;
3225 				break;
3226 			}
3227 		}
3228 		cpuc->excl_cntrs->core_id = core_id;
3229 		cpuc->excl_cntrs->refcnt++;
3230 	}
3231 }
3232 
3233 static void free_excl_cntrs(int cpu)
3234 {
3235 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3236 	struct intel_excl_cntrs *c;
3237 
3238 	c = cpuc->excl_cntrs;
3239 	if (c) {
3240 		if (c->core_id == -1 || --c->refcnt == 0)
3241 			kfree(c);
3242 		cpuc->excl_cntrs = NULL;
3243 		kfree(cpuc->constraint_list);
3244 		cpuc->constraint_list = NULL;
3245 	}
3246 }
3247 
3248 static void intel_pmu_cpu_dying(int cpu)
3249 {
3250 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3251 	struct intel_shared_regs *pc;
3252 
3253 	pc = cpuc->shared_regs;
3254 	if (pc) {
3255 		if (pc->core_id == -1 || --pc->refcnt == 0)
3256 			kfree(pc);
3257 		cpuc->shared_regs = NULL;
3258 	}
3259 
3260 	free_excl_cntrs(cpu);
3261 
3262 	fini_debug_store_on_cpu(cpu);
3263 }
3264 
3265 static void intel_pmu_sched_task(struct perf_event_context *ctx,
3266 				 bool sched_in)
3267 {
3268 	if (x86_pmu.pebs_active)
3269 		intel_pmu_pebs_sched_task(ctx, sched_in);
3270 	if (x86_pmu.lbr_nr)
3271 		intel_pmu_lbr_sched_task(ctx, sched_in);
3272 }
3273 
3274 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
3275 
3276 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
3277 
3278 PMU_FORMAT_ATTR(frontend, "config1:0-23");
3279 
3280 static struct attribute *intel_arch3_formats_attr[] = {
3281 	&format_attr_event.attr,
3282 	&format_attr_umask.attr,
3283 	&format_attr_edge.attr,
3284 	&format_attr_pc.attr,
3285 	&format_attr_any.attr,
3286 	&format_attr_inv.attr,
3287 	&format_attr_cmask.attr,
3288 	&format_attr_in_tx.attr,
3289 	&format_attr_in_tx_cp.attr,
3290 
3291 	&format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
3292 	&format_attr_ldlat.attr, /* PEBS load latency */
3293 	NULL,
3294 };
3295 
3296 static struct attribute *skl_format_attr[] = {
3297 	&format_attr_frontend.attr,
3298 	NULL,
3299 };
3300 
3301 static __initconst const struct x86_pmu core_pmu = {
3302 	.name			= "core",
3303 	.handle_irq		= x86_pmu_handle_irq,
3304 	.disable_all		= x86_pmu_disable_all,
3305 	.enable_all		= core_pmu_enable_all,
3306 	.enable			= core_pmu_enable_event,
3307 	.disable		= x86_pmu_disable_event,
3308 	.hw_config		= x86_pmu_hw_config,
3309 	.schedule_events	= x86_schedule_events,
3310 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
3311 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
3312 	.event_map		= intel_pmu_event_map,
3313 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
3314 	.apic			= 1,
3315 	.free_running_flags	= PEBS_FREERUNNING_FLAGS,
3316 
3317 	/*
3318 	 * Intel PMCs cannot be accessed sanely above 32-bit width,
3319 	 * so we install an artificial 1<<31 period regardless of
3320 	 * the generic event period:
3321 	 */
3322 	.max_period		= (1ULL<<31) - 1,
3323 	.get_event_constraints	= intel_get_event_constraints,
3324 	.put_event_constraints	= intel_put_event_constraints,
3325 	.event_constraints	= intel_core_event_constraints,
3326 	.guest_get_msrs		= core_guest_get_msrs,
3327 	.format_attrs		= intel_arch_formats_attr,
3328 	.events_sysfs_show	= intel_event_sysfs_show,
3329 
3330 	/*
3331 	 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
3332 	 * together with PMU version 1 and thus be using core_pmu with
3333 	 * shared_regs. We need following callbacks here to allocate
3334 	 * it properly.
3335 	 */
3336 	.cpu_prepare		= intel_pmu_cpu_prepare,
3337 	.cpu_starting		= intel_pmu_cpu_starting,
3338 	.cpu_dying		= intel_pmu_cpu_dying,
3339 };
3340 
3341 static __initconst const struct x86_pmu intel_pmu = {
3342 	.name			= "Intel",
3343 	.handle_irq		= intel_pmu_handle_irq,
3344 	.disable_all		= intel_pmu_disable_all,
3345 	.enable_all		= intel_pmu_enable_all,
3346 	.enable			= intel_pmu_enable_event,
3347 	.disable		= intel_pmu_disable_event,
3348 	.add			= intel_pmu_add_event,
3349 	.del			= intel_pmu_del_event,
3350 	.hw_config		= intel_pmu_hw_config,
3351 	.schedule_events	= x86_schedule_events,
3352 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
3353 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
3354 	.event_map		= intel_pmu_event_map,
3355 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
3356 	.apic			= 1,
3357 	.free_running_flags	= PEBS_FREERUNNING_FLAGS,
3358 	/*
3359 	 * Intel PMCs cannot be accessed sanely above 32 bit width,
3360 	 * so we install an artificial 1<<31 period regardless of
3361 	 * the generic event period:
3362 	 */
3363 	.max_period		= (1ULL << 31) - 1,
3364 	.get_event_constraints	= intel_get_event_constraints,
3365 	.put_event_constraints	= intel_put_event_constraints,
3366 	.pebs_aliases		= intel_pebs_aliases_core2,
3367 
3368 	.format_attrs		= intel_arch3_formats_attr,
3369 	.events_sysfs_show	= intel_event_sysfs_show,
3370 
3371 	.cpu_prepare		= intel_pmu_cpu_prepare,
3372 	.cpu_starting		= intel_pmu_cpu_starting,
3373 	.cpu_dying		= intel_pmu_cpu_dying,
3374 	.guest_get_msrs		= intel_guest_get_msrs,
3375 	.sched_task		= intel_pmu_sched_task,
3376 };
3377 
3378 static __init void intel_clovertown_quirk(void)
3379 {
3380 	/*
3381 	 * PEBS is unreliable due to:
3382 	 *
3383 	 *   AJ67  - PEBS may experience CPL leaks
3384 	 *   AJ68  - PEBS PMI may be delayed by one event
3385 	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
3386 	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
3387 	 *
3388 	 * AJ67 could be worked around by restricting the OS/USR flags.
3389 	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
3390 	 *
3391 	 * AJ106 could possibly be worked around by not allowing LBR
3392 	 *       usage from PEBS, including the fixup.
3393 	 * AJ68  could possibly be worked around by always programming
3394 	 *	 a pebs_event_reset[0] value and coping with the lost events.
3395 	 *
3396 	 * But taken together it might just make sense to not enable PEBS on
3397 	 * these chips.
3398 	 */
3399 	pr_warn("PEBS disabled due to CPU errata\n");
3400 	x86_pmu.pebs = 0;
3401 	x86_pmu.pebs_constraints = NULL;
3402 }
3403 
3404 static int intel_snb_pebs_broken(int cpu)
3405 {
3406 	u32 rev = UINT_MAX; /* default to broken for unknown models */
3407 
3408 	switch (cpu_data(cpu).x86_model) {
3409 	case INTEL_FAM6_SANDYBRIDGE:
3410 		rev = 0x28;
3411 		break;
3412 
3413 	case INTEL_FAM6_SANDYBRIDGE_X:
3414 		switch (cpu_data(cpu).x86_mask) {
3415 		case 6: rev = 0x618; break;
3416 		case 7: rev = 0x70c; break;
3417 		}
3418 	}
3419 
3420 	return (cpu_data(cpu).microcode < rev);
3421 }
3422 
3423 static void intel_snb_check_microcode(void)
3424 {
3425 	int pebs_broken = 0;
3426 	int cpu;
3427 
3428 	for_each_online_cpu(cpu) {
3429 		if ((pebs_broken = intel_snb_pebs_broken(cpu)))
3430 			break;
3431 	}
3432 
3433 	if (pebs_broken == x86_pmu.pebs_broken)
3434 		return;
3435 
3436 	/*
3437 	 * Serialized by the microcode lock..
3438 	 */
3439 	if (x86_pmu.pebs_broken) {
3440 		pr_info("PEBS enabled due to microcode update\n");
3441 		x86_pmu.pebs_broken = 0;
3442 	} else {
3443 		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
3444 		x86_pmu.pebs_broken = 1;
3445 	}
3446 }
3447 
3448 static bool is_lbr_from(unsigned long msr)
3449 {
3450 	unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
3451 
3452 	return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
3453 }
3454 
3455 /*
3456  * Under certain circumstances, access certain MSR may cause #GP.
3457  * The function tests if the input MSR can be safely accessed.
3458  */
3459 static bool check_msr(unsigned long msr, u64 mask)
3460 {
3461 	u64 val_old, val_new, val_tmp;
3462 
3463 	/*
3464 	 * Read the current value, change it and read it back to see if it
3465 	 * matches, this is needed to detect certain hardware emulators
3466 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
3467 	 */
3468 	if (rdmsrl_safe(msr, &val_old))
3469 		return false;
3470 
3471 	/*
3472 	 * Only change the bits which can be updated by wrmsrl.
3473 	 */
3474 	val_tmp = val_old ^ mask;
3475 
3476 	if (is_lbr_from(msr))
3477 		val_tmp = lbr_from_signext_quirk_wr(val_tmp);
3478 
3479 	if (wrmsrl_safe(msr, val_tmp) ||
3480 	    rdmsrl_safe(msr, &val_new))
3481 		return false;
3482 
3483 	/*
3484 	 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
3485 	 * should equal rdmsrl()'s even with the quirk.
3486 	 */
3487 	if (val_new != val_tmp)
3488 		return false;
3489 
3490 	if (is_lbr_from(msr))
3491 		val_old = lbr_from_signext_quirk_wr(val_old);
3492 
3493 	/* Here it's sure that the MSR can be safely accessed.
3494 	 * Restore the old value and return.
3495 	 */
3496 	wrmsrl(msr, val_old);
3497 
3498 	return true;
3499 }
3500 
3501 static __init void intel_sandybridge_quirk(void)
3502 {
3503 	x86_pmu.check_microcode = intel_snb_check_microcode;
3504 	cpus_read_lock();
3505 	intel_snb_check_microcode();
3506 	cpus_read_unlock();
3507 }
3508 
3509 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
3510 	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
3511 	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
3512 	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
3513 	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
3514 	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
3515 	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
3516 	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
3517 };
3518 
3519 static __init void intel_arch_events_quirk(void)
3520 {
3521 	int bit;
3522 
3523 	/* disable event that reported as not presend by cpuid */
3524 	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
3525 		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
3526 		pr_warn("CPUID marked event: \'%s\' unavailable\n",
3527 			intel_arch_events_map[bit].name);
3528 	}
3529 }
3530 
3531 static __init void intel_nehalem_quirk(void)
3532 {
3533 	union cpuid10_ebx ebx;
3534 
3535 	ebx.full = x86_pmu.events_maskl;
3536 	if (ebx.split.no_branch_misses_retired) {
3537 		/*
3538 		 * Erratum AAJ80 detected, we work it around by using
3539 		 * the BR_MISP_EXEC.ANY event. This will over-count
3540 		 * branch-misses, but it's still much better than the
3541 		 * architectural event which is often completely bogus:
3542 		 */
3543 		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
3544 		ebx.split.no_branch_misses_retired = 0;
3545 		x86_pmu.events_maskl = ebx.full;
3546 		pr_info("CPU erratum AAJ80 worked around\n");
3547 	}
3548 }
3549 
3550 /*
3551  * enable software workaround for errata:
3552  * SNB: BJ122
3553  * IVB: BV98
3554  * HSW: HSD29
3555  *
3556  * Only needed when HT is enabled. However detecting
3557  * if HT is enabled is difficult (model specific). So instead,
3558  * we enable the workaround in the early boot, and verify if
3559  * it is needed in a later initcall phase once we have valid
3560  * topology information to check if HT is actually enabled
3561  */
3562 static __init void intel_ht_bug(void)
3563 {
3564 	x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
3565 
3566 	x86_pmu.start_scheduling = intel_start_scheduling;
3567 	x86_pmu.commit_scheduling = intel_commit_scheduling;
3568 	x86_pmu.stop_scheduling = intel_stop_scheduling;
3569 }
3570 
3571 EVENT_ATTR_STR(mem-loads,	mem_ld_hsw,	"event=0xcd,umask=0x1,ldlat=3");
3572 EVENT_ATTR_STR(mem-stores,	mem_st_hsw,	"event=0xd0,umask=0x82")
3573 
3574 /* Haswell special events */
3575 EVENT_ATTR_STR(tx-start,	tx_start,	"event=0xc9,umask=0x1");
3576 EVENT_ATTR_STR(tx-commit,	tx_commit,	"event=0xc9,umask=0x2");
3577 EVENT_ATTR_STR(tx-abort,	tx_abort,	"event=0xc9,umask=0x4");
3578 EVENT_ATTR_STR(tx-capacity,	tx_capacity,	"event=0x54,umask=0x2");
3579 EVENT_ATTR_STR(tx-conflict,	tx_conflict,	"event=0x54,umask=0x1");
3580 EVENT_ATTR_STR(el-start,	el_start,	"event=0xc8,umask=0x1");
3581 EVENT_ATTR_STR(el-commit,	el_commit,	"event=0xc8,umask=0x2");
3582 EVENT_ATTR_STR(el-abort,	el_abort,	"event=0xc8,umask=0x4");
3583 EVENT_ATTR_STR(el-capacity,	el_capacity,	"event=0x54,umask=0x2");
3584 EVENT_ATTR_STR(el-conflict,	el_conflict,	"event=0x54,umask=0x1");
3585 EVENT_ATTR_STR(cycles-t,	cycles_t,	"event=0x3c,in_tx=1");
3586 EVENT_ATTR_STR(cycles-ct,	cycles_ct,	"event=0x3c,in_tx=1,in_tx_cp=1");
3587 
3588 static struct attribute *hsw_events_attrs[] = {
3589 	EVENT_PTR(tx_start),
3590 	EVENT_PTR(tx_commit),
3591 	EVENT_PTR(tx_abort),
3592 	EVENT_PTR(tx_capacity),
3593 	EVENT_PTR(tx_conflict),
3594 	EVENT_PTR(el_start),
3595 	EVENT_PTR(el_commit),
3596 	EVENT_PTR(el_abort),
3597 	EVENT_PTR(el_capacity),
3598 	EVENT_PTR(el_conflict),
3599 	EVENT_PTR(cycles_t),
3600 	EVENT_PTR(cycles_ct),
3601 	EVENT_PTR(mem_ld_hsw),
3602 	EVENT_PTR(mem_st_hsw),
3603 	EVENT_PTR(td_slots_issued),
3604 	EVENT_PTR(td_slots_retired),
3605 	EVENT_PTR(td_fetch_bubbles),
3606 	EVENT_PTR(td_total_slots),
3607 	EVENT_PTR(td_total_slots_scale),
3608 	EVENT_PTR(td_recovery_bubbles),
3609 	EVENT_PTR(td_recovery_bubbles_scale),
3610 	NULL
3611 };
3612 
3613 static ssize_t freeze_on_smi_show(struct device *cdev,
3614 				  struct device_attribute *attr,
3615 				  char *buf)
3616 {
3617 	return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
3618 }
3619 
3620 static DEFINE_MUTEX(freeze_on_smi_mutex);
3621 
3622 static ssize_t freeze_on_smi_store(struct device *cdev,
3623 				   struct device_attribute *attr,
3624 				   const char *buf, size_t count)
3625 {
3626 	unsigned long val;
3627 	ssize_t ret;
3628 
3629 	ret = kstrtoul(buf, 0, &val);
3630 	if (ret)
3631 		return ret;
3632 
3633 	if (val > 1)
3634 		return -EINVAL;
3635 
3636 	mutex_lock(&freeze_on_smi_mutex);
3637 
3638 	if (x86_pmu.attr_freeze_on_smi == val)
3639 		goto done;
3640 
3641 	x86_pmu.attr_freeze_on_smi = val;
3642 
3643 	get_online_cpus();
3644 	on_each_cpu(flip_smm_bit, &val, 1);
3645 	put_online_cpus();
3646 done:
3647 	mutex_unlock(&freeze_on_smi_mutex);
3648 
3649 	return count;
3650 }
3651 
3652 static DEVICE_ATTR_RW(freeze_on_smi);
3653 
3654 static struct attribute *intel_pmu_attrs[] = {
3655 	&dev_attr_freeze_on_smi.attr,
3656 	NULL,
3657 };
3658 
3659 __init int intel_pmu_init(void)
3660 {
3661 	union cpuid10_edx edx;
3662 	union cpuid10_eax eax;
3663 	union cpuid10_ebx ebx;
3664 	struct event_constraint *c;
3665 	unsigned int unused;
3666 	struct extra_reg *er;
3667 	int version, i;
3668 
3669 	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
3670 		switch (boot_cpu_data.x86) {
3671 		case 0x6:
3672 			return p6_pmu_init();
3673 		case 0xb:
3674 			return knc_pmu_init();
3675 		case 0xf:
3676 			return p4_pmu_init();
3677 		}
3678 		return -ENODEV;
3679 	}
3680 
3681 	/*
3682 	 * Check whether the Architectural PerfMon supports
3683 	 * Branch Misses Retired hw_event or not.
3684 	 */
3685 	cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
3686 	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
3687 		return -ENODEV;
3688 
3689 	version = eax.split.version_id;
3690 	if (version < 2)
3691 		x86_pmu = core_pmu;
3692 	else
3693 		x86_pmu = intel_pmu;
3694 
3695 	x86_pmu.version			= version;
3696 	x86_pmu.num_counters		= eax.split.num_counters;
3697 	x86_pmu.cntval_bits		= eax.split.bit_width;
3698 	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
3699 
3700 	x86_pmu.events_maskl		= ebx.full;
3701 	x86_pmu.events_mask_len		= eax.split.mask_length;
3702 
3703 	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
3704 
3705 
3706 	x86_pmu.attrs			= intel_pmu_attrs;
3707 	/*
3708 	 * Quirk: v2 perfmon does not report fixed-purpose events, so
3709 	 * assume at least 3 events, when not running in a hypervisor:
3710 	 */
3711 	if (version > 1) {
3712 		int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
3713 
3714 		x86_pmu.num_counters_fixed =
3715 			max((int)edx.split.num_counters_fixed, assume);
3716 	}
3717 
3718 	if (boot_cpu_has(X86_FEATURE_PDCM)) {
3719 		u64 capabilities;
3720 
3721 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
3722 		x86_pmu.intel_cap.capabilities = capabilities;
3723 	}
3724 
3725 	intel_ds_init();
3726 
3727 	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
3728 
3729 	/*
3730 	 * Install the hw-cache-events table:
3731 	 */
3732 	switch (boot_cpu_data.x86_model) {
3733 	case INTEL_FAM6_CORE_YONAH:
3734 		pr_cont("Core events, ");
3735 		break;
3736 
3737 	case INTEL_FAM6_CORE2_MEROM:
3738 		x86_add_quirk(intel_clovertown_quirk);
3739 	case INTEL_FAM6_CORE2_MEROM_L:
3740 	case INTEL_FAM6_CORE2_PENRYN:
3741 	case INTEL_FAM6_CORE2_DUNNINGTON:
3742 		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
3743 		       sizeof(hw_cache_event_ids));
3744 
3745 		intel_pmu_lbr_init_core();
3746 
3747 		x86_pmu.event_constraints = intel_core2_event_constraints;
3748 		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
3749 		pr_cont("Core2 events, ");
3750 		break;
3751 
3752 	case INTEL_FAM6_NEHALEM:
3753 	case INTEL_FAM6_NEHALEM_EP:
3754 	case INTEL_FAM6_NEHALEM_EX:
3755 		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
3756 		       sizeof(hw_cache_event_ids));
3757 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3758 		       sizeof(hw_cache_extra_regs));
3759 
3760 		intel_pmu_lbr_init_nhm();
3761 
3762 		x86_pmu.event_constraints = intel_nehalem_event_constraints;
3763 		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
3764 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3765 		x86_pmu.extra_regs = intel_nehalem_extra_regs;
3766 
3767 		x86_pmu.cpu_events = nhm_events_attrs;
3768 
3769 		/* UOPS_ISSUED.STALLED_CYCLES */
3770 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3771 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3772 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3773 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3774 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3775 
3776 		intel_pmu_pebs_data_source_nhm();
3777 		x86_add_quirk(intel_nehalem_quirk);
3778 
3779 		pr_cont("Nehalem events, ");
3780 		break;
3781 
3782 	case INTEL_FAM6_ATOM_PINEVIEW:
3783 	case INTEL_FAM6_ATOM_LINCROFT:
3784 	case INTEL_FAM6_ATOM_PENWELL:
3785 	case INTEL_FAM6_ATOM_CLOVERVIEW:
3786 	case INTEL_FAM6_ATOM_CEDARVIEW:
3787 		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
3788 		       sizeof(hw_cache_event_ids));
3789 
3790 		intel_pmu_lbr_init_atom();
3791 
3792 		x86_pmu.event_constraints = intel_gen_event_constraints;
3793 		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
3794 		x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
3795 		pr_cont("Atom events, ");
3796 		break;
3797 
3798 	case INTEL_FAM6_ATOM_SILVERMONT1:
3799 	case INTEL_FAM6_ATOM_SILVERMONT2:
3800 	case INTEL_FAM6_ATOM_AIRMONT:
3801 		memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
3802 			sizeof(hw_cache_event_ids));
3803 		memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
3804 		       sizeof(hw_cache_extra_regs));
3805 
3806 		intel_pmu_lbr_init_slm();
3807 
3808 		x86_pmu.event_constraints = intel_slm_event_constraints;
3809 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
3810 		x86_pmu.extra_regs = intel_slm_extra_regs;
3811 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3812 		x86_pmu.cpu_events = slm_events_attrs;
3813 		pr_cont("Silvermont events, ");
3814 		break;
3815 
3816 	case INTEL_FAM6_ATOM_GOLDMONT:
3817 	case INTEL_FAM6_ATOM_DENVERTON:
3818 		memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
3819 		       sizeof(hw_cache_event_ids));
3820 		memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
3821 		       sizeof(hw_cache_extra_regs));
3822 
3823 		intel_pmu_lbr_init_skl();
3824 
3825 		x86_pmu.event_constraints = intel_slm_event_constraints;
3826 		x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
3827 		x86_pmu.extra_regs = intel_glm_extra_regs;
3828 		/*
3829 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
3830 		 * for precise cycles.
3831 		 * :pp is identical to :ppp
3832 		 */
3833 		x86_pmu.pebs_aliases = NULL;
3834 		x86_pmu.pebs_prec_dist = true;
3835 		x86_pmu.lbr_pt_coexist = true;
3836 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3837 		x86_pmu.cpu_events = glm_events_attrs;
3838 		pr_cont("Goldmont events, ");
3839 		break;
3840 
3841 	case INTEL_FAM6_WESTMERE:
3842 	case INTEL_FAM6_WESTMERE_EP:
3843 	case INTEL_FAM6_WESTMERE_EX:
3844 		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
3845 		       sizeof(hw_cache_event_ids));
3846 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3847 		       sizeof(hw_cache_extra_regs));
3848 
3849 		intel_pmu_lbr_init_nhm();
3850 
3851 		x86_pmu.event_constraints = intel_westmere_event_constraints;
3852 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3853 		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
3854 		x86_pmu.extra_regs = intel_westmere_extra_regs;
3855 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3856 
3857 		x86_pmu.cpu_events = nhm_events_attrs;
3858 
3859 		/* UOPS_ISSUED.STALLED_CYCLES */
3860 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3861 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3862 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3863 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3864 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3865 
3866 		intel_pmu_pebs_data_source_nhm();
3867 		pr_cont("Westmere events, ");
3868 		break;
3869 
3870 	case INTEL_FAM6_SANDYBRIDGE:
3871 	case INTEL_FAM6_SANDYBRIDGE_X:
3872 		x86_add_quirk(intel_sandybridge_quirk);
3873 		x86_add_quirk(intel_ht_bug);
3874 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3875 		       sizeof(hw_cache_event_ids));
3876 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3877 		       sizeof(hw_cache_extra_regs));
3878 
3879 		intel_pmu_lbr_init_snb();
3880 
3881 		x86_pmu.event_constraints = intel_snb_event_constraints;
3882 		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
3883 		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3884 		if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
3885 			x86_pmu.extra_regs = intel_snbep_extra_regs;
3886 		else
3887 			x86_pmu.extra_regs = intel_snb_extra_regs;
3888 
3889 
3890 		/* all extra regs are per-cpu when HT is on */
3891 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3892 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3893 
3894 		x86_pmu.cpu_events = snb_events_attrs;
3895 
3896 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3897 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3898 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3899 		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
3900 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3901 			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
3902 
3903 		pr_cont("SandyBridge events, ");
3904 		break;
3905 
3906 	case INTEL_FAM6_IVYBRIDGE:
3907 	case INTEL_FAM6_IVYBRIDGE_X:
3908 		x86_add_quirk(intel_ht_bug);
3909 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3910 		       sizeof(hw_cache_event_ids));
3911 		/* dTLB-load-misses on IVB is different than SNB */
3912 		hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
3913 
3914 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3915 		       sizeof(hw_cache_extra_regs));
3916 
3917 		intel_pmu_lbr_init_snb();
3918 
3919 		x86_pmu.event_constraints = intel_ivb_event_constraints;
3920 		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
3921 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
3922 		x86_pmu.pebs_prec_dist = true;
3923 		if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
3924 			x86_pmu.extra_regs = intel_snbep_extra_regs;
3925 		else
3926 			x86_pmu.extra_regs = intel_snb_extra_regs;
3927 		/* all extra regs are per-cpu when HT is on */
3928 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3929 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3930 
3931 		x86_pmu.cpu_events = snb_events_attrs;
3932 
3933 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3934 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3935 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3936 
3937 		pr_cont("IvyBridge events, ");
3938 		break;
3939 
3940 
3941 	case INTEL_FAM6_HASWELL_CORE:
3942 	case INTEL_FAM6_HASWELL_X:
3943 	case INTEL_FAM6_HASWELL_ULT:
3944 	case INTEL_FAM6_HASWELL_GT3E:
3945 		x86_add_quirk(intel_ht_bug);
3946 		x86_pmu.late_ack = true;
3947 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3948 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3949 
3950 		intel_pmu_lbr_init_hsw();
3951 
3952 		x86_pmu.event_constraints = intel_hsw_event_constraints;
3953 		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
3954 		x86_pmu.extra_regs = intel_snbep_extra_regs;
3955 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
3956 		x86_pmu.pebs_prec_dist = true;
3957 		/* all extra regs are per-cpu when HT is on */
3958 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3959 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3960 
3961 		x86_pmu.hw_config = hsw_hw_config;
3962 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
3963 		x86_pmu.cpu_events = hsw_events_attrs;
3964 		x86_pmu.lbr_double_abort = true;
3965 		pr_cont("Haswell events, ");
3966 		break;
3967 
3968 	case INTEL_FAM6_BROADWELL_CORE:
3969 	case INTEL_FAM6_BROADWELL_XEON_D:
3970 	case INTEL_FAM6_BROADWELL_GT3E:
3971 	case INTEL_FAM6_BROADWELL_X:
3972 		x86_pmu.late_ack = true;
3973 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3974 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3975 
3976 		/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
3977 		hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
3978 									 BDW_L3_MISS|HSW_SNOOP_DRAM;
3979 		hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
3980 									  HSW_SNOOP_DRAM;
3981 		hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
3982 									     BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3983 		hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
3984 									      BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3985 
3986 		intel_pmu_lbr_init_hsw();
3987 
3988 		x86_pmu.event_constraints = intel_bdw_event_constraints;
3989 		x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
3990 		x86_pmu.extra_regs = intel_snbep_extra_regs;
3991 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
3992 		x86_pmu.pebs_prec_dist = true;
3993 		/* all extra regs are per-cpu when HT is on */
3994 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3995 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3996 
3997 		x86_pmu.hw_config = hsw_hw_config;
3998 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
3999 		x86_pmu.cpu_events = hsw_events_attrs;
4000 		x86_pmu.limit_period = bdw_limit_period;
4001 		pr_cont("Broadwell events, ");
4002 		break;
4003 
4004 	case INTEL_FAM6_XEON_PHI_KNL:
4005 	case INTEL_FAM6_XEON_PHI_KNM:
4006 		memcpy(hw_cache_event_ids,
4007 		       slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4008 		memcpy(hw_cache_extra_regs,
4009 		       knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4010 		intel_pmu_lbr_init_knl();
4011 
4012 		x86_pmu.event_constraints = intel_slm_event_constraints;
4013 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4014 		x86_pmu.extra_regs = intel_knl_extra_regs;
4015 
4016 		/* all extra regs are per-cpu when HT is on */
4017 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4018 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4019 
4020 		pr_cont("Knights Landing/Mill events, ");
4021 		break;
4022 
4023 	case INTEL_FAM6_SKYLAKE_MOBILE:
4024 	case INTEL_FAM6_SKYLAKE_DESKTOP:
4025 	case INTEL_FAM6_SKYLAKE_X:
4026 	case INTEL_FAM6_KABYLAKE_MOBILE:
4027 	case INTEL_FAM6_KABYLAKE_DESKTOP:
4028 		x86_pmu.late_ack = true;
4029 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4030 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4031 		intel_pmu_lbr_init_skl();
4032 
4033 		/* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
4034 		event_attr_td_recovery_bubbles.event_str_noht =
4035 			"event=0xd,umask=0x1,cmask=1";
4036 		event_attr_td_recovery_bubbles.event_str_ht =
4037 			"event=0xd,umask=0x1,cmask=1,any=1";
4038 
4039 		x86_pmu.event_constraints = intel_skl_event_constraints;
4040 		x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
4041 		x86_pmu.extra_regs = intel_skl_extra_regs;
4042 		x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
4043 		x86_pmu.pebs_prec_dist = true;
4044 		/* all extra regs are per-cpu when HT is on */
4045 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4046 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4047 
4048 		x86_pmu.hw_config = hsw_hw_config;
4049 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
4050 		x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr,
4051 						  skl_format_attr);
4052 		WARN_ON(!x86_pmu.format_attrs);
4053 		x86_pmu.cpu_events = hsw_events_attrs;
4054 		pr_cont("Skylake events, ");
4055 		break;
4056 
4057 	default:
4058 		switch (x86_pmu.version) {
4059 		case 1:
4060 			x86_pmu.event_constraints = intel_v1_event_constraints;
4061 			pr_cont("generic architected perfmon v1, ");
4062 			break;
4063 		default:
4064 			/*
4065 			 * default constraints for v2 and up
4066 			 */
4067 			x86_pmu.event_constraints = intel_gen_event_constraints;
4068 			pr_cont("generic architected perfmon, ");
4069 			break;
4070 		}
4071 	}
4072 
4073 	if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
4074 		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
4075 		     x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
4076 		x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
4077 	}
4078 	x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1;
4079 
4080 	if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
4081 		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
4082 		     x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
4083 		x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
4084 	}
4085 
4086 	x86_pmu.intel_ctrl |=
4087 		((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
4088 
4089 	if (x86_pmu.event_constraints) {
4090 		/*
4091 		 * event on fixed counter2 (REF_CYCLES) only works on this
4092 		 * counter, so do not extend mask to generic counters
4093 		 */
4094 		for_each_event_constraint(c, x86_pmu.event_constraints) {
4095 			if (c->cmask == FIXED_EVENT_FLAGS
4096 			    && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
4097 				c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
4098 			}
4099 			c->idxmsk64 &=
4100 				~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
4101 			c->weight = hweight64(c->idxmsk64);
4102 		}
4103 	}
4104 
4105 	/*
4106 	 * Access LBR MSR may cause #GP under certain circumstances.
4107 	 * E.g. KVM doesn't support LBR MSR
4108 	 * Check all LBT MSR here.
4109 	 * Disable LBR access if any LBR MSRs can not be accessed.
4110 	 */
4111 	if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
4112 		x86_pmu.lbr_nr = 0;
4113 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
4114 		if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
4115 		      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
4116 			x86_pmu.lbr_nr = 0;
4117 	}
4118 
4119 	if (x86_pmu.lbr_nr)
4120 		pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
4121 	/*
4122 	 * Access extra MSR may cause #GP under certain circumstances.
4123 	 * E.g. KVM doesn't support offcore event
4124 	 * Check all extra_regs here.
4125 	 */
4126 	if (x86_pmu.extra_regs) {
4127 		for (er = x86_pmu.extra_regs; er->msr; er++) {
4128 			er->extra_msr_access = check_msr(er->msr, 0x11UL);
4129 			/* Disable LBR select mapping */
4130 			if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
4131 				x86_pmu.lbr_sel_map = NULL;
4132 		}
4133 	}
4134 
4135 	/* Support full width counters using alternative MSR range */
4136 	if (x86_pmu.intel_cap.full_width_write) {
4137 		x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
4138 		x86_pmu.perfctr = MSR_IA32_PMC0;
4139 		pr_cont("full-width counters, ");
4140 	}
4141 
4142 	return 0;
4143 }
4144 
4145 /*
4146  * HT bug: phase 2 init
4147  * Called once we have valid topology information to check
4148  * whether or not HT is enabled
4149  * If HT is off, then we disable the workaround
4150  */
4151 static __init int fixup_ht_bug(void)
4152 {
4153 	int c;
4154 	/*
4155 	 * problem not present on this CPU model, nothing to do
4156 	 */
4157 	if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
4158 		return 0;
4159 
4160 	if (topology_max_smt_threads() > 1) {
4161 		pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
4162 		return 0;
4163 	}
4164 
4165 	if (lockup_detector_suspend() != 0) {
4166 		pr_debug("failed to disable PMU erratum BJ122, BV98, HSD29 workaround\n");
4167 		return 0;
4168 	}
4169 
4170 	x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
4171 
4172 	x86_pmu.start_scheduling = NULL;
4173 	x86_pmu.commit_scheduling = NULL;
4174 	x86_pmu.stop_scheduling = NULL;
4175 
4176 	lockup_detector_resume();
4177 
4178 	cpus_read_lock();
4179 
4180 	for_each_online_cpu(c)
4181 		free_excl_cntrs(c);
4182 
4183 	cpus_read_unlock();
4184 	pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
4185 	return 0;
4186 }
4187 subsys_initcall(fixup_ht_bug)
4188