xref: /openbmc/linux/arch/x86/events/intel/core.c (revision 36fe4655)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Per core/cpu state
4  *
5  * Used to coordinate shared registers between HT threads or
6  * among events on a single PMU.
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
17 
18 #include <asm/cpufeature.h>
19 #include <asm/hardirq.h>
20 #include <asm/intel-family.h>
21 #include <asm/intel_pt.h>
22 #include <asm/apic.h>
23 #include <asm/cpu_device_id.h>
24 
25 #include "../perf_event.h"
26 
27 /*
28  * Intel PerfMon, used on Core and later.
29  */
30 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
31 {
32 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
33 	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
34 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
35 	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
36 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
37 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
38 	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
39 	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
40 };
41 
42 static struct event_constraint intel_core_event_constraints[] __read_mostly =
43 {
44 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
45 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
46 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
47 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
48 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
49 	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
50 	EVENT_CONSTRAINT_END
51 };
52 
53 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
54 {
55 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
56 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
57 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
58 	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
59 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
60 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
61 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
62 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
63 	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
64 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
65 	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
66 	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
67 	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
68 	EVENT_CONSTRAINT_END
69 };
70 
71 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
72 {
73 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
74 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
75 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
76 	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
77 	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
78 	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
79 	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
80 	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
81 	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
82 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
83 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
84 	EVENT_CONSTRAINT_END
85 };
86 
87 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
88 {
89 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
90 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
91 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
92 	EVENT_EXTRA_END
93 };
94 
95 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
96 {
97 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
98 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
99 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
100 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
101 	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
102 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
103 	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
104 	EVENT_CONSTRAINT_END
105 };
106 
107 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
108 {
109 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
110 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
111 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
112 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
113 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
114 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
115 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
116 	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
117 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
118 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
119 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
120 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
121 
122 	/*
123 	 * When HT is off these events can only run on the bottom 4 counters
124 	 * When HT is on, they are impacted by the HT bug and require EXCL access
125 	 */
126 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
127 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
128 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
129 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
130 
131 	EVENT_CONSTRAINT_END
132 };
133 
134 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
135 {
136 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
137 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
138 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
139 	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
140 	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
141 	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
142 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
143 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
144 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
145 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
146 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
147 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
148 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
149 
150 	/*
151 	 * When HT is off these events can only run on the bottom 4 counters
152 	 * When HT is on, they are impacted by the HT bug and require EXCL access
153 	 */
154 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
155 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
156 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
157 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
158 
159 	EVENT_CONSTRAINT_END
160 };
161 
162 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
163 {
164 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
165 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
166 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
167 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
168 	EVENT_EXTRA_END
169 };
170 
171 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
172 {
173 	EVENT_CONSTRAINT_END
174 };
175 
176 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
177 {
178 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
179 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
180 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
181 	EVENT_CONSTRAINT_END
182 };
183 
184 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
185 {
186 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
187 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
188 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
189 	EVENT_CONSTRAINT_END
190 };
191 
192 static struct event_constraint intel_skl_event_constraints[] = {
193 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
194 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
195 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
196 	INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
197 
198 	/*
199 	 * when HT is off, these can only run on the bottom 4 counters
200 	 */
201 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
202 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
203 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
204 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
205 	INTEL_EVENT_CONSTRAINT(0xc6, 0xf),	/* FRONTEND_RETIRED.* */
206 
207 	EVENT_CONSTRAINT_END
208 };
209 
210 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
211 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
212 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
213 	EVENT_EXTRA_END
214 };
215 
216 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
217 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
218 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
219 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
220 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
221 	EVENT_EXTRA_END
222 };
223 
224 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
225 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
226 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
227 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
228 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
229 	EVENT_EXTRA_END
230 };
231 
232 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
233 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
234 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
235 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
236 	/*
237 	 * Note the low 8 bits eventsel code is not a continuous field, containing
238 	 * some #GPing bits. These are masked out.
239 	 */
240 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
241 	EVENT_EXTRA_END
242 };
243 
244 static struct event_constraint intel_icl_event_constraints[] = {
245 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
246 	FIXED_EVENT_CONSTRAINT(0x01c0, 0),	/* INST_RETIRED.PREC_DIST */
247 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
248 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
249 	FIXED_EVENT_CONSTRAINT(0x0400, 3),	/* SLOTS */
250 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
251 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
252 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
253 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
254 	INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
255 	INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
256 	INTEL_EVENT_CONSTRAINT(0x32, 0xf),	/* SW_PREFETCH_ACCESS.* */
257 	INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x54, 0xf),
258 	INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
259 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_TOTAL */
260 	INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff),  /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
261 	INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
262 	INTEL_EVENT_CONSTRAINT(0xa3, 0xf),      /* CYCLE_ACTIVITY.* */
263 	INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
264 	INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
265 	INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
266 	INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
267 	EVENT_CONSTRAINT_END
268 };
269 
270 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
271 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
272 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
273 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
274 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
275 	EVENT_EXTRA_END
276 };
277 
278 EVENT_ATTR_STR(mem-loads,	mem_ld_nhm,	"event=0x0b,umask=0x10,ldlat=3");
279 EVENT_ATTR_STR(mem-loads,	mem_ld_snb,	"event=0xcd,umask=0x1,ldlat=3");
280 EVENT_ATTR_STR(mem-stores,	mem_st_snb,	"event=0xcd,umask=0x2");
281 
282 static struct attribute *nhm_mem_events_attrs[] = {
283 	EVENT_PTR(mem_ld_nhm),
284 	NULL,
285 };
286 
287 /*
288  * topdown events for Intel Core CPUs.
289  *
290  * The events are all in slots, which is a free slot in a 4 wide
291  * pipeline. Some events are already reported in slots, for cycle
292  * events we multiply by the pipeline width (4).
293  *
294  * With Hyper Threading on, topdown metrics are either summed or averaged
295  * between the threads of a core: (count_t0 + count_t1).
296  *
297  * For the average case the metric is always scaled to pipeline width,
298  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
299  */
300 
301 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
302 	"event=0x3c,umask=0x0",			/* cpu_clk_unhalted.thread */
303 	"event=0x3c,umask=0x0,any=1");		/* cpu_clk_unhalted.thread_any */
304 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
305 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
306 	"event=0xe,umask=0x1");			/* uops_issued.any */
307 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
308 	"event=0xc2,umask=0x2");		/* uops_retired.retire_slots */
309 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
310 	"event=0x9c,umask=0x1");		/* idq_uops_not_delivered_core */
311 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
312 	"event=0xd,umask=0x3,cmask=1",		/* int_misc.recovery_cycles */
313 	"event=0xd,umask=0x3,cmask=1,any=1");	/* int_misc.recovery_cycles_any */
314 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
315 	"4", "2");
316 
317 EVENT_ATTR_STR(slots,			slots,		"event=0x00,umask=0x4");
318 EVENT_ATTR_STR(topdown-retiring,	td_retiring,	"event=0x00,umask=0x80");
319 EVENT_ATTR_STR(topdown-bad-spec,	td_bad_spec,	"event=0x00,umask=0x81");
320 EVENT_ATTR_STR(topdown-fe-bound,	td_fe_bound,	"event=0x00,umask=0x82");
321 EVENT_ATTR_STR(topdown-be-bound,	td_be_bound,	"event=0x00,umask=0x83");
322 
323 static struct attribute *snb_events_attrs[] = {
324 	EVENT_PTR(td_slots_issued),
325 	EVENT_PTR(td_slots_retired),
326 	EVENT_PTR(td_fetch_bubbles),
327 	EVENT_PTR(td_total_slots),
328 	EVENT_PTR(td_total_slots_scale),
329 	EVENT_PTR(td_recovery_bubbles),
330 	EVENT_PTR(td_recovery_bubbles_scale),
331 	NULL,
332 };
333 
334 static struct attribute *snb_mem_events_attrs[] = {
335 	EVENT_PTR(mem_ld_snb),
336 	EVENT_PTR(mem_st_snb),
337 	NULL,
338 };
339 
340 static struct event_constraint intel_hsw_event_constraints[] = {
341 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
342 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
343 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
344 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
345 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
346 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
347 	/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
348 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
349 	/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
350 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
351 	/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
352 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
353 
354 	/*
355 	 * When HT is off these events can only run on the bottom 4 counters
356 	 * When HT is on, they are impacted by the HT bug and require EXCL access
357 	 */
358 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
359 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
360 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
361 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
362 
363 	EVENT_CONSTRAINT_END
364 };
365 
366 static struct event_constraint intel_bdw_event_constraints[] = {
367 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
368 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
369 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
370 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
371 	INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),	/* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
372 	/*
373 	 * when HT is off, these can only run on the bottom 4 counters
374 	 */
375 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
376 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
377 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
378 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
379 	EVENT_CONSTRAINT_END
380 };
381 
382 static u64 intel_pmu_event_map(int hw_event)
383 {
384 	return intel_perfmon_event_map[hw_event];
385 }
386 
387 /*
388  * Notes on the events:
389  * - data reads do not include code reads (comparable to earlier tables)
390  * - data counts include speculative execution (except L1 write, dtlb, bpu)
391  * - remote node access includes remote memory, remote cache, remote mmio.
392  * - prefetches are not included in the counts.
393  * - icache miss does not include decoded icache
394  */
395 
396 #define SKL_DEMAND_DATA_RD		BIT_ULL(0)
397 #define SKL_DEMAND_RFO			BIT_ULL(1)
398 #define SKL_ANY_RESPONSE		BIT_ULL(16)
399 #define SKL_SUPPLIER_NONE		BIT_ULL(17)
400 #define SKL_L3_MISS_LOCAL_DRAM		BIT_ULL(26)
401 #define SKL_L3_MISS_REMOTE_HOP0_DRAM	BIT_ULL(27)
402 #define SKL_L3_MISS_REMOTE_HOP1_DRAM	BIT_ULL(28)
403 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM	BIT_ULL(29)
404 #define SKL_L3_MISS			(SKL_L3_MISS_LOCAL_DRAM| \
405 					 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
406 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
407 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
408 #define SKL_SPL_HIT			BIT_ULL(30)
409 #define SKL_SNOOP_NONE			BIT_ULL(31)
410 #define SKL_SNOOP_NOT_NEEDED		BIT_ULL(32)
411 #define SKL_SNOOP_MISS			BIT_ULL(33)
412 #define SKL_SNOOP_HIT_NO_FWD		BIT_ULL(34)
413 #define SKL_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
414 #define SKL_SNOOP_HITM			BIT_ULL(36)
415 #define SKL_SNOOP_NON_DRAM		BIT_ULL(37)
416 #define SKL_ANY_SNOOP			(SKL_SPL_HIT|SKL_SNOOP_NONE| \
417 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
418 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
419 					 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
420 #define SKL_DEMAND_READ			SKL_DEMAND_DATA_RD
421 #define SKL_SNOOP_DRAM			(SKL_SNOOP_NONE| \
422 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
423 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
424 					 SKL_SNOOP_HITM|SKL_SPL_HIT)
425 #define SKL_DEMAND_WRITE		SKL_DEMAND_RFO
426 #define SKL_LLC_ACCESS			SKL_ANY_RESPONSE
427 #define SKL_L3_MISS_REMOTE		(SKL_L3_MISS_REMOTE_HOP0_DRAM| \
428 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
429 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
430 
431 static __initconst const u64 skl_hw_cache_event_ids
432 				[PERF_COUNT_HW_CACHE_MAX]
433 				[PERF_COUNT_HW_CACHE_OP_MAX]
434 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
435 {
436  [ C(L1D ) ] = {
437 	[ C(OP_READ) ] = {
438 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
439 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
440 	},
441 	[ C(OP_WRITE) ] = {
442 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
443 		[ C(RESULT_MISS)   ] = 0x0,
444 	},
445 	[ C(OP_PREFETCH) ] = {
446 		[ C(RESULT_ACCESS) ] = 0x0,
447 		[ C(RESULT_MISS)   ] = 0x0,
448 	},
449  },
450  [ C(L1I ) ] = {
451 	[ C(OP_READ) ] = {
452 		[ C(RESULT_ACCESS) ] = 0x0,
453 		[ C(RESULT_MISS)   ] = 0x283,	/* ICACHE_64B.MISS */
454 	},
455 	[ C(OP_WRITE) ] = {
456 		[ C(RESULT_ACCESS) ] = -1,
457 		[ C(RESULT_MISS)   ] = -1,
458 	},
459 	[ C(OP_PREFETCH) ] = {
460 		[ C(RESULT_ACCESS) ] = 0x0,
461 		[ C(RESULT_MISS)   ] = 0x0,
462 	},
463  },
464  [ C(LL  ) ] = {
465 	[ C(OP_READ) ] = {
466 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
467 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
468 	},
469 	[ C(OP_WRITE) ] = {
470 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
471 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
472 	},
473 	[ C(OP_PREFETCH) ] = {
474 		[ C(RESULT_ACCESS) ] = 0x0,
475 		[ C(RESULT_MISS)   ] = 0x0,
476 	},
477  },
478  [ C(DTLB) ] = {
479 	[ C(OP_READ) ] = {
480 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
481 		[ C(RESULT_MISS)   ] = 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
482 	},
483 	[ C(OP_WRITE) ] = {
484 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
485 		[ C(RESULT_MISS)   ] = 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
486 	},
487 	[ C(OP_PREFETCH) ] = {
488 		[ C(RESULT_ACCESS) ] = 0x0,
489 		[ C(RESULT_MISS)   ] = 0x0,
490 	},
491  },
492  [ C(ITLB) ] = {
493 	[ C(OP_READ) ] = {
494 		[ C(RESULT_ACCESS) ] = 0x2085,	/* ITLB_MISSES.STLB_HIT */
495 		[ C(RESULT_MISS)   ] = 0xe85,	/* ITLB_MISSES.WALK_COMPLETED */
496 	},
497 	[ C(OP_WRITE) ] = {
498 		[ C(RESULT_ACCESS) ] = -1,
499 		[ C(RESULT_MISS)   ] = -1,
500 	},
501 	[ C(OP_PREFETCH) ] = {
502 		[ C(RESULT_ACCESS) ] = -1,
503 		[ C(RESULT_MISS)   ] = -1,
504 	},
505  },
506  [ C(BPU ) ] = {
507 	[ C(OP_READ) ] = {
508 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
509 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
510 	},
511 	[ C(OP_WRITE) ] = {
512 		[ C(RESULT_ACCESS) ] = -1,
513 		[ C(RESULT_MISS)   ] = -1,
514 	},
515 	[ C(OP_PREFETCH) ] = {
516 		[ C(RESULT_ACCESS) ] = -1,
517 		[ C(RESULT_MISS)   ] = -1,
518 	},
519  },
520  [ C(NODE) ] = {
521 	[ C(OP_READ) ] = {
522 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
523 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
524 	},
525 	[ C(OP_WRITE) ] = {
526 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
527 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
528 	},
529 	[ C(OP_PREFETCH) ] = {
530 		[ C(RESULT_ACCESS) ] = 0x0,
531 		[ C(RESULT_MISS)   ] = 0x0,
532 	},
533  },
534 };
535 
536 static __initconst const u64 skl_hw_cache_extra_regs
537 				[PERF_COUNT_HW_CACHE_MAX]
538 				[PERF_COUNT_HW_CACHE_OP_MAX]
539 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
540 {
541  [ C(LL  ) ] = {
542 	[ C(OP_READ) ] = {
543 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
544 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
545 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
546 				       SKL_L3_MISS|SKL_ANY_SNOOP|
547 				       SKL_SUPPLIER_NONE,
548 	},
549 	[ C(OP_WRITE) ] = {
550 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
551 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
552 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
553 				       SKL_L3_MISS|SKL_ANY_SNOOP|
554 				       SKL_SUPPLIER_NONE,
555 	},
556 	[ C(OP_PREFETCH) ] = {
557 		[ C(RESULT_ACCESS) ] = 0x0,
558 		[ C(RESULT_MISS)   ] = 0x0,
559 	},
560  },
561  [ C(NODE) ] = {
562 	[ C(OP_READ) ] = {
563 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
564 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
565 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
566 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
567 	},
568 	[ C(OP_WRITE) ] = {
569 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
570 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
571 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
572 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
573 	},
574 	[ C(OP_PREFETCH) ] = {
575 		[ C(RESULT_ACCESS) ] = 0x0,
576 		[ C(RESULT_MISS)   ] = 0x0,
577 	},
578  },
579 };
580 
581 #define SNB_DMND_DATA_RD	(1ULL << 0)
582 #define SNB_DMND_RFO		(1ULL << 1)
583 #define SNB_DMND_IFETCH		(1ULL << 2)
584 #define SNB_DMND_WB		(1ULL << 3)
585 #define SNB_PF_DATA_RD		(1ULL << 4)
586 #define SNB_PF_RFO		(1ULL << 5)
587 #define SNB_PF_IFETCH		(1ULL << 6)
588 #define SNB_LLC_DATA_RD		(1ULL << 7)
589 #define SNB_LLC_RFO		(1ULL << 8)
590 #define SNB_LLC_IFETCH		(1ULL << 9)
591 #define SNB_BUS_LOCKS		(1ULL << 10)
592 #define SNB_STRM_ST		(1ULL << 11)
593 #define SNB_OTHER		(1ULL << 15)
594 #define SNB_RESP_ANY		(1ULL << 16)
595 #define SNB_NO_SUPP		(1ULL << 17)
596 #define SNB_LLC_HITM		(1ULL << 18)
597 #define SNB_LLC_HITE		(1ULL << 19)
598 #define SNB_LLC_HITS		(1ULL << 20)
599 #define SNB_LLC_HITF		(1ULL << 21)
600 #define SNB_LOCAL		(1ULL << 22)
601 #define SNB_REMOTE		(0xffULL << 23)
602 #define SNB_SNP_NONE		(1ULL << 31)
603 #define SNB_SNP_NOT_NEEDED	(1ULL << 32)
604 #define SNB_SNP_MISS		(1ULL << 33)
605 #define SNB_NO_FWD		(1ULL << 34)
606 #define SNB_SNP_FWD		(1ULL << 35)
607 #define SNB_HITM		(1ULL << 36)
608 #define SNB_NON_DRAM		(1ULL << 37)
609 
610 #define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
611 #define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
612 #define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
613 
614 #define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
615 				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
616 				 SNB_HITM)
617 
618 #define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
619 #define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)
620 
621 #define SNB_L3_ACCESS		SNB_RESP_ANY
622 #define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)
623 
624 static __initconst const u64 snb_hw_cache_extra_regs
625 				[PERF_COUNT_HW_CACHE_MAX]
626 				[PERF_COUNT_HW_CACHE_OP_MAX]
627 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
628 {
629  [ C(LL  ) ] = {
630 	[ C(OP_READ) ] = {
631 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
632 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
633 	},
634 	[ C(OP_WRITE) ] = {
635 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
636 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
637 	},
638 	[ C(OP_PREFETCH) ] = {
639 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
640 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
641 	},
642  },
643  [ C(NODE) ] = {
644 	[ C(OP_READ) ] = {
645 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
646 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
647 	},
648 	[ C(OP_WRITE) ] = {
649 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
650 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
651 	},
652 	[ C(OP_PREFETCH) ] = {
653 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
654 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
655 	},
656  },
657 };
658 
659 static __initconst const u64 snb_hw_cache_event_ids
660 				[PERF_COUNT_HW_CACHE_MAX]
661 				[PERF_COUNT_HW_CACHE_OP_MAX]
662 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
663 {
664  [ C(L1D) ] = {
665 	[ C(OP_READ) ] = {
666 		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
667 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
668 	},
669 	[ C(OP_WRITE) ] = {
670 		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
671 		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
672 	},
673 	[ C(OP_PREFETCH) ] = {
674 		[ C(RESULT_ACCESS) ] = 0x0,
675 		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
676 	},
677  },
678  [ C(L1I ) ] = {
679 	[ C(OP_READ) ] = {
680 		[ C(RESULT_ACCESS) ] = 0x0,
681 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
682 	},
683 	[ C(OP_WRITE) ] = {
684 		[ C(RESULT_ACCESS) ] = -1,
685 		[ C(RESULT_MISS)   ] = -1,
686 	},
687 	[ C(OP_PREFETCH) ] = {
688 		[ C(RESULT_ACCESS) ] = 0x0,
689 		[ C(RESULT_MISS)   ] = 0x0,
690 	},
691  },
692  [ C(LL  ) ] = {
693 	[ C(OP_READ) ] = {
694 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
695 		[ C(RESULT_ACCESS) ] = 0x01b7,
696 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
697 		[ C(RESULT_MISS)   ] = 0x01b7,
698 	},
699 	[ C(OP_WRITE) ] = {
700 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
701 		[ C(RESULT_ACCESS) ] = 0x01b7,
702 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
703 		[ C(RESULT_MISS)   ] = 0x01b7,
704 	},
705 	[ C(OP_PREFETCH) ] = {
706 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
707 		[ C(RESULT_ACCESS) ] = 0x01b7,
708 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
709 		[ C(RESULT_MISS)   ] = 0x01b7,
710 	},
711  },
712  [ C(DTLB) ] = {
713 	[ C(OP_READ) ] = {
714 		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
715 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
716 	},
717 	[ C(OP_WRITE) ] = {
718 		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
719 		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
720 	},
721 	[ C(OP_PREFETCH) ] = {
722 		[ C(RESULT_ACCESS) ] = 0x0,
723 		[ C(RESULT_MISS)   ] = 0x0,
724 	},
725  },
726  [ C(ITLB) ] = {
727 	[ C(OP_READ) ] = {
728 		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
729 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
730 	},
731 	[ C(OP_WRITE) ] = {
732 		[ C(RESULT_ACCESS) ] = -1,
733 		[ C(RESULT_MISS)   ] = -1,
734 	},
735 	[ C(OP_PREFETCH) ] = {
736 		[ C(RESULT_ACCESS) ] = -1,
737 		[ C(RESULT_MISS)   ] = -1,
738 	},
739  },
740  [ C(BPU ) ] = {
741 	[ C(OP_READ) ] = {
742 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
743 		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
744 	},
745 	[ C(OP_WRITE) ] = {
746 		[ C(RESULT_ACCESS) ] = -1,
747 		[ C(RESULT_MISS)   ] = -1,
748 	},
749 	[ C(OP_PREFETCH) ] = {
750 		[ C(RESULT_ACCESS) ] = -1,
751 		[ C(RESULT_MISS)   ] = -1,
752 	},
753  },
754  [ C(NODE) ] = {
755 	[ C(OP_READ) ] = {
756 		[ C(RESULT_ACCESS) ] = 0x01b7,
757 		[ C(RESULT_MISS)   ] = 0x01b7,
758 	},
759 	[ C(OP_WRITE) ] = {
760 		[ C(RESULT_ACCESS) ] = 0x01b7,
761 		[ C(RESULT_MISS)   ] = 0x01b7,
762 	},
763 	[ C(OP_PREFETCH) ] = {
764 		[ C(RESULT_ACCESS) ] = 0x01b7,
765 		[ C(RESULT_MISS)   ] = 0x01b7,
766 	},
767  },
768 
769 };
770 
771 /*
772  * Notes on the events:
773  * - data reads do not include code reads (comparable to earlier tables)
774  * - data counts include speculative execution (except L1 write, dtlb, bpu)
775  * - remote node access includes remote memory, remote cache, remote mmio.
776  * - prefetches are not included in the counts because they are not
777  *   reliably counted.
778  */
779 
780 #define HSW_DEMAND_DATA_RD		BIT_ULL(0)
781 #define HSW_DEMAND_RFO			BIT_ULL(1)
782 #define HSW_ANY_RESPONSE		BIT_ULL(16)
783 #define HSW_SUPPLIER_NONE		BIT_ULL(17)
784 #define HSW_L3_MISS_LOCAL_DRAM		BIT_ULL(22)
785 #define HSW_L3_MISS_REMOTE_HOP0		BIT_ULL(27)
786 #define HSW_L3_MISS_REMOTE_HOP1		BIT_ULL(28)
787 #define HSW_L3_MISS_REMOTE_HOP2P	BIT_ULL(29)
788 #define HSW_L3_MISS			(HSW_L3_MISS_LOCAL_DRAM| \
789 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
790 					 HSW_L3_MISS_REMOTE_HOP2P)
791 #define HSW_SNOOP_NONE			BIT_ULL(31)
792 #define HSW_SNOOP_NOT_NEEDED		BIT_ULL(32)
793 #define HSW_SNOOP_MISS			BIT_ULL(33)
794 #define HSW_SNOOP_HIT_NO_FWD		BIT_ULL(34)
795 #define HSW_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
796 #define HSW_SNOOP_HITM			BIT_ULL(36)
797 #define HSW_SNOOP_NON_DRAM		BIT_ULL(37)
798 #define HSW_ANY_SNOOP			(HSW_SNOOP_NONE| \
799 					 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
800 					 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
801 					 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
802 #define HSW_SNOOP_DRAM			(HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
803 #define HSW_DEMAND_READ			HSW_DEMAND_DATA_RD
804 #define HSW_DEMAND_WRITE		HSW_DEMAND_RFO
805 #define HSW_L3_MISS_REMOTE		(HSW_L3_MISS_REMOTE_HOP0|\
806 					 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
807 #define HSW_LLC_ACCESS			HSW_ANY_RESPONSE
808 
809 #define BDW_L3_MISS_LOCAL		BIT(26)
810 #define BDW_L3_MISS			(BDW_L3_MISS_LOCAL| \
811 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
812 					 HSW_L3_MISS_REMOTE_HOP2P)
813 
814 
815 static __initconst const u64 hsw_hw_cache_event_ids
816 				[PERF_COUNT_HW_CACHE_MAX]
817 				[PERF_COUNT_HW_CACHE_OP_MAX]
818 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
819 {
820  [ C(L1D ) ] = {
821 	[ C(OP_READ) ] = {
822 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
823 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
824 	},
825 	[ C(OP_WRITE) ] = {
826 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
827 		[ C(RESULT_MISS)   ] = 0x0,
828 	},
829 	[ C(OP_PREFETCH) ] = {
830 		[ C(RESULT_ACCESS) ] = 0x0,
831 		[ C(RESULT_MISS)   ] = 0x0,
832 	},
833  },
834  [ C(L1I ) ] = {
835 	[ C(OP_READ) ] = {
836 		[ C(RESULT_ACCESS) ] = 0x0,
837 		[ C(RESULT_MISS)   ] = 0x280,	/* ICACHE.MISSES */
838 	},
839 	[ C(OP_WRITE) ] = {
840 		[ C(RESULT_ACCESS) ] = -1,
841 		[ C(RESULT_MISS)   ] = -1,
842 	},
843 	[ C(OP_PREFETCH) ] = {
844 		[ C(RESULT_ACCESS) ] = 0x0,
845 		[ C(RESULT_MISS)   ] = 0x0,
846 	},
847  },
848  [ C(LL  ) ] = {
849 	[ C(OP_READ) ] = {
850 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
851 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
852 	},
853 	[ C(OP_WRITE) ] = {
854 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
855 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
856 	},
857 	[ C(OP_PREFETCH) ] = {
858 		[ C(RESULT_ACCESS) ] = 0x0,
859 		[ C(RESULT_MISS)   ] = 0x0,
860 	},
861  },
862  [ C(DTLB) ] = {
863 	[ C(OP_READ) ] = {
864 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
865 		[ C(RESULT_MISS)   ] = 0x108,	/* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
866 	},
867 	[ C(OP_WRITE) ] = {
868 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
869 		[ C(RESULT_MISS)   ] = 0x149,	/* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
870 	},
871 	[ C(OP_PREFETCH) ] = {
872 		[ C(RESULT_ACCESS) ] = 0x0,
873 		[ C(RESULT_MISS)   ] = 0x0,
874 	},
875  },
876  [ C(ITLB) ] = {
877 	[ C(OP_READ) ] = {
878 		[ C(RESULT_ACCESS) ] = 0x6085,	/* ITLB_MISSES.STLB_HIT */
879 		[ C(RESULT_MISS)   ] = 0x185,	/* ITLB_MISSES.MISS_CAUSES_A_WALK */
880 	},
881 	[ C(OP_WRITE) ] = {
882 		[ C(RESULT_ACCESS) ] = -1,
883 		[ C(RESULT_MISS)   ] = -1,
884 	},
885 	[ C(OP_PREFETCH) ] = {
886 		[ C(RESULT_ACCESS) ] = -1,
887 		[ C(RESULT_MISS)   ] = -1,
888 	},
889  },
890  [ C(BPU ) ] = {
891 	[ C(OP_READ) ] = {
892 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
893 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
894 	},
895 	[ C(OP_WRITE) ] = {
896 		[ C(RESULT_ACCESS) ] = -1,
897 		[ C(RESULT_MISS)   ] = -1,
898 	},
899 	[ C(OP_PREFETCH) ] = {
900 		[ C(RESULT_ACCESS) ] = -1,
901 		[ C(RESULT_MISS)   ] = -1,
902 	},
903  },
904  [ C(NODE) ] = {
905 	[ C(OP_READ) ] = {
906 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
907 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
908 	},
909 	[ C(OP_WRITE) ] = {
910 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
911 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
912 	},
913 	[ C(OP_PREFETCH) ] = {
914 		[ C(RESULT_ACCESS) ] = 0x0,
915 		[ C(RESULT_MISS)   ] = 0x0,
916 	},
917  },
918 };
919 
920 static __initconst const u64 hsw_hw_cache_extra_regs
921 				[PERF_COUNT_HW_CACHE_MAX]
922 				[PERF_COUNT_HW_CACHE_OP_MAX]
923 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
924 {
925  [ C(LL  ) ] = {
926 	[ C(OP_READ) ] = {
927 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
928 				       HSW_LLC_ACCESS,
929 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
930 				       HSW_L3_MISS|HSW_ANY_SNOOP,
931 	},
932 	[ C(OP_WRITE) ] = {
933 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
934 				       HSW_LLC_ACCESS,
935 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
936 				       HSW_L3_MISS|HSW_ANY_SNOOP,
937 	},
938 	[ C(OP_PREFETCH) ] = {
939 		[ C(RESULT_ACCESS) ] = 0x0,
940 		[ C(RESULT_MISS)   ] = 0x0,
941 	},
942  },
943  [ C(NODE) ] = {
944 	[ C(OP_READ) ] = {
945 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
946 				       HSW_L3_MISS_LOCAL_DRAM|
947 				       HSW_SNOOP_DRAM,
948 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
949 				       HSW_L3_MISS_REMOTE|
950 				       HSW_SNOOP_DRAM,
951 	},
952 	[ C(OP_WRITE) ] = {
953 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
954 				       HSW_L3_MISS_LOCAL_DRAM|
955 				       HSW_SNOOP_DRAM,
956 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
957 				       HSW_L3_MISS_REMOTE|
958 				       HSW_SNOOP_DRAM,
959 	},
960 	[ C(OP_PREFETCH) ] = {
961 		[ C(RESULT_ACCESS) ] = 0x0,
962 		[ C(RESULT_MISS)   ] = 0x0,
963 	},
964  },
965 };
966 
967 static __initconst const u64 westmere_hw_cache_event_ids
968 				[PERF_COUNT_HW_CACHE_MAX]
969 				[PERF_COUNT_HW_CACHE_OP_MAX]
970 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
971 {
972  [ C(L1D) ] = {
973 	[ C(OP_READ) ] = {
974 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
975 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
976 	},
977 	[ C(OP_WRITE) ] = {
978 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
979 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
980 	},
981 	[ C(OP_PREFETCH) ] = {
982 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
983 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
984 	},
985  },
986  [ C(L1I ) ] = {
987 	[ C(OP_READ) ] = {
988 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
989 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
990 	},
991 	[ C(OP_WRITE) ] = {
992 		[ C(RESULT_ACCESS) ] = -1,
993 		[ C(RESULT_MISS)   ] = -1,
994 	},
995 	[ C(OP_PREFETCH) ] = {
996 		[ C(RESULT_ACCESS) ] = 0x0,
997 		[ C(RESULT_MISS)   ] = 0x0,
998 	},
999  },
1000  [ C(LL  ) ] = {
1001 	[ C(OP_READ) ] = {
1002 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1003 		[ C(RESULT_ACCESS) ] = 0x01b7,
1004 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1005 		[ C(RESULT_MISS)   ] = 0x01b7,
1006 	},
1007 	/*
1008 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1009 	 * on RFO.
1010 	 */
1011 	[ C(OP_WRITE) ] = {
1012 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1013 		[ C(RESULT_ACCESS) ] = 0x01b7,
1014 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1015 		[ C(RESULT_MISS)   ] = 0x01b7,
1016 	},
1017 	[ C(OP_PREFETCH) ] = {
1018 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1019 		[ C(RESULT_ACCESS) ] = 0x01b7,
1020 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1021 		[ C(RESULT_MISS)   ] = 0x01b7,
1022 	},
1023  },
1024  [ C(DTLB) ] = {
1025 	[ C(OP_READ) ] = {
1026 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1027 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1028 	},
1029 	[ C(OP_WRITE) ] = {
1030 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1031 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1032 	},
1033 	[ C(OP_PREFETCH) ] = {
1034 		[ C(RESULT_ACCESS) ] = 0x0,
1035 		[ C(RESULT_MISS)   ] = 0x0,
1036 	},
1037  },
1038  [ C(ITLB) ] = {
1039 	[ C(OP_READ) ] = {
1040 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1041 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
1042 	},
1043 	[ C(OP_WRITE) ] = {
1044 		[ C(RESULT_ACCESS) ] = -1,
1045 		[ C(RESULT_MISS)   ] = -1,
1046 	},
1047 	[ C(OP_PREFETCH) ] = {
1048 		[ C(RESULT_ACCESS) ] = -1,
1049 		[ C(RESULT_MISS)   ] = -1,
1050 	},
1051  },
1052  [ C(BPU ) ] = {
1053 	[ C(OP_READ) ] = {
1054 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1055 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1056 	},
1057 	[ C(OP_WRITE) ] = {
1058 		[ C(RESULT_ACCESS) ] = -1,
1059 		[ C(RESULT_MISS)   ] = -1,
1060 	},
1061 	[ C(OP_PREFETCH) ] = {
1062 		[ C(RESULT_ACCESS) ] = -1,
1063 		[ C(RESULT_MISS)   ] = -1,
1064 	},
1065  },
1066  [ C(NODE) ] = {
1067 	[ C(OP_READ) ] = {
1068 		[ C(RESULT_ACCESS) ] = 0x01b7,
1069 		[ C(RESULT_MISS)   ] = 0x01b7,
1070 	},
1071 	[ C(OP_WRITE) ] = {
1072 		[ C(RESULT_ACCESS) ] = 0x01b7,
1073 		[ C(RESULT_MISS)   ] = 0x01b7,
1074 	},
1075 	[ C(OP_PREFETCH) ] = {
1076 		[ C(RESULT_ACCESS) ] = 0x01b7,
1077 		[ C(RESULT_MISS)   ] = 0x01b7,
1078 	},
1079  },
1080 };
1081 
1082 /*
1083  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1084  * See IA32 SDM Vol 3B 30.6.1.3
1085  */
1086 
1087 #define NHM_DMND_DATA_RD	(1 << 0)
1088 #define NHM_DMND_RFO		(1 << 1)
1089 #define NHM_DMND_IFETCH		(1 << 2)
1090 #define NHM_DMND_WB		(1 << 3)
1091 #define NHM_PF_DATA_RD		(1 << 4)
1092 #define NHM_PF_DATA_RFO		(1 << 5)
1093 #define NHM_PF_IFETCH		(1 << 6)
1094 #define NHM_OFFCORE_OTHER	(1 << 7)
1095 #define NHM_UNCORE_HIT		(1 << 8)
1096 #define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
1097 #define NHM_OTHER_CORE_HITM	(1 << 10)
1098         			/* reserved */
1099 #define NHM_REMOTE_CACHE_FWD	(1 << 12)
1100 #define NHM_REMOTE_DRAM		(1 << 13)
1101 #define NHM_LOCAL_DRAM		(1 << 14)
1102 #define NHM_NON_DRAM		(1 << 15)
1103 
1104 #define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1105 #define NHM_REMOTE		(NHM_REMOTE_DRAM)
1106 
1107 #define NHM_DMND_READ		(NHM_DMND_DATA_RD)
1108 #define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
1109 #define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1110 
1111 #define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1112 #define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1113 #define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
1114 
1115 static __initconst const u64 nehalem_hw_cache_extra_regs
1116 				[PERF_COUNT_HW_CACHE_MAX]
1117 				[PERF_COUNT_HW_CACHE_OP_MAX]
1118 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1119 {
1120  [ C(LL  ) ] = {
1121 	[ C(OP_READ) ] = {
1122 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1123 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1124 	},
1125 	[ C(OP_WRITE) ] = {
1126 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1127 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1128 	},
1129 	[ C(OP_PREFETCH) ] = {
1130 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1131 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1132 	},
1133  },
1134  [ C(NODE) ] = {
1135 	[ C(OP_READ) ] = {
1136 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1137 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1138 	},
1139 	[ C(OP_WRITE) ] = {
1140 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1141 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1142 	},
1143 	[ C(OP_PREFETCH) ] = {
1144 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1145 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1146 	},
1147  },
1148 };
1149 
1150 static __initconst const u64 nehalem_hw_cache_event_ids
1151 				[PERF_COUNT_HW_CACHE_MAX]
1152 				[PERF_COUNT_HW_CACHE_OP_MAX]
1153 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1154 {
1155  [ C(L1D) ] = {
1156 	[ C(OP_READ) ] = {
1157 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1158 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1159 	},
1160 	[ C(OP_WRITE) ] = {
1161 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1162 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1163 	},
1164 	[ C(OP_PREFETCH) ] = {
1165 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1166 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1167 	},
1168  },
1169  [ C(L1I ) ] = {
1170 	[ C(OP_READ) ] = {
1171 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1172 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1173 	},
1174 	[ C(OP_WRITE) ] = {
1175 		[ C(RESULT_ACCESS) ] = -1,
1176 		[ C(RESULT_MISS)   ] = -1,
1177 	},
1178 	[ C(OP_PREFETCH) ] = {
1179 		[ C(RESULT_ACCESS) ] = 0x0,
1180 		[ C(RESULT_MISS)   ] = 0x0,
1181 	},
1182  },
1183  [ C(LL  ) ] = {
1184 	[ C(OP_READ) ] = {
1185 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1186 		[ C(RESULT_ACCESS) ] = 0x01b7,
1187 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1188 		[ C(RESULT_MISS)   ] = 0x01b7,
1189 	},
1190 	/*
1191 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1192 	 * on RFO.
1193 	 */
1194 	[ C(OP_WRITE) ] = {
1195 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1196 		[ C(RESULT_ACCESS) ] = 0x01b7,
1197 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1198 		[ C(RESULT_MISS)   ] = 0x01b7,
1199 	},
1200 	[ C(OP_PREFETCH) ] = {
1201 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1202 		[ C(RESULT_ACCESS) ] = 0x01b7,
1203 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1204 		[ C(RESULT_MISS)   ] = 0x01b7,
1205 	},
1206  },
1207  [ C(DTLB) ] = {
1208 	[ C(OP_READ) ] = {
1209 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1210 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1211 	},
1212 	[ C(OP_WRITE) ] = {
1213 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1214 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1215 	},
1216 	[ C(OP_PREFETCH) ] = {
1217 		[ C(RESULT_ACCESS) ] = 0x0,
1218 		[ C(RESULT_MISS)   ] = 0x0,
1219 	},
1220  },
1221  [ C(ITLB) ] = {
1222 	[ C(OP_READ) ] = {
1223 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1224 		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1225 	},
1226 	[ C(OP_WRITE) ] = {
1227 		[ C(RESULT_ACCESS) ] = -1,
1228 		[ C(RESULT_MISS)   ] = -1,
1229 	},
1230 	[ C(OP_PREFETCH) ] = {
1231 		[ C(RESULT_ACCESS) ] = -1,
1232 		[ C(RESULT_MISS)   ] = -1,
1233 	},
1234  },
1235  [ C(BPU ) ] = {
1236 	[ C(OP_READ) ] = {
1237 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1238 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1239 	},
1240 	[ C(OP_WRITE) ] = {
1241 		[ C(RESULT_ACCESS) ] = -1,
1242 		[ C(RESULT_MISS)   ] = -1,
1243 	},
1244 	[ C(OP_PREFETCH) ] = {
1245 		[ C(RESULT_ACCESS) ] = -1,
1246 		[ C(RESULT_MISS)   ] = -1,
1247 	},
1248  },
1249  [ C(NODE) ] = {
1250 	[ C(OP_READ) ] = {
1251 		[ C(RESULT_ACCESS) ] = 0x01b7,
1252 		[ C(RESULT_MISS)   ] = 0x01b7,
1253 	},
1254 	[ C(OP_WRITE) ] = {
1255 		[ C(RESULT_ACCESS) ] = 0x01b7,
1256 		[ C(RESULT_MISS)   ] = 0x01b7,
1257 	},
1258 	[ C(OP_PREFETCH) ] = {
1259 		[ C(RESULT_ACCESS) ] = 0x01b7,
1260 		[ C(RESULT_MISS)   ] = 0x01b7,
1261 	},
1262  },
1263 };
1264 
1265 static __initconst const u64 core2_hw_cache_event_ids
1266 				[PERF_COUNT_HW_CACHE_MAX]
1267 				[PERF_COUNT_HW_CACHE_OP_MAX]
1268 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1269 {
1270  [ C(L1D) ] = {
1271 	[ C(OP_READ) ] = {
1272 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1273 		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1274 	},
1275 	[ C(OP_WRITE) ] = {
1276 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1277 		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1278 	},
1279 	[ C(OP_PREFETCH) ] = {
1280 		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1281 		[ C(RESULT_MISS)   ] = 0,
1282 	},
1283  },
1284  [ C(L1I ) ] = {
1285 	[ C(OP_READ) ] = {
1286 		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1287 		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1288 	},
1289 	[ C(OP_WRITE) ] = {
1290 		[ C(RESULT_ACCESS) ] = -1,
1291 		[ C(RESULT_MISS)   ] = -1,
1292 	},
1293 	[ C(OP_PREFETCH) ] = {
1294 		[ C(RESULT_ACCESS) ] = 0,
1295 		[ C(RESULT_MISS)   ] = 0,
1296 	},
1297  },
1298  [ C(LL  ) ] = {
1299 	[ C(OP_READ) ] = {
1300 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1301 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1302 	},
1303 	[ C(OP_WRITE) ] = {
1304 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1305 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1306 	},
1307 	[ C(OP_PREFETCH) ] = {
1308 		[ C(RESULT_ACCESS) ] = 0,
1309 		[ C(RESULT_MISS)   ] = 0,
1310 	},
1311  },
1312  [ C(DTLB) ] = {
1313 	[ C(OP_READ) ] = {
1314 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1315 		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1316 	},
1317 	[ C(OP_WRITE) ] = {
1318 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1319 		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1320 	},
1321 	[ C(OP_PREFETCH) ] = {
1322 		[ C(RESULT_ACCESS) ] = 0,
1323 		[ C(RESULT_MISS)   ] = 0,
1324 	},
1325  },
1326  [ C(ITLB) ] = {
1327 	[ C(OP_READ) ] = {
1328 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1329 		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1330 	},
1331 	[ C(OP_WRITE) ] = {
1332 		[ C(RESULT_ACCESS) ] = -1,
1333 		[ C(RESULT_MISS)   ] = -1,
1334 	},
1335 	[ C(OP_PREFETCH) ] = {
1336 		[ C(RESULT_ACCESS) ] = -1,
1337 		[ C(RESULT_MISS)   ] = -1,
1338 	},
1339  },
1340  [ C(BPU ) ] = {
1341 	[ C(OP_READ) ] = {
1342 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1343 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1344 	},
1345 	[ C(OP_WRITE) ] = {
1346 		[ C(RESULT_ACCESS) ] = -1,
1347 		[ C(RESULT_MISS)   ] = -1,
1348 	},
1349 	[ C(OP_PREFETCH) ] = {
1350 		[ C(RESULT_ACCESS) ] = -1,
1351 		[ C(RESULT_MISS)   ] = -1,
1352 	},
1353  },
1354 };
1355 
1356 static __initconst const u64 atom_hw_cache_event_ids
1357 				[PERF_COUNT_HW_CACHE_MAX]
1358 				[PERF_COUNT_HW_CACHE_OP_MAX]
1359 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1360 {
1361  [ C(L1D) ] = {
1362 	[ C(OP_READ) ] = {
1363 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1364 		[ C(RESULT_MISS)   ] = 0,
1365 	},
1366 	[ C(OP_WRITE) ] = {
1367 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1368 		[ C(RESULT_MISS)   ] = 0,
1369 	},
1370 	[ C(OP_PREFETCH) ] = {
1371 		[ C(RESULT_ACCESS) ] = 0x0,
1372 		[ C(RESULT_MISS)   ] = 0,
1373 	},
1374  },
1375  [ C(L1I ) ] = {
1376 	[ C(OP_READ) ] = {
1377 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1378 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1379 	},
1380 	[ C(OP_WRITE) ] = {
1381 		[ C(RESULT_ACCESS) ] = -1,
1382 		[ C(RESULT_MISS)   ] = -1,
1383 	},
1384 	[ C(OP_PREFETCH) ] = {
1385 		[ C(RESULT_ACCESS) ] = 0,
1386 		[ C(RESULT_MISS)   ] = 0,
1387 	},
1388  },
1389  [ C(LL  ) ] = {
1390 	[ C(OP_READ) ] = {
1391 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1392 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1393 	},
1394 	[ C(OP_WRITE) ] = {
1395 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1396 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1397 	},
1398 	[ C(OP_PREFETCH) ] = {
1399 		[ C(RESULT_ACCESS) ] = 0,
1400 		[ C(RESULT_MISS)   ] = 0,
1401 	},
1402  },
1403  [ C(DTLB) ] = {
1404 	[ C(OP_READ) ] = {
1405 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1406 		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1407 	},
1408 	[ C(OP_WRITE) ] = {
1409 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1410 		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1411 	},
1412 	[ C(OP_PREFETCH) ] = {
1413 		[ C(RESULT_ACCESS) ] = 0,
1414 		[ C(RESULT_MISS)   ] = 0,
1415 	},
1416  },
1417  [ C(ITLB) ] = {
1418 	[ C(OP_READ) ] = {
1419 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1420 		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1421 	},
1422 	[ C(OP_WRITE) ] = {
1423 		[ C(RESULT_ACCESS) ] = -1,
1424 		[ C(RESULT_MISS)   ] = -1,
1425 	},
1426 	[ C(OP_PREFETCH) ] = {
1427 		[ C(RESULT_ACCESS) ] = -1,
1428 		[ C(RESULT_MISS)   ] = -1,
1429 	},
1430  },
1431  [ C(BPU ) ] = {
1432 	[ C(OP_READ) ] = {
1433 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1434 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1435 	},
1436 	[ C(OP_WRITE) ] = {
1437 		[ C(RESULT_ACCESS) ] = -1,
1438 		[ C(RESULT_MISS)   ] = -1,
1439 	},
1440 	[ C(OP_PREFETCH) ] = {
1441 		[ C(RESULT_ACCESS) ] = -1,
1442 		[ C(RESULT_MISS)   ] = -1,
1443 	},
1444  },
1445 };
1446 
1447 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1448 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1449 /* no_alloc_cycles.not_delivered */
1450 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1451 	       "event=0xca,umask=0x50");
1452 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1453 /* uops_retired.all */
1454 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1455 	       "event=0xc2,umask=0x10");
1456 /* uops_retired.all */
1457 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1458 	       "event=0xc2,umask=0x10");
1459 
1460 static struct attribute *slm_events_attrs[] = {
1461 	EVENT_PTR(td_total_slots_slm),
1462 	EVENT_PTR(td_total_slots_scale_slm),
1463 	EVENT_PTR(td_fetch_bubbles_slm),
1464 	EVENT_PTR(td_fetch_bubbles_scale_slm),
1465 	EVENT_PTR(td_slots_issued_slm),
1466 	EVENT_PTR(td_slots_retired_slm),
1467 	NULL
1468 };
1469 
1470 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1471 {
1472 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1473 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1474 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1475 	EVENT_EXTRA_END
1476 };
1477 
1478 #define SLM_DMND_READ		SNB_DMND_DATA_RD
1479 #define SLM_DMND_WRITE		SNB_DMND_RFO
1480 #define SLM_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
1481 
1482 #define SLM_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1483 #define SLM_LLC_ACCESS		SNB_RESP_ANY
1484 #define SLM_LLC_MISS		(SLM_SNP_ANY|SNB_NON_DRAM)
1485 
1486 static __initconst const u64 slm_hw_cache_extra_regs
1487 				[PERF_COUNT_HW_CACHE_MAX]
1488 				[PERF_COUNT_HW_CACHE_OP_MAX]
1489 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1490 {
1491  [ C(LL  ) ] = {
1492 	[ C(OP_READ) ] = {
1493 		[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1494 		[ C(RESULT_MISS)   ] = 0,
1495 	},
1496 	[ C(OP_WRITE) ] = {
1497 		[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1498 		[ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1499 	},
1500 	[ C(OP_PREFETCH) ] = {
1501 		[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1502 		[ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1503 	},
1504  },
1505 };
1506 
1507 static __initconst const u64 slm_hw_cache_event_ids
1508 				[PERF_COUNT_HW_CACHE_MAX]
1509 				[PERF_COUNT_HW_CACHE_OP_MAX]
1510 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1511 {
1512  [ C(L1D) ] = {
1513 	[ C(OP_READ) ] = {
1514 		[ C(RESULT_ACCESS) ] = 0,
1515 		[ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1516 	},
1517 	[ C(OP_WRITE) ] = {
1518 		[ C(RESULT_ACCESS) ] = 0,
1519 		[ C(RESULT_MISS)   ] = 0,
1520 	},
1521 	[ C(OP_PREFETCH) ] = {
1522 		[ C(RESULT_ACCESS) ] = 0,
1523 		[ C(RESULT_MISS)   ] = 0,
1524 	},
1525  },
1526  [ C(L1I ) ] = {
1527 	[ C(OP_READ) ] = {
1528 		[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1529 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1530 	},
1531 	[ C(OP_WRITE) ] = {
1532 		[ C(RESULT_ACCESS) ] = -1,
1533 		[ C(RESULT_MISS)   ] = -1,
1534 	},
1535 	[ C(OP_PREFETCH) ] = {
1536 		[ C(RESULT_ACCESS) ] = 0,
1537 		[ C(RESULT_MISS)   ] = 0,
1538 	},
1539  },
1540  [ C(LL  ) ] = {
1541 	[ C(OP_READ) ] = {
1542 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1543 		[ C(RESULT_ACCESS) ] = 0x01b7,
1544 		[ C(RESULT_MISS)   ] = 0,
1545 	},
1546 	[ C(OP_WRITE) ] = {
1547 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1548 		[ C(RESULT_ACCESS) ] = 0x01b7,
1549 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1550 		[ C(RESULT_MISS)   ] = 0x01b7,
1551 	},
1552 	[ C(OP_PREFETCH) ] = {
1553 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1554 		[ C(RESULT_ACCESS) ] = 0x01b7,
1555 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1556 		[ C(RESULT_MISS)   ] = 0x01b7,
1557 	},
1558  },
1559  [ C(DTLB) ] = {
1560 	[ C(OP_READ) ] = {
1561 		[ C(RESULT_ACCESS) ] = 0,
1562 		[ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1563 	},
1564 	[ C(OP_WRITE) ] = {
1565 		[ C(RESULT_ACCESS) ] = 0,
1566 		[ C(RESULT_MISS)   ] = 0,
1567 	},
1568 	[ C(OP_PREFETCH) ] = {
1569 		[ C(RESULT_ACCESS) ] = 0,
1570 		[ C(RESULT_MISS)   ] = 0,
1571 	},
1572  },
1573  [ C(ITLB) ] = {
1574 	[ C(OP_READ) ] = {
1575 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1576 		[ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1577 	},
1578 	[ C(OP_WRITE) ] = {
1579 		[ C(RESULT_ACCESS) ] = -1,
1580 		[ C(RESULT_MISS)   ] = -1,
1581 	},
1582 	[ C(OP_PREFETCH) ] = {
1583 		[ C(RESULT_ACCESS) ] = -1,
1584 		[ C(RESULT_MISS)   ] = -1,
1585 	},
1586  },
1587  [ C(BPU ) ] = {
1588 	[ C(OP_READ) ] = {
1589 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1590 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1591 	},
1592 	[ C(OP_WRITE) ] = {
1593 		[ C(RESULT_ACCESS) ] = -1,
1594 		[ C(RESULT_MISS)   ] = -1,
1595 	},
1596 	[ C(OP_PREFETCH) ] = {
1597 		[ C(RESULT_ACCESS) ] = -1,
1598 		[ C(RESULT_MISS)   ] = -1,
1599 	},
1600  },
1601 };
1602 
1603 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1604 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1605 /* UOPS_NOT_DELIVERED.ANY */
1606 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1607 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1608 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1609 /* UOPS_RETIRED.ANY */
1610 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1611 /* UOPS_ISSUED.ANY */
1612 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1613 
1614 static struct attribute *glm_events_attrs[] = {
1615 	EVENT_PTR(td_total_slots_glm),
1616 	EVENT_PTR(td_total_slots_scale_glm),
1617 	EVENT_PTR(td_fetch_bubbles_glm),
1618 	EVENT_PTR(td_recovery_bubbles_glm),
1619 	EVENT_PTR(td_slots_issued_glm),
1620 	EVENT_PTR(td_slots_retired_glm),
1621 	NULL
1622 };
1623 
1624 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1625 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1626 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1627 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1628 	EVENT_EXTRA_END
1629 };
1630 
1631 #define GLM_DEMAND_DATA_RD		BIT_ULL(0)
1632 #define GLM_DEMAND_RFO			BIT_ULL(1)
1633 #define GLM_ANY_RESPONSE		BIT_ULL(16)
1634 #define GLM_SNP_NONE_OR_MISS		BIT_ULL(33)
1635 #define GLM_DEMAND_READ			GLM_DEMAND_DATA_RD
1636 #define GLM_DEMAND_WRITE		GLM_DEMAND_RFO
1637 #define GLM_DEMAND_PREFETCH		(SNB_PF_DATA_RD|SNB_PF_RFO)
1638 #define GLM_LLC_ACCESS			GLM_ANY_RESPONSE
1639 #define GLM_SNP_ANY			(GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1640 #define GLM_LLC_MISS			(GLM_SNP_ANY|SNB_NON_DRAM)
1641 
1642 static __initconst const u64 glm_hw_cache_event_ids
1643 				[PERF_COUNT_HW_CACHE_MAX]
1644 				[PERF_COUNT_HW_CACHE_OP_MAX]
1645 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1646 	[C(L1D)] = {
1647 		[C(OP_READ)] = {
1648 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1649 			[C(RESULT_MISS)]	= 0x0,
1650 		},
1651 		[C(OP_WRITE)] = {
1652 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1653 			[C(RESULT_MISS)]	= 0x0,
1654 		},
1655 		[C(OP_PREFETCH)] = {
1656 			[C(RESULT_ACCESS)]	= 0x0,
1657 			[C(RESULT_MISS)]	= 0x0,
1658 		},
1659 	},
1660 	[C(L1I)] = {
1661 		[C(OP_READ)] = {
1662 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1663 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1664 		},
1665 		[C(OP_WRITE)] = {
1666 			[C(RESULT_ACCESS)]	= -1,
1667 			[C(RESULT_MISS)]	= -1,
1668 		},
1669 		[C(OP_PREFETCH)] = {
1670 			[C(RESULT_ACCESS)]	= 0x0,
1671 			[C(RESULT_MISS)]	= 0x0,
1672 		},
1673 	},
1674 	[C(LL)] = {
1675 		[C(OP_READ)] = {
1676 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1677 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1678 		},
1679 		[C(OP_WRITE)] = {
1680 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1681 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1682 		},
1683 		[C(OP_PREFETCH)] = {
1684 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1685 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1686 		},
1687 	},
1688 	[C(DTLB)] = {
1689 		[C(OP_READ)] = {
1690 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1691 			[C(RESULT_MISS)]	= 0x0,
1692 		},
1693 		[C(OP_WRITE)] = {
1694 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1695 			[C(RESULT_MISS)]	= 0x0,
1696 		},
1697 		[C(OP_PREFETCH)] = {
1698 			[C(RESULT_ACCESS)]	= 0x0,
1699 			[C(RESULT_MISS)]	= 0x0,
1700 		},
1701 	},
1702 	[C(ITLB)] = {
1703 		[C(OP_READ)] = {
1704 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1705 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1706 		},
1707 		[C(OP_WRITE)] = {
1708 			[C(RESULT_ACCESS)]	= -1,
1709 			[C(RESULT_MISS)]	= -1,
1710 		},
1711 		[C(OP_PREFETCH)] = {
1712 			[C(RESULT_ACCESS)]	= -1,
1713 			[C(RESULT_MISS)]	= -1,
1714 		},
1715 	},
1716 	[C(BPU)] = {
1717 		[C(OP_READ)] = {
1718 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1719 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1720 		},
1721 		[C(OP_WRITE)] = {
1722 			[C(RESULT_ACCESS)]	= -1,
1723 			[C(RESULT_MISS)]	= -1,
1724 		},
1725 		[C(OP_PREFETCH)] = {
1726 			[C(RESULT_ACCESS)]	= -1,
1727 			[C(RESULT_MISS)]	= -1,
1728 		},
1729 	},
1730 };
1731 
1732 static __initconst const u64 glm_hw_cache_extra_regs
1733 				[PERF_COUNT_HW_CACHE_MAX]
1734 				[PERF_COUNT_HW_CACHE_OP_MAX]
1735 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1736 	[C(LL)] = {
1737 		[C(OP_READ)] = {
1738 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
1739 						  GLM_LLC_ACCESS,
1740 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
1741 						  GLM_LLC_MISS,
1742 		},
1743 		[C(OP_WRITE)] = {
1744 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
1745 						  GLM_LLC_ACCESS,
1746 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
1747 						  GLM_LLC_MISS,
1748 		},
1749 		[C(OP_PREFETCH)] = {
1750 			[C(RESULT_ACCESS)]	= GLM_DEMAND_PREFETCH|
1751 						  GLM_LLC_ACCESS,
1752 			[C(RESULT_MISS)]	= GLM_DEMAND_PREFETCH|
1753 						  GLM_LLC_MISS,
1754 		},
1755 	},
1756 };
1757 
1758 static __initconst const u64 glp_hw_cache_event_ids
1759 				[PERF_COUNT_HW_CACHE_MAX]
1760 				[PERF_COUNT_HW_CACHE_OP_MAX]
1761 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1762 	[C(L1D)] = {
1763 		[C(OP_READ)] = {
1764 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1765 			[C(RESULT_MISS)]	= 0x0,
1766 		},
1767 		[C(OP_WRITE)] = {
1768 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1769 			[C(RESULT_MISS)]	= 0x0,
1770 		},
1771 		[C(OP_PREFETCH)] = {
1772 			[C(RESULT_ACCESS)]	= 0x0,
1773 			[C(RESULT_MISS)]	= 0x0,
1774 		},
1775 	},
1776 	[C(L1I)] = {
1777 		[C(OP_READ)] = {
1778 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1779 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1780 		},
1781 		[C(OP_WRITE)] = {
1782 			[C(RESULT_ACCESS)]	= -1,
1783 			[C(RESULT_MISS)]	= -1,
1784 		},
1785 		[C(OP_PREFETCH)] = {
1786 			[C(RESULT_ACCESS)]	= 0x0,
1787 			[C(RESULT_MISS)]	= 0x0,
1788 		},
1789 	},
1790 	[C(LL)] = {
1791 		[C(OP_READ)] = {
1792 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1793 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1794 		},
1795 		[C(OP_WRITE)] = {
1796 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1797 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1798 		},
1799 		[C(OP_PREFETCH)] = {
1800 			[C(RESULT_ACCESS)]	= 0x0,
1801 			[C(RESULT_MISS)]	= 0x0,
1802 		},
1803 	},
1804 	[C(DTLB)] = {
1805 		[C(OP_READ)] = {
1806 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1807 			[C(RESULT_MISS)]	= 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
1808 		},
1809 		[C(OP_WRITE)] = {
1810 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1811 			[C(RESULT_MISS)]	= 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
1812 		},
1813 		[C(OP_PREFETCH)] = {
1814 			[C(RESULT_ACCESS)]	= 0x0,
1815 			[C(RESULT_MISS)]	= 0x0,
1816 		},
1817 	},
1818 	[C(ITLB)] = {
1819 		[C(OP_READ)] = {
1820 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1821 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1822 		},
1823 		[C(OP_WRITE)] = {
1824 			[C(RESULT_ACCESS)]	= -1,
1825 			[C(RESULT_MISS)]	= -1,
1826 		},
1827 		[C(OP_PREFETCH)] = {
1828 			[C(RESULT_ACCESS)]	= -1,
1829 			[C(RESULT_MISS)]	= -1,
1830 		},
1831 	},
1832 	[C(BPU)] = {
1833 		[C(OP_READ)] = {
1834 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1835 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1836 		},
1837 		[C(OP_WRITE)] = {
1838 			[C(RESULT_ACCESS)]	= -1,
1839 			[C(RESULT_MISS)]	= -1,
1840 		},
1841 		[C(OP_PREFETCH)] = {
1842 			[C(RESULT_ACCESS)]	= -1,
1843 			[C(RESULT_MISS)]	= -1,
1844 		},
1845 	},
1846 };
1847 
1848 static __initconst const u64 glp_hw_cache_extra_regs
1849 				[PERF_COUNT_HW_CACHE_MAX]
1850 				[PERF_COUNT_HW_CACHE_OP_MAX]
1851 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1852 	[C(LL)] = {
1853 		[C(OP_READ)] = {
1854 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
1855 						  GLM_LLC_ACCESS,
1856 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
1857 						  GLM_LLC_MISS,
1858 		},
1859 		[C(OP_WRITE)] = {
1860 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
1861 						  GLM_LLC_ACCESS,
1862 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
1863 						  GLM_LLC_MISS,
1864 		},
1865 		[C(OP_PREFETCH)] = {
1866 			[C(RESULT_ACCESS)]	= 0x0,
1867 			[C(RESULT_MISS)]	= 0x0,
1868 		},
1869 	},
1870 };
1871 
1872 #define TNT_LOCAL_DRAM			BIT_ULL(26)
1873 #define TNT_DEMAND_READ			GLM_DEMAND_DATA_RD
1874 #define TNT_DEMAND_WRITE		GLM_DEMAND_RFO
1875 #define TNT_LLC_ACCESS			GLM_ANY_RESPONSE
1876 #define TNT_SNP_ANY			(SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
1877 					 SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
1878 #define TNT_LLC_MISS			(TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
1879 
1880 static __initconst const u64 tnt_hw_cache_extra_regs
1881 				[PERF_COUNT_HW_CACHE_MAX]
1882 				[PERF_COUNT_HW_CACHE_OP_MAX]
1883 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1884 	[C(LL)] = {
1885 		[C(OP_READ)] = {
1886 			[C(RESULT_ACCESS)]	= TNT_DEMAND_READ|
1887 						  TNT_LLC_ACCESS,
1888 			[C(RESULT_MISS)]	= TNT_DEMAND_READ|
1889 						  TNT_LLC_MISS,
1890 		},
1891 		[C(OP_WRITE)] = {
1892 			[C(RESULT_ACCESS)]	= TNT_DEMAND_WRITE|
1893 						  TNT_LLC_ACCESS,
1894 			[C(RESULT_MISS)]	= TNT_DEMAND_WRITE|
1895 						  TNT_LLC_MISS,
1896 		},
1897 		[C(OP_PREFETCH)] = {
1898 			[C(RESULT_ACCESS)]	= 0x0,
1899 			[C(RESULT_MISS)]	= 0x0,
1900 		},
1901 	},
1902 };
1903 
1904 EVENT_ATTR_STR(topdown-fe-bound,       td_fe_bound_tnt,        "event=0x71,umask=0x0");
1905 EVENT_ATTR_STR(topdown-retiring,       td_retiring_tnt,        "event=0xc2,umask=0x0");
1906 EVENT_ATTR_STR(topdown-bad-spec,       td_bad_spec_tnt,        "event=0x73,umask=0x6");
1907 EVENT_ATTR_STR(topdown-be-bound,       td_be_bound_tnt,        "event=0x74,umask=0x0");
1908 
1909 static struct attribute *tnt_events_attrs[] = {
1910 	EVENT_PTR(td_fe_bound_tnt),
1911 	EVENT_PTR(td_retiring_tnt),
1912 	EVENT_PTR(td_bad_spec_tnt),
1913 	EVENT_PTR(td_be_bound_tnt),
1914 	NULL,
1915 };
1916 
1917 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
1918 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1919 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
1920 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
1921 	EVENT_EXTRA_END
1922 };
1923 
1924 #define KNL_OT_L2_HITE		BIT_ULL(19) /* Other Tile L2 Hit */
1925 #define KNL_OT_L2_HITF		BIT_ULL(20) /* Other Tile L2 Hit */
1926 #define KNL_MCDRAM_LOCAL	BIT_ULL(21)
1927 #define KNL_MCDRAM_FAR		BIT_ULL(22)
1928 #define KNL_DDR_LOCAL		BIT_ULL(23)
1929 #define KNL_DDR_FAR		BIT_ULL(24)
1930 #define KNL_DRAM_ANY		(KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1931 				    KNL_DDR_LOCAL | KNL_DDR_FAR)
1932 #define KNL_L2_READ		SLM_DMND_READ
1933 #define KNL_L2_WRITE		SLM_DMND_WRITE
1934 #define KNL_L2_PREFETCH		SLM_DMND_PREFETCH
1935 #define KNL_L2_ACCESS		SLM_LLC_ACCESS
1936 #define KNL_L2_MISS		(KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1937 				   KNL_DRAM_ANY | SNB_SNP_ANY | \
1938 						  SNB_NON_DRAM)
1939 
1940 static __initconst const u64 knl_hw_cache_extra_regs
1941 				[PERF_COUNT_HW_CACHE_MAX]
1942 				[PERF_COUNT_HW_CACHE_OP_MAX]
1943 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1944 	[C(LL)] = {
1945 		[C(OP_READ)] = {
1946 			[C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1947 			[C(RESULT_MISS)]   = 0,
1948 		},
1949 		[C(OP_WRITE)] = {
1950 			[C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1951 			[C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
1952 		},
1953 		[C(OP_PREFETCH)] = {
1954 			[C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1955 			[C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
1956 		},
1957 	},
1958 };
1959 
1960 /*
1961  * Used from PMIs where the LBRs are already disabled.
1962  *
1963  * This function could be called consecutively. It is required to remain in
1964  * disabled state if called consecutively.
1965  *
1966  * During consecutive calls, the same disable value will be written to related
1967  * registers, so the PMU state remains unchanged.
1968  *
1969  * intel_bts events don't coexist with intel PMU's BTS events because of
1970  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
1971  * disabled around intel PMU's event batching etc, only inside the PMI handler.
1972  *
1973  * Avoid PEBS_ENABLE MSR access in PMIs.
1974  * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
1975  * It doesn't matter if the PEBS is enabled or not.
1976  * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
1977  * access PEBS_ENABLE MSR in disable_all()/enable_all().
1978  * However, there are some cases which may change PEBS status, e.g. PMI
1979  * throttle. The PEBS_ENABLE should be updated where the status changes.
1980  */
1981 static void __intel_pmu_disable_all(void)
1982 {
1983 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1984 
1985 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1986 
1987 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1988 		intel_pmu_disable_bts();
1989 }
1990 
1991 static void intel_pmu_disable_all(void)
1992 {
1993 	__intel_pmu_disable_all();
1994 	intel_pmu_pebs_disable_all();
1995 	intel_pmu_lbr_disable_all();
1996 }
1997 
1998 static void __intel_pmu_enable_all(int added, bool pmi)
1999 {
2000 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2001 
2002 	intel_pmu_lbr_enable_all(pmi);
2003 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
2004 			x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
2005 
2006 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2007 		struct perf_event *event =
2008 			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
2009 
2010 		if (WARN_ON_ONCE(!event))
2011 			return;
2012 
2013 		intel_pmu_enable_bts(event->hw.config);
2014 	}
2015 }
2016 
2017 static void intel_pmu_enable_all(int added)
2018 {
2019 	intel_pmu_pebs_enable_all();
2020 	__intel_pmu_enable_all(added, false);
2021 }
2022 
2023 /*
2024  * Workaround for:
2025  *   Intel Errata AAK100 (model 26)
2026  *   Intel Errata AAP53  (model 30)
2027  *   Intel Errata BD53   (model 44)
2028  *
2029  * The official story:
2030  *   These chips need to be 'reset' when adding counters by programming the
2031  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2032  *   in sequence on the same PMC or on different PMCs.
2033  *
2034  * In practise it appears some of these events do in fact count, and
2035  * we need to program all 4 events.
2036  */
2037 static void intel_pmu_nhm_workaround(void)
2038 {
2039 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2040 	static const unsigned long nhm_magic[4] = {
2041 		0x4300B5,
2042 		0x4300D2,
2043 		0x4300B1,
2044 		0x4300B1
2045 	};
2046 	struct perf_event *event;
2047 	int i;
2048 
2049 	/*
2050 	 * The Errata requires below steps:
2051 	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2052 	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
2053 	 *    the corresponding PMCx;
2054 	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2055 	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2056 	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2057 	 */
2058 
2059 	/*
2060 	 * The real steps we choose are a little different from above.
2061 	 * A) To reduce MSR operations, we don't run step 1) as they
2062 	 *    are already cleared before this function is called;
2063 	 * B) Call x86_perf_event_update to save PMCx before configuring
2064 	 *    PERFEVTSELx with magic number;
2065 	 * C) With step 5), we do clear only when the PERFEVTSELx is
2066 	 *    not used currently.
2067 	 * D) Call x86_perf_event_set_period to restore PMCx;
2068 	 */
2069 
2070 	/* We always operate 4 pairs of PERF Counters */
2071 	for (i = 0; i < 4; i++) {
2072 		event = cpuc->events[i];
2073 		if (event)
2074 			x86_perf_event_update(event);
2075 	}
2076 
2077 	for (i = 0; i < 4; i++) {
2078 		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2079 		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2080 	}
2081 
2082 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2083 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2084 
2085 	for (i = 0; i < 4; i++) {
2086 		event = cpuc->events[i];
2087 
2088 		if (event) {
2089 			x86_perf_event_set_period(event);
2090 			__x86_pmu_enable_event(&event->hw,
2091 					ARCH_PERFMON_EVENTSEL_ENABLE);
2092 		} else
2093 			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2094 	}
2095 }
2096 
2097 static void intel_pmu_nhm_enable_all(int added)
2098 {
2099 	if (added)
2100 		intel_pmu_nhm_workaround();
2101 	intel_pmu_enable_all(added);
2102 }
2103 
2104 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2105 {
2106 	u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2107 
2108 	if (cpuc->tfa_shadow != val) {
2109 		cpuc->tfa_shadow = val;
2110 		wrmsrl(MSR_TSX_FORCE_ABORT, val);
2111 	}
2112 }
2113 
2114 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2115 {
2116 	/*
2117 	 * We're going to use PMC3, make sure TFA is set before we touch it.
2118 	 */
2119 	if (cntr == 3)
2120 		intel_set_tfa(cpuc, true);
2121 }
2122 
2123 static void intel_tfa_pmu_enable_all(int added)
2124 {
2125 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2126 
2127 	/*
2128 	 * If we find PMC3 is no longer used when we enable the PMU, we can
2129 	 * clear TFA.
2130 	 */
2131 	if (!test_bit(3, cpuc->active_mask))
2132 		intel_set_tfa(cpuc, false);
2133 
2134 	intel_pmu_enable_all(added);
2135 }
2136 
2137 static void enable_counter_freeze(void)
2138 {
2139 	update_debugctlmsr(get_debugctlmsr() |
2140 			DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2141 }
2142 
2143 static void disable_counter_freeze(void)
2144 {
2145 	update_debugctlmsr(get_debugctlmsr() &
2146 			~DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2147 }
2148 
2149 static inline u64 intel_pmu_get_status(void)
2150 {
2151 	u64 status;
2152 
2153 	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2154 
2155 	return status;
2156 }
2157 
2158 static inline void intel_pmu_ack_status(u64 ack)
2159 {
2160 	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2161 }
2162 
2163 static inline bool event_is_checkpointed(struct perf_event *event)
2164 {
2165 	return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2166 }
2167 
2168 static inline void intel_set_masks(struct perf_event *event, int idx)
2169 {
2170 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2171 
2172 	if (event->attr.exclude_host)
2173 		__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2174 	if (event->attr.exclude_guest)
2175 		__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2176 	if (event_is_checkpointed(event))
2177 		__set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2178 }
2179 
2180 static inline void intel_clear_masks(struct perf_event *event, int idx)
2181 {
2182 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2183 
2184 	__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2185 	__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2186 	__clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2187 }
2188 
2189 static void intel_pmu_disable_fixed(struct perf_event *event)
2190 {
2191 	struct hw_perf_event *hwc = &event->hw;
2192 	u64 ctrl_val, mask;
2193 	int idx = hwc->idx;
2194 
2195 	if (is_topdown_idx(idx)) {
2196 		struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2197 
2198 		/*
2199 		 * When there are other active TopDown events,
2200 		 * don't disable the fixed counter 3.
2201 		 */
2202 		if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2203 			return;
2204 		idx = INTEL_PMC_IDX_FIXED_SLOTS;
2205 	}
2206 
2207 	intel_clear_masks(event, idx);
2208 
2209 	mask = 0xfULL << ((idx - INTEL_PMC_IDX_FIXED) * 4);
2210 	rdmsrl(hwc->config_base, ctrl_val);
2211 	ctrl_val &= ~mask;
2212 	wrmsrl(hwc->config_base, ctrl_val);
2213 }
2214 
2215 static void intel_pmu_disable_event(struct perf_event *event)
2216 {
2217 	struct hw_perf_event *hwc = &event->hw;
2218 	int idx = hwc->idx;
2219 
2220 	switch (idx) {
2221 	case 0 ... INTEL_PMC_IDX_FIXED - 1:
2222 		intel_clear_masks(event, idx);
2223 		x86_pmu_disable_event(event);
2224 		break;
2225 	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2226 	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2227 		intel_pmu_disable_fixed(event);
2228 		break;
2229 	case INTEL_PMC_IDX_FIXED_BTS:
2230 		intel_pmu_disable_bts();
2231 		intel_pmu_drain_bts_buffer();
2232 		return;
2233 	case INTEL_PMC_IDX_FIXED_VLBR:
2234 		intel_clear_masks(event, idx);
2235 		break;
2236 	default:
2237 		intel_clear_masks(event, idx);
2238 		pr_warn("Failed to disable the event with invalid index %d\n",
2239 			idx);
2240 		return;
2241 	}
2242 
2243 	/*
2244 	 * Needs to be called after x86_pmu_disable_event,
2245 	 * so we don't trigger the event without PEBS bit set.
2246 	 */
2247 	if (unlikely(event->attr.precise_ip))
2248 		intel_pmu_pebs_disable(event);
2249 }
2250 
2251 static void intel_pmu_del_event(struct perf_event *event)
2252 {
2253 	if (needs_branch_stack(event))
2254 		intel_pmu_lbr_del(event);
2255 	if (event->attr.precise_ip)
2256 		intel_pmu_pebs_del(event);
2257 }
2258 
2259 static int icl_set_topdown_event_period(struct perf_event *event)
2260 {
2261 	struct hw_perf_event *hwc = &event->hw;
2262 	s64 left = local64_read(&hwc->period_left);
2263 
2264 	/*
2265 	 * The values in PERF_METRICS MSR are derived from fixed counter 3.
2266 	 * Software should start both registers, PERF_METRICS and fixed
2267 	 * counter 3, from zero.
2268 	 * Clear PERF_METRICS and Fixed counter 3 in initialization.
2269 	 * After that, both MSRs will be cleared for each read.
2270 	 * Don't need to clear them again.
2271 	 */
2272 	if (left == x86_pmu.max_period) {
2273 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2274 		wrmsrl(MSR_PERF_METRICS, 0);
2275 		hwc->saved_slots = 0;
2276 		hwc->saved_metric = 0;
2277 	}
2278 
2279 	if ((hwc->saved_slots) && is_slots_event(event)) {
2280 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
2281 		wrmsrl(MSR_PERF_METRICS, hwc->saved_metric);
2282 	}
2283 
2284 	perf_event_update_userpage(event);
2285 
2286 	return 0;
2287 }
2288 
2289 static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
2290 {
2291 	u32 val;
2292 
2293 	/*
2294 	 * The metric is reported as an 8bit integer fraction
2295 	 * suming up to 0xff.
2296 	 * slots-in-metric = (Metric / 0xff) * slots
2297 	 */
2298 	val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
2299 	return  mul_u64_u32_div(slots, val, 0xff);
2300 }
2301 
2302 static u64 icl_get_topdown_value(struct perf_event *event,
2303 				       u64 slots, u64 metrics)
2304 {
2305 	int idx = event->hw.idx;
2306 	u64 delta;
2307 
2308 	if (is_metric_idx(idx))
2309 		delta = icl_get_metrics_event_value(metrics, slots, idx);
2310 	else
2311 		delta = slots;
2312 
2313 	return delta;
2314 }
2315 
2316 static void __icl_update_topdown_event(struct perf_event *event,
2317 				       u64 slots, u64 metrics,
2318 				       u64 last_slots, u64 last_metrics)
2319 {
2320 	u64 delta, last = 0;
2321 
2322 	delta = icl_get_topdown_value(event, slots, metrics);
2323 	if (last_slots)
2324 		last = icl_get_topdown_value(event, last_slots, last_metrics);
2325 
2326 	/*
2327 	 * The 8bit integer fraction of metric may be not accurate,
2328 	 * especially when the changes is very small.
2329 	 * For example, if only a few bad_spec happens, the fraction
2330 	 * may be reduced from 1 to 0. If so, the bad_spec event value
2331 	 * will be 0 which is definitely less than the last value.
2332 	 * Avoid update event->count for this case.
2333 	 */
2334 	if (delta > last) {
2335 		delta -= last;
2336 		local64_add(delta, &event->count);
2337 	}
2338 }
2339 
2340 static void update_saved_topdown_regs(struct perf_event *event,
2341 				      u64 slots, u64 metrics)
2342 {
2343 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2344 	struct perf_event *other;
2345 	int idx;
2346 
2347 	event->hw.saved_slots = slots;
2348 	event->hw.saved_metric = metrics;
2349 
2350 	for_each_set_bit(idx, cpuc->active_mask, INTEL_PMC_IDX_TD_BE_BOUND + 1) {
2351 		if (!is_topdown_idx(idx))
2352 			continue;
2353 		other = cpuc->events[idx];
2354 		other->hw.saved_slots = slots;
2355 		other->hw.saved_metric = metrics;
2356 	}
2357 }
2358 
2359 /*
2360  * Update all active Topdown events.
2361  *
2362  * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
2363  * modify by a NMI. PMU has to be disabled before calling this function.
2364  */
2365 static u64 icl_update_topdown_event(struct perf_event *event)
2366 {
2367 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2368 	struct perf_event *other;
2369 	u64 slots, metrics;
2370 	bool reset = true;
2371 	int idx;
2372 
2373 	/* read Fixed counter 3 */
2374 	rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots);
2375 	if (!slots)
2376 		return 0;
2377 
2378 	/* read PERF_METRICS */
2379 	rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics);
2380 
2381 	for_each_set_bit(idx, cpuc->active_mask, INTEL_PMC_IDX_TD_BE_BOUND + 1) {
2382 		if (!is_topdown_idx(idx))
2383 			continue;
2384 		other = cpuc->events[idx];
2385 		__icl_update_topdown_event(other, slots, metrics,
2386 					   event ? event->hw.saved_slots : 0,
2387 					   event ? event->hw.saved_metric : 0);
2388 	}
2389 
2390 	/*
2391 	 * Check and update this event, which may have been cleared
2392 	 * in active_mask e.g. x86_pmu_stop()
2393 	 */
2394 	if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
2395 		__icl_update_topdown_event(event, slots, metrics,
2396 					   event->hw.saved_slots,
2397 					   event->hw.saved_metric);
2398 
2399 		/*
2400 		 * In x86_pmu_stop(), the event is cleared in active_mask first,
2401 		 * then drain the delta, which indicates context switch for
2402 		 * counting.
2403 		 * Save metric and slots for context switch.
2404 		 * Don't need to reset the PERF_METRICS and Fixed counter 3.
2405 		 * Because the values will be restored in next schedule in.
2406 		 */
2407 		update_saved_topdown_regs(event, slots, metrics);
2408 		reset = false;
2409 	}
2410 
2411 	if (reset) {
2412 		/* The fixed counter 3 has to be written before the PERF_METRICS. */
2413 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2414 		wrmsrl(MSR_PERF_METRICS, 0);
2415 		if (event)
2416 			update_saved_topdown_regs(event, 0, 0);
2417 	}
2418 
2419 	return slots;
2420 }
2421 
2422 static void intel_pmu_read_topdown_event(struct perf_event *event)
2423 {
2424 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2425 
2426 	/* Only need to call update_topdown_event() once for group read. */
2427 	if ((cpuc->txn_flags & PERF_PMU_TXN_READ) &&
2428 	    !is_slots_event(event))
2429 		return;
2430 
2431 	perf_pmu_disable(event->pmu);
2432 	x86_pmu.update_topdown_event(event);
2433 	perf_pmu_enable(event->pmu);
2434 }
2435 
2436 static void intel_pmu_read_event(struct perf_event *event)
2437 {
2438 	if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2439 		intel_pmu_auto_reload_read(event);
2440 	else if (is_topdown_count(event) && x86_pmu.update_topdown_event)
2441 		intel_pmu_read_topdown_event(event);
2442 	else
2443 		x86_perf_event_update(event);
2444 }
2445 
2446 static void intel_pmu_enable_fixed(struct perf_event *event)
2447 {
2448 	struct hw_perf_event *hwc = &event->hw;
2449 	u64 ctrl_val, mask, bits = 0;
2450 	int idx = hwc->idx;
2451 
2452 	if (is_topdown_idx(idx)) {
2453 		struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2454 		/*
2455 		 * When there are other active TopDown events,
2456 		 * don't enable the fixed counter 3 again.
2457 		 */
2458 		if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2459 			return;
2460 
2461 		idx = INTEL_PMC_IDX_FIXED_SLOTS;
2462 	}
2463 
2464 	intel_set_masks(event, idx);
2465 
2466 	/*
2467 	 * Enable IRQ generation (0x8), if not PEBS,
2468 	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2469 	 * if requested:
2470 	 */
2471 	if (!event->attr.precise_ip)
2472 		bits |= 0x8;
2473 	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2474 		bits |= 0x2;
2475 	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2476 		bits |= 0x1;
2477 
2478 	/*
2479 	 * ANY bit is supported in v3 and up
2480 	 */
2481 	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2482 		bits |= 0x4;
2483 
2484 	idx -= INTEL_PMC_IDX_FIXED;
2485 	bits <<= (idx * 4);
2486 	mask = 0xfULL << (idx * 4);
2487 
2488 	if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2489 		bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2490 		mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2491 	}
2492 
2493 	rdmsrl(hwc->config_base, ctrl_val);
2494 	ctrl_val &= ~mask;
2495 	ctrl_val |= bits;
2496 	wrmsrl(hwc->config_base, ctrl_val);
2497 }
2498 
2499 static void intel_pmu_enable_event(struct perf_event *event)
2500 {
2501 	struct hw_perf_event *hwc = &event->hw;
2502 	int idx = hwc->idx;
2503 
2504 	if (unlikely(event->attr.precise_ip))
2505 		intel_pmu_pebs_enable(event);
2506 
2507 	switch (idx) {
2508 	case 0 ... INTEL_PMC_IDX_FIXED - 1:
2509 		intel_set_masks(event, idx);
2510 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2511 		break;
2512 	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2513 	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2514 		intel_pmu_enable_fixed(event);
2515 		break;
2516 	case INTEL_PMC_IDX_FIXED_BTS:
2517 		if (!__this_cpu_read(cpu_hw_events.enabled))
2518 			return;
2519 		intel_pmu_enable_bts(hwc->config);
2520 		break;
2521 	case INTEL_PMC_IDX_FIXED_VLBR:
2522 		intel_set_masks(event, idx);
2523 		break;
2524 	default:
2525 		pr_warn("Failed to enable the event with invalid index %d\n",
2526 			idx);
2527 	}
2528 }
2529 
2530 static void intel_pmu_add_event(struct perf_event *event)
2531 {
2532 	if (event->attr.precise_ip)
2533 		intel_pmu_pebs_add(event);
2534 	if (needs_branch_stack(event))
2535 		intel_pmu_lbr_add(event);
2536 }
2537 
2538 /*
2539  * Save and restart an expired event. Called by NMI contexts,
2540  * so it has to be careful about preempting normal event ops:
2541  */
2542 int intel_pmu_save_and_restart(struct perf_event *event)
2543 {
2544 	x86_perf_event_update(event);
2545 	/*
2546 	 * For a checkpointed counter always reset back to 0.  This
2547 	 * avoids a situation where the counter overflows, aborts the
2548 	 * transaction and is then set back to shortly before the
2549 	 * overflow, and overflows and aborts again.
2550 	 */
2551 	if (unlikely(event_is_checkpointed(event))) {
2552 		/* No race with NMIs because the counter should not be armed */
2553 		wrmsrl(event->hw.event_base, 0);
2554 		local64_set(&event->hw.prev_count, 0);
2555 	}
2556 	return x86_perf_event_set_period(event);
2557 }
2558 
2559 static void intel_pmu_reset(void)
2560 {
2561 	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2562 	unsigned long flags;
2563 	int idx;
2564 
2565 	if (!x86_pmu.num_counters)
2566 		return;
2567 
2568 	local_irq_save(flags);
2569 
2570 	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2571 
2572 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2573 		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2574 		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2575 	}
2576 	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
2577 		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2578 
2579 	if (ds)
2580 		ds->bts_index = ds->bts_buffer_base;
2581 
2582 	/* Ack all overflows and disable fixed counters */
2583 	if (x86_pmu.version >= 2) {
2584 		intel_pmu_ack_status(intel_pmu_get_status());
2585 		wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2586 	}
2587 
2588 	/* Reset LBRs and LBR freezing */
2589 	if (x86_pmu.lbr_nr) {
2590 		update_debugctlmsr(get_debugctlmsr() &
2591 			~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2592 	}
2593 
2594 	local_irq_restore(flags);
2595 }
2596 
2597 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2598 {
2599 	struct perf_sample_data data;
2600 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2601 	int bit;
2602 	int handled = 0;
2603 
2604 	inc_irq_stat(apic_perf_irqs);
2605 
2606 	/*
2607 	 * Ignore a range of extra bits in status that do not indicate
2608 	 * overflow by themselves.
2609 	 */
2610 	status &= ~(GLOBAL_STATUS_COND_CHG |
2611 		    GLOBAL_STATUS_ASIF |
2612 		    GLOBAL_STATUS_LBRS_FROZEN);
2613 	if (!status)
2614 		return 0;
2615 	/*
2616 	 * In case multiple PEBS events are sampled at the same time,
2617 	 * it is possible to have GLOBAL_STATUS bit 62 set indicating
2618 	 * PEBS buffer overflow and also seeing at most 3 PEBS counters
2619 	 * having their bits set in the status register. This is a sign
2620 	 * that there was at least one PEBS record pending at the time
2621 	 * of the PMU interrupt. PEBS counters must only be processed
2622 	 * via the drain_pebs() calls and not via the regular sample
2623 	 * processing loop coming after that the function, otherwise
2624 	 * phony regular samples may be generated in the sampling buffer
2625 	 * not marked with the EXACT tag. Another possibility is to have
2626 	 * one PEBS event and at least one non-PEBS event whic hoverflows
2627 	 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2628 	 * not be set, yet the overflow status bit for the PEBS counter will
2629 	 * be on Skylake.
2630 	 *
2631 	 * To avoid this problem, we systematically ignore the PEBS-enabled
2632 	 * counters from the GLOBAL_STATUS mask and we always process PEBS
2633 	 * events via drain_pebs().
2634 	 */
2635 	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
2636 		status &= ~cpuc->pebs_enabled;
2637 	else
2638 		status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2639 
2640 	/*
2641 	 * PEBS overflow sets bit 62 in the global status register
2642 	 */
2643 	if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
2644 		u64 pebs_enabled = cpuc->pebs_enabled;
2645 
2646 		handled++;
2647 		x86_pmu.drain_pebs(regs, &data);
2648 		status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2649 
2650 		/*
2651 		 * PMI throttle may be triggered, which stops the PEBS event.
2652 		 * Although cpuc->pebs_enabled is updated accordingly, the
2653 		 * MSR_IA32_PEBS_ENABLE is not updated. Because the
2654 		 * cpuc->enabled has been forced to 0 in PMI.
2655 		 * Update the MSR if pebs_enabled is changed.
2656 		 */
2657 		if (pebs_enabled != cpuc->pebs_enabled)
2658 			wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
2659 	}
2660 
2661 	/*
2662 	 * Intel PT
2663 	 */
2664 	if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
2665 		handled++;
2666 		if (unlikely(perf_guest_cbs && perf_guest_cbs->is_in_guest() &&
2667 			perf_guest_cbs->handle_intel_pt_intr))
2668 			perf_guest_cbs->handle_intel_pt_intr();
2669 		else
2670 			intel_pt_interrupt();
2671 	}
2672 
2673 	/*
2674 	 * Intel Perf mertrics
2675 	 */
2676 	if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
2677 		handled++;
2678 		if (x86_pmu.update_topdown_event)
2679 			x86_pmu.update_topdown_event(NULL);
2680 	}
2681 
2682 	/*
2683 	 * Checkpointed counters can lead to 'spurious' PMIs because the
2684 	 * rollback caused by the PMI will have cleared the overflow status
2685 	 * bit. Therefore always force probe these counters.
2686 	 */
2687 	status |= cpuc->intel_cp_status;
2688 
2689 	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2690 		struct perf_event *event = cpuc->events[bit];
2691 
2692 		handled++;
2693 
2694 		if (!test_bit(bit, cpuc->active_mask))
2695 			continue;
2696 
2697 		if (!intel_pmu_save_and_restart(event))
2698 			continue;
2699 
2700 		perf_sample_data_init(&data, 0, event->hw.last_period);
2701 
2702 		if (has_branch_stack(event))
2703 			data.br_stack = &cpuc->lbr_stack;
2704 
2705 		if (perf_event_overflow(event, &data, regs))
2706 			x86_pmu_stop(event, 0);
2707 	}
2708 
2709 	return handled;
2710 }
2711 
2712 static bool disable_counter_freezing = true;
2713 static int __init intel_perf_counter_freezing_setup(char *s)
2714 {
2715 	bool res;
2716 
2717 	if (kstrtobool(s, &res))
2718 		return -EINVAL;
2719 
2720 	disable_counter_freezing = !res;
2721 	return 1;
2722 }
2723 __setup("perf_v4_pmi=", intel_perf_counter_freezing_setup);
2724 
2725 /*
2726  * Simplified handler for Arch Perfmon v4:
2727  * - We rely on counter freezing/unfreezing to enable/disable the PMU.
2728  * This is done automatically on PMU ack.
2729  * - Ack the PMU only after the APIC.
2730  */
2731 
2732 static int intel_pmu_handle_irq_v4(struct pt_regs *regs)
2733 {
2734 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2735 	int handled = 0;
2736 	bool bts = false;
2737 	u64 status;
2738 	int pmu_enabled = cpuc->enabled;
2739 	int loops = 0;
2740 
2741 	/* PMU has been disabled because of counter freezing */
2742 	cpuc->enabled = 0;
2743 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2744 		bts = true;
2745 		intel_bts_disable_local();
2746 		handled = intel_pmu_drain_bts_buffer();
2747 		handled += intel_bts_interrupt();
2748 	}
2749 	status = intel_pmu_get_status();
2750 	if (!status)
2751 		goto done;
2752 again:
2753 	intel_pmu_lbr_read();
2754 	if (++loops > 100) {
2755 		static bool warned;
2756 
2757 		if (!warned) {
2758 			WARN(1, "perfevents: irq loop stuck!\n");
2759 			perf_event_print_debug();
2760 			warned = true;
2761 		}
2762 		intel_pmu_reset();
2763 		goto done;
2764 	}
2765 
2766 
2767 	handled += handle_pmi_common(regs, status);
2768 done:
2769 	/* Ack the PMI in the APIC */
2770 	apic_write(APIC_LVTPC, APIC_DM_NMI);
2771 
2772 	/*
2773 	 * The counters start counting immediately while ack the status.
2774 	 * Make it as close as possible to IRET. This avoids bogus
2775 	 * freezing on Skylake CPUs.
2776 	 */
2777 	if (status) {
2778 		intel_pmu_ack_status(status);
2779 	} else {
2780 		/*
2781 		 * CPU may issues two PMIs very close to each other.
2782 		 * When the PMI handler services the first one, the
2783 		 * GLOBAL_STATUS is already updated to reflect both.
2784 		 * When it IRETs, the second PMI is immediately
2785 		 * handled and it sees clear status. At the meantime,
2786 		 * there may be a third PMI, because the freezing bit
2787 		 * isn't set since the ack in first PMI handlers.
2788 		 * Double check if there is more work to be done.
2789 		 */
2790 		status = intel_pmu_get_status();
2791 		if (status)
2792 			goto again;
2793 	}
2794 
2795 	if (bts)
2796 		intel_bts_enable_local();
2797 	cpuc->enabled = pmu_enabled;
2798 	return handled;
2799 }
2800 
2801 /*
2802  * This handler is triggered by the local APIC, so the APIC IRQ handling
2803  * rules apply:
2804  */
2805 static int intel_pmu_handle_irq(struct pt_regs *regs)
2806 {
2807 	struct cpu_hw_events *cpuc;
2808 	int loops;
2809 	u64 status;
2810 	int handled;
2811 	int pmu_enabled;
2812 
2813 	cpuc = this_cpu_ptr(&cpu_hw_events);
2814 
2815 	/*
2816 	 * Save the PMU state.
2817 	 * It needs to be restored when leaving the handler.
2818 	 */
2819 	pmu_enabled = cpuc->enabled;
2820 	/*
2821 	 * No known reason to not always do late ACK,
2822 	 * but just in case do it opt-in.
2823 	 */
2824 	if (!x86_pmu.late_ack)
2825 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2826 	intel_bts_disable_local();
2827 	cpuc->enabled = 0;
2828 	__intel_pmu_disable_all();
2829 	handled = intel_pmu_drain_bts_buffer();
2830 	handled += intel_bts_interrupt();
2831 	status = intel_pmu_get_status();
2832 	if (!status)
2833 		goto done;
2834 
2835 	loops = 0;
2836 again:
2837 	intel_pmu_lbr_read();
2838 	intel_pmu_ack_status(status);
2839 	if (++loops > 100) {
2840 		static bool warned;
2841 
2842 		if (!warned) {
2843 			WARN(1, "perfevents: irq loop stuck!\n");
2844 			perf_event_print_debug();
2845 			warned = true;
2846 		}
2847 		intel_pmu_reset();
2848 		goto done;
2849 	}
2850 
2851 	handled += handle_pmi_common(regs, status);
2852 
2853 	/*
2854 	 * Repeat if there is more work to be done:
2855 	 */
2856 	status = intel_pmu_get_status();
2857 	if (status)
2858 		goto again;
2859 
2860 done:
2861 	/* Only restore PMU state when it's active. See x86_pmu_disable(). */
2862 	cpuc->enabled = pmu_enabled;
2863 	if (pmu_enabled)
2864 		__intel_pmu_enable_all(0, true);
2865 	intel_bts_enable_local();
2866 
2867 	/*
2868 	 * Only unmask the NMI after the overflow counters
2869 	 * have been reset. This avoids spurious NMIs on
2870 	 * Haswell CPUs.
2871 	 */
2872 	if (x86_pmu.late_ack)
2873 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2874 	return handled;
2875 }
2876 
2877 static struct event_constraint *
2878 intel_bts_constraints(struct perf_event *event)
2879 {
2880 	if (unlikely(intel_pmu_has_bts(event)))
2881 		return &bts_constraint;
2882 
2883 	return NULL;
2884 }
2885 
2886 /*
2887  * Note: matches a fake event, like Fixed2.
2888  */
2889 static struct event_constraint *
2890 intel_vlbr_constraints(struct perf_event *event)
2891 {
2892 	struct event_constraint *c = &vlbr_constraint;
2893 
2894 	if (unlikely(constraint_match(c, event->hw.config)))
2895 		return c;
2896 
2897 	return NULL;
2898 }
2899 
2900 static int intel_alt_er(int idx, u64 config)
2901 {
2902 	int alt_idx = idx;
2903 
2904 	if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2905 		return idx;
2906 
2907 	if (idx == EXTRA_REG_RSP_0)
2908 		alt_idx = EXTRA_REG_RSP_1;
2909 
2910 	if (idx == EXTRA_REG_RSP_1)
2911 		alt_idx = EXTRA_REG_RSP_0;
2912 
2913 	if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2914 		return idx;
2915 
2916 	return alt_idx;
2917 }
2918 
2919 static void intel_fixup_er(struct perf_event *event, int idx)
2920 {
2921 	event->hw.extra_reg.idx = idx;
2922 
2923 	if (idx == EXTRA_REG_RSP_0) {
2924 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2925 		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2926 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2927 	} else if (idx == EXTRA_REG_RSP_1) {
2928 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2929 		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2930 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2931 	}
2932 }
2933 
2934 /*
2935  * manage allocation of shared extra msr for certain events
2936  *
2937  * sharing can be:
2938  * per-cpu: to be shared between the various events on a single PMU
2939  * per-core: per-cpu + shared by HT threads
2940  */
2941 static struct event_constraint *
2942 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2943 				   struct perf_event *event,
2944 				   struct hw_perf_event_extra *reg)
2945 {
2946 	struct event_constraint *c = &emptyconstraint;
2947 	struct er_account *era;
2948 	unsigned long flags;
2949 	int idx = reg->idx;
2950 
2951 	/*
2952 	 * reg->alloc can be set due to existing state, so for fake cpuc we
2953 	 * need to ignore this, otherwise we might fail to allocate proper fake
2954 	 * state for this extra reg constraint. Also see the comment below.
2955 	 */
2956 	if (reg->alloc && !cpuc->is_fake)
2957 		return NULL; /* call x86_get_event_constraint() */
2958 
2959 again:
2960 	era = &cpuc->shared_regs->regs[idx];
2961 	/*
2962 	 * we use spin_lock_irqsave() to avoid lockdep issues when
2963 	 * passing a fake cpuc
2964 	 */
2965 	raw_spin_lock_irqsave(&era->lock, flags);
2966 
2967 	if (!atomic_read(&era->ref) || era->config == reg->config) {
2968 
2969 		/*
2970 		 * If its a fake cpuc -- as per validate_{group,event}() we
2971 		 * shouldn't touch event state and we can avoid doing so
2972 		 * since both will only call get_event_constraints() once
2973 		 * on each event, this avoids the need for reg->alloc.
2974 		 *
2975 		 * Not doing the ER fixup will only result in era->reg being
2976 		 * wrong, but since we won't actually try and program hardware
2977 		 * this isn't a problem either.
2978 		 */
2979 		if (!cpuc->is_fake) {
2980 			if (idx != reg->idx)
2981 				intel_fixup_er(event, idx);
2982 
2983 			/*
2984 			 * x86_schedule_events() can call get_event_constraints()
2985 			 * multiple times on events in the case of incremental
2986 			 * scheduling(). reg->alloc ensures we only do the ER
2987 			 * allocation once.
2988 			 */
2989 			reg->alloc = 1;
2990 		}
2991 
2992 		/* lock in msr value */
2993 		era->config = reg->config;
2994 		era->reg = reg->reg;
2995 
2996 		/* one more user */
2997 		atomic_inc(&era->ref);
2998 
2999 		/*
3000 		 * need to call x86_get_event_constraint()
3001 		 * to check if associated event has constraints
3002 		 */
3003 		c = NULL;
3004 	} else {
3005 		idx = intel_alt_er(idx, reg->config);
3006 		if (idx != reg->idx) {
3007 			raw_spin_unlock_irqrestore(&era->lock, flags);
3008 			goto again;
3009 		}
3010 	}
3011 	raw_spin_unlock_irqrestore(&era->lock, flags);
3012 
3013 	return c;
3014 }
3015 
3016 static void
3017 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
3018 				   struct hw_perf_event_extra *reg)
3019 {
3020 	struct er_account *era;
3021 
3022 	/*
3023 	 * Only put constraint if extra reg was actually allocated. Also takes
3024 	 * care of event which do not use an extra shared reg.
3025 	 *
3026 	 * Also, if this is a fake cpuc we shouldn't touch any event state
3027 	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
3028 	 * either since it'll be thrown out.
3029 	 */
3030 	if (!reg->alloc || cpuc->is_fake)
3031 		return;
3032 
3033 	era = &cpuc->shared_regs->regs[reg->idx];
3034 
3035 	/* one fewer user */
3036 	atomic_dec(&era->ref);
3037 
3038 	/* allocate again next time */
3039 	reg->alloc = 0;
3040 }
3041 
3042 static struct event_constraint *
3043 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
3044 			      struct perf_event *event)
3045 {
3046 	struct event_constraint *c = NULL, *d;
3047 	struct hw_perf_event_extra *xreg, *breg;
3048 
3049 	xreg = &event->hw.extra_reg;
3050 	if (xreg->idx != EXTRA_REG_NONE) {
3051 		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
3052 		if (c == &emptyconstraint)
3053 			return c;
3054 	}
3055 	breg = &event->hw.branch_reg;
3056 	if (breg->idx != EXTRA_REG_NONE) {
3057 		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
3058 		if (d == &emptyconstraint) {
3059 			__intel_shared_reg_put_constraints(cpuc, xreg);
3060 			c = d;
3061 		}
3062 	}
3063 	return c;
3064 }
3065 
3066 struct event_constraint *
3067 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3068 			  struct perf_event *event)
3069 {
3070 	struct event_constraint *c;
3071 
3072 	if (x86_pmu.event_constraints) {
3073 		for_each_event_constraint(c, x86_pmu.event_constraints) {
3074 			if (constraint_match(c, event->hw.config)) {
3075 				event->hw.flags |= c->flags;
3076 				return c;
3077 			}
3078 		}
3079 	}
3080 
3081 	return &unconstrained;
3082 }
3083 
3084 static struct event_constraint *
3085 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3086 			    struct perf_event *event)
3087 {
3088 	struct event_constraint *c;
3089 
3090 	c = intel_vlbr_constraints(event);
3091 	if (c)
3092 		return c;
3093 
3094 	c = intel_bts_constraints(event);
3095 	if (c)
3096 		return c;
3097 
3098 	c = intel_shared_regs_constraints(cpuc, event);
3099 	if (c)
3100 		return c;
3101 
3102 	c = intel_pebs_constraints(event);
3103 	if (c)
3104 		return c;
3105 
3106 	return x86_get_event_constraints(cpuc, idx, event);
3107 }
3108 
3109 static void
3110 intel_start_scheduling(struct cpu_hw_events *cpuc)
3111 {
3112 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3113 	struct intel_excl_states *xl;
3114 	int tid = cpuc->excl_thread_id;
3115 
3116 	/*
3117 	 * nothing needed if in group validation mode
3118 	 */
3119 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3120 		return;
3121 
3122 	/*
3123 	 * no exclusion needed
3124 	 */
3125 	if (WARN_ON_ONCE(!excl_cntrs))
3126 		return;
3127 
3128 	xl = &excl_cntrs->states[tid];
3129 
3130 	xl->sched_started = true;
3131 	/*
3132 	 * lock shared state until we are done scheduling
3133 	 * in stop_event_scheduling()
3134 	 * makes scheduling appear as a transaction
3135 	 */
3136 	raw_spin_lock(&excl_cntrs->lock);
3137 }
3138 
3139 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
3140 {
3141 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3142 	struct event_constraint *c = cpuc->event_constraint[idx];
3143 	struct intel_excl_states *xl;
3144 	int tid = cpuc->excl_thread_id;
3145 
3146 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3147 		return;
3148 
3149 	if (WARN_ON_ONCE(!excl_cntrs))
3150 		return;
3151 
3152 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
3153 		return;
3154 
3155 	xl = &excl_cntrs->states[tid];
3156 
3157 	lockdep_assert_held(&excl_cntrs->lock);
3158 
3159 	if (c->flags & PERF_X86_EVENT_EXCL)
3160 		xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
3161 	else
3162 		xl->state[cntr] = INTEL_EXCL_SHARED;
3163 }
3164 
3165 static void
3166 intel_stop_scheduling(struct cpu_hw_events *cpuc)
3167 {
3168 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3169 	struct intel_excl_states *xl;
3170 	int tid = cpuc->excl_thread_id;
3171 
3172 	/*
3173 	 * nothing needed if in group validation mode
3174 	 */
3175 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3176 		return;
3177 	/*
3178 	 * no exclusion needed
3179 	 */
3180 	if (WARN_ON_ONCE(!excl_cntrs))
3181 		return;
3182 
3183 	xl = &excl_cntrs->states[tid];
3184 
3185 	xl->sched_started = false;
3186 	/*
3187 	 * release shared state lock (acquired in intel_start_scheduling())
3188 	 */
3189 	raw_spin_unlock(&excl_cntrs->lock);
3190 }
3191 
3192 static struct event_constraint *
3193 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
3194 {
3195 	WARN_ON_ONCE(!cpuc->constraint_list);
3196 
3197 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
3198 		struct event_constraint *cx;
3199 
3200 		/*
3201 		 * grab pre-allocated constraint entry
3202 		 */
3203 		cx = &cpuc->constraint_list[idx];
3204 
3205 		/*
3206 		 * initialize dynamic constraint
3207 		 * with static constraint
3208 		 */
3209 		*cx = *c;
3210 
3211 		/*
3212 		 * mark constraint as dynamic
3213 		 */
3214 		cx->flags |= PERF_X86_EVENT_DYNAMIC;
3215 		c = cx;
3216 	}
3217 
3218 	return c;
3219 }
3220 
3221 static struct event_constraint *
3222 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
3223 			   int idx, struct event_constraint *c)
3224 {
3225 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3226 	struct intel_excl_states *xlo;
3227 	int tid = cpuc->excl_thread_id;
3228 	int is_excl, i, w;
3229 
3230 	/*
3231 	 * validating a group does not require
3232 	 * enforcing cross-thread  exclusion
3233 	 */
3234 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3235 		return c;
3236 
3237 	/*
3238 	 * no exclusion needed
3239 	 */
3240 	if (WARN_ON_ONCE(!excl_cntrs))
3241 		return c;
3242 
3243 	/*
3244 	 * because we modify the constraint, we need
3245 	 * to make a copy. Static constraints come
3246 	 * from static const tables.
3247 	 *
3248 	 * only needed when constraint has not yet
3249 	 * been cloned (marked dynamic)
3250 	 */
3251 	c = dyn_constraint(cpuc, c, idx);
3252 
3253 	/*
3254 	 * From here on, the constraint is dynamic.
3255 	 * Either it was just allocated above, or it
3256 	 * was allocated during a earlier invocation
3257 	 * of this function
3258 	 */
3259 
3260 	/*
3261 	 * state of sibling HT
3262 	 */
3263 	xlo = &excl_cntrs->states[tid ^ 1];
3264 
3265 	/*
3266 	 * event requires exclusive counter access
3267 	 * across HT threads
3268 	 */
3269 	is_excl = c->flags & PERF_X86_EVENT_EXCL;
3270 	if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
3271 		event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
3272 		if (!cpuc->n_excl++)
3273 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
3274 	}
3275 
3276 	/*
3277 	 * Modify static constraint with current dynamic
3278 	 * state of thread
3279 	 *
3280 	 * EXCLUSIVE: sibling counter measuring exclusive event
3281 	 * SHARED   : sibling counter measuring non-exclusive event
3282 	 * UNUSED   : sibling counter unused
3283 	 */
3284 	w = c->weight;
3285 	for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3286 		/*
3287 		 * exclusive event in sibling counter
3288 		 * our corresponding counter cannot be used
3289 		 * regardless of our event
3290 		 */
3291 		if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3292 			__clear_bit(i, c->idxmsk);
3293 			w--;
3294 			continue;
3295 		}
3296 		/*
3297 		 * if measuring an exclusive event, sibling
3298 		 * measuring non-exclusive, then counter cannot
3299 		 * be used
3300 		 */
3301 		if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3302 			__clear_bit(i, c->idxmsk);
3303 			w--;
3304 			continue;
3305 		}
3306 	}
3307 
3308 	/*
3309 	 * if we return an empty mask, then switch
3310 	 * back to static empty constraint to avoid
3311 	 * the cost of freeing later on
3312 	 */
3313 	if (!w)
3314 		c = &emptyconstraint;
3315 
3316 	c->weight = w;
3317 
3318 	return c;
3319 }
3320 
3321 static struct event_constraint *
3322 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3323 			    struct perf_event *event)
3324 {
3325 	struct event_constraint *c1, *c2;
3326 
3327 	c1 = cpuc->event_constraint[idx];
3328 
3329 	/*
3330 	 * first time only
3331 	 * - static constraint: no change across incremental scheduling calls
3332 	 * - dynamic constraint: handled by intel_get_excl_constraints()
3333 	 */
3334 	c2 = __intel_get_event_constraints(cpuc, idx, event);
3335 	if (c1) {
3336 	        WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3337 		bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3338 		c1->weight = c2->weight;
3339 		c2 = c1;
3340 	}
3341 
3342 	if (cpuc->excl_cntrs)
3343 		return intel_get_excl_constraints(cpuc, event, idx, c2);
3344 
3345 	return c2;
3346 }
3347 
3348 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3349 		struct perf_event *event)
3350 {
3351 	struct hw_perf_event *hwc = &event->hw;
3352 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3353 	int tid = cpuc->excl_thread_id;
3354 	struct intel_excl_states *xl;
3355 
3356 	/*
3357 	 * nothing needed if in group validation mode
3358 	 */
3359 	if (cpuc->is_fake)
3360 		return;
3361 
3362 	if (WARN_ON_ONCE(!excl_cntrs))
3363 		return;
3364 
3365 	if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3366 		hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3367 		if (!--cpuc->n_excl)
3368 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3369 	}
3370 
3371 	/*
3372 	 * If event was actually assigned, then mark the counter state as
3373 	 * unused now.
3374 	 */
3375 	if (hwc->idx >= 0) {
3376 		xl = &excl_cntrs->states[tid];
3377 
3378 		/*
3379 		 * put_constraint may be called from x86_schedule_events()
3380 		 * which already has the lock held so here make locking
3381 		 * conditional.
3382 		 */
3383 		if (!xl->sched_started)
3384 			raw_spin_lock(&excl_cntrs->lock);
3385 
3386 		xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3387 
3388 		if (!xl->sched_started)
3389 			raw_spin_unlock(&excl_cntrs->lock);
3390 	}
3391 }
3392 
3393 static void
3394 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3395 					struct perf_event *event)
3396 {
3397 	struct hw_perf_event_extra *reg;
3398 
3399 	reg = &event->hw.extra_reg;
3400 	if (reg->idx != EXTRA_REG_NONE)
3401 		__intel_shared_reg_put_constraints(cpuc, reg);
3402 
3403 	reg = &event->hw.branch_reg;
3404 	if (reg->idx != EXTRA_REG_NONE)
3405 		__intel_shared_reg_put_constraints(cpuc, reg);
3406 }
3407 
3408 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3409 					struct perf_event *event)
3410 {
3411 	intel_put_shared_regs_event_constraints(cpuc, event);
3412 
3413 	/*
3414 	 * is PMU has exclusive counter restrictions, then
3415 	 * all events are subject to and must call the
3416 	 * put_excl_constraints() routine
3417 	 */
3418 	if (cpuc->excl_cntrs)
3419 		intel_put_excl_constraints(cpuc, event);
3420 }
3421 
3422 static void intel_pebs_aliases_core2(struct perf_event *event)
3423 {
3424 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3425 		/*
3426 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3427 		 * (0x003c) so that we can use it with PEBS.
3428 		 *
3429 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3430 		 * PEBS capable. However we can use INST_RETIRED.ANY_P
3431 		 * (0x00c0), which is a PEBS capable event, to get the same
3432 		 * count.
3433 		 *
3434 		 * INST_RETIRED.ANY_P counts the number of cycles that retires
3435 		 * CNTMASK instructions. By setting CNTMASK to a value (16)
3436 		 * larger than the maximum number of instructions that can be
3437 		 * retired per cycle (4) and then inverting the condition, we
3438 		 * count all cycles that retire 16 or less instructions, which
3439 		 * is every cycle.
3440 		 *
3441 		 * Thereby we gain a PEBS capable cycle counter.
3442 		 */
3443 		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3444 
3445 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3446 		event->hw.config = alt_config;
3447 	}
3448 }
3449 
3450 static void intel_pebs_aliases_snb(struct perf_event *event)
3451 {
3452 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3453 		/*
3454 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3455 		 * (0x003c) so that we can use it with PEBS.
3456 		 *
3457 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3458 		 * PEBS capable. However we can use UOPS_RETIRED.ALL
3459 		 * (0x01c2), which is a PEBS capable event, to get the same
3460 		 * count.
3461 		 *
3462 		 * UOPS_RETIRED.ALL counts the number of cycles that retires
3463 		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3464 		 * larger than the maximum number of micro-ops that can be
3465 		 * retired per cycle (4) and then inverting the condition, we
3466 		 * count all cycles that retire 16 or less micro-ops, which
3467 		 * is every cycle.
3468 		 *
3469 		 * Thereby we gain a PEBS capable cycle counter.
3470 		 */
3471 		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3472 
3473 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3474 		event->hw.config = alt_config;
3475 	}
3476 }
3477 
3478 static void intel_pebs_aliases_precdist(struct perf_event *event)
3479 {
3480 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3481 		/*
3482 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3483 		 * (0x003c) so that we can use it with PEBS.
3484 		 *
3485 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3486 		 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3487 		 * (0x01c0), which is a PEBS capable event, to get the same
3488 		 * count.
3489 		 *
3490 		 * The PREC_DIST event has special support to minimize sample
3491 		 * shadowing effects. One drawback is that it can be
3492 		 * only programmed on counter 1, but that seems like an
3493 		 * acceptable trade off.
3494 		 */
3495 		u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3496 
3497 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3498 		event->hw.config = alt_config;
3499 	}
3500 }
3501 
3502 static void intel_pebs_aliases_ivb(struct perf_event *event)
3503 {
3504 	if (event->attr.precise_ip < 3)
3505 		return intel_pebs_aliases_snb(event);
3506 	return intel_pebs_aliases_precdist(event);
3507 }
3508 
3509 static void intel_pebs_aliases_skl(struct perf_event *event)
3510 {
3511 	if (event->attr.precise_ip < 3)
3512 		return intel_pebs_aliases_core2(event);
3513 	return intel_pebs_aliases_precdist(event);
3514 }
3515 
3516 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3517 {
3518 	unsigned long flags = x86_pmu.large_pebs_flags;
3519 
3520 	if (event->attr.use_clockid)
3521 		flags &= ~PERF_SAMPLE_TIME;
3522 	if (!event->attr.exclude_kernel)
3523 		flags &= ~PERF_SAMPLE_REGS_USER;
3524 	if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3525 		flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3526 	return flags;
3527 }
3528 
3529 static int intel_pmu_bts_config(struct perf_event *event)
3530 {
3531 	struct perf_event_attr *attr = &event->attr;
3532 
3533 	if (unlikely(intel_pmu_has_bts(event))) {
3534 		/* BTS is not supported by this architecture. */
3535 		if (!x86_pmu.bts_active)
3536 			return -EOPNOTSUPP;
3537 
3538 		/* BTS is currently only allowed for user-mode. */
3539 		if (!attr->exclude_kernel)
3540 			return -EOPNOTSUPP;
3541 
3542 		/* BTS is not allowed for precise events. */
3543 		if (attr->precise_ip)
3544 			return -EOPNOTSUPP;
3545 
3546 		/* disallow bts if conflicting events are present */
3547 		if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3548 			return -EBUSY;
3549 
3550 		event->destroy = hw_perf_lbr_event_destroy;
3551 	}
3552 
3553 	return 0;
3554 }
3555 
3556 static int core_pmu_hw_config(struct perf_event *event)
3557 {
3558 	int ret = x86_pmu_hw_config(event);
3559 
3560 	if (ret)
3561 		return ret;
3562 
3563 	return intel_pmu_bts_config(event);
3564 }
3565 
3566 static int intel_pmu_hw_config(struct perf_event *event)
3567 {
3568 	int ret = x86_pmu_hw_config(event);
3569 
3570 	if (ret)
3571 		return ret;
3572 
3573 	ret = intel_pmu_bts_config(event);
3574 	if (ret)
3575 		return ret;
3576 
3577 	if (event->attr.precise_ip) {
3578 		if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3579 			event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3580 			if (!(event->attr.sample_type &
3581 			      ~intel_pmu_large_pebs_flags(event)))
3582 				event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3583 		}
3584 		if (x86_pmu.pebs_aliases)
3585 			x86_pmu.pebs_aliases(event);
3586 
3587 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3588 			event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3589 	}
3590 
3591 	if (needs_branch_stack(event)) {
3592 		ret = intel_pmu_setup_lbr_filter(event);
3593 		if (ret)
3594 			return ret;
3595 
3596 		/*
3597 		 * BTS is set up earlier in this path, so don't account twice
3598 		 */
3599 		if (!unlikely(intel_pmu_has_bts(event))) {
3600 			/* disallow lbr if conflicting events are present */
3601 			if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3602 				return -EBUSY;
3603 
3604 			event->destroy = hw_perf_lbr_event_destroy;
3605 		}
3606 	}
3607 
3608 	if (event->attr.aux_output) {
3609 		if (!event->attr.precise_ip)
3610 			return -EINVAL;
3611 
3612 		event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
3613 	}
3614 
3615 	if (event->attr.type != PERF_TYPE_RAW)
3616 		return 0;
3617 
3618 	/*
3619 	 * Config Topdown slots and metric events
3620 	 *
3621 	 * The slots event on Fixed Counter 3 can support sampling,
3622 	 * which will be handled normally in x86_perf_event_update().
3623 	 *
3624 	 * Metric events don't support sampling and require being paired
3625 	 * with a slots event as group leader. When the slots event
3626 	 * is used in a metrics group, it too cannot support sampling.
3627 	 */
3628 	if (x86_pmu.intel_cap.perf_metrics && is_topdown_event(event)) {
3629 		if (event->attr.config1 || event->attr.config2)
3630 			return -EINVAL;
3631 
3632 		/*
3633 		 * The TopDown metrics events and slots event don't
3634 		 * support any filters.
3635 		 */
3636 		if (event->attr.config & X86_ALL_EVENT_FLAGS)
3637 			return -EINVAL;
3638 
3639 		if (is_metric_event(event)) {
3640 			struct perf_event *leader = event->group_leader;
3641 
3642 			/* The metric events don't support sampling. */
3643 			if (is_sampling_event(event))
3644 				return -EINVAL;
3645 
3646 			/* The metric events require a slots group leader. */
3647 			if (!is_slots_event(leader))
3648 				return -EINVAL;
3649 
3650 			/*
3651 			 * The leader/SLOTS must not be a sampling event for
3652 			 * metric use; hardware requires it starts at 0 when used
3653 			 * in conjunction with MSR_PERF_METRICS.
3654 			 */
3655 			if (is_sampling_event(leader))
3656 				return -EINVAL;
3657 
3658 			event->event_caps |= PERF_EV_CAP_SIBLING;
3659 			/*
3660 			 * Only once we have a METRICs sibling do we
3661 			 * need TopDown magic.
3662 			 */
3663 			leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
3664 			event->hw.flags  |= PERF_X86_EVENT_TOPDOWN;
3665 		}
3666 	}
3667 
3668 	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3669 		return 0;
3670 
3671 	if (x86_pmu.version < 3)
3672 		return -EINVAL;
3673 
3674 	ret = perf_allow_cpu(&event->attr);
3675 	if (ret)
3676 		return ret;
3677 
3678 	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3679 
3680 	return 0;
3681 }
3682 
3683 #ifdef CONFIG_RETPOLINE
3684 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr);
3685 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr);
3686 #endif
3687 
3688 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
3689 {
3690 #ifdef CONFIG_RETPOLINE
3691 	if (x86_pmu.guest_get_msrs == intel_guest_get_msrs)
3692 		return intel_guest_get_msrs(nr);
3693 	else if (x86_pmu.guest_get_msrs == core_guest_get_msrs)
3694 		return core_guest_get_msrs(nr);
3695 #endif
3696 	if (x86_pmu.guest_get_msrs)
3697 		return x86_pmu.guest_get_msrs(nr);
3698 	*nr = 0;
3699 	return NULL;
3700 }
3701 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
3702 
3703 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3704 {
3705 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3706 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3707 
3708 	arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3709 	arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3710 	arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3711 	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
3712 		arr[0].guest &= ~cpuc->pebs_enabled;
3713 	else
3714 		arr[0].guest &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
3715 	*nr = 1;
3716 
3717 	if (x86_pmu.pebs && x86_pmu.pebs_no_isolation) {
3718 		/*
3719 		 * If PMU counter has PEBS enabled it is not enough to
3720 		 * disable counter on a guest entry since PEBS memory
3721 		 * write can overshoot guest entry and corrupt guest
3722 		 * memory. Disabling PEBS solves the problem.
3723 		 *
3724 		 * Don't do this if the CPU already enforces it.
3725 		 */
3726 		arr[1].msr = MSR_IA32_PEBS_ENABLE;
3727 		arr[1].host = cpuc->pebs_enabled;
3728 		arr[1].guest = 0;
3729 		*nr = 2;
3730 	}
3731 
3732 	return arr;
3733 }
3734 
3735 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3736 {
3737 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3738 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3739 	int idx;
3740 
3741 	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
3742 		struct perf_event *event = cpuc->events[idx];
3743 
3744 		arr[idx].msr = x86_pmu_config_addr(idx);
3745 		arr[idx].host = arr[idx].guest = 0;
3746 
3747 		if (!test_bit(idx, cpuc->active_mask))
3748 			continue;
3749 
3750 		arr[idx].host = arr[idx].guest =
3751 			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3752 
3753 		if (event->attr.exclude_host)
3754 			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3755 		else if (event->attr.exclude_guest)
3756 			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3757 	}
3758 
3759 	*nr = x86_pmu.num_counters;
3760 	return arr;
3761 }
3762 
3763 static void core_pmu_enable_event(struct perf_event *event)
3764 {
3765 	if (!event->attr.exclude_host)
3766 		x86_pmu_enable_event(event);
3767 }
3768 
3769 static void core_pmu_enable_all(int added)
3770 {
3771 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3772 	int idx;
3773 
3774 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3775 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
3776 
3777 		if (!test_bit(idx, cpuc->active_mask) ||
3778 				cpuc->events[idx]->attr.exclude_host)
3779 			continue;
3780 
3781 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
3782 	}
3783 }
3784 
3785 static int hsw_hw_config(struct perf_event *event)
3786 {
3787 	int ret = intel_pmu_hw_config(event);
3788 
3789 	if (ret)
3790 		return ret;
3791 	if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
3792 		return 0;
3793 	event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
3794 
3795 	/*
3796 	 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3797 	 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3798 	 * this combination.
3799 	 */
3800 	if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
3801 	     ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
3802 	      event->attr.precise_ip > 0))
3803 		return -EOPNOTSUPP;
3804 
3805 	if (event_is_checkpointed(event)) {
3806 		/*
3807 		 * Sampling of checkpointed events can cause situations where
3808 		 * the CPU constantly aborts because of a overflow, which is
3809 		 * then checkpointed back and ignored. Forbid checkpointing
3810 		 * for sampling.
3811 		 *
3812 		 * But still allow a long sampling period, so that perf stat
3813 		 * from KVM works.
3814 		 */
3815 		if (event->attr.sample_period > 0 &&
3816 		    event->attr.sample_period < 0x7fffffff)
3817 			return -EOPNOTSUPP;
3818 	}
3819 	return 0;
3820 }
3821 
3822 static struct event_constraint counter0_constraint =
3823 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3824 
3825 static struct event_constraint counter2_constraint =
3826 			EVENT_CONSTRAINT(0, 0x4, 0);
3827 
3828 static struct event_constraint fixed0_constraint =
3829 			FIXED_EVENT_CONSTRAINT(0x00c0, 0);
3830 
3831 static struct event_constraint fixed0_counter0_constraint =
3832 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
3833 
3834 static struct event_constraint *
3835 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3836 			  struct perf_event *event)
3837 {
3838 	struct event_constraint *c;
3839 
3840 	c = intel_get_event_constraints(cpuc, idx, event);
3841 
3842 	/* Handle special quirk on in_tx_checkpointed only in counter 2 */
3843 	if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
3844 		if (c->idxmsk64 & (1U << 2))
3845 			return &counter2_constraint;
3846 		return &emptyconstraint;
3847 	}
3848 
3849 	return c;
3850 }
3851 
3852 static struct event_constraint *
3853 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3854 			  struct perf_event *event)
3855 {
3856 	/*
3857 	 * Fixed counter 0 has less skid.
3858 	 * Force instruction:ppp in Fixed counter 0
3859 	 */
3860 	if ((event->attr.precise_ip == 3) &&
3861 	    constraint_match(&fixed0_constraint, event->hw.config))
3862 		return &fixed0_constraint;
3863 
3864 	return hsw_get_event_constraints(cpuc, idx, event);
3865 }
3866 
3867 static struct event_constraint *
3868 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3869 			  struct perf_event *event)
3870 {
3871 	struct event_constraint *c;
3872 
3873 	/* :ppp means to do reduced skid PEBS which is PMC0 only. */
3874 	if (event->attr.precise_ip == 3)
3875 		return &counter0_constraint;
3876 
3877 	c = intel_get_event_constraints(cpuc, idx, event);
3878 
3879 	return c;
3880 }
3881 
3882 static struct event_constraint *
3883 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3884 			  struct perf_event *event)
3885 {
3886 	struct event_constraint *c;
3887 
3888 	/*
3889 	 * :ppp means to do reduced skid PEBS,
3890 	 * which is available on PMC0 and fixed counter 0.
3891 	 */
3892 	if (event->attr.precise_ip == 3) {
3893 		/* Force instruction:ppp on PMC0 and Fixed counter 0 */
3894 		if (constraint_match(&fixed0_constraint, event->hw.config))
3895 			return &fixed0_counter0_constraint;
3896 
3897 		return &counter0_constraint;
3898 	}
3899 
3900 	c = intel_get_event_constraints(cpuc, idx, event);
3901 
3902 	return c;
3903 }
3904 
3905 static bool allow_tsx_force_abort = true;
3906 
3907 static struct event_constraint *
3908 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3909 			  struct perf_event *event)
3910 {
3911 	struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
3912 
3913 	/*
3914 	 * Without TFA we must not use PMC3.
3915 	 */
3916 	if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
3917 		c = dyn_constraint(cpuc, c, idx);
3918 		c->idxmsk64 &= ~(1ULL << 3);
3919 		c->weight--;
3920 	}
3921 
3922 	return c;
3923 }
3924 
3925 /*
3926  * Broadwell:
3927  *
3928  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
3929  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
3930  * the two to enforce a minimum period of 128 (the smallest value that has bits
3931  * 0-5 cleared and >= 100).
3932  *
3933  * Because of how the code in x86_perf_event_set_period() works, the truncation
3934  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
3935  * to make up for the 'lost' events due to carrying the 'error' in period_left.
3936  *
3937  * Therefore the effective (average) period matches the requested period,
3938  * despite coarser hardware granularity.
3939  */
3940 static u64 bdw_limit_period(struct perf_event *event, u64 left)
3941 {
3942 	if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
3943 			X86_CONFIG(.event=0xc0, .umask=0x01)) {
3944 		if (left < 128)
3945 			left = 128;
3946 		left &= ~0x3fULL;
3947 	}
3948 	return left;
3949 }
3950 
3951 static u64 nhm_limit_period(struct perf_event *event, u64 left)
3952 {
3953 	return max(left, 32ULL);
3954 }
3955 
3956 PMU_FORMAT_ATTR(event,	"config:0-7"	);
3957 PMU_FORMAT_ATTR(umask,	"config:8-15"	);
3958 PMU_FORMAT_ATTR(edge,	"config:18"	);
3959 PMU_FORMAT_ATTR(pc,	"config:19"	);
3960 PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
3961 PMU_FORMAT_ATTR(inv,	"config:23"	);
3962 PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
3963 PMU_FORMAT_ATTR(in_tx,  "config:32");
3964 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
3965 
3966 static struct attribute *intel_arch_formats_attr[] = {
3967 	&format_attr_event.attr,
3968 	&format_attr_umask.attr,
3969 	&format_attr_edge.attr,
3970 	&format_attr_pc.attr,
3971 	&format_attr_inv.attr,
3972 	&format_attr_cmask.attr,
3973 	NULL,
3974 };
3975 
3976 ssize_t intel_event_sysfs_show(char *page, u64 config)
3977 {
3978 	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
3979 
3980 	return x86_event_sysfs_show(page, config, event);
3981 }
3982 
3983 static struct intel_shared_regs *allocate_shared_regs(int cpu)
3984 {
3985 	struct intel_shared_regs *regs;
3986 	int i;
3987 
3988 	regs = kzalloc_node(sizeof(struct intel_shared_regs),
3989 			    GFP_KERNEL, cpu_to_node(cpu));
3990 	if (regs) {
3991 		/*
3992 		 * initialize the locks to keep lockdep happy
3993 		 */
3994 		for (i = 0; i < EXTRA_REG_MAX; i++)
3995 			raw_spin_lock_init(&regs->regs[i].lock);
3996 
3997 		regs->core_id = -1;
3998 	}
3999 	return regs;
4000 }
4001 
4002 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
4003 {
4004 	struct intel_excl_cntrs *c;
4005 
4006 	c = kzalloc_node(sizeof(struct intel_excl_cntrs),
4007 			 GFP_KERNEL, cpu_to_node(cpu));
4008 	if (c) {
4009 		raw_spin_lock_init(&c->lock);
4010 		c->core_id = -1;
4011 	}
4012 	return c;
4013 }
4014 
4015 
4016 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
4017 {
4018 	cpuc->pebs_record_size = x86_pmu.pebs_record_size;
4019 
4020 	if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
4021 		cpuc->shared_regs = allocate_shared_regs(cpu);
4022 		if (!cpuc->shared_regs)
4023 			goto err;
4024 	}
4025 
4026 	if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
4027 		size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
4028 
4029 		cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
4030 		if (!cpuc->constraint_list)
4031 			goto err_shared_regs;
4032 	}
4033 
4034 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4035 		cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
4036 		if (!cpuc->excl_cntrs)
4037 			goto err_constraint_list;
4038 
4039 		cpuc->excl_thread_id = 0;
4040 	}
4041 
4042 	return 0;
4043 
4044 err_constraint_list:
4045 	kfree(cpuc->constraint_list);
4046 	cpuc->constraint_list = NULL;
4047 
4048 err_shared_regs:
4049 	kfree(cpuc->shared_regs);
4050 	cpuc->shared_regs = NULL;
4051 
4052 err:
4053 	return -ENOMEM;
4054 }
4055 
4056 static int intel_pmu_cpu_prepare(int cpu)
4057 {
4058 	return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
4059 }
4060 
4061 static void flip_smm_bit(void *data)
4062 {
4063 	unsigned long set = *(unsigned long *)data;
4064 
4065 	if (set > 0) {
4066 		msr_set_bit(MSR_IA32_DEBUGCTLMSR,
4067 			    DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4068 	} else {
4069 		msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
4070 			      DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4071 	}
4072 }
4073 
4074 static void intel_pmu_cpu_starting(int cpu)
4075 {
4076 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4077 	int core_id = topology_core_id(cpu);
4078 	int i;
4079 
4080 	init_debug_store_on_cpu(cpu);
4081 	/*
4082 	 * Deal with CPUs that don't clear their LBRs on power-up.
4083 	 */
4084 	intel_pmu_lbr_reset();
4085 
4086 	cpuc->lbr_sel = NULL;
4087 
4088 	if (x86_pmu.flags & PMU_FL_TFA) {
4089 		WARN_ON_ONCE(cpuc->tfa_shadow);
4090 		cpuc->tfa_shadow = ~0ULL;
4091 		intel_set_tfa(cpuc, false);
4092 	}
4093 
4094 	if (x86_pmu.version > 1)
4095 		flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
4096 
4097 	if (x86_pmu.counter_freezing)
4098 		enable_counter_freeze();
4099 
4100 	/* Disable perf metrics if any added CPU doesn't support it. */
4101 	if (x86_pmu.intel_cap.perf_metrics) {
4102 		union perf_capabilities perf_cap;
4103 
4104 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
4105 		if (!perf_cap.perf_metrics) {
4106 			x86_pmu.intel_cap.perf_metrics = 0;
4107 			x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
4108 		}
4109 	}
4110 
4111 	if (!cpuc->shared_regs)
4112 		return;
4113 
4114 	if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
4115 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4116 			struct intel_shared_regs *pc;
4117 
4118 			pc = per_cpu(cpu_hw_events, i).shared_regs;
4119 			if (pc && pc->core_id == core_id) {
4120 				cpuc->kfree_on_online[0] = cpuc->shared_regs;
4121 				cpuc->shared_regs = pc;
4122 				break;
4123 			}
4124 		}
4125 		cpuc->shared_regs->core_id = core_id;
4126 		cpuc->shared_regs->refcnt++;
4127 	}
4128 
4129 	if (x86_pmu.lbr_sel_map)
4130 		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
4131 
4132 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4133 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4134 			struct cpu_hw_events *sibling;
4135 			struct intel_excl_cntrs *c;
4136 
4137 			sibling = &per_cpu(cpu_hw_events, i);
4138 			c = sibling->excl_cntrs;
4139 			if (c && c->core_id == core_id) {
4140 				cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
4141 				cpuc->excl_cntrs = c;
4142 				if (!sibling->excl_thread_id)
4143 					cpuc->excl_thread_id = 1;
4144 				break;
4145 			}
4146 		}
4147 		cpuc->excl_cntrs->core_id = core_id;
4148 		cpuc->excl_cntrs->refcnt++;
4149 	}
4150 }
4151 
4152 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
4153 {
4154 	struct intel_excl_cntrs *c;
4155 
4156 	c = cpuc->excl_cntrs;
4157 	if (c) {
4158 		if (c->core_id == -1 || --c->refcnt == 0)
4159 			kfree(c);
4160 		cpuc->excl_cntrs = NULL;
4161 	}
4162 
4163 	kfree(cpuc->constraint_list);
4164 	cpuc->constraint_list = NULL;
4165 }
4166 
4167 static void intel_pmu_cpu_dying(int cpu)
4168 {
4169 	fini_debug_store_on_cpu(cpu);
4170 
4171 	if (x86_pmu.counter_freezing)
4172 		disable_counter_freeze();
4173 }
4174 
4175 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
4176 {
4177 	struct intel_shared_regs *pc;
4178 
4179 	pc = cpuc->shared_regs;
4180 	if (pc) {
4181 		if (pc->core_id == -1 || --pc->refcnt == 0)
4182 			kfree(pc);
4183 		cpuc->shared_regs = NULL;
4184 	}
4185 
4186 	free_excl_cntrs(cpuc);
4187 }
4188 
4189 static void intel_pmu_cpu_dead(int cpu)
4190 {
4191 	intel_cpuc_finish(&per_cpu(cpu_hw_events, cpu));
4192 }
4193 
4194 static void intel_pmu_sched_task(struct perf_event_context *ctx,
4195 				 bool sched_in)
4196 {
4197 	intel_pmu_pebs_sched_task(ctx, sched_in);
4198 	intel_pmu_lbr_sched_task(ctx, sched_in);
4199 }
4200 
4201 static void intel_pmu_swap_task_ctx(struct perf_event_context *prev,
4202 				    struct perf_event_context *next)
4203 {
4204 	intel_pmu_lbr_swap_task_ctx(prev, next);
4205 }
4206 
4207 static int intel_pmu_check_period(struct perf_event *event, u64 value)
4208 {
4209 	return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
4210 }
4211 
4212 static int intel_pmu_aux_output_match(struct perf_event *event)
4213 {
4214 	if (!x86_pmu.intel_cap.pebs_output_pt_available)
4215 		return 0;
4216 
4217 	return is_intel_pt_event(event);
4218 }
4219 
4220 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
4221 
4222 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
4223 
4224 PMU_FORMAT_ATTR(frontend, "config1:0-23");
4225 
4226 static struct attribute *intel_arch3_formats_attr[] = {
4227 	&format_attr_event.attr,
4228 	&format_attr_umask.attr,
4229 	&format_attr_edge.attr,
4230 	&format_attr_pc.attr,
4231 	&format_attr_any.attr,
4232 	&format_attr_inv.attr,
4233 	&format_attr_cmask.attr,
4234 	NULL,
4235 };
4236 
4237 static struct attribute *hsw_format_attr[] = {
4238 	&format_attr_in_tx.attr,
4239 	&format_attr_in_tx_cp.attr,
4240 	&format_attr_offcore_rsp.attr,
4241 	&format_attr_ldlat.attr,
4242 	NULL
4243 };
4244 
4245 static struct attribute *nhm_format_attr[] = {
4246 	&format_attr_offcore_rsp.attr,
4247 	&format_attr_ldlat.attr,
4248 	NULL
4249 };
4250 
4251 static struct attribute *slm_format_attr[] = {
4252 	&format_attr_offcore_rsp.attr,
4253 	NULL
4254 };
4255 
4256 static struct attribute *skl_format_attr[] = {
4257 	&format_attr_frontend.attr,
4258 	NULL,
4259 };
4260 
4261 static __initconst const struct x86_pmu core_pmu = {
4262 	.name			= "core",
4263 	.handle_irq		= x86_pmu_handle_irq,
4264 	.disable_all		= x86_pmu_disable_all,
4265 	.enable_all		= core_pmu_enable_all,
4266 	.enable			= core_pmu_enable_event,
4267 	.disable		= x86_pmu_disable_event,
4268 	.hw_config		= core_pmu_hw_config,
4269 	.schedule_events	= x86_schedule_events,
4270 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
4271 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
4272 	.event_map		= intel_pmu_event_map,
4273 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
4274 	.apic			= 1,
4275 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
4276 
4277 	/*
4278 	 * Intel PMCs cannot be accessed sanely above 32-bit width,
4279 	 * so we install an artificial 1<<31 period regardless of
4280 	 * the generic event period:
4281 	 */
4282 	.max_period		= (1ULL<<31) - 1,
4283 	.get_event_constraints	= intel_get_event_constraints,
4284 	.put_event_constraints	= intel_put_event_constraints,
4285 	.event_constraints	= intel_core_event_constraints,
4286 	.guest_get_msrs		= core_guest_get_msrs,
4287 	.format_attrs		= intel_arch_formats_attr,
4288 	.events_sysfs_show	= intel_event_sysfs_show,
4289 
4290 	/*
4291 	 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
4292 	 * together with PMU version 1 and thus be using core_pmu with
4293 	 * shared_regs. We need following callbacks here to allocate
4294 	 * it properly.
4295 	 */
4296 	.cpu_prepare		= intel_pmu_cpu_prepare,
4297 	.cpu_starting		= intel_pmu_cpu_starting,
4298 	.cpu_dying		= intel_pmu_cpu_dying,
4299 	.cpu_dead		= intel_pmu_cpu_dead,
4300 
4301 	.check_period		= intel_pmu_check_period,
4302 
4303 	.lbr_reset		= intel_pmu_lbr_reset_64,
4304 	.lbr_read		= intel_pmu_lbr_read_64,
4305 	.lbr_save		= intel_pmu_lbr_save,
4306 	.lbr_restore		= intel_pmu_lbr_restore,
4307 };
4308 
4309 static __initconst const struct x86_pmu intel_pmu = {
4310 	.name			= "Intel",
4311 	.handle_irq		= intel_pmu_handle_irq,
4312 	.disable_all		= intel_pmu_disable_all,
4313 	.enable_all		= intel_pmu_enable_all,
4314 	.enable			= intel_pmu_enable_event,
4315 	.disable		= intel_pmu_disable_event,
4316 	.add			= intel_pmu_add_event,
4317 	.del			= intel_pmu_del_event,
4318 	.read			= intel_pmu_read_event,
4319 	.hw_config		= intel_pmu_hw_config,
4320 	.schedule_events	= x86_schedule_events,
4321 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
4322 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
4323 	.event_map		= intel_pmu_event_map,
4324 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
4325 	.apic			= 1,
4326 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
4327 	/*
4328 	 * Intel PMCs cannot be accessed sanely above 32 bit width,
4329 	 * so we install an artificial 1<<31 period regardless of
4330 	 * the generic event period:
4331 	 */
4332 	.max_period		= (1ULL << 31) - 1,
4333 	.get_event_constraints	= intel_get_event_constraints,
4334 	.put_event_constraints	= intel_put_event_constraints,
4335 	.pebs_aliases		= intel_pebs_aliases_core2,
4336 
4337 	.format_attrs		= intel_arch3_formats_attr,
4338 	.events_sysfs_show	= intel_event_sysfs_show,
4339 
4340 	.cpu_prepare		= intel_pmu_cpu_prepare,
4341 	.cpu_starting		= intel_pmu_cpu_starting,
4342 	.cpu_dying		= intel_pmu_cpu_dying,
4343 	.cpu_dead		= intel_pmu_cpu_dead,
4344 
4345 	.guest_get_msrs		= intel_guest_get_msrs,
4346 	.sched_task		= intel_pmu_sched_task,
4347 	.swap_task_ctx		= intel_pmu_swap_task_ctx,
4348 
4349 	.check_period		= intel_pmu_check_period,
4350 
4351 	.aux_output_match	= intel_pmu_aux_output_match,
4352 
4353 	.lbr_reset		= intel_pmu_lbr_reset_64,
4354 	.lbr_read		= intel_pmu_lbr_read_64,
4355 	.lbr_save		= intel_pmu_lbr_save,
4356 	.lbr_restore		= intel_pmu_lbr_restore,
4357 };
4358 
4359 static __init void intel_clovertown_quirk(void)
4360 {
4361 	/*
4362 	 * PEBS is unreliable due to:
4363 	 *
4364 	 *   AJ67  - PEBS may experience CPL leaks
4365 	 *   AJ68  - PEBS PMI may be delayed by one event
4366 	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
4367 	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
4368 	 *
4369 	 * AJ67 could be worked around by restricting the OS/USR flags.
4370 	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
4371 	 *
4372 	 * AJ106 could possibly be worked around by not allowing LBR
4373 	 *       usage from PEBS, including the fixup.
4374 	 * AJ68  could possibly be worked around by always programming
4375 	 *	 a pebs_event_reset[0] value and coping with the lost events.
4376 	 *
4377 	 * But taken together it might just make sense to not enable PEBS on
4378 	 * these chips.
4379 	 */
4380 	pr_warn("PEBS disabled due to CPU errata\n");
4381 	x86_pmu.pebs = 0;
4382 	x86_pmu.pebs_constraints = NULL;
4383 }
4384 
4385 static const struct x86_cpu_desc isolation_ucodes[] = {
4386 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL,		 3, 0x0000001f),
4387 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L,		 1, 0x0000001e),
4388 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G,		 1, 0x00000015),
4389 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 2, 0x00000037),
4390 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 4, 0x0000000a),
4391 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL,		 4, 0x00000023),
4392 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G,		 1, 0x00000014),
4393 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 2, 0x00000010),
4394 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 3, 0x07000009),
4395 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 4, 0x0f000009),
4396 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 5, 0x0e000002),
4397 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,		 2, 0x0b000014),
4398 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 3, 0x00000021),
4399 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 4, 0x00000000),
4400 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L,		 3, 0x0000007c),
4401 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE,		 3, 0x0000007c),
4402 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		 9, 0x0000004e),
4403 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		 9, 0x0000004e),
4404 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		10, 0x0000004e),
4405 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		11, 0x0000004e),
4406 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		12, 0x0000004e),
4407 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		10, 0x0000004e),
4408 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		11, 0x0000004e),
4409 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		12, 0x0000004e),
4410 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		13, 0x0000004e),
4411 	{}
4412 };
4413 
4414 static void intel_check_pebs_isolation(void)
4415 {
4416 	x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
4417 }
4418 
4419 static __init void intel_pebs_isolation_quirk(void)
4420 {
4421 	WARN_ON_ONCE(x86_pmu.check_microcode);
4422 	x86_pmu.check_microcode = intel_check_pebs_isolation;
4423 	intel_check_pebs_isolation();
4424 }
4425 
4426 static const struct x86_cpu_desc pebs_ucodes[] = {
4427 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,		7, 0x00000028),
4428 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	6, 0x00000618),
4429 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	7, 0x0000070c),
4430 	{}
4431 };
4432 
4433 static bool intel_snb_pebs_broken(void)
4434 {
4435 	return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
4436 }
4437 
4438 static void intel_snb_check_microcode(void)
4439 {
4440 	if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
4441 		return;
4442 
4443 	/*
4444 	 * Serialized by the microcode lock..
4445 	 */
4446 	if (x86_pmu.pebs_broken) {
4447 		pr_info("PEBS enabled due to microcode update\n");
4448 		x86_pmu.pebs_broken = 0;
4449 	} else {
4450 		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
4451 		x86_pmu.pebs_broken = 1;
4452 	}
4453 }
4454 
4455 static bool is_lbr_from(unsigned long msr)
4456 {
4457 	unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
4458 
4459 	return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
4460 }
4461 
4462 /*
4463  * Under certain circumstances, access certain MSR may cause #GP.
4464  * The function tests if the input MSR can be safely accessed.
4465  */
4466 static bool check_msr(unsigned long msr, u64 mask)
4467 {
4468 	u64 val_old, val_new, val_tmp;
4469 
4470 	/*
4471 	 * Disable the check for real HW, so we don't
4472 	 * mess with potentionaly enabled registers:
4473 	 */
4474 	if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
4475 		return true;
4476 
4477 	/*
4478 	 * Read the current value, change it and read it back to see if it
4479 	 * matches, this is needed to detect certain hardware emulators
4480 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4481 	 */
4482 	if (rdmsrl_safe(msr, &val_old))
4483 		return false;
4484 
4485 	/*
4486 	 * Only change the bits which can be updated by wrmsrl.
4487 	 */
4488 	val_tmp = val_old ^ mask;
4489 
4490 	if (is_lbr_from(msr))
4491 		val_tmp = lbr_from_signext_quirk_wr(val_tmp);
4492 
4493 	if (wrmsrl_safe(msr, val_tmp) ||
4494 	    rdmsrl_safe(msr, &val_new))
4495 		return false;
4496 
4497 	/*
4498 	 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
4499 	 * should equal rdmsrl()'s even with the quirk.
4500 	 */
4501 	if (val_new != val_tmp)
4502 		return false;
4503 
4504 	if (is_lbr_from(msr))
4505 		val_old = lbr_from_signext_quirk_wr(val_old);
4506 
4507 	/* Here it's sure that the MSR can be safely accessed.
4508 	 * Restore the old value and return.
4509 	 */
4510 	wrmsrl(msr, val_old);
4511 
4512 	return true;
4513 }
4514 
4515 static __init void intel_sandybridge_quirk(void)
4516 {
4517 	x86_pmu.check_microcode = intel_snb_check_microcode;
4518 	cpus_read_lock();
4519 	intel_snb_check_microcode();
4520 	cpus_read_unlock();
4521 }
4522 
4523 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
4524 	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
4525 	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
4526 	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
4527 	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
4528 	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
4529 	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
4530 	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
4531 };
4532 
4533 static __init void intel_arch_events_quirk(void)
4534 {
4535 	int bit;
4536 
4537 	/* disable event that reported as not presend by cpuid */
4538 	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
4539 		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
4540 		pr_warn("CPUID marked event: \'%s\' unavailable\n",
4541 			intel_arch_events_map[bit].name);
4542 	}
4543 }
4544 
4545 static __init void intel_nehalem_quirk(void)
4546 {
4547 	union cpuid10_ebx ebx;
4548 
4549 	ebx.full = x86_pmu.events_maskl;
4550 	if (ebx.split.no_branch_misses_retired) {
4551 		/*
4552 		 * Erratum AAJ80 detected, we work it around by using
4553 		 * the BR_MISP_EXEC.ANY event. This will over-count
4554 		 * branch-misses, but it's still much better than the
4555 		 * architectural event which is often completely bogus:
4556 		 */
4557 		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
4558 		ebx.split.no_branch_misses_retired = 0;
4559 		x86_pmu.events_maskl = ebx.full;
4560 		pr_info("CPU erratum AAJ80 worked around\n");
4561 	}
4562 }
4563 
4564 static const struct x86_cpu_desc counter_freezing_ucodes[] = {
4565 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,	 2, 0x0000000e),
4566 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,	 9, 0x0000002e),
4567 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,	10, 0x00000008),
4568 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_D,	 1, 0x00000028),
4569 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS,	 1, 0x00000028),
4570 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS,	 8, 0x00000006),
4571 	{}
4572 };
4573 
4574 static bool intel_counter_freezing_broken(void)
4575 {
4576 	return !x86_cpu_has_min_microcode_rev(counter_freezing_ucodes);
4577 }
4578 
4579 static __init void intel_counter_freezing_quirk(void)
4580 {
4581 	/* Check if it's already disabled */
4582 	if (disable_counter_freezing)
4583 		return;
4584 
4585 	/*
4586 	 * If the system starts with the wrong ucode, leave the
4587 	 * counter-freezing feature permanently disabled.
4588 	 */
4589 	if (intel_counter_freezing_broken()) {
4590 		pr_info("PMU counter freezing disabled due to CPU errata,"
4591 			"please upgrade microcode\n");
4592 		x86_pmu.counter_freezing = false;
4593 		x86_pmu.handle_irq = intel_pmu_handle_irq;
4594 	}
4595 }
4596 
4597 /*
4598  * enable software workaround for errata:
4599  * SNB: BJ122
4600  * IVB: BV98
4601  * HSW: HSD29
4602  *
4603  * Only needed when HT is enabled. However detecting
4604  * if HT is enabled is difficult (model specific). So instead,
4605  * we enable the workaround in the early boot, and verify if
4606  * it is needed in a later initcall phase once we have valid
4607  * topology information to check if HT is actually enabled
4608  */
4609 static __init void intel_ht_bug(void)
4610 {
4611 	x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
4612 
4613 	x86_pmu.start_scheduling = intel_start_scheduling;
4614 	x86_pmu.commit_scheduling = intel_commit_scheduling;
4615 	x86_pmu.stop_scheduling = intel_stop_scheduling;
4616 }
4617 
4618 EVENT_ATTR_STR(mem-loads,	mem_ld_hsw,	"event=0xcd,umask=0x1,ldlat=3");
4619 EVENT_ATTR_STR(mem-stores,	mem_st_hsw,	"event=0xd0,umask=0x82")
4620 
4621 /* Haswell special events */
4622 EVENT_ATTR_STR(tx-start,	tx_start,	"event=0xc9,umask=0x1");
4623 EVENT_ATTR_STR(tx-commit,	tx_commit,	"event=0xc9,umask=0x2");
4624 EVENT_ATTR_STR(tx-abort,	tx_abort,	"event=0xc9,umask=0x4");
4625 EVENT_ATTR_STR(tx-capacity,	tx_capacity,	"event=0x54,umask=0x2");
4626 EVENT_ATTR_STR(tx-conflict,	tx_conflict,	"event=0x54,umask=0x1");
4627 EVENT_ATTR_STR(el-start,	el_start,	"event=0xc8,umask=0x1");
4628 EVENT_ATTR_STR(el-commit,	el_commit,	"event=0xc8,umask=0x2");
4629 EVENT_ATTR_STR(el-abort,	el_abort,	"event=0xc8,umask=0x4");
4630 EVENT_ATTR_STR(el-capacity,	el_capacity,	"event=0x54,umask=0x2");
4631 EVENT_ATTR_STR(el-conflict,	el_conflict,	"event=0x54,umask=0x1");
4632 EVENT_ATTR_STR(cycles-t,	cycles_t,	"event=0x3c,in_tx=1");
4633 EVENT_ATTR_STR(cycles-ct,	cycles_ct,	"event=0x3c,in_tx=1,in_tx_cp=1");
4634 
4635 static struct attribute *hsw_events_attrs[] = {
4636 	EVENT_PTR(td_slots_issued),
4637 	EVENT_PTR(td_slots_retired),
4638 	EVENT_PTR(td_fetch_bubbles),
4639 	EVENT_PTR(td_total_slots),
4640 	EVENT_PTR(td_total_slots_scale),
4641 	EVENT_PTR(td_recovery_bubbles),
4642 	EVENT_PTR(td_recovery_bubbles_scale),
4643 	NULL
4644 };
4645 
4646 static struct attribute *hsw_mem_events_attrs[] = {
4647 	EVENT_PTR(mem_ld_hsw),
4648 	EVENT_PTR(mem_st_hsw),
4649 	NULL,
4650 };
4651 
4652 static struct attribute *hsw_tsx_events_attrs[] = {
4653 	EVENT_PTR(tx_start),
4654 	EVENT_PTR(tx_commit),
4655 	EVENT_PTR(tx_abort),
4656 	EVENT_PTR(tx_capacity),
4657 	EVENT_PTR(tx_conflict),
4658 	EVENT_PTR(el_start),
4659 	EVENT_PTR(el_commit),
4660 	EVENT_PTR(el_abort),
4661 	EVENT_PTR(el_capacity),
4662 	EVENT_PTR(el_conflict),
4663 	EVENT_PTR(cycles_t),
4664 	EVENT_PTR(cycles_ct),
4665 	NULL
4666 };
4667 
4668 EVENT_ATTR_STR(tx-capacity-read,  tx_capacity_read,  "event=0x54,umask=0x80");
4669 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
4670 EVENT_ATTR_STR(el-capacity-read,  el_capacity_read,  "event=0x54,umask=0x80");
4671 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
4672 
4673 static struct attribute *icl_events_attrs[] = {
4674 	EVENT_PTR(mem_ld_hsw),
4675 	EVENT_PTR(mem_st_hsw),
4676 	NULL,
4677 };
4678 
4679 static struct attribute *icl_td_events_attrs[] = {
4680 	EVENT_PTR(slots),
4681 	EVENT_PTR(td_retiring),
4682 	EVENT_PTR(td_bad_spec),
4683 	EVENT_PTR(td_fe_bound),
4684 	EVENT_PTR(td_be_bound),
4685 	NULL,
4686 };
4687 
4688 static struct attribute *icl_tsx_events_attrs[] = {
4689 	EVENT_PTR(tx_start),
4690 	EVENT_PTR(tx_abort),
4691 	EVENT_PTR(tx_commit),
4692 	EVENT_PTR(tx_capacity_read),
4693 	EVENT_PTR(tx_capacity_write),
4694 	EVENT_PTR(tx_conflict),
4695 	EVENT_PTR(el_start),
4696 	EVENT_PTR(el_abort),
4697 	EVENT_PTR(el_commit),
4698 	EVENT_PTR(el_capacity_read),
4699 	EVENT_PTR(el_capacity_write),
4700 	EVENT_PTR(el_conflict),
4701 	EVENT_PTR(cycles_t),
4702 	EVENT_PTR(cycles_ct),
4703 	NULL,
4704 };
4705 
4706 static ssize_t freeze_on_smi_show(struct device *cdev,
4707 				  struct device_attribute *attr,
4708 				  char *buf)
4709 {
4710 	return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
4711 }
4712 
4713 static DEFINE_MUTEX(freeze_on_smi_mutex);
4714 
4715 static ssize_t freeze_on_smi_store(struct device *cdev,
4716 				   struct device_attribute *attr,
4717 				   const char *buf, size_t count)
4718 {
4719 	unsigned long val;
4720 	ssize_t ret;
4721 
4722 	ret = kstrtoul(buf, 0, &val);
4723 	if (ret)
4724 		return ret;
4725 
4726 	if (val > 1)
4727 		return -EINVAL;
4728 
4729 	mutex_lock(&freeze_on_smi_mutex);
4730 
4731 	if (x86_pmu.attr_freeze_on_smi == val)
4732 		goto done;
4733 
4734 	x86_pmu.attr_freeze_on_smi = val;
4735 
4736 	get_online_cpus();
4737 	on_each_cpu(flip_smm_bit, &val, 1);
4738 	put_online_cpus();
4739 done:
4740 	mutex_unlock(&freeze_on_smi_mutex);
4741 
4742 	return count;
4743 }
4744 
4745 static void update_tfa_sched(void *ignored)
4746 {
4747 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4748 
4749 	/*
4750 	 * check if PMC3 is used
4751 	 * and if so force schedule out for all event types all contexts
4752 	 */
4753 	if (test_bit(3, cpuc->active_mask))
4754 		perf_pmu_resched(x86_get_pmu());
4755 }
4756 
4757 static ssize_t show_sysctl_tfa(struct device *cdev,
4758 			      struct device_attribute *attr,
4759 			      char *buf)
4760 {
4761 	return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
4762 }
4763 
4764 static ssize_t set_sysctl_tfa(struct device *cdev,
4765 			      struct device_attribute *attr,
4766 			      const char *buf, size_t count)
4767 {
4768 	bool val;
4769 	ssize_t ret;
4770 
4771 	ret = kstrtobool(buf, &val);
4772 	if (ret)
4773 		return ret;
4774 
4775 	/* no change */
4776 	if (val == allow_tsx_force_abort)
4777 		return count;
4778 
4779 	allow_tsx_force_abort = val;
4780 
4781 	get_online_cpus();
4782 	on_each_cpu(update_tfa_sched, NULL, 1);
4783 	put_online_cpus();
4784 
4785 	return count;
4786 }
4787 
4788 
4789 static DEVICE_ATTR_RW(freeze_on_smi);
4790 
4791 static ssize_t branches_show(struct device *cdev,
4792 			     struct device_attribute *attr,
4793 			     char *buf)
4794 {
4795 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
4796 }
4797 
4798 static DEVICE_ATTR_RO(branches);
4799 
4800 static struct attribute *lbr_attrs[] = {
4801 	&dev_attr_branches.attr,
4802 	NULL
4803 };
4804 
4805 static char pmu_name_str[30];
4806 
4807 static ssize_t pmu_name_show(struct device *cdev,
4808 			     struct device_attribute *attr,
4809 			     char *buf)
4810 {
4811 	return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
4812 }
4813 
4814 static DEVICE_ATTR_RO(pmu_name);
4815 
4816 static struct attribute *intel_pmu_caps_attrs[] = {
4817        &dev_attr_pmu_name.attr,
4818        NULL
4819 };
4820 
4821 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
4822 		   show_sysctl_tfa,
4823 		   set_sysctl_tfa);
4824 
4825 static struct attribute *intel_pmu_attrs[] = {
4826 	&dev_attr_freeze_on_smi.attr,
4827 	&dev_attr_allow_tsx_force_abort.attr,
4828 	NULL,
4829 };
4830 
4831 static umode_t
4832 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4833 {
4834 	return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
4835 }
4836 
4837 static umode_t
4838 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4839 {
4840 	return x86_pmu.pebs ? attr->mode : 0;
4841 }
4842 
4843 static umode_t
4844 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4845 {
4846 	return x86_pmu.lbr_nr ? attr->mode : 0;
4847 }
4848 
4849 static umode_t
4850 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4851 {
4852 	return x86_pmu.version >= 2 ? attr->mode : 0;
4853 }
4854 
4855 static umode_t
4856 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4857 {
4858 	if (attr == &dev_attr_allow_tsx_force_abort.attr)
4859 		return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
4860 
4861 	return attr->mode;
4862 }
4863 
4864 static struct attribute_group group_events_td  = {
4865 	.name = "events",
4866 };
4867 
4868 static struct attribute_group group_events_mem = {
4869 	.name       = "events",
4870 	.is_visible = pebs_is_visible,
4871 };
4872 
4873 static struct attribute_group group_events_tsx = {
4874 	.name       = "events",
4875 	.is_visible = tsx_is_visible,
4876 };
4877 
4878 static struct attribute_group group_caps_gen = {
4879 	.name  = "caps",
4880 	.attrs = intel_pmu_caps_attrs,
4881 };
4882 
4883 static struct attribute_group group_caps_lbr = {
4884 	.name       = "caps",
4885 	.attrs	    = lbr_attrs,
4886 	.is_visible = lbr_is_visible,
4887 };
4888 
4889 static struct attribute_group group_format_extra = {
4890 	.name       = "format",
4891 	.is_visible = exra_is_visible,
4892 };
4893 
4894 static struct attribute_group group_format_extra_skl = {
4895 	.name       = "format",
4896 	.is_visible = exra_is_visible,
4897 };
4898 
4899 static struct attribute_group group_default = {
4900 	.attrs      = intel_pmu_attrs,
4901 	.is_visible = default_is_visible,
4902 };
4903 
4904 static const struct attribute_group *attr_update[] = {
4905 	&group_events_td,
4906 	&group_events_mem,
4907 	&group_events_tsx,
4908 	&group_caps_gen,
4909 	&group_caps_lbr,
4910 	&group_format_extra,
4911 	&group_format_extra_skl,
4912 	&group_default,
4913 	NULL,
4914 };
4915 
4916 static struct attribute *empty_attrs;
4917 
4918 __init int intel_pmu_init(void)
4919 {
4920 	struct attribute **extra_skl_attr = &empty_attrs;
4921 	struct attribute **extra_attr = &empty_attrs;
4922 	struct attribute **td_attr    = &empty_attrs;
4923 	struct attribute **mem_attr   = &empty_attrs;
4924 	struct attribute **tsx_attr   = &empty_attrs;
4925 	union cpuid10_edx edx;
4926 	union cpuid10_eax eax;
4927 	union cpuid10_ebx ebx;
4928 	struct event_constraint *c;
4929 	unsigned int unused;
4930 	struct extra_reg *er;
4931 	bool pmem = false;
4932 	int version, i;
4933 	char *name;
4934 
4935 	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
4936 		switch (boot_cpu_data.x86) {
4937 		case 0x6:
4938 			return p6_pmu_init();
4939 		case 0xb:
4940 			return knc_pmu_init();
4941 		case 0xf:
4942 			return p4_pmu_init();
4943 		}
4944 		return -ENODEV;
4945 	}
4946 
4947 	/*
4948 	 * Check whether the Architectural PerfMon supports
4949 	 * Branch Misses Retired hw_event or not.
4950 	 */
4951 	cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
4952 	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
4953 		return -ENODEV;
4954 
4955 	version = eax.split.version_id;
4956 	if (version < 2)
4957 		x86_pmu = core_pmu;
4958 	else
4959 		x86_pmu = intel_pmu;
4960 
4961 	x86_pmu.version			= version;
4962 	x86_pmu.num_counters		= eax.split.num_counters;
4963 	x86_pmu.cntval_bits		= eax.split.bit_width;
4964 	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
4965 
4966 	x86_pmu.events_maskl		= ebx.full;
4967 	x86_pmu.events_mask_len		= eax.split.mask_length;
4968 
4969 	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
4970 
4971 	/*
4972 	 * Quirk: v2 perfmon does not report fixed-purpose events, so
4973 	 * assume at least 3 events, when not running in a hypervisor:
4974 	 */
4975 	if (version > 1) {
4976 		int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
4977 
4978 		x86_pmu.num_counters_fixed =
4979 			max((int)edx.split.num_counters_fixed, assume);
4980 	}
4981 
4982 	if (version >= 4)
4983 		x86_pmu.counter_freezing = !disable_counter_freezing;
4984 
4985 	if (boot_cpu_has(X86_FEATURE_PDCM)) {
4986 		u64 capabilities;
4987 
4988 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
4989 		x86_pmu.intel_cap.capabilities = capabilities;
4990 	}
4991 
4992 	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
4993 		x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
4994 		x86_pmu.lbr_read = intel_pmu_lbr_read_32;
4995 	}
4996 
4997 	if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
4998 		intel_pmu_arch_lbr_init();
4999 
5000 	intel_ds_init();
5001 
5002 	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
5003 
5004 	if (version >= 5) {
5005 		x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
5006 		if (x86_pmu.intel_cap.anythread_deprecated)
5007 			pr_cont(" AnyThread deprecated, ");
5008 	}
5009 
5010 	/*
5011 	 * Install the hw-cache-events table:
5012 	 */
5013 	switch (boot_cpu_data.x86_model) {
5014 	case INTEL_FAM6_CORE_YONAH:
5015 		pr_cont("Core events, ");
5016 		name = "core";
5017 		break;
5018 
5019 	case INTEL_FAM6_CORE2_MEROM:
5020 		x86_add_quirk(intel_clovertown_quirk);
5021 		fallthrough;
5022 
5023 	case INTEL_FAM6_CORE2_MEROM_L:
5024 	case INTEL_FAM6_CORE2_PENRYN:
5025 	case INTEL_FAM6_CORE2_DUNNINGTON:
5026 		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
5027 		       sizeof(hw_cache_event_ids));
5028 
5029 		intel_pmu_lbr_init_core();
5030 
5031 		x86_pmu.event_constraints = intel_core2_event_constraints;
5032 		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
5033 		pr_cont("Core2 events, ");
5034 		name = "core2";
5035 		break;
5036 
5037 	case INTEL_FAM6_NEHALEM:
5038 	case INTEL_FAM6_NEHALEM_EP:
5039 	case INTEL_FAM6_NEHALEM_EX:
5040 		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
5041 		       sizeof(hw_cache_event_ids));
5042 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5043 		       sizeof(hw_cache_extra_regs));
5044 
5045 		intel_pmu_lbr_init_nhm();
5046 
5047 		x86_pmu.event_constraints = intel_nehalem_event_constraints;
5048 		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
5049 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5050 		x86_pmu.extra_regs = intel_nehalem_extra_regs;
5051 		x86_pmu.limit_period = nhm_limit_period;
5052 
5053 		mem_attr = nhm_mem_events_attrs;
5054 
5055 		/* UOPS_ISSUED.STALLED_CYCLES */
5056 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5057 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5058 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5059 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5060 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5061 
5062 		intel_pmu_pebs_data_source_nhm();
5063 		x86_add_quirk(intel_nehalem_quirk);
5064 		x86_pmu.pebs_no_tlb = 1;
5065 		extra_attr = nhm_format_attr;
5066 
5067 		pr_cont("Nehalem events, ");
5068 		name = "nehalem";
5069 		break;
5070 
5071 	case INTEL_FAM6_ATOM_BONNELL:
5072 	case INTEL_FAM6_ATOM_BONNELL_MID:
5073 	case INTEL_FAM6_ATOM_SALTWELL:
5074 	case INTEL_FAM6_ATOM_SALTWELL_MID:
5075 	case INTEL_FAM6_ATOM_SALTWELL_TABLET:
5076 		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
5077 		       sizeof(hw_cache_event_ids));
5078 
5079 		intel_pmu_lbr_init_atom();
5080 
5081 		x86_pmu.event_constraints = intel_gen_event_constraints;
5082 		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
5083 		x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
5084 		pr_cont("Atom events, ");
5085 		name = "bonnell";
5086 		break;
5087 
5088 	case INTEL_FAM6_ATOM_SILVERMONT:
5089 	case INTEL_FAM6_ATOM_SILVERMONT_D:
5090 	case INTEL_FAM6_ATOM_SILVERMONT_MID:
5091 	case INTEL_FAM6_ATOM_AIRMONT:
5092 	case INTEL_FAM6_ATOM_AIRMONT_MID:
5093 		memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
5094 			sizeof(hw_cache_event_ids));
5095 		memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
5096 		       sizeof(hw_cache_extra_regs));
5097 
5098 		intel_pmu_lbr_init_slm();
5099 
5100 		x86_pmu.event_constraints = intel_slm_event_constraints;
5101 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
5102 		x86_pmu.extra_regs = intel_slm_extra_regs;
5103 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5104 		td_attr = slm_events_attrs;
5105 		extra_attr = slm_format_attr;
5106 		pr_cont("Silvermont events, ");
5107 		name = "silvermont";
5108 		break;
5109 
5110 	case INTEL_FAM6_ATOM_GOLDMONT:
5111 	case INTEL_FAM6_ATOM_GOLDMONT_D:
5112 		x86_add_quirk(intel_counter_freezing_quirk);
5113 		memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
5114 		       sizeof(hw_cache_event_ids));
5115 		memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
5116 		       sizeof(hw_cache_extra_regs));
5117 
5118 		intel_pmu_lbr_init_skl();
5119 
5120 		x86_pmu.event_constraints = intel_slm_event_constraints;
5121 		x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
5122 		x86_pmu.extra_regs = intel_glm_extra_regs;
5123 		/*
5124 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5125 		 * for precise cycles.
5126 		 * :pp is identical to :ppp
5127 		 */
5128 		x86_pmu.pebs_aliases = NULL;
5129 		x86_pmu.pebs_prec_dist = true;
5130 		x86_pmu.lbr_pt_coexist = true;
5131 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5132 		td_attr = glm_events_attrs;
5133 		extra_attr = slm_format_attr;
5134 		pr_cont("Goldmont events, ");
5135 		name = "goldmont";
5136 		break;
5137 
5138 	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
5139 		x86_add_quirk(intel_counter_freezing_quirk);
5140 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5141 		       sizeof(hw_cache_event_ids));
5142 		memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
5143 		       sizeof(hw_cache_extra_regs));
5144 
5145 		intel_pmu_lbr_init_skl();
5146 
5147 		x86_pmu.event_constraints = intel_slm_event_constraints;
5148 		x86_pmu.extra_regs = intel_glm_extra_regs;
5149 		/*
5150 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5151 		 * for precise cycles.
5152 		 */
5153 		x86_pmu.pebs_aliases = NULL;
5154 		x86_pmu.pebs_prec_dist = true;
5155 		x86_pmu.lbr_pt_coexist = true;
5156 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5157 		x86_pmu.flags |= PMU_FL_PEBS_ALL;
5158 		x86_pmu.get_event_constraints = glp_get_event_constraints;
5159 		td_attr = glm_events_attrs;
5160 		/* Goldmont Plus has 4-wide pipeline */
5161 		event_attr_td_total_slots_scale_glm.event_str = "4";
5162 		extra_attr = slm_format_attr;
5163 		pr_cont("Goldmont plus events, ");
5164 		name = "goldmont_plus";
5165 		break;
5166 
5167 	case INTEL_FAM6_ATOM_TREMONT_D:
5168 	case INTEL_FAM6_ATOM_TREMONT:
5169 	case INTEL_FAM6_ATOM_TREMONT_L:
5170 		x86_pmu.late_ack = true;
5171 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5172 		       sizeof(hw_cache_event_ids));
5173 		memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
5174 		       sizeof(hw_cache_extra_regs));
5175 		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
5176 
5177 		intel_pmu_lbr_init_skl();
5178 
5179 		x86_pmu.event_constraints = intel_slm_event_constraints;
5180 		x86_pmu.extra_regs = intel_tnt_extra_regs;
5181 		/*
5182 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5183 		 * for precise cycles.
5184 		 */
5185 		x86_pmu.pebs_aliases = NULL;
5186 		x86_pmu.pebs_prec_dist = true;
5187 		x86_pmu.lbr_pt_coexist = true;
5188 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5189 		x86_pmu.get_event_constraints = tnt_get_event_constraints;
5190 		td_attr = tnt_events_attrs;
5191 		extra_attr = slm_format_attr;
5192 		pr_cont("Tremont events, ");
5193 		name = "Tremont";
5194 		break;
5195 
5196 	case INTEL_FAM6_WESTMERE:
5197 	case INTEL_FAM6_WESTMERE_EP:
5198 	case INTEL_FAM6_WESTMERE_EX:
5199 		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
5200 		       sizeof(hw_cache_event_ids));
5201 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5202 		       sizeof(hw_cache_extra_regs));
5203 
5204 		intel_pmu_lbr_init_nhm();
5205 
5206 		x86_pmu.event_constraints = intel_westmere_event_constraints;
5207 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5208 		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
5209 		x86_pmu.extra_regs = intel_westmere_extra_regs;
5210 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5211 
5212 		mem_attr = nhm_mem_events_attrs;
5213 
5214 		/* UOPS_ISSUED.STALLED_CYCLES */
5215 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5216 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5217 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5218 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5219 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5220 
5221 		intel_pmu_pebs_data_source_nhm();
5222 		extra_attr = nhm_format_attr;
5223 		pr_cont("Westmere events, ");
5224 		name = "westmere";
5225 		break;
5226 
5227 	case INTEL_FAM6_SANDYBRIDGE:
5228 	case INTEL_FAM6_SANDYBRIDGE_X:
5229 		x86_add_quirk(intel_sandybridge_quirk);
5230 		x86_add_quirk(intel_ht_bug);
5231 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
5232 		       sizeof(hw_cache_event_ids));
5233 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
5234 		       sizeof(hw_cache_extra_regs));
5235 
5236 		intel_pmu_lbr_init_snb();
5237 
5238 		x86_pmu.event_constraints = intel_snb_event_constraints;
5239 		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
5240 		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
5241 		if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
5242 			x86_pmu.extra_regs = intel_snbep_extra_regs;
5243 		else
5244 			x86_pmu.extra_regs = intel_snb_extra_regs;
5245 
5246 
5247 		/* all extra regs are per-cpu when HT is on */
5248 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5249 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5250 
5251 		td_attr  = snb_events_attrs;
5252 		mem_attr = snb_mem_events_attrs;
5253 
5254 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
5255 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5256 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5257 		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
5258 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5259 			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
5260 
5261 		extra_attr = nhm_format_attr;
5262 
5263 		pr_cont("SandyBridge events, ");
5264 		name = "sandybridge";
5265 		break;
5266 
5267 	case INTEL_FAM6_IVYBRIDGE:
5268 	case INTEL_FAM6_IVYBRIDGE_X:
5269 		x86_add_quirk(intel_ht_bug);
5270 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
5271 		       sizeof(hw_cache_event_ids));
5272 		/* dTLB-load-misses on IVB is different than SNB */
5273 		hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
5274 
5275 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
5276 		       sizeof(hw_cache_extra_regs));
5277 
5278 		intel_pmu_lbr_init_snb();
5279 
5280 		x86_pmu.event_constraints = intel_ivb_event_constraints;
5281 		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
5282 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5283 		x86_pmu.pebs_prec_dist = true;
5284 		if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
5285 			x86_pmu.extra_regs = intel_snbep_extra_regs;
5286 		else
5287 			x86_pmu.extra_regs = intel_snb_extra_regs;
5288 		/* all extra regs are per-cpu when HT is on */
5289 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5290 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5291 
5292 		td_attr  = snb_events_attrs;
5293 		mem_attr = snb_mem_events_attrs;
5294 
5295 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
5296 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5297 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5298 
5299 		extra_attr = nhm_format_attr;
5300 
5301 		pr_cont("IvyBridge events, ");
5302 		name = "ivybridge";
5303 		break;
5304 
5305 
5306 	case INTEL_FAM6_HASWELL:
5307 	case INTEL_FAM6_HASWELL_X:
5308 	case INTEL_FAM6_HASWELL_L:
5309 	case INTEL_FAM6_HASWELL_G:
5310 		x86_add_quirk(intel_ht_bug);
5311 		x86_add_quirk(intel_pebs_isolation_quirk);
5312 		x86_pmu.late_ack = true;
5313 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5314 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5315 
5316 		intel_pmu_lbr_init_hsw();
5317 
5318 		x86_pmu.event_constraints = intel_hsw_event_constraints;
5319 		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
5320 		x86_pmu.extra_regs = intel_snbep_extra_regs;
5321 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5322 		x86_pmu.pebs_prec_dist = true;
5323 		/* all extra regs are per-cpu when HT is on */
5324 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5325 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5326 
5327 		x86_pmu.hw_config = hsw_hw_config;
5328 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
5329 		x86_pmu.lbr_double_abort = true;
5330 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5331 			hsw_format_attr : nhm_format_attr;
5332 		td_attr  = hsw_events_attrs;
5333 		mem_attr = hsw_mem_events_attrs;
5334 		tsx_attr = hsw_tsx_events_attrs;
5335 		pr_cont("Haswell events, ");
5336 		name = "haswell";
5337 		break;
5338 
5339 	case INTEL_FAM6_BROADWELL:
5340 	case INTEL_FAM6_BROADWELL_D:
5341 	case INTEL_FAM6_BROADWELL_G:
5342 	case INTEL_FAM6_BROADWELL_X:
5343 		x86_add_quirk(intel_pebs_isolation_quirk);
5344 		x86_pmu.late_ack = true;
5345 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5346 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5347 
5348 		/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
5349 		hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
5350 									 BDW_L3_MISS|HSW_SNOOP_DRAM;
5351 		hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
5352 									  HSW_SNOOP_DRAM;
5353 		hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
5354 									     BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
5355 		hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
5356 									      BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
5357 
5358 		intel_pmu_lbr_init_hsw();
5359 
5360 		x86_pmu.event_constraints = intel_bdw_event_constraints;
5361 		x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
5362 		x86_pmu.extra_regs = intel_snbep_extra_regs;
5363 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5364 		x86_pmu.pebs_prec_dist = true;
5365 		/* all extra regs are per-cpu when HT is on */
5366 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5367 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5368 
5369 		x86_pmu.hw_config = hsw_hw_config;
5370 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
5371 		x86_pmu.limit_period = bdw_limit_period;
5372 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5373 			hsw_format_attr : nhm_format_attr;
5374 		td_attr  = hsw_events_attrs;
5375 		mem_attr = hsw_mem_events_attrs;
5376 		tsx_attr = hsw_tsx_events_attrs;
5377 		pr_cont("Broadwell events, ");
5378 		name = "broadwell";
5379 		break;
5380 
5381 	case INTEL_FAM6_XEON_PHI_KNL:
5382 	case INTEL_FAM6_XEON_PHI_KNM:
5383 		memcpy(hw_cache_event_ids,
5384 		       slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5385 		memcpy(hw_cache_extra_regs,
5386 		       knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5387 		intel_pmu_lbr_init_knl();
5388 
5389 		x86_pmu.event_constraints = intel_slm_event_constraints;
5390 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
5391 		x86_pmu.extra_regs = intel_knl_extra_regs;
5392 
5393 		/* all extra regs are per-cpu when HT is on */
5394 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5395 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5396 		extra_attr = slm_format_attr;
5397 		pr_cont("Knights Landing/Mill events, ");
5398 		name = "knights-landing";
5399 		break;
5400 
5401 	case INTEL_FAM6_SKYLAKE_X:
5402 		pmem = true;
5403 		fallthrough;
5404 	case INTEL_FAM6_SKYLAKE_L:
5405 	case INTEL_FAM6_SKYLAKE:
5406 	case INTEL_FAM6_KABYLAKE_L:
5407 	case INTEL_FAM6_KABYLAKE:
5408 	case INTEL_FAM6_COMETLAKE_L:
5409 	case INTEL_FAM6_COMETLAKE:
5410 		x86_add_quirk(intel_pebs_isolation_quirk);
5411 		x86_pmu.late_ack = true;
5412 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5413 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5414 		intel_pmu_lbr_init_skl();
5415 
5416 		/* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
5417 		event_attr_td_recovery_bubbles.event_str_noht =
5418 			"event=0xd,umask=0x1,cmask=1";
5419 		event_attr_td_recovery_bubbles.event_str_ht =
5420 			"event=0xd,umask=0x1,cmask=1,any=1";
5421 
5422 		x86_pmu.event_constraints = intel_skl_event_constraints;
5423 		x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
5424 		x86_pmu.extra_regs = intel_skl_extra_regs;
5425 		x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
5426 		x86_pmu.pebs_prec_dist = true;
5427 		/* all extra regs are per-cpu when HT is on */
5428 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5429 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5430 
5431 		x86_pmu.hw_config = hsw_hw_config;
5432 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
5433 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5434 			hsw_format_attr : nhm_format_attr;
5435 		extra_skl_attr = skl_format_attr;
5436 		td_attr  = hsw_events_attrs;
5437 		mem_attr = hsw_mem_events_attrs;
5438 		tsx_attr = hsw_tsx_events_attrs;
5439 		intel_pmu_pebs_data_source_skl(pmem);
5440 
5441 		if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT)) {
5442 			x86_pmu.flags |= PMU_FL_TFA;
5443 			x86_pmu.get_event_constraints = tfa_get_event_constraints;
5444 			x86_pmu.enable_all = intel_tfa_pmu_enable_all;
5445 			x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
5446 		}
5447 
5448 		pr_cont("Skylake events, ");
5449 		name = "skylake";
5450 		break;
5451 
5452 	case INTEL_FAM6_ICELAKE_X:
5453 	case INTEL_FAM6_ICELAKE_D:
5454 		pmem = true;
5455 		fallthrough;
5456 	case INTEL_FAM6_ICELAKE_L:
5457 	case INTEL_FAM6_ICELAKE:
5458 	case INTEL_FAM6_TIGERLAKE_L:
5459 	case INTEL_FAM6_TIGERLAKE:
5460 	case INTEL_FAM6_ROCKETLAKE:
5461 		x86_pmu.late_ack = true;
5462 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5463 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5464 		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
5465 		intel_pmu_lbr_init_skl();
5466 
5467 		x86_pmu.event_constraints = intel_icl_event_constraints;
5468 		x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
5469 		x86_pmu.extra_regs = intel_icl_extra_regs;
5470 		x86_pmu.pebs_aliases = NULL;
5471 		x86_pmu.pebs_prec_dist = true;
5472 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5473 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5474 
5475 		x86_pmu.hw_config = hsw_hw_config;
5476 		x86_pmu.get_event_constraints = icl_get_event_constraints;
5477 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5478 			hsw_format_attr : nhm_format_attr;
5479 		extra_skl_attr = skl_format_attr;
5480 		mem_attr = icl_events_attrs;
5481 		td_attr = icl_td_events_attrs;
5482 		tsx_attr = icl_tsx_events_attrs;
5483 		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
5484 		x86_pmu.lbr_pt_coexist = true;
5485 		intel_pmu_pebs_data_source_skl(pmem);
5486 		x86_pmu.update_topdown_event = icl_update_topdown_event;
5487 		x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
5488 		pr_cont("Icelake events, ");
5489 		name = "icelake";
5490 		break;
5491 
5492 	default:
5493 		switch (x86_pmu.version) {
5494 		case 1:
5495 			x86_pmu.event_constraints = intel_v1_event_constraints;
5496 			pr_cont("generic architected perfmon v1, ");
5497 			name = "generic_arch_v1";
5498 			break;
5499 		default:
5500 			/*
5501 			 * default constraints for v2 and up
5502 			 */
5503 			x86_pmu.event_constraints = intel_gen_event_constraints;
5504 			pr_cont("generic architected perfmon, ");
5505 			name = "generic_arch_v2+";
5506 			break;
5507 		}
5508 	}
5509 
5510 	snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
5511 
5512 
5513 	group_events_td.attrs  = td_attr;
5514 	group_events_mem.attrs = mem_attr;
5515 	group_events_tsx.attrs = tsx_attr;
5516 	group_format_extra.attrs = extra_attr;
5517 	group_format_extra_skl.attrs = extra_skl_attr;
5518 
5519 	x86_pmu.attr_update = attr_update;
5520 
5521 	if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
5522 		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5523 		     x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
5524 		x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
5525 	}
5526 	x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1;
5527 
5528 	if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
5529 		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5530 		     x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
5531 		x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
5532 	}
5533 
5534 	x86_pmu.intel_ctrl |=
5535 		((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
5536 
5537 	/* AnyThread may be deprecated on arch perfmon v5 or later */
5538 	if (x86_pmu.intel_cap.anythread_deprecated)
5539 		x86_pmu.format_attrs = intel_arch_formats_attr;
5540 
5541 	if (x86_pmu.event_constraints) {
5542 		/*
5543 		 * event on fixed counter2 (REF_CYCLES) only works on this
5544 		 * counter, so do not extend mask to generic counters
5545 		 */
5546 		for_each_event_constraint(c, x86_pmu.event_constraints) {
5547 			/*
5548 			 * Don't extend the topdown slots and metrics
5549 			 * events to the generic counters.
5550 			 */
5551 			if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
5552 				c->weight = hweight64(c->idxmsk64);
5553 				continue;
5554 			}
5555 
5556 			if (c->cmask == FIXED_EVENT_FLAGS
5557 			    && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
5558 				c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
5559 			}
5560 			c->idxmsk64 &=
5561 				~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
5562 			c->weight = hweight64(c->idxmsk64);
5563 		}
5564 	}
5565 
5566 	/*
5567 	 * Access LBR MSR may cause #GP under certain circumstances.
5568 	 * E.g. KVM doesn't support LBR MSR
5569 	 * Check all LBT MSR here.
5570 	 * Disable LBR access if any LBR MSRs can not be accessed.
5571 	 */
5572 	if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
5573 		x86_pmu.lbr_nr = 0;
5574 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
5575 		if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
5576 		      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
5577 			x86_pmu.lbr_nr = 0;
5578 	}
5579 
5580 	if (x86_pmu.lbr_nr)
5581 		pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
5582 
5583 	/*
5584 	 * Access extra MSR may cause #GP under certain circumstances.
5585 	 * E.g. KVM doesn't support offcore event
5586 	 * Check all extra_regs here.
5587 	 */
5588 	if (x86_pmu.extra_regs) {
5589 		for (er = x86_pmu.extra_regs; er->msr; er++) {
5590 			er->extra_msr_access = check_msr(er->msr, 0x11UL);
5591 			/* Disable LBR select mapping */
5592 			if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
5593 				x86_pmu.lbr_sel_map = NULL;
5594 		}
5595 	}
5596 
5597 	/* Support full width counters using alternative MSR range */
5598 	if (x86_pmu.intel_cap.full_width_write) {
5599 		x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
5600 		x86_pmu.perfctr = MSR_IA32_PMC0;
5601 		pr_cont("full-width counters, ");
5602 	}
5603 
5604 	/*
5605 	 * For arch perfmon 4 use counter freezing to avoid
5606 	 * several MSR accesses in the PMI.
5607 	 */
5608 	if (x86_pmu.counter_freezing)
5609 		x86_pmu.handle_irq = intel_pmu_handle_irq_v4;
5610 
5611 	if (x86_pmu.intel_cap.perf_metrics)
5612 		x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
5613 
5614 	return 0;
5615 }
5616 
5617 /*
5618  * HT bug: phase 2 init
5619  * Called once we have valid topology information to check
5620  * whether or not HT is enabled
5621  * If HT is off, then we disable the workaround
5622  */
5623 static __init int fixup_ht_bug(void)
5624 {
5625 	int c;
5626 	/*
5627 	 * problem not present on this CPU model, nothing to do
5628 	 */
5629 	if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
5630 		return 0;
5631 
5632 	if (topology_max_smt_threads() > 1) {
5633 		pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
5634 		return 0;
5635 	}
5636 
5637 	cpus_read_lock();
5638 
5639 	hardlockup_detector_perf_stop();
5640 
5641 	x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
5642 
5643 	x86_pmu.start_scheduling = NULL;
5644 	x86_pmu.commit_scheduling = NULL;
5645 	x86_pmu.stop_scheduling = NULL;
5646 
5647 	hardlockup_detector_perf_restart();
5648 
5649 	for_each_online_cpu(c)
5650 		free_excl_cntrs(&per_cpu(cpu_hw_events, c));
5651 
5652 	cpus_read_unlock();
5653 	pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
5654 	return 0;
5655 }
5656 subsys_initcall(fixup_ht_bug)
5657