xref: /openbmc/linux/arch/x86/events/intel/core.c (revision 31e67366)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Per core/cpu state
4  *
5  * Used to coordinate shared registers between HT threads or
6  * among events on a single PMU.
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
17 
18 #include <asm/cpufeature.h>
19 #include <asm/hardirq.h>
20 #include <asm/intel-family.h>
21 #include <asm/intel_pt.h>
22 #include <asm/apic.h>
23 #include <asm/cpu_device_id.h>
24 
25 #include "../perf_event.h"
26 
27 /*
28  * Intel PerfMon, used on Core and later.
29  */
30 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
31 {
32 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
33 	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
34 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
35 	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
36 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
37 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
38 	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
39 	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
40 };
41 
42 static struct event_constraint intel_core_event_constraints[] __read_mostly =
43 {
44 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
45 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
46 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
47 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
48 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
49 	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
50 	EVENT_CONSTRAINT_END
51 };
52 
53 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
54 {
55 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
56 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
57 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
58 	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
59 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
60 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
61 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
62 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
63 	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
64 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
65 	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
66 	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
67 	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
68 	EVENT_CONSTRAINT_END
69 };
70 
71 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
72 {
73 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
74 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
75 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
76 	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
77 	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
78 	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
79 	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
80 	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
81 	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
82 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
83 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
84 	EVENT_CONSTRAINT_END
85 };
86 
87 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
88 {
89 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
90 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
91 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
92 	EVENT_EXTRA_END
93 };
94 
95 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
96 {
97 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
98 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
99 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
100 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
101 	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
102 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
103 	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
104 	EVENT_CONSTRAINT_END
105 };
106 
107 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
108 {
109 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
110 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
111 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
112 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
113 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
114 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
115 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
116 	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
117 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
118 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
119 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
120 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
121 
122 	/*
123 	 * When HT is off these events can only run on the bottom 4 counters
124 	 * When HT is on, they are impacted by the HT bug and require EXCL access
125 	 */
126 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
127 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
128 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
129 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
130 
131 	EVENT_CONSTRAINT_END
132 };
133 
134 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
135 {
136 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
137 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
138 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
139 	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
140 	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
141 	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
142 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
143 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
144 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
145 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
146 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
147 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
148 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
149 
150 	/*
151 	 * When HT is off these events can only run on the bottom 4 counters
152 	 * When HT is on, they are impacted by the HT bug and require EXCL access
153 	 */
154 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
155 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
156 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
157 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
158 
159 	EVENT_CONSTRAINT_END
160 };
161 
162 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
163 {
164 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
165 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
166 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
167 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
168 	EVENT_EXTRA_END
169 };
170 
171 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
172 {
173 	EVENT_CONSTRAINT_END
174 };
175 
176 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
177 {
178 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
179 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
180 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
181 	EVENT_CONSTRAINT_END
182 };
183 
184 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
185 {
186 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
187 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
188 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
189 	EVENT_CONSTRAINT_END
190 };
191 
192 static struct event_constraint intel_skl_event_constraints[] = {
193 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
194 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
195 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
196 	INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
197 
198 	/*
199 	 * when HT is off, these can only run on the bottom 4 counters
200 	 */
201 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
202 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
203 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
204 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
205 	INTEL_EVENT_CONSTRAINT(0xc6, 0xf),	/* FRONTEND_RETIRED.* */
206 
207 	EVENT_CONSTRAINT_END
208 };
209 
210 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
211 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
212 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
213 	EVENT_EXTRA_END
214 };
215 
216 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
217 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
218 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
219 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
220 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
221 	EVENT_EXTRA_END
222 };
223 
224 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
225 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
226 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
227 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
228 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
229 	EVENT_EXTRA_END
230 };
231 
232 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
233 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
234 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
235 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
236 	/*
237 	 * Note the low 8 bits eventsel code is not a continuous field, containing
238 	 * some #GPing bits. These are masked out.
239 	 */
240 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
241 	EVENT_EXTRA_END
242 };
243 
244 static struct event_constraint intel_icl_event_constraints[] = {
245 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
246 	FIXED_EVENT_CONSTRAINT(0x01c0, 0),	/* INST_RETIRED.PREC_DIST */
247 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
248 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
249 	FIXED_EVENT_CONSTRAINT(0x0400, 3),	/* SLOTS */
250 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
251 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
252 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
253 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
254 	INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
255 	INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
256 	INTEL_EVENT_CONSTRAINT(0x32, 0xf),	/* SW_PREFETCH_ACCESS.* */
257 	INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x54, 0xf),
258 	INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
259 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_TOTAL */
260 	INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff),  /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
261 	INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
262 	INTEL_EVENT_CONSTRAINT(0xa3, 0xf),      /* CYCLE_ACTIVITY.* */
263 	INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
264 	INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
265 	INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
266 	INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
267 	EVENT_CONSTRAINT_END
268 };
269 
270 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
271 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
272 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
273 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
274 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
275 	EVENT_EXTRA_END
276 };
277 
278 static struct extra_reg intel_spr_extra_regs[] __read_mostly = {
279 	INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
280 	INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
281 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
282 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
283 	EVENT_EXTRA_END
284 };
285 
286 static struct event_constraint intel_spr_event_constraints[] = {
287 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
288 	FIXED_EVENT_CONSTRAINT(0x01c0, 0),	/* INST_RETIRED.PREC_DIST */
289 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
290 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
291 	FIXED_EVENT_CONSTRAINT(0x0400, 3),	/* SLOTS */
292 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
293 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
294 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
295 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
296 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
297 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
298 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
299 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
300 
301 	INTEL_EVENT_CONSTRAINT(0x2e, 0xff),
302 	INTEL_EVENT_CONSTRAINT(0x3c, 0xff),
303 	/*
304 	 * Generally event codes < 0x90 are restricted to counters 0-3.
305 	 * The 0x2E and 0x3C are exception, which has no restriction.
306 	 */
307 	INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),
308 
309 	INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
310 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
311 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf),
312 	INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
313 	INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
314 	INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1),
315 	INTEL_EVENT_CONSTRAINT(0xce, 0x1),
316 	INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
317 	/*
318 	 * Generally event codes >= 0x90 are likely to have no restrictions.
319 	 * The exception are defined as above.
320 	 */
321 	INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff),
322 
323 	EVENT_CONSTRAINT_END
324 };
325 
326 
327 EVENT_ATTR_STR(mem-loads,	mem_ld_nhm,	"event=0x0b,umask=0x10,ldlat=3");
328 EVENT_ATTR_STR(mem-loads,	mem_ld_snb,	"event=0xcd,umask=0x1,ldlat=3");
329 EVENT_ATTR_STR(mem-stores,	mem_st_snb,	"event=0xcd,umask=0x2");
330 
331 static struct attribute *nhm_mem_events_attrs[] = {
332 	EVENT_PTR(mem_ld_nhm),
333 	NULL,
334 };
335 
336 /*
337  * topdown events for Intel Core CPUs.
338  *
339  * The events are all in slots, which is a free slot in a 4 wide
340  * pipeline. Some events are already reported in slots, for cycle
341  * events we multiply by the pipeline width (4).
342  *
343  * With Hyper Threading on, topdown metrics are either summed or averaged
344  * between the threads of a core: (count_t0 + count_t1).
345  *
346  * For the average case the metric is always scaled to pipeline width,
347  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
348  */
349 
350 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
351 	"event=0x3c,umask=0x0",			/* cpu_clk_unhalted.thread */
352 	"event=0x3c,umask=0x0,any=1");		/* cpu_clk_unhalted.thread_any */
353 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
354 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
355 	"event=0xe,umask=0x1");			/* uops_issued.any */
356 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
357 	"event=0xc2,umask=0x2");		/* uops_retired.retire_slots */
358 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
359 	"event=0x9c,umask=0x1");		/* idq_uops_not_delivered_core */
360 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
361 	"event=0xd,umask=0x3,cmask=1",		/* int_misc.recovery_cycles */
362 	"event=0xd,umask=0x3,cmask=1,any=1");	/* int_misc.recovery_cycles_any */
363 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
364 	"4", "2");
365 
366 EVENT_ATTR_STR(slots,			slots,			"event=0x00,umask=0x4");
367 EVENT_ATTR_STR(topdown-retiring,	td_retiring,		"event=0x00,umask=0x80");
368 EVENT_ATTR_STR(topdown-bad-spec,	td_bad_spec,		"event=0x00,umask=0x81");
369 EVENT_ATTR_STR(topdown-fe-bound,	td_fe_bound,		"event=0x00,umask=0x82");
370 EVENT_ATTR_STR(topdown-be-bound,	td_be_bound,		"event=0x00,umask=0x83");
371 EVENT_ATTR_STR(topdown-heavy-ops,	td_heavy_ops,		"event=0x00,umask=0x84");
372 EVENT_ATTR_STR(topdown-br-mispredict,	td_br_mispredict,	"event=0x00,umask=0x85");
373 EVENT_ATTR_STR(topdown-fetch-lat,	td_fetch_lat,		"event=0x00,umask=0x86");
374 EVENT_ATTR_STR(topdown-mem-bound,	td_mem_bound,		"event=0x00,umask=0x87");
375 
376 static struct attribute *snb_events_attrs[] = {
377 	EVENT_PTR(td_slots_issued),
378 	EVENT_PTR(td_slots_retired),
379 	EVENT_PTR(td_fetch_bubbles),
380 	EVENT_PTR(td_total_slots),
381 	EVENT_PTR(td_total_slots_scale),
382 	EVENT_PTR(td_recovery_bubbles),
383 	EVENT_PTR(td_recovery_bubbles_scale),
384 	NULL,
385 };
386 
387 static struct attribute *snb_mem_events_attrs[] = {
388 	EVENT_PTR(mem_ld_snb),
389 	EVENT_PTR(mem_st_snb),
390 	NULL,
391 };
392 
393 static struct event_constraint intel_hsw_event_constraints[] = {
394 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
395 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
396 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
397 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
398 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
399 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
400 	/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
401 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
402 	/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
403 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
404 	/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
405 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
406 
407 	/*
408 	 * When HT is off these events can only run on the bottom 4 counters
409 	 * When HT is on, they are impacted by the HT bug and require EXCL access
410 	 */
411 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
412 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
413 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
414 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
415 
416 	EVENT_CONSTRAINT_END
417 };
418 
419 static struct event_constraint intel_bdw_event_constraints[] = {
420 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
421 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
422 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
423 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
424 	INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),	/* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
425 	/*
426 	 * when HT is off, these can only run on the bottom 4 counters
427 	 */
428 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
429 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
430 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
431 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
432 	EVENT_CONSTRAINT_END
433 };
434 
435 static u64 intel_pmu_event_map(int hw_event)
436 {
437 	return intel_perfmon_event_map[hw_event];
438 }
439 
440 static __initconst const u64 spr_hw_cache_event_ids
441 				[PERF_COUNT_HW_CACHE_MAX]
442 				[PERF_COUNT_HW_CACHE_OP_MAX]
443 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
444 {
445  [ C(L1D ) ] = {
446 	[ C(OP_READ) ] = {
447 		[ C(RESULT_ACCESS) ] = 0x81d0,
448 		[ C(RESULT_MISS)   ] = 0xe124,
449 	},
450 	[ C(OP_WRITE) ] = {
451 		[ C(RESULT_ACCESS) ] = 0x82d0,
452 	},
453  },
454  [ C(L1I ) ] = {
455 	[ C(OP_READ) ] = {
456 		[ C(RESULT_MISS)   ] = 0xe424,
457 	},
458 	[ C(OP_WRITE) ] = {
459 		[ C(RESULT_ACCESS) ] = -1,
460 		[ C(RESULT_MISS)   ] = -1,
461 	},
462  },
463  [ C(LL  ) ] = {
464 	[ C(OP_READ) ] = {
465 		[ C(RESULT_ACCESS) ] = 0x12a,
466 		[ C(RESULT_MISS)   ] = 0x12a,
467 	},
468 	[ C(OP_WRITE) ] = {
469 		[ C(RESULT_ACCESS) ] = 0x12a,
470 		[ C(RESULT_MISS)   ] = 0x12a,
471 	},
472  },
473  [ C(DTLB) ] = {
474 	[ C(OP_READ) ] = {
475 		[ C(RESULT_ACCESS) ] = 0x81d0,
476 		[ C(RESULT_MISS)   ] = 0xe12,
477 	},
478 	[ C(OP_WRITE) ] = {
479 		[ C(RESULT_ACCESS) ] = 0x82d0,
480 		[ C(RESULT_MISS)   ] = 0xe13,
481 	},
482  },
483  [ C(ITLB) ] = {
484 	[ C(OP_READ) ] = {
485 		[ C(RESULT_ACCESS) ] = -1,
486 		[ C(RESULT_MISS)   ] = 0xe11,
487 	},
488 	[ C(OP_WRITE) ] = {
489 		[ C(RESULT_ACCESS) ] = -1,
490 		[ C(RESULT_MISS)   ] = -1,
491 	},
492 	[ C(OP_PREFETCH) ] = {
493 		[ C(RESULT_ACCESS) ] = -1,
494 		[ C(RESULT_MISS)   ] = -1,
495 	},
496  },
497  [ C(BPU ) ] = {
498 	[ C(OP_READ) ] = {
499 		[ C(RESULT_ACCESS) ] = 0x4c4,
500 		[ C(RESULT_MISS)   ] = 0x4c5,
501 	},
502 	[ C(OP_WRITE) ] = {
503 		[ C(RESULT_ACCESS) ] = -1,
504 		[ C(RESULT_MISS)   ] = -1,
505 	},
506 	[ C(OP_PREFETCH) ] = {
507 		[ C(RESULT_ACCESS) ] = -1,
508 		[ C(RESULT_MISS)   ] = -1,
509 	},
510  },
511  [ C(NODE) ] = {
512 	[ C(OP_READ) ] = {
513 		[ C(RESULT_ACCESS) ] = 0x12a,
514 		[ C(RESULT_MISS)   ] = 0x12a,
515 	},
516  },
517 };
518 
519 static __initconst const u64 spr_hw_cache_extra_regs
520 				[PERF_COUNT_HW_CACHE_MAX]
521 				[PERF_COUNT_HW_CACHE_OP_MAX]
522 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
523 {
524  [ C(LL  ) ] = {
525 	[ C(OP_READ) ] = {
526 		[ C(RESULT_ACCESS) ] = 0x10001,
527 		[ C(RESULT_MISS)   ] = 0x3fbfc00001,
528 	},
529 	[ C(OP_WRITE) ] = {
530 		[ C(RESULT_ACCESS) ] = 0x3f3ffc0002,
531 		[ C(RESULT_MISS)   ] = 0x3f3fc00002,
532 	},
533  },
534  [ C(NODE) ] = {
535 	[ C(OP_READ) ] = {
536 		[ C(RESULT_ACCESS) ] = 0x10c000001,
537 		[ C(RESULT_MISS)   ] = 0x3fb3000001,
538 	},
539  },
540 };
541 
542 /*
543  * Notes on the events:
544  * - data reads do not include code reads (comparable to earlier tables)
545  * - data counts include speculative execution (except L1 write, dtlb, bpu)
546  * - remote node access includes remote memory, remote cache, remote mmio.
547  * - prefetches are not included in the counts.
548  * - icache miss does not include decoded icache
549  */
550 
551 #define SKL_DEMAND_DATA_RD		BIT_ULL(0)
552 #define SKL_DEMAND_RFO			BIT_ULL(1)
553 #define SKL_ANY_RESPONSE		BIT_ULL(16)
554 #define SKL_SUPPLIER_NONE		BIT_ULL(17)
555 #define SKL_L3_MISS_LOCAL_DRAM		BIT_ULL(26)
556 #define SKL_L3_MISS_REMOTE_HOP0_DRAM	BIT_ULL(27)
557 #define SKL_L3_MISS_REMOTE_HOP1_DRAM	BIT_ULL(28)
558 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM	BIT_ULL(29)
559 #define SKL_L3_MISS			(SKL_L3_MISS_LOCAL_DRAM| \
560 					 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
561 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
562 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
563 #define SKL_SPL_HIT			BIT_ULL(30)
564 #define SKL_SNOOP_NONE			BIT_ULL(31)
565 #define SKL_SNOOP_NOT_NEEDED		BIT_ULL(32)
566 #define SKL_SNOOP_MISS			BIT_ULL(33)
567 #define SKL_SNOOP_HIT_NO_FWD		BIT_ULL(34)
568 #define SKL_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
569 #define SKL_SNOOP_HITM			BIT_ULL(36)
570 #define SKL_SNOOP_NON_DRAM		BIT_ULL(37)
571 #define SKL_ANY_SNOOP			(SKL_SPL_HIT|SKL_SNOOP_NONE| \
572 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
573 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
574 					 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
575 #define SKL_DEMAND_READ			SKL_DEMAND_DATA_RD
576 #define SKL_SNOOP_DRAM			(SKL_SNOOP_NONE| \
577 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
578 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
579 					 SKL_SNOOP_HITM|SKL_SPL_HIT)
580 #define SKL_DEMAND_WRITE		SKL_DEMAND_RFO
581 #define SKL_LLC_ACCESS			SKL_ANY_RESPONSE
582 #define SKL_L3_MISS_REMOTE		(SKL_L3_MISS_REMOTE_HOP0_DRAM| \
583 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
584 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
585 
586 static __initconst const u64 skl_hw_cache_event_ids
587 				[PERF_COUNT_HW_CACHE_MAX]
588 				[PERF_COUNT_HW_CACHE_OP_MAX]
589 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
590 {
591  [ C(L1D ) ] = {
592 	[ C(OP_READ) ] = {
593 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
594 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
595 	},
596 	[ C(OP_WRITE) ] = {
597 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
598 		[ C(RESULT_MISS)   ] = 0x0,
599 	},
600 	[ C(OP_PREFETCH) ] = {
601 		[ C(RESULT_ACCESS) ] = 0x0,
602 		[ C(RESULT_MISS)   ] = 0x0,
603 	},
604  },
605  [ C(L1I ) ] = {
606 	[ C(OP_READ) ] = {
607 		[ C(RESULT_ACCESS) ] = 0x0,
608 		[ C(RESULT_MISS)   ] = 0x283,	/* ICACHE_64B.MISS */
609 	},
610 	[ C(OP_WRITE) ] = {
611 		[ C(RESULT_ACCESS) ] = -1,
612 		[ C(RESULT_MISS)   ] = -1,
613 	},
614 	[ C(OP_PREFETCH) ] = {
615 		[ C(RESULT_ACCESS) ] = 0x0,
616 		[ C(RESULT_MISS)   ] = 0x0,
617 	},
618  },
619  [ C(LL  ) ] = {
620 	[ C(OP_READ) ] = {
621 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
622 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
623 	},
624 	[ C(OP_WRITE) ] = {
625 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
626 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
627 	},
628 	[ C(OP_PREFETCH) ] = {
629 		[ C(RESULT_ACCESS) ] = 0x0,
630 		[ C(RESULT_MISS)   ] = 0x0,
631 	},
632  },
633  [ C(DTLB) ] = {
634 	[ C(OP_READ) ] = {
635 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
636 		[ C(RESULT_MISS)   ] = 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
637 	},
638 	[ C(OP_WRITE) ] = {
639 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
640 		[ C(RESULT_MISS)   ] = 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
641 	},
642 	[ C(OP_PREFETCH) ] = {
643 		[ C(RESULT_ACCESS) ] = 0x0,
644 		[ C(RESULT_MISS)   ] = 0x0,
645 	},
646  },
647  [ C(ITLB) ] = {
648 	[ C(OP_READ) ] = {
649 		[ C(RESULT_ACCESS) ] = 0x2085,	/* ITLB_MISSES.STLB_HIT */
650 		[ C(RESULT_MISS)   ] = 0xe85,	/* ITLB_MISSES.WALK_COMPLETED */
651 	},
652 	[ C(OP_WRITE) ] = {
653 		[ C(RESULT_ACCESS) ] = -1,
654 		[ C(RESULT_MISS)   ] = -1,
655 	},
656 	[ C(OP_PREFETCH) ] = {
657 		[ C(RESULT_ACCESS) ] = -1,
658 		[ C(RESULT_MISS)   ] = -1,
659 	},
660  },
661  [ C(BPU ) ] = {
662 	[ C(OP_READ) ] = {
663 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
664 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
665 	},
666 	[ C(OP_WRITE) ] = {
667 		[ C(RESULT_ACCESS) ] = -1,
668 		[ C(RESULT_MISS)   ] = -1,
669 	},
670 	[ C(OP_PREFETCH) ] = {
671 		[ C(RESULT_ACCESS) ] = -1,
672 		[ C(RESULT_MISS)   ] = -1,
673 	},
674  },
675  [ C(NODE) ] = {
676 	[ C(OP_READ) ] = {
677 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
678 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
679 	},
680 	[ C(OP_WRITE) ] = {
681 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
682 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
683 	},
684 	[ C(OP_PREFETCH) ] = {
685 		[ C(RESULT_ACCESS) ] = 0x0,
686 		[ C(RESULT_MISS)   ] = 0x0,
687 	},
688  },
689 };
690 
691 static __initconst const u64 skl_hw_cache_extra_regs
692 				[PERF_COUNT_HW_CACHE_MAX]
693 				[PERF_COUNT_HW_CACHE_OP_MAX]
694 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
695 {
696  [ C(LL  ) ] = {
697 	[ C(OP_READ) ] = {
698 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
699 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
700 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
701 				       SKL_L3_MISS|SKL_ANY_SNOOP|
702 				       SKL_SUPPLIER_NONE,
703 	},
704 	[ C(OP_WRITE) ] = {
705 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
706 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
707 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
708 				       SKL_L3_MISS|SKL_ANY_SNOOP|
709 				       SKL_SUPPLIER_NONE,
710 	},
711 	[ C(OP_PREFETCH) ] = {
712 		[ C(RESULT_ACCESS) ] = 0x0,
713 		[ C(RESULT_MISS)   ] = 0x0,
714 	},
715  },
716  [ C(NODE) ] = {
717 	[ C(OP_READ) ] = {
718 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
719 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
720 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
721 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
722 	},
723 	[ C(OP_WRITE) ] = {
724 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
725 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
726 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
727 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
728 	},
729 	[ C(OP_PREFETCH) ] = {
730 		[ C(RESULT_ACCESS) ] = 0x0,
731 		[ C(RESULT_MISS)   ] = 0x0,
732 	},
733  },
734 };
735 
736 #define SNB_DMND_DATA_RD	(1ULL << 0)
737 #define SNB_DMND_RFO		(1ULL << 1)
738 #define SNB_DMND_IFETCH		(1ULL << 2)
739 #define SNB_DMND_WB		(1ULL << 3)
740 #define SNB_PF_DATA_RD		(1ULL << 4)
741 #define SNB_PF_RFO		(1ULL << 5)
742 #define SNB_PF_IFETCH		(1ULL << 6)
743 #define SNB_LLC_DATA_RD		(1ULL << 7)
744 #define SNB_LLC_RFO		(1ULL << 8)
745 #define SNB_LLC_IFETCH		(1ULL << 9)
746 #define SNB_BUS_LOCKS		(1ULL << 10)
747 #define SNB_STRM_ST		(1ULL << 11)
748 #define SNB_OTHER		(1ULL << 15)
749 #define SNB_RESP_ANY		(1ULL << 16)
750 #define SNB_NO_SUPP		(1ULL << 17)
751 #define SNB_LLC_HITM		(1ULL << 18)
752 #define SNB_LLC_HITE		(1ULL << 19)
753 #define SNB_LLC_HITS		(1ULL << 20)
754 #define SNB_LLC_HITF		(1ULL << 21)
755 #define SNB_LOCAL		(1ULL << 22)
756 #define SNB_REMOTE		(0xffULL << 23)
757 #define SNB_SNP_NONE		(1ULL << 31)
758 #define SNB_SNP_NOT_NEEDED	(1ULL << 32)
759 #define SNB_SNP_MISS		(1ULL << 33)
760 #define SNB_NO_FWD		(1ULL << 34)
761 #define SNB_SNP_FWD		(1ULL << 35)
762 #define SNB_HITM		(1ULL << 36)
763 #define SNB_NON_DRAM		(1ULL << 37)
764 
765 #define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
766 #define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
767 #define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
768 
769 #define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
770 				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
771 				 SNB_HITM)
772 
773 #define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
774 #define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)
775 
776 #define SNB_L3_ACCESS		SNB_RESP_ANY
777 #define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)
778 
779 static __initconst const u64 snb_hw_cache_extra_regs
780 				[PERF_COUNT_HW_CACHE_MAX]
781 				[PERF_COUNT_HW_CACHE_OP_MAX]
782 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
783 {
784  [ C(LL  ) ] = {
785 	[ C(OP_READ) ] = {
786 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
787 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
788 	},
789 	[ C(OP_WRITE) ] = {
790 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
791 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
792 	},
793 	[ C(OP_PREFETCH) ] = {
794 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
795 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
796 	},
797  },
798  [ C(NODE) ] = {
799 	[ C(OP_READ) ] = {
800 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
801 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
802 	},
803 	[ C(OP_WRITE) ] = {
804 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
805 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
806 	},
807 	[ C(OP_PREFETCH) ] = {
808 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
809 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
810 	},
811  },
812 };
813 
814 static __initconst const u64 snb_hw_cache_event_ids
815 				[PERF_COUNT_HW_CACHE_MAX]
816 				[PERF_COUNT_HW_CACHE_OP_MAX]
817 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
818 {
819  [ C(L1D) ] = {
820 	[ C(OP_READ) ] = {
821 		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
822 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
823 	},
824 	[ C(OP_WRITE) ] = {
825 		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
826 		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
827 	},
828 	[ C(OP_PREFETCH) ] = {
829 		[ C(RESULT_ACCESS) ] = 0x0,
830 		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
831 	},
832  },
833  [ C(L1I ) ] = {
834 	[ C(OP_READ) ] = {
835 		[ C(RESULT_ACCESS) ] = 0x0,
836 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
837 	},
838 	[ C(OP_WRITE) ] = {
839 		[ C(RESULT_ACCESS) ] = -1,
840 		[ C(RESULT_MISS)   ] = -1,
841 	},
842 	[ C(OP_PREFETCH) ] = {
843 		[ C(RESULT_ACCESS) ] = 0x0,
844 		[ C(RESULT_MISS)   ] = 0x0,
845 	},
846  },
847  [ C(LL  ) ] = {
848 	[ C(OP_READ) ] = {
849 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
850 		[ C(RESULT_ACCESS) ] = 0x01b7,
851 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
852 		[ C(RESULT_MISS)   ] = 0x01b7,
853 	},
854 	[ C(OP_WRITE) ] = {
855 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
856 		[ C(RESULT_ACCESS) ] = 0x01b7,
857 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
858 		[ C(RESULT_MISS)   ] = 0x01b7,
859 	},
860 	[ C(OP_PREFETCH) ] = {
861 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
862 		[ C(RESULT_ACCESS) ] = 0x01b7,
863 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
864 		[ C(RESULT_MISS)   ] = 0x01b7,
865 	},
866  },
867  [ C(DTLB) ] = {
868 	[ C(OP_READ) ] = {
869 		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
870 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
871 	},
872 	[ C(OP_WRITE) ] = {
873 		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
874 		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
875 	},
876 	[ C(OP_PREFETCH) ] = {
877 		[ C(RESULT_ACCESS) ] = 0x0,
878 		[ C(RESULT_MISS)   ] = 0x0,
879 	},
880  },
881  [ C(ITLB) ] = {
882 	[ C(OP_READ) ] = {
883 		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
884 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
885 	},
886 	[ C(OP_WRITE) ] = {
887 		[ C(RESULT_ACCESS) ] = -1,
888 		[ C(RESULT_MISS)   ] = -1,
889 	},
890 	[ C(OP_PREFETCH) ] = {
891 		[ C(RESULT_ACCESS) ] = -1,
892 		[ C(RESULT_MISS)   ] = -1,
893 	},
894  },
895  [ C(BPU ) ] = {
896 	[ C(OP_READ) ] = {
897 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
898 		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
899 	},
900 	[ C(OP_WRITE) ] = {
901 		[ C(RESULT_ACCESS) ] = -1,
902 		[ C(RESULT_MISS)   ] = -1,
903 	},
904 	[ C(OP_PREFETCH) ] = {
905 		[ C(RESULT_ACCESS) ] = -1,
906 		[ C(RESULT_MISS)   ] = -1,
907 	},
908  },
909  [ C(NODE) ] = {
910 	[ C(OP_READ) ] = {
911 		[ C(RESULT_ACCESS) ] = 0x01b7,
912 		[ C(RESULT_MISS)   ] = 0x01b7,
913 	},
914 	[ C(OP_WRITE) ] = {
915 		[ C(RESULT_ACCESS) ] = 0x01b7,
916 		[ C(RESULT_MISS)   ] = 0x01b7,
917 	},
918 	[ C(OP_PREFETCH) ] = {
919 		[ C(RESULT_ACCESS) ] = 0x01b7,
920 		[ C(RESULT_MISS)   ] = 0x01b7,
921 	},
922  },
923 
924 };
925 
926 /*
927  * Notes on the events:
928  * - data reads do not include code reads (comparable to earlier tables)
929  * - data counts include speculative execution (except L1 write, dtlb, bpu)
930  * - remote node access includes remote memory, remote cache, remote mmio.
931  * - prefetches are not included in the counts because they are not
932  *   reliably counted.
933  */
934 
935 #define HSW_DEMAND_DATA_RD		BIT_ULL(0)
936 #define HSW_DEMAND_RFO			BIT_ULL(1)
937 #define HSW_ANY_RESPONSE		BIT_ULL(16)
938 #define HSW_SUPPLIER_NONE		BIT_ULL(17)
939 #define HSW_L3_MISS_LOCAL_DRAM		BIT_ULL(22)
940 #define HSW_L3_MISS_REMOTE_HOP0		BIT_ULL(27)
941 #define HSW_L3_MISS_REMOTE_HOP1		BIT_ULL(28)
942 #define HSW_L3_MISS_REMOTE_HOP2P	BIT_ULL(29)
943 #define HSW_L3_MISS			(HSW_L3_MISS_LOCAL_DRAM| \
944 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
945 					 HSW_L3_MISS_REMOTE_HOP2P)
946 #define HSW_SNOOP_NONE			BIT_ULL(31)
947 #define HSW_SNOOP_NOT_NEEDED		BIT_ULL(32)
948 #define HSW_SNOOP_MISS			BIT_ULL(33)
949 #define HSW_SNOOP_HIT_NO_FWD		BIT_ULL(34)
950 #define HSW_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
951 #define HSW_SNOOP_HITM			BIT_ULL(36)
952 #define HSW_SNOOP_NON_DRAM		BIT_ULL(37)
953 #define HSW_ANY_SNOOP			(HSW_SNOOP_NONE| \
954 					 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
955 					 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
956 					 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
957 #define HSW_SNOOP_DRAM			(HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
958 #define HSW_DEMAND_READ			HSW_DEMAND_DATA_RD
959 #define HSW_DEMAND_WRITE		HSW_DEMAND_RFO
960 #define HSW_L3_MISS_REMOTE		(HSW_L3_MISS_REMOTE_HOP0|\
961 					 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
962 #define HSW_LLC_ACCESS			HSW_ANY_RESPONSE
963 
964 #define BDW_L3_MISS_LOCAL		BIT(26)
965 #define BDW_L3_MISS			(BDW_L3_MISS_LOCAL| \
966 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
967 					 HSW_L3_MISS_REMOTE_HOP2P)
968 
969 
970 static __initconst const u64 hsw_hw_cache_event_ids
971 				[PERF_COUNT_HW_CACHE_MAX]
972 				[PERF_COUNT_HW_CACHE_OP_MAX]
973 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
974 {
975  [ C(L1D ) ] = {
976 	[ C(OP_READ) ] = {
977 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
978 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
979 	},
980 	[ C(OP_WRITE) ] = {
981 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
982 		[ C(RESULT_MISS)   ] = 0x0,
983 	},
984 	[ C(OP_PREFETCH) ] = {
985 		[ C(RESULT_ACCESS) ] = 0x0,
986 		[ C(RESULT_MISS)   ] = 0x0,
987 	},
988  },
989  [ C(L1I ) ] = {
990 	[ C(OP_READ) ] = {
991 		[ C(RESULT_ACCESS) ] = 0x0,
992 		[ C(RESULT_MISS)   ] = 0x280,	/* ICACHE.MISSES */
993 	},
994 	[ C(OP_WRITE) ] = {
995 		[ C(RESULT_ACCESS) ] = -1,
996 		[ C(RESULT_MISS)   ] = -1,
997 	},
998 	[ C(OP_PREFETCH) ] = {
999 		[ C(RESULT_ACCESS) ] = 0x0,
1000 		[ C(RESULT_MISS)   ] = 0x0,
1001 	},
1002  },
1003  [ C(LL  ) ] = {
1004 	[ C(OP_READ) ] = {
1005 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1006 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1007 	},
1008 	[ C(OP_WRITE) ] = {
1009 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1010 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1011 	},
1012 	[ C(OP_PREFETCH) ] = {
1013 		[ C(RESULT_ACCESS) ] = 0x0,
1014 		[ C(RESULT_MISS)   ] = 0x0,
1015 	},
1016  },
1017  [ C(DTLB) ] = {
1018 	[ C(OP_READ) ] = {
1019 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1020 		[ C(RESULT_MISS)   ] = 0x108,	/* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
1021 	},
1022 	[ C(OP_WRITE) ] = {
1023 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1024 		[ C(RESULT_MISS)   ] = 0x149,	/* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
1025 	},
1026 	[ C(OP_PREFETCH) ] = {
1027 		[ C(RESULT_ACCESS) ] = 0x0,
1028 		[ C(RESULT_MISS)   ] = 0x0,
1029 	},
1030  },
1031  [ C(ITLB) ] = {
1032 	[ C(OP_READ) ] = {
1033 		[ C(RESULT_ACCESS) ] = 0x6085,	/* ITLB_MISSES.STLB_HIT */
1034 		[ C(RESULT_MISS)   ] = 0x185,	/* ITLB_MISSES.MISS_CAUSES_A_WALK */
1035 	},
1036 	[ C(OP_WRITE) ] = {
1037 		[ C(RESULT_ACCESS) ] = -1,
1038 		[ C(RESULT_MISS)   ] = -1,
1039 	},
1040 	[ C(OP_PREFETCH) ] = {
1041 		[ C(RESULT_ACCESS) ] = -1,
1042 		[ C(RESULT_MISS)   ] = -1,
1043 	},
1044  },
1045  [ C(BPU ) ] = {
1046 	[ C(OP_READ) ] = {
1047 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1048 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1049 	},
1050 	[ C(OP_WRITE) ] = {
1051 		[ C(RESULT_ACCESS) ] = -1,
1052 		[ C(RESULT_MISS)   ] = -1,
1053 	},
1054 	[ C(OP_PREFETCH) ] = {
1055 		[ C(RESULT_ACCESS) ] = -1,
1056 		[ C(RESULT_MISS)   ] = -1,
1057 	},
1058  },
1059  [ C(NODE) ] = {
1060 	[ C(OP_READ) ] = {
1061 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1062 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1063 	},
1064 	[ C(OP_WRITE) ] = {
1065 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1066 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1067 	},
1068 	[ C(OP_PREFETCH) ] = {
1069 		[ C(RESULT_ACCESS) ] = 0x0,
1070 		[ C(RESULT_MISS)   ] = 0x0,
1071 	},
1072  },
1073 };
1074 
1075 static __initconst const u64 hsw_hw_cache_extra_regs
1076 				[PERF_COUNT_HW_CACHE_MAX]
1077 				[PERF_COUNT_HW_CACHE_OP_MAX]
1078 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1079 {
1080  [ C(LL  ) ] = {
1081 	[ C(OP_READ) ] = {
1082 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1083 				       HSW_LLC_ACCESS,
1084 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1085 				       HSW_L3_MISS|HSW_ANY_SNOOP,
1086 	},
1087 	[ C(OP_WRITE) ] = {
1088 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1089 				       HSW_LLC_ACCESS,
1090 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1091 				       HSW_L3_MISS|HSW_ANY_SNOOP,
1092 	},
1093 	[ C(OP_PREFETCH) ] = {
1094 		[ C(RESULT_ACCESS) ] = 0x0,
1095 		[ C(RESULT_MISS)   ] = 0x0,
1096 	},
1097  },
1098  [ C(NODE) ] = {
1099 	[ C(OP_READ) ] = {
1100 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1101 				       HSW_L3_MISS_LOCAL_DRAM|
1102 				       HSW_SNOOP_DRAM,
1103 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1104 				       HSW_L3_MISS_REMOTE|
1105 				       HSW_SNOOP_DRAM,
1106 	},
1107 	[ C(OP_WRITE) ] = {
1108 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1109 				       HSW_L3_MISS_LOCAL_DRAM|
1110 				       HSW_SNOOP_DRAM,
1111 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1112 				       HSW_L3_MISS_REMOTE|
1113 				       HSW_SNOOP_DRAM,
1114 	},
1115 	[ C(OP_PREFETCH) ] = {
1116 		[ C(RESULT_ACCESS) ] = 0x0,
1117 		[ C(RESULT_MISS)   ] = 0x0,
1118 	},
1119  },
1120 };
1121 
1122 static __initconst const u64 westmere_hw_cache_event_ids
1123 				[PERF_COUNT_HW_CACHE_MAX]
1124 				[PERF_COUNT_HW_CACHE_OP_MAX]
1125 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1126 {
1127  [ C(L1D) ] = {
1128 	[ C(OP_READ) ] = {
1129 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1130 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1131 	},
1132 	[ C(OP_WRITE) ] = {
1133 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1134 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1135 	},
1136 	[ C(OP_PREFETCH) ] = {
1137 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1138 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1139 	},
1140  },
1141  [ C(L1I ) ] = {
1142 	[ C(OP_READ) ] = {
1143 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1144 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1145 	},
1146 	[ C(OP_WRITE) ] = {
1147 		[ C(RESULT_ACCESS) ] = -1,
1148 		[ C(RESULT_MISS)   ] = -1,
1149 	},
1150 	[ C(OP_PREFETCH) ] = {
1151 		[ C(RESULT_ACCESS) ] = 0x0,
1152 		[ C(RESULT_MISS)   ] = 0x0,
1153 	},
1154  },
1155  [ C(LL  ) ] = {
1156 	[ C(OP_READ) ] = {
1157 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1158 		[ C(RESULT_ACCESS) ] = 0x01b7,
1159 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1160 		[ C(RESULT_MISS)   ] = 0x01b7,
1161 	},
1162 	/*
1163 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1164 	 * on RFO.
1165 	 */
1166 	[ C(OP_WRITE) ] = {
1167 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1168 		[ C(RESULT_ACCESS) ] = 0x01b7,
1169 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1170 		[ C(RESULT_MISS)   ] = 0x01b7,
1171 	},
1172 	[ C(OP_PREFETCH) ] = {
1173 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1174 		[ C(RESULT_ACCESS) ] = 0x01b7,
1175 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1176 		[ C(RESULT_MISS)   ] = 0x01b7,
1177 	},
1178  },
1179  [ C(DTLB) ] = {
1180 	[ C(OP_READ) ] = {
1181 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1182 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1183 	},
1184 	[ C(OP_WRITE) ] = {
1185 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1186 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1187 	},
1188 	[ C(OP_PREFETCH) ] = {
1189 		[ C(RESULT_ACCESS) ] = 0x0,
1190 		[ C(RESULT_MISS)   ] = 0x0,
1191 	},
1192  },
1193  [ C(ITLB) ] = {
1194 	[ C(OP_READ) ] = {
1195 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1196 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
1197 	},
1198 	[ C(OP_WRITE) ] = {
1199 		[ C(RESULT_ACCESS) ] = -1,
1200 		[ C(RESULT_MISS)   ] = -1,
1201 	},
1202 	[ C(OP_PREFETCH) ] = {
1203 		[ C(RESULT_ACCESS) ] = -1,
1204 		[ C(RESULT_MISS)   ] = -1,
1205 	},
1206  },
1207  [ C(BPU ) ] = {
1208 	[ C(OP_READ) ] = {
1209 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1210 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1211 	},
1212 	[ C(OP_WRITE) ] = {
1213 		[ C(RESULT_ACCESS) ] = -1,
1214 		[ C(RESULT_MISS)   ] = -1,
1215 	},
1216 	[ C(OP_PREFETCH) ] = {
1217 		[ C(RESULT_ACCESS) ] = -1,
1218 		[ C(RESULT_MISS)   ] = -1,
1219 	},
1220  },
1221  [ C(NODE) ] = {
1222 	[ C(OP_READ) ] = {
1223 		[ C(RESULT_ACCESS) ] = 0x01b7,
1224 		[ C(RESULT_MISS)   ] = 0x01b7,
1225 	},
1226 	[ C(OP_WRITE) ] = {
1227 		[ C(RESULT_ACCESS) ] = 0x01b7,
1228 		[ C(RESULT_MISS)   ] = 0x01b7,
1229 	},
1230 	[ C(OP_PREFETCH) ] = {
1231 		[ C(RESULT_ACCESS) ] = 0x01b7,
1232 		[ C(RESULT_MISS)   ] = 0x01b7,
1233 	},
1234  },
1235 };
1236 
1237 /*
1238  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1239  * See IA32 SDM Vol 3B 30.6.1.3
1240  */
1241 
1242 #define NHM_DMND_DATA_RD	(1 << 0)
1243 #define NHM_DMND_RFO		(1 << 1)
1244 #define NHM_DMND_IFETCH		(1 << 2)
1245 #define NHM_DMND_WB		(1 << 3)
1246 #define NHM_PF_DATA_RD		(1 << 4)
1247 #define NHM_PF_DATA_RFO		(1 << 5)
1248 #define NHM_PF_IFETCH		(1 << 6)
1249 #define NHM_OFFCORE_OTHER	(1 << 7)
1250 #define NHM_UNCORE_HIT		(1 << 8)
1251 #define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
1252 #define NHM_OTHER_CORE_HITM	(1 << 10)
1253         			/* reserved */
1254 #define NHM_REMOTE_CACHE_FWD	(1 << 12)
1255 #define NHM_REMOTE_DRAM		(1 << 13)
1256 #define NHM_LOCAL_DRAM		(1 << 14)
1257 #define NHM_NON_DRAM		(1 << 15)
1258 
1259 #define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1260 #define NHM_REMOTE		(NHM_REMOTE_DRAM)
1261 
1262 #define NHM_DMND_READ		(NHM_DMND_DATA_RD)
1263 #define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
1264 #define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1265 
1266 #define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1267 #define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1268 #define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
1269 
1270 static __initconst const u64 nehalem_hw_cache_extra_regs
1271 				[PERF_COUNT_HW_CACHE_MAX]
1272 				[PERF_COUNT_HW_CACHE_OP_MAX]
1273 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1274 {
1275  [ C(LL  ) ] = {
1276 	[ C(OP_READ) ] = {
1277 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1278 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1279 	},
1280 	[ C(OP_WRITE) ] = {
1281 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1282 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1283 	},
1284 	[ C(OP_PREFETCH) ] = {
1285 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1286 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1287 	},
1288  },
1289  [ C(NODE) ] = {
1290 	[ C(OP_READ) ] = {
1291 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1292 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1293 	},
1294 	[ C(OP_WRITE) ] = {
1295 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1296 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1297 	},
1298 	[ C(OP_PREFETCH) ] = {
1299 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1300 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1301 	},
1302  },
1303 };
1304 
1305 static __initconst const u64 nehalem_hw_cache_event_ids
1306 				[PERF_COUNT_HW_CACHE_MAX]
1307 				[PERF_COUNT_HW_CACHE_OP_MAX]
1308 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1309 {
1310  [ C(L1D) ] = {
1311 	[ C(OP_READ) ] = {
1312 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1313 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1314 	},
1315 	[ C(OP_WRITE) ] = {
1316 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1317 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1318 	},
1319 	[ C(OP_PREFETCH) ] = {
1320 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1321 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1322 	},
1323  },
1324  [ C(L1I ) ] = {
1325 	[ C(OP_READ) ] = {
1326 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1327 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1328 	},
1329 	[ C(OP_WRITE) ] = {
1330 		[ C(RESULT_ACCESS) ] = -1,
1331 		[ C(RESULT_MISS)   ] = -1,
1332 	},
1333 	[ C(OP_PREFETCH) ] = {
1334 		[ C(RESULT_ACCESS) ] = 0x0,
1335 		[ C(RESULT_MISS)   ] = 0x0,
1336 	},
1337  },
1338  [ C(LL  ) ] = {
1339 	[ C(OP_READ) ] = {
1340 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1341 		[ C(RESULT_ACCESS) ] = 0x01b7,
1342 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1343 		[ C(RESULT_MISS)   ] = 0x01b7,
1344 	},
1345 	/*
1346 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1347 	 * on RFO.
1348 	 */
1349 	[ C(OP_WRITE) ] = {
1350 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1351 		[ C(RESULT_ACCESS) ] = 0x01b7,
1352 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1353 		[ C(RESULT_MISS)   ] = 0x01b7,
1354 	},
1355 	[ C(OP_PREFETCH) ] = {
1356 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1357 		[ C(RESULT_ACCESS) ] = 0x01b7,
1358 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1359 		[ C(RESULT_MISS)   ] = 0x01b7,
1360 	},
1361  },
1362  [ C(DTLB) ] = {
1363 	[ C(OP_READ) ] = {
1364 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1365 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1366 	},
1367 	[ C(OP_WRITE) ] = {
1368 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1369 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1370 	},
1371 	[ C(OP_PREFETCH) ] = {
1372 		[ C(RESULT_ACCESS) ] = 0x0,
1373 		[ C(RESULT_MISS)   ] = 0x0,
1374 	},
1375  },
1376  [ C(ITLB) ] = {
1377 	[ C(OP_READ) ] = {
1378 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1379 		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1380 	},
1381 	[ C(OP_WRITE) ] = {
1382 		[ C(RESULT_ACCESS) ] = -1,
1383 		[ C(RESULT_MISS)   ] = -1,
1384 	},
1385 	[ C(OP_PREFETCH) ] = {
1386 		[ C(RESULT_ACCESS) ] = -1,
1387 		[ C(RESULT_MISS)   ] = -1,
1388 	},
1389  },
1390  [ C(BPU ) ] = {
1391 	[ C(OP_READ) ] = {
1392 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1393 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1394 	},
1395 	[ C(OP_WRITE) ] = {
1396 		[ C(RESULT_ACCESS) ] = -1,
1397 		[ C(RESULT_MISS)   ] = -1,
1398 	},
1399 	[ C(OP_PREFETCH) ] = {
1400 		[ C(RESULT_ACCESS) ] = -1,
1401 		[ C(RESULT_MISS)   ] = -1,
1402 	},
1403  },
1404  [ C(NODE) ] = {
1405 	[ C(OP_READ) ] = {
1406 		[ C(RESULT_ACCESS) ] = 0x01b7,
1407 		[ C(RESULT_MISS)   ] = 0x01b7,
1408 	},
1409 	[ C(OP_WRITE) ] = {
1410 		[ C(RESULT_ACCESS) ] = 0x01b7,
1411 		[ C(RESULT_MISS)   ] = 0x01b7,
1412 	},
1413 	[ C(OP_PREFETCH) ] = {
1414 		[ C(RESULT_ACCESS) ] = 0x01b7,
1415 		[ C(RESULT_MISS)   ] = 0x01b7,
1416 	},
1417  },
1418 };
1419 
1420 static __initconst const u64 core2_hw_cache_event_ids
1421 				[PERF_COUNT_HW_CACHE_MAX]
1422 				[PERF_COUNT_HW_CACHE_OP_MAX]
1423 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1424 {
1425  [ C(L1D) ] = {
1426 	[ C(OP_READ) ] = {
1427 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1428 		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1429 	},
1430 	[ C(OP_WRITE) ] = {
1431 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1432 		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1433 	},
1434 	[ C(OP_PREFETCH) ] = {
1435 		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1436 		[ C(RESULT_MISS)   ] = 0,
1437 	},
1438  },
1439  [ C(L1I ) ] = {
1440 	[ C(OP_READ) ] = {
1441 		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1442 		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1443 	},
1444 	[ C(OP_WRITE) ] = {
1445 		[ C(RESULT_ACCESS) ] = -1,
1446 		[ C(RESULT_MISS)   ] = -1,
1447 	},
1448 	[ C(OP_PREFETCH) ] = {
1449 		[ C(RESULT_ACCESS) ] = 0,
1450 		[ C(RESULT_MISS)   ] = 0,
1451 	},
1452  },
1453  [ C(LL  ) ] = {
1454 	[ C(OP_READ) ] = {
1455 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1456 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1457 	},
1458 	[ C(OP_WRITE) ] = {
1459 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1460 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1461 	},
1462 	[ C(OP_PREFETCH) ] = {
1463 		[ C(RESULT_ACCESS) ] = 0,
1464 		[ C(RESULT_MISS)   ] = 0,
1465 	},
1466  },
1467  [ C(DTLB) ] = {
1468 	[ C(OP_READ) ] = {
1469 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1470 		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1471 	},
1472 	[ C(OP_WRITE) ] = {
1473 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1474 		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1475 	},
1476 	[ C(OP_PREFETCH) ] = {
1477 		[ C(RESULT_ACCESS) ] = 0,
1478 		[ C(RESULT_MISS)   ] = 0,
1479 	},
1480  },
1481  [ C(ITLB) ] = {
1482 	[ C(OP_READ) ] = {
1483 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1484 		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1485 	},
1486 	[ C(OP_WRITE) ] = {
1487 		[ C(RESULT_ACCESS) ] = -1,
1488 		[ C(RESULT_MISS)   ] = -1,
1489 	},
1490 	[ C(OP_PREFETCH) ] = {
1491 		[ C(RESULT_ACCESS) ] = -1,
1492 		[ C(RESULT_MISS)   ] = -1,
1493 	},
1494  },
1495  [ C(BPU ) ] = {
1496 	[ C(OP_READ) ] = {
1497 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1498 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1499 	},
1500 	[ C(OP_WRITE) ] = {
1501 		[ C(RESULT_ACCESS) ] = -1,
1502 		[ C(RESULT_MISS)   ] = -1,
1503 	},
1504 	[ C(OP_PREFETCH) ] = {
1505 		[ C(RESULT_ACCESS) ] = -1,
1506 		[ C(RESULT_MISS)   ] = -1,
1507 	},
1508  },
1509 };
1510 
1511 static __initconst const u64 atom_hw_cache_event_ids
1512 				[PERF_COUNT_HW_CACHE_MAX]
1513 				[PERF_COUNT_HW_CACHE_OP_MAX]
1514 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1515 {
1516  [ C(L1D) ] = {
1517 	[ C(OP_READ) ] = {
1518 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1519 		[ C(RESULT_MISS)   ] = 0,
1520 	},
1521 	[ C(OP_WRITE) ] = {
1522 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1523 		[ C(RESULT_MISS)   ] = 0,
1524 	},
1525 	[ C(OP_PREFETCH) ] = {
1526 		[ C(RESULT_ACCESS) ] = 0x0,
1527 		[ C(RESULT_MISS)   ] = 0,
1528 	},
1529  },
1530  [ C(L1I ) ] = {
1531 	[ C(OP_READ) ] = {
1532 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1533 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1534 	},
1535 	[ C(OP_WRITE) ] = {
1536 		[ C(RESULT_ACCESS) ] = -1,
1537 		[ C(RESULT_MISS)   ] = -1,
1538 	},
1539 	[ C(OP_PREFETCH) ] = {
1540 		[ C(RESULT_ACCESS) ] = 0,
1541 		[ C(RESULT_MISS)   ] = 0,
1542 	},
1543  },
1544  [ C(LL  ) ] = {
1545 	[ C(OP_READ) ] = {
1546 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1547 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1548 	},
1549 	[ C(OP_WRITE) ] = {
1550 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1551 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1552 	},
1553 	[ C(OP_PREFETCH) ] = {
1554 		[ C(RESULT_ACCESS) ] = 0,
1555 		[ C(RESULT_MISS)   ] = 0,
1556 	},
1557  },
1558  [ C(DTLB) ] = {
1559 	[ C(OP_READ) ] = {
1560 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1561 		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1562 	},
1563 	[ C(OP_WRITE) ] = {
1564 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1565 		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1566 	},
1567 	[ C(OP_PREFETCH) ] = {
1568 		[ C(RESULT_ACCESS) ] = 0,
1569 		[ C(RESULT_MISS)   ] = 0,
1570 	},
1571  },
1572  [ C(ITLB) ] = {
1573 	[ C(OP_READ) ] = {
1574 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1575 		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1576 	},
1577 	[ C(OP_WRITE) ] = {
1578 		[ C(RESULT_ACCESS) ] = -1,
1579 		[ C(RESULT_MISS)   ] = -1,
1580 	},
1581 	[ C(OP_PREFETCH) ] = {
1582 		[ C(RESULT_ACCESS) ] = -1,
1583 		[ C(RESULT_MISS)   ] = -1,
1584 	},
1585  },
1586  [ C(BPU ) ] = {
1587 	[ C(OP_READ) ] = {
1588 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1589 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1590 	},
1591 	[ C(OP_WRITE) ] = {
1592 		[ C(RESULT_ACCESS) ] = -1,
1593 		[ C(RESULT_MISS)   ] = -1,
1594 	},
1595 	[ C(OP_PREFETCH) ] = {
1596 		[ C(RESULT_ACCESS) ] = -1,
1597 		[ C(RESULT_MISS)   ] = -1,
1598 	},
1599  },
1600 };
1601 
1602 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1603 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1604 /* no_alloc_cycles.not_delivered */
1605 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1606 	       "event=0xca,umask=0x50");
1607 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1608 /* uops_retired.all */
1609 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1610 	       "event=0xc2,umask=0x10");
1611 /* uops_retired.all */
1612 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1613 	       "event=0xc2,umask=0x10");
1614 
1615 static struct attribute *slm_events_attrs[] = {
1616 	EVENT_PTR(td_total_slots_slm),
1617 	EVENT_PTR(td_total_slots_scale_slm),
1618 	EVENT_PTR(td_fetch_bubbles_slm),
1619 	EVENT_PTR(td_fetch_bubbles_scale_slm),
1620 	EVENT_PTR(td_slots_issued_slm),
1621 	EVENT_PTR(td_slots_retired_slm),
1622 	NULL
1623 };
1624 
1625 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1626 {
1627 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1628 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1629 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1630 	EVENT_EXTRA_END
1631 };
1632 
1633 #define SLM_DMND_READ		SNB_DMND_DATA_RD
1634 #define SLM_DMND_WRITE		SNB_DMND_RFO
1635 #define SLM_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
1636 
1637 #define SLM_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1638 #define SLM_LLC_ACCESS		SNB_RESP_ANY
1639 #define SLM_LLC_MISS		(SLM_SNP_ANY|SNB_NON_DRAM)
1640 
1641 static __initconst const u64 slm_hw_cache_extra_regs
1642 				[PERF_COUNT_HW_CACHE_MAX]
1643 				[PERF_COUNT_HW_CACHE_OP_MAX]
1644 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1645 {
1646  [ C(LL  ) ] = {
1647 	[ C(OP_READ) ] = {
1648 		[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1649 		[ C(RESULT_MISS)   ] = 0,
1650 	},
1651 	[ C(OP_WRITE) ] = {
1652 		[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1653 		[ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1654 	},
1655 	[ C(OP_PREFETCH) ] = {
1656 		[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1657 		[ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1658 	},
1659  },
1660 };
1661 
1662 static __initconst const u64 slm_hw_cache_event_ids
1663 				[PERF_COUNT_HW_CACHE_MAX]
1664 				[PERF_COUNT_HW_CACHE_OP_MAX]
1665 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1666 {
1667  [ C(L1D) ] = {
1668 	[ C(OP_READ) ] = {
1669 		[ C(RESULT_ACCESS) ] = 0,
1670 		[ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1671 	},
1672 	[ C(OP_WRITE) ] = {
1673 		[ C(RESULT_ACCESS) ] = 0,
1674 		[ C(RESULT_MISS)   ] = 0,
1675 	},
1676 	[ C(OP_PREFETCH) ] = {
1677 		[ C(RESULT_ACCESS) ] = 0,
1678 		[ C(RESULT_MISS)   ] = 0,
1679 	},
1680  },
1681  [ C(L1I ) ] = {
1682 	[ C(OP_READ) ] = {
1683 		[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1684 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1685 	},
1686 	[ C(OP_WRITE) ] = {
1687 		[ C(RESULT_ACCESS) ] = -1,
1688 		[ C(RESULT_MISS)   ] = -1,
1689 	},
1690 	[ C(OP_PREFETCH) ] = {
1691 		[ C(RESULT_ACCESS) ] = 0,
1692 		[ C(RESULT_MISS)   ] = 0,
1693 	},
1694  },
1695  [ C(LL  ) ] = {
1696 	[ C(OP_READ) ] = {
1697 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1698 		[ C(RESULT_ACCESS) ] = 0x01b7,
1699 		[ C(RESULT_MISS)   ] = 0,
1700 	},
1701 	[ C(OP_WRITE) ] = {
1702 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1703 		[ C(RESULT_ACCESS) ] = 0x01b7,
1704 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1705 		[ C(RESULT_MISS)   ] = 0x01b7,
1706 	},
1707 	[ C(OP_PREFETCH) ] = {
1708 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1709 		[ C(RESULT_ACCESS) ] = 0x01b7,
1710 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1711 		[ C(RESULT_MISS)   ] = 0x01b7,
1712 	},
1713  },
1714  [ C(DTLB) ] = {
1715 	[ C(OP_READ) ] = {
1716 		[ C(RESULT_ACCESS) ] = 0,
1717 		[ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1718 	},
1719 	[ C(OP_WRITE) ] = {
1720 		[ C(RESULT_ACCESS) ] = 0,
1721 		[ C(RESULT_MISS)   ] = 0,
1722 	},
1723 	[ C(OP_PREFETCH) ] = {
1724 		[ C(RESULT_ACCESS) ] = 0,
1725 		[ C(RESULT_MISS)   ] = 0,
1726 	},
1727  },
1728  [ C(ITLB) ] = {
1729 	[ C(OP_READ) ] = {
1730 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1731 		[ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1732 	},
1733 	[ C(OP_WRITE) ] = {
1734 		[ C(RESULT_ACCESS) ] = -1,
1735 		[ C(RESULT_MISS)   ] = -1,
1736 	},
1737 	[ C(OP_PREFETCH) ] = {
1738 		[ C(RESULT_ACCESS) ] = -1,
1739 		[ C(RESULT_MISS)   ] = -1,
1740 	},
1741  },
1742  [ C(BPU ) ] = {
1743 	[ C(OP_READ) ] = {
1744 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1745 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1746 	},
1747 	[ C(OP_WRITE) ] = {
1748 		[ C(RESULT_ACCESS) ] = -1,
1749 		[ C(RESULT_MISS)   ] = -1,
1750 	},
1751 	[ C(OP_PREFETCH) ] = {
1752 		[ C(RESULT_ACCESS) ] = -1,
1753 		[ C(RESULT_MISS)   ] = -1,
1754 	},
1755  },
1756 };
1757 
1758 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1759 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1760 /* UOPS_NOT_DELIVERED.ANY */
1761 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1762 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1763 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1764 /* UOPS_RETIRED.ANY */
1765 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1766 /* UOPS_ISSUED.ANY */
1767 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1768 
1769 static struct attribute *glm_events_attrs[] = {
1770 	EVENT_PTR(td_total_slots_glm),
1771 	EVENT_PTR(td_total_slots_scale_glm),
1772 	EVENT_PTR(td_fetch_bubbles_glm),
1773 	EVENT_PTR(td_recovery_bubbles_glm),
1774 	EVENT_PTR(td_slots_issued_glm),
1775 	EVENT_PTR(td_slots_retired_glm),
1776 	NULL
1777 };
1778 
1779 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1780 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1781 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1782 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1783 	EVENT_EXTRA_END
1784 };
1785 
1786 #define GLM_DEMAND_DATA_RD		BIT_ULL(0)
1787 #define GLM_DEMAND_RFO			BIT_ULL(1)
1788 #define GLM_ANY_RESPONSE		BIT_ULL(16)
1789 #define GLM_SNP_NONE_OR_MISS		BIT_ULL(33)
1790 #define GLM_DEMAND_READ			GLM_DEMAND_DATA_RD
1791 #define GLM_DEMAND_WRITE		GLM_DEMAND_RFO
1792 #define GLM_DEMAND_PREFETCH		(SNB_PF_DATA_RD|SNB_PF_RFO)
1793 #define GLM_LLC_ACCESS			GLM_ANY_RESPONSE
1794 #define GLM_SNP_ANY			(GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1795 #define GLM_LLC_MISS			(GLM_SNP_ANY|SNB_NON_DRAM)
1796 
1797 static __initconst const u64 glm_hw_cache_event_ids
1798 				[PERF_COUNT_HW_CACHE_MAX]
1799 				[PERF_COUNT_HW_CACHE_OP_MAX]
1800 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1801 	[C(L1D)] = {
1802 		[C(OP_READ)] = {
1803 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1804 			[C(RESULT_MISS)]	= 0x0,
1805 		},
1806 		[C(OP_WRITE)] = {
1807 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1808 			[C(RESULT_MISS)]	= 0x0,
1809 		},
1810 		[C(OP_PREFETCH)] = {
1811 			[C(RESULT_ACCESS)]	= 0x0,
1812 			[C(RESULT_MISS)]	= 0x0,
1813 		},
1814 	},
1815 	[C(L1I)] = {
1816 		[C(OP_READ)] = {
1817 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1818 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1819 		},
1820 		[C(OP_WRITE)] = {
1821 			[C(RESULT_ACCESS)]	= -1,
1822 			[C(RESULT_MISS)]	= -1,
1823 		},
1824 		[C(OP_PREFETCH)] = {
1825 			[C(RESULT_ACCESS)]	= 0x0,
1826 			[C(RESULT_MISS)]	= 0x0,
1827 		},
1828 	},
1829 	[C(LL)] = {
1830 		[C(OP_READ)] = {
1831 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1832 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1833 		},
1834 		[C(OP_WRITE)] = {
1835 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1836 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1837 		},
1838 		[C(OP_PREFETCH)] = {
1839 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1840 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1841 		},
1842 	},
1843 	[C(DTLB)] = {
1844 		[C(OP_READ)] = {
1845 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1846 			[C(RESULT_MISS)]	= 0x0,
1847 		},
1848 		[C(OP_WRITE)] = {
1849 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1850 			[C(RESULT_MISS)]	= 0x0,
1851 		},
1852 		[C(OP_PREFETCH)] = {
1853 			[C(RESULT_ACCESS)]	= 0x0,
1854 			[C(RESULT_MISS)]	= 0x0,
1855 		},
1856 	},
1857 	[C(ITLB)] = {
1858 		[C(OP_READ)] = {
1859 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1860 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1861 		},
1862 		[C(OP_WRITE)] = {
1863 			[C(RESULT_ACCESS)]	= -1,
1864 			[C(RESULT_MISS)]	= -1,
1865 		},
1866 		[C(OP_PREFETCH)] = {
1867 			[C(RESULT_ACCESS)]	= -1,
1868 			[C(RESULT_MISS)]	= -1,
1869 		},
1870 	},
1871 	[C(BPU)] = {
1872 		[C(OP_READ)] = {
1873 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1874 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1875 		},
1876 		[C(OP_WRITE)] = {
1877 			[C(RESULT_ACCESS)]	= -1,
1878 			[C(RESULT_MISS)]	= -1,
1879 		},
1880 		[C(OP_PREFETCH)] = {
1881 			[C(RESULT_ACCESS)]	= -1,
1882 			[C(RESULT_MISS)]	= -1,
1883 		},
1884 	},
1885 };
1886 
1887 static __initconst const u64 glm_hw_cache_extra_regs
1888 				[PERF_COUNT_HW_CACHE_MAX]
1889 				[PERF_COUNT_HW_CACHE_OP_MAX]
1890 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1891 	[C(LL)] = {
1892 		[C(OP_READ)] = {
1893 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
1894 						  GLM_LLC_ACCESS,
1895 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
1896 						  GLM_LLC_MISS,
1897 		},
1898 		[C(OP_WRITE)] = {
1899 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
1900 						  GLM_LLC_ACCESS,
1901 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
1902 						  GLM_LLC_MISS,
1903 		},
1904 		[C(OP_PREFETCH)] = {
1905 			[C(RESULT_ACCESS)]	= GLM_DEMAND_PREFETCH|
1906 						  GLM_LLC_ACCESS,
1907 			[C(RESULT_MISS)]	= GLM_DEMAND_PREFETCH|
1908 						  GLM_LLC_MISS,
1909 		},
1910 	},
1911 };
1912 
1913 static __initconst const u64 glp_hw_cache_event_ids
1914 				[PERF_COUNT_HW_CACHE_MAX]
1915 				[PERF_COUNT_HW_CACHE_OP_MAX]
1916 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1917 	[C(L1D)] = {
1918 		[C(OP_READ)] = {
1919 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1920 			[C(RESULT_MISS)]	= 0x0,
1921 		},
1922 		[C(OP_WRITE)] = {
1923 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1924 			[C(RESULT_MISS)]	= 0x0,
1925 		},
1926 		[C(OP_PREFETCH)] = {
1927 			[C(RESULT_ACCESS)]	= 0x0,
1928 			[C(RESULT_MISS)]	= 0x0,
1929 		},
1930 	},
1931 	[C(L1I)] = {
1932 		[C(OP_READ)] = {
1933 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1934 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1935 		},
1936 		[C(OP_WRITE)] = {
1937 			[C(RESULT_ACCESS)]	= -1,
1938 			[C(RESULT_MISS)]	= -1,
1939 		},
1940 		[C(OP_PREFETCH)] = {
1941 			[C(RESULT_ACCESS)]	= 0x0,
1942 			[C(RESULT_MISS)]	= 0x0,
1943 		},
1944 	},
1945 	[C(LL)] = {
1946 		[C(OP_READ)] = {
1947 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1948 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1949 		},
1950 		[C(OP_WRITE)] = {
1951 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1952 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1953 		},
1954 		[C(OP_PREFETCH)] = {
1955 			[C(RESULT_ACCESS)]	= 0x0,
1956 			[C(RESULT_MISS)]	= 0x0,
1957 		},
1958 	},
1959 	[C(DTLB)] = {
1960 		[C(OP_READ)] = {
1961 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1962 			[C(RESULT_MISS)]	= 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
1963 		},
1964 		[C(OP_WRITE)] = {
1965 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1966 			[C(RESULT_MISS)]	= 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
1967 		},
1968 		[C(OP_PREFETCH)] = {
1969 			[C(RESULT_ACCESS)]	= 0x0,
1970 			[C(RESULT_MISS)]	= 0x0,
1971 		},
1972 	},
1973 	[C(ITLB)] = {
1974 		[C(OP_READ)] = {
1975 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1976 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1977 		},
1978 		[C(OP_WRITE)] = {
1979 			[C(RESULT_ACCESS)]	= -1,
1980 			[C(RESULT_MISS)]	= -1,
1981 		},
1982 		[C(OP_PREFETCH)] = {
1983 			[C(RESULT_ACCESS)]	= -1,
1984 			[C(RESULT_MISS)]	= -1,
1985 		},
1986 	},
1987 	[C(BPU)] = {
1988 		[C(OP_READ)] = {
1989 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1990 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1991 		},
1992 		[C(OP_WRITE)] = {
1993 			[C(RESULT_ACCESS)]	= -1,
1994 			[C(RESULT_MISS)]	= -1,
1995 		},
1996 		[C(OP_PREFETCH)] = {
1997 			[C(RESULT_ACCESS)]	= -1,
1998 			[C(RESULT_MISS)]	= -1,
1999 		},
2000 	},
2001 };
2002 
2003 static __initconst const u64 glp_hw_cache_extra_regs
2004 				[PERF_COUNT_HW_CACHE_MAX]
2005 				[PERF_COUNT_HW_CACHE_OP_MAX]
2006 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2007 	[C(LL)] = {
2008 		[C(OP_READ)] = {
2009 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
2010 						  GLM_LLC_ACCESS,
2011 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
2012 						  GLM_LLC_MISS,
2013 		},
2014 		[C(OP_WRITE)] = {
2015 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
2016 						  GLM_LLC_ACCESS,
2017 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
2018 						  GLM_LLC_MISS,
2019 		},
2020 		[C(OP_PREFETCH)] = {
2021 			[C(RESULT_ACCESS)]	= 0x0,
2022 			[C(RESULT_MISS)]	= 0x0,
2023 		},
2024 	},
2025 };
2026 
2027 #define TNT_LOCAL_DRAM			BIT_ULL(26)
2028 #define TNT_DEMAND_READ			GLM_DEMAND_DATA_RD
2029 #define TNT_DEMAND_WRITE		GLM_DEMAND_RFO
2030 #define TNT_LLC_ACCESS			GLM_ANY_RESPONSE
2031 #define TNT_SNP_ANY			(SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
2032 					 SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
2033 #define TNT_LLC_MISS			(TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
2034 
2035 static __initconst const u64 tnt_hw_cache_extra_regs
2036 				[PERF_COUNT_HW_CACHE_MAX]
2037 				[PERF_COUNT_HW_CACHE_OP_MAX]
2038 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2039 	[C(LL)] = {
2040 		[C(OP_READ)] = {
2041 			[C(RESULT_ACCESS)]	= TNT_DEMAND_READ|
2042 						  TNT_LLC_ACCESS,
2043 			[C(RESULT_MISS)]	= TNT_DEMAND_READ|
2044 						  TNT_LLC_MISS,
2045 		},
2046 		[C(OP_WRITE)] = {
2047 			[C(RESULT_ACCESS)]	= TNT_DEMAND_WRITE|
2048 						  TNT_LLC_ACCESS,
2049 			[C(RESULT_MISS)]	= TNT_DEMAND_WRITE|
2050 						  TNT_LLC_MISS,
2051 		},
2052 		[C(OP_PREFETCH)] = {
2053 			[C(RESULT_ACCESS)]	= 0x0,
2054 			[C(RESULT_MISS)]	= 0x0,
2055 		},
2056 	},
2057 };
2058 
2059 EVENT_ATTR_STR(topdown-fe-bound,       td_fe_bound_tnt,        "event=0x71,umask=0x0");
2060 EVENT_ATTR_STR(topdown-retiring,       td_retiring_tnt,        "event=0xc2,umask=0x0");
2061 EVENT_ATTR_STR(topdown-bad-spec,       td_bad_spec_tnt,        "event=0x73,umask=0x6");
2062 EVENT_ATTR_STR(topdown-be-bound,       td_be_bound_tnt,        "event=0x74,umask=0x0");
2063 
2064 static struct attribute *tnt_events_attrs[] = {
2065 	EVENT_PTR(td_fe_bound_tnt),
2066 	EVENT_PTR(td_retiring_tnt),
2067 	EVENT_PTR(td_bad_spec_tnt),
2068 	EVENT_PTR(td_be_bound_tnt),
2069 	NULL,
2070 };
2071 
2072 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
2073 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2074 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
2075 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
2076 	EVENT_EXTRA_END
2077 };
2078 
2079 #define KNL_OT_L2_HITE		BIT_ULL(19) /* Other Tile L2 Hit */
2080 #define KNL_OT_L2_HITF		BIT_ULL(20) /* Other Tile L2 Hit */
2081 #define KNL_MCDRAM_LOCAL	BIT_ULL(21)
2082 #define KNL_MCDRAM_FAR		BIT_ULL(22)
2083 #define KNL_DDR_LOCAL		BIT_ULL(23)
2084 #define KNL_DDR_FAR		BIT_ULL(24)
2085 #define KNL_DRAM_ANY		(KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
2086 				    KNL_DDR_LOCAL | KNL_DDR_FAR)
2087 #define KNL_L2_READ		SLM_DMND_READ
2088 #define KNL_L2_WRITE		SLM_DMND_WRITE
2089 #define KNL_L2_PREFETCH		SLM_DMND_PREFETCH
2090 #define KNL_L2_ACCESS		SLM_LLC_ACCESS
2091 #define KNL_L2_MISS		(KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
2092 				   KNL_DRAM_ANY | SNB_SNP_ANY | \
2093 						  SNB_NON_DRAM)
2094 
2095 static __initconst const u64 knl_hw_cache_extra_regs
2096 				[PERF_COUNT_HW_CACHE_MAX]
2097 				[PERF_COUNT_HW_CACHE_OP_MAX]
2098 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2099 	[C(LL)] = {
2100 		[C(OP_READ)] = {
2101 			[C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
2102 			[C(RESULT_MISS)]   = 0,
2103 		},
2104 		[C(OP_WRITE)] = {
2105 			[C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
2106 			[C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
2107 		},
2108 		[C(OP_PREFETCH)] = {
2109 			[C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
2110 			[C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
2111 		},
2112 	},
2113 };
2114 
2115 /*
2116  * Used from PMIs where the LBRs are already disabled.
2117  *
2118  * This function could be called consecutively. It is required to remain in
2119  * disabled state if called consecutively.
2120  *
2121  * During consecutive calls, the same disable value will be written to related
2122  * registers, so the PMU state remains unchanged.
2123  *
2124  * intel_bts events don't coexist with intel PMU's BTS events because of
2125  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
2126  * disabled around intel PMU's event batching etc, only inside the PMI handler.
2127  *
2128  * Avoid PEBS_ENABLE MSR access in PMIs.
2129  * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
2130  * It doesn't matter if the PEBS is enabled or not.
2131  * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
2132  * access PEBS_ENABLE MSR in disable_all()/enable_all().
2133  * However, there are some cases which may change PEBS status, e.g. PMI
2134  * throttle. The PEBS_ENABLE should be updated where the status changes.
2135  */
2136 static void __intel_pmu_disable_all(void)
2137 {
2138 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2139 
2140 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2141 
2142 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
2143 		intel_pmu_disable_bts();
2144 }
2145 
2146 static void intel_pmu_disable_all(void)
2147 {
2148 	__intel_pmu_disable_all();
2149 	intel_pmu_pebs_disable_all();
2150 	intel_pmu_lbr_disable_all();
2151 }
2152 
2153 static void __intel_pmu_enable_all(int added, bool pmi)
2154 {
2155 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2156 
2157 	intel_pmu_lbr_enable_all(pmi);
2158 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
2159 			x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
2160 
2161 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2162 		struct perf_event *event =
2163 			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
2164 
2165 		if (WARN_ON_ONCE(!event))
2166 			return;
2167 
2168 		intel_pmu_enable_bts(event->hw.config);
2169 	}
2170 }
2171 
2172 static void intel_pmu_enable_all(int added)
2173 {
2174 	intel_pmu_pebs_enable_all();
2175 	__intel_pmu_enable_all(added, false);
2176 }
2177 
2178 /*
2179  * Workaround for:
2180  *   Intel Errata AAK100 (model 26)
2181  *   Intel Errata AAP53  (model 30)
2182  *   Intel Errata BD53   (model 44)
2183  *
2184  * The official story:
2185  *   These chips need to be 'reset' when adding counters by programming the
2186  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2187  *   in sequence on the same PMC or on different PMCs.
2188  *
2189  * In practise it appears some of these events do in fact count, and
2190  * we need to program all 4 events.
2191  */
2192 static void intel_pmu_nhm_workaround(void)
2193 {
2194 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2195 	static const unsigned long nhm_magic[4] = {
2196 		0x4300B5,
2197 		0x4300D2,
2198 		0x4300B1,
2199 		0x4300B1
2200 	};
2201 	struct perf_event *event;
2202 	int i;
2203 
2204 	/*
2205 	 * The Errata requires below steps:
2206 	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2207 	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
2208 	 *    the corresponding PMCx;
2209 	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2210 	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2211 	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2212 	 */
2213 
2214 	/*
2215 	 * The real steps we choose are a little different from above.
2216 	 * A) To reduce MSR operations, we don't run step 1) as they
2217 	 *    are already cleared before this function is called;
2218 	 * B) Call x86_perf_event_update to save PMCx before configuring
2219 	 *    PERFEVTSELx with magic number;
2220 	 * C) With step 5), we do clear only when the PERFEVTSELx is
2221 	 *    not used currently.
2222 	 * D) Call x86_perf_event_set_period to restore PMCx;
2223 	 */
2224 
2225 	/* We always operate 4 pairs of PERF Counters */
2226 	for (i = 0; i < 4; i++) {
2227 		event = cpuc->events[i];
2228 		if (event)
2229 			x86_perf_event_update(event);
2230 	}
2231 
2232 	for (i = 0; i < 4; i++) {
2233 		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2234 		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2235 	}
2236 
2237 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2238 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2239 
2240 	for (i = 0; i < 4; i++) {
2241 		event = cpuc->events[i];
2242 
2243 		if (event) {
2244 			x86_perf_event_set_period(event);
2245 			__x86_pmu_enable_event(&event->hw,
2246 					ARCH_PERFMON_EVENTSEL_ENABLE);
2247 		} else
2248 			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2249 	}
2250 }
2251 
2252 static void intel_pmu_nhm_enable_all(int added)
2253 {
2254 	if (added)
2255 		intel_pmu_nhm_workaround();
2256 	intel_pmu_enable_all(added);
2257 }
2258 
2259 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2260 {
2261 	u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2262 
2263 	if (cpuc->tfa_shadow != val) {
2264 		cpuc->tfa_shadow = val;
2265 		wrmsrl(MSR_TSX_FORCE_ABORT, val);
2266 	}
2267 }
2268 
2269 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2270 {
2271 	/*
2272 	 * We're going to use PMC3, make sure TFA is set before we touch it.
2273 	 */
2274 	if (cntr == 3)
2275 		intel_set_tfa(cpuc, true);
2276 }
2277 
2278 static void intel_tfa_pmu_enable_all(int added)
2279 {
2280 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2281 
2282 	/*
2283 	 * If we find PMC3 is no longer used when we enable the PMU, we can
2284 	 * clear TFA.
2285 	 */
2286 	if (!test_bit(3, cpuc->active_mask))
2287 		intel_set_tfa(cpuc, false);
2288 
2289 	intel_pmu_enable_all(added);
2290 }
2291 
2292 static inline u64 intel_pmu_get_status(void)
2293 {
2294 	u64 status;
2295 
2296 	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2297 
2298 	return status;
2299 }
2300 
2301 static inline void intel_pmu_ack_status(u64 ack)
2302 {
2303 	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2304 }
2305 
2306 static inline bool event_is_checkpointed(struct perf_event *event)
2307 {
2308 	return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2309 }
2310 
2311 static inline void intel_set_masks(struct perf_event *event, int idx)
2312 {
2313 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2314 
2315 	if (event->attr.exclude_host)
2316 		__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2317 	if (event->attr.exclude_guest)
2318 		__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2319 	if (event_is_checkpointed(event))
2320 		__set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2321 }
2322 
2323 static inline void intel_clear_masks(struct perf_event *event, int idx)
2324 {
2325 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2326 
2327 	__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2328 	__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2329 	__clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2330 }
2331 
2332 static void intel_pmu_disable_fixed(struct perf_event *event)
2333 {
2334 	struct hw_perf_event *hwc = &event->hw;
2335 	u64 ctrl_val, mask;
2336 	int idx = hwc->idx;
2337 
2338 	if (is_topdown_idx(idx)) {
2339 		struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2340 
2341 		/*
2342 		 * When there are other active TopDown events,
2343 		 * don't disable the fixed counter 3.
2344 		 */
2345 		if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2346 			return;
2347 		idx = INTEL_PMC_IDX_FIXED_SLOTS;
2348 	}
2349 
2350 	intel_clear_masks(event, idx);
2351 
2352 	mask = 0xfULL << ((idx - INTEL_PMC_IDX_FIXED) * 4);
2353 	rdmsrl(hwc->config_base, ctrl_val);
2354 	ctrl_val &= ~mask;
2355 	wrmsrl(hwc->config_base, ctrl_val);
2356 }
2357 
2358 static void intel_pmu_disable_event(struct perf_event *event)
2359 {
2360 	struct hw_perf_event *hwc = &event->hw;
2361 	int idx = hwc->idx;
2362 
2363 	switch (idx) {
2364 	case 0 ... INTEL_PMC_IDX_FIXED - 1:
2365 		intel_clear_masks(event, idx);
2366 		x86_pmu_disable_event(event);
2367 		break;
2368 	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2369 	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2370 		intel_pmu_disable_fixed(event);
2371 		break;
2372 	case INTEL_PMC_IDX_FIXED_BTS:
2373 		intel_pmu_disable_bts();
2374 		intel_pmu_drain_bts_buffer();
2375 		return;
2376 	case INTEL_PMC_IDX_FIXED_VLBR:
2377 		intel_clear_masks(event, idx);
2378 		break;
2379 	default:
2380 		intel_clear_masks(event, idx);
2381 		pr_warn("Failed to disable the event with invalid index %d\n",
2382 			idx);
2383 		return;
2384 	}
2385 
2386 	/*
2387 	 * Needs to be called after x86_pmu_disable_event,
2388 	 * so we don't trigger the event without PEBS bit set.
2389 	 */
2390 	if (unlikely(event->attr.precise_ip))
2391 		intel_pmu_pebs_disable(event);
2392 }
2393 
2394 static void intel_pmu_del_event(struct perf_event *event)
2395 {
2396 	if (needs_branch_stack(event))
2397 		intel_pmu_lbr_del(event);
2398 	if (event->attr.precise_ip)
2399 		intel_pmu_pebs_del(event);
2400 }
2401 
2402 static int icl_set_topdown_event_period(struct perf_event *event)
2403 {
2404 	struct hw_perf_event *hwc = &event->hw;
2405 	s64 left = local64_read(&hwc->period_left);
2406 
2407 	/*
2408 	 * The values in PERF_METRICS MSR are derived from fixed counter 3.
2409 	 * Software should start both registers, PERF_METRICS and fixed
2410 	 * counter 3, from zero.
2411 	 * Clear PERF_METRICS and Fixed counter 3 in initialization.
2412 	 * After that, both MSRs will be cleared for each read.
2413 	 * Don't need to clear them again.
2414 	 */
2415 	if (left == x86_pmu.max_period) {
2416 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2417 		wrmsrl(MSR_PERF_METRICS, 0);
2418 		hwc->saved_slots = 0;
2419 		hwc->saved_metric = 0;
2420 	}
2421 
2422 	if ((hwc->saved_slots) && is_slots_event(event)) {
2423 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
2424 		wrmsrl(MSR_PERF_METRICS, hwc->saved_metric);
2425 	}
2426 
2427 	perf_event_update_userpage(event);
2428 
2429 	return 0;
2430 }
2431 
2432 static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
2433 {
2434 	u32 val;
2435 
2436 	/*
2437 	 * The metric is reported as an 8bit integer fraction
2438 	 * suming up to 0xff.
2439 	 * slots-in-metric = (Metric / 0xff) * slots
2440 	 */
2441 	val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
2442 	return  mul_u64_u32_div(slots, val, 0xff);
2443 }
2444 
2445 static u64 icl_get_topdown_value(struct perf_event *event,
2446 				       u64 slots, u64 metrics)
2447 {
2448 	int idx = event->hw.idx;
2449 	u64 delta;
2450 
2451 	if (is_metric_idx(idx))
2452 		delta = icl_get_metrics_event_value(metrics, slots, idx);
2453 	else
2454 		delta = slots;
2455 
2456 	return delta;
2457 }
2458 
2459 static void __icl_update_topdown_event(struct perf_event *event,
2460 				       u64 slots, u64 metrics,
2461 				       u64 last_slots, u64 last_metrics)
2462 {
2463 	u64 delta, last = 0;
2464 
2465 	delta = icl_get_topdown_value(event, slots, metrics);
2466 	if (last_slots)
2467 		last = icl_get_topdown_value(event, last_slots, last_metrics);
2468 
2469 	/*
2470 	 * The 8bit integer fraction of metric may be not accurate,
2471 	 * especially when the changes is very small.
2472 	 * For example, if only a few bad_spec happens, the fraction
2473 	 * may be reduced from 1 to 0. If so, the bad_spec event value
2474 	 * will be 0 which is definitely less than the last value.
2475 	 * Avoid update event->count for this case.
2476 	 */
2477 	if (delta > last) {
2478 		delta -= last;
2479 		local64_add(delta, &event->count);
2480 	}
2481 }
2482 
2483 static void update_saved_topdown_regs(struct perf_event *event, u64 slots,
2484 				      u64 metrics, int metric_end)
2485 {
2486 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2487 	struct perf_event *other;
2488 	int idx;
2489 
2490 	event->hw.saved_slots = slots;
2491 	event->hw.saved_metric = metrics;
2492 
2493 	for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2494 		if (!is_topdown_idx(idx))
2495 			continue;
2496 		other = cpuc->events[idx];
2497 		other->hw.saved_slots = slots;
2498 		other->hw.saved_metric = metrics;
2499 	}
2500 }
2501 
2502 /*
2503  * Update all active Topdown events.
2504  *
2505  * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
2506  * modify by a NMI. PMU has to be disabled before calling this function.
2507  */
2508 
2509 static u64 intel_update_topdown_event(struct perf_event *event, int metric_end)
2510 {
2511 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2512 	struct perf_event *other;
2513 	u64 slots, metrics;
2514 	bool reset = true;
2515 	int idx;
2516 
2517 	/* read Fixed counter 3 */
2518 	rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots);
2519 	if (!slots)
2520 		return 0;
2521 
2522 	/* read PERF_METRICS */
2523 	rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics);
2524 
2525 	for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2526 		if (!is_topdown_idx(idx))
2527 			continue;
2528 		other = cpuc->events[idx];
2529 		__icl_update_topdown_event(other, slots, metrics,
2530 					   event ? event->hw.saved_slots : 0,
2531 					   event ? event->hw.saved_metric : 0);
2532 	}
2533 
2534 	/*
2535 	 * Check and update this event, which may have been cleared
2536 	 * in active_mask e.g. x86_pmu_stop()
2537 	 */
2538 	if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
2539 		__icl_update_topdown_event(event, slots, metrics,
2540 					   event->hw.saved_slots,
2541 					   event->hw.saved_metric);
2542 
2543 		/*
2544 		 * In x86_pmu_stop(), the event is cleared in active_mask first,
2545 		 * then drain the delta, which indicates context switch for
2546 		 * counting.
2547 		 * Save metric and slots for context switch.
2548 		 * Don't need to reset the PERF_METRICS and Fixed counter 3.
2549 		 * Because the values will be restored in next schedule in.
2550 		 */
2551 		update_saved_topdown_regs(event, slots, metrics, metric_end);
2552 		reset = false;
2553 	}
2554 
2555 	if (reset) {
2556 		/* The fixed counter 3 has to be written before the PERF_METRICS. */
2557 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2558 		wrmsrl(MSR_PERF_METRICS, 0);
2559 		if (event)
2560 			update_saved_topdown_regs(event, 0, 0, metric_end);
2561 	}
2562 
2563 	return slots;
2564 }
2565 
2566 static u64 icl_update_topdown_event(struct perf_event *event)
2567 {
2568 	return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE +
2569 						 x86_pmu.num_topdown_events - 1);
2570 }
2571 
2572 static void intel_pmu_read_topdown_event(struct perf_event *event)
2573 {
2574 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2575 
2576 	/* Only need to call update_topdown_event() once for group read. */
2577 	if ((cpuc->txn_flags & PERF_PMU_TXN_READ) &&
2578 	    !is_slots_event(event))
2579 		return;
2580 
2581 	perf_pmu_disable(event->pmu);
2582 	x86_pmu.update_topdown_event(event);
2583 	perf_pmu_enable(event->pmu);
2584 }
2585 
2586 static void intel_pmu_read_event(struct perf_event *event)
2587 {
2588 	if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2589 		intel_pmu_auto_reload_read(event);
2590 	else if (is_topdown_count(event) && x86_pmu.update_topdown_event)
2591 		intel_pmu_read_topdown_event(event);
2592 	else
2593 		x86_perf_event_update(event);
2594 }
2595 
2596 static void intel_pmu_enable_fixed(struct perf_event *event)
2597 {
2598 	struct hw_perf_event *hwc = &event->hw;
2599 	u64 ctrl_val, mask, bits = 0;
2600 	int idx = hwc->idx;
2601 
2602 	if (is_topdown_idx(idx)) {
2603 		struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2604 		/*
2605 		 * When there are other active TopDown events,
2606 		 * don't enable the fixed counter 3 again.
2607 		 */
2608 		if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2609 			return;
2610 
2611 		idx = INTEL_PMC_IDX_FIXED_SLOTS;
2612 	}
2613 
2614 	intel_set_masks(event, idx);
2615 
2616 	/*
2617 	 * Enable IRQ generation (0x8), if not PEBS,
2618 	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2619 	 * if requested:
2620 	 */
2621 	if (!event->attr.precise_ip)
2622 		bits |= 0x8;
2623 	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2624 		bits |= 0x2;
2625 	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2626 		bits |= 0x1;
2627 
2628 	/*
2629 	 * ANY bit is supported in v3 and up
2630 	 */
2631 	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2632 		bits |= 0x4;
2633 
2634 	idx -= INTEL_PMC_IDX_FIXED;
2635 	bits <<= (idx * 4);
2636 	mask = 0xfULL << (idx * 4);
2637 
2638 	if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2639 		bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2640 		mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2641 	}
2642 
2643 	rdmsrl(hwc->config_base, ctrl_val);
2644 	ctrl_val &= ~mask;
2645 	ctrl_val |= bits;
2646 	wrmsrl(hwc->config_base, ctrl_val);
2647 }
2648 
2649 static void intel_pmu_enable_event(struct perf_event *event)
2650 {
2651 	struct hw_perf_event *hwc = &event->hw;
2652 	int idx = hwc->idx;
2653 
2654 	if (unlikely(event->attr.precise_ip))
2655 		intel_pmu_pebs_enable(event);
2656 
2657 	switch (idx) {
2658 	case 0 ... INTEL_PMC_IDX_FIXED - 1:
2659 		intel_set_masks(event, idx);
2660 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2661 		break;
2662 	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2663 	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2664 		intel_pmu_enable_fixed(event);
2665 		break;
2666 	case INTEL_PMC_IDX_FIXED_BTS:
2667 		if (!__this_cpu_read(cpu_hw_events.enabled))
2668 			return;
2669 		intel_pmu_enable_bts(hwc->config);
2670 		break;
2671 	case INTEL_PMC_IDX_FIXED_VLBR:
2672 		intel_set_masks(event, idx);
2673 		break;
2674 	default:
2675 		pr_warn("Failed to enable the event with invalid index %d\n",
2676 			idx);
2677 	}
2678 }
2679 
2680 static void intel_pmu_add_event(struct perf_event *event)
2681 {
2682 	if (event->attr.precise_ip)
2683 		intel_pmu_pebs_add(event);
2684 	if (needs_branch_stack(event))
2685 		intel_pmu_lbr_add(event);
2686 }
2687 
2688 /*
2689  * Save and restart an expired event. Called by NMI contexts,
2690  * so it has to be careful about preempting normal event ops:
2691  */
2692 int intel_pmu_save_and_restart(struct perf_event *event)
2693 {
2694 	x86_perf_event_update(event);
2695 	/*
2696 	 * For a checkpointed counter always reset back to 0.  This
2697 	 * avoids a situation where the counter overflows, aborts the
2698 	 * transaction and is then set back to shortly before the
2699 	 * overflow, and overflows and aborts again.
2700 	 */
2701 	if (unlikely(event_is_checkpointed(event))) {
2702 		/* No race with NMIs because the counter should not be armed */
2703 		wrmsrl(event->hw.event_base, 0);
2704 		local64_set(&event->hw.prev_count, 0);
2705 	}
2706 	return x86_perf_event_set_period(event);
2707 }
2708 
2709 static void intel_pmu_reset(void)
2710 {
2711 	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2712 	unsigned long flags;
2713 	int idx;
2714 
2715 	if (!x86_pmu.num_counters)
2716 		return;
2717 
2718 	local_irq_save(flags);
2719 
2720 	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2721 
2722 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2723 		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2724 		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2725 	}
2726 	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
2727 		if (fixed_counter_disabled(idx))
2728 			continue;
2729 		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2730 	}
2731 
2732 	if (ds)
2733 		ds->bts_index = ds->bts_buffer_base;
2734 
2735 	/* Ack all overflows and disable fixed counters */
2736 	if (x86_pmu.version >= 2) {
2737 		intel_pmu_ack_status(intel_pmu_get_status());
2738 		wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2739 	}
2740 
2741 	/* Reset LBRs and LBR freezing */
2742 	if (x86_pmu.lbr_nr) {
2743 		update_debugctlmsr(get_debugctlmsr() &
2744 			~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2745 	}
2746 
2747 	local_irq_restore(flags);
2748 }
2749 
2750 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2751 {
2752 	struct perf_sample_data data;
2753 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2754 	int bit;
2755 	int handled = 0;
2756 
2757 	inc_irq_stat(apic_perf_irqs);
2758 
2759 	/*
2760 	 * Ignore a range of extra bits in status that do not indicate
2761 	 * overflow by themselves.
2762 	 */
2763 	status &= ~(GLOBAL_STATUS_COND_CHG |
2764 		    GLOBAL_STATUS_ASIF |
2765 		    GLOBAL_STATUS_LBRS_FROZEN);
2766 	if (!status)
2767 		return 0;
2768 	/*
2769 	 * In case multiple PEBS events are sampled at the same time,
2770 	 * it is possible to have GLOBAL_STATUS bit 62 set indicating
2771 	 * PEBS buffer overflow and also seeing at most 3 PEBS counters
2772 	 * having their bits set in the status register. This is a sign
2773 	 * that there was at least one PEBS record pending at the time
2774 	 * of the PMU interrupt. PEBS counters must only be processed
2775 	 * via the drain_pebs() calls and not via the regular sample
2776 	 * processing loop coming after that the function, otherwise
2777 	 * phony regular samples may be generated in the sampling buffer
2778 	 * not marked with the EXACT tag. Another possibility is to have
2779 	 * one PEBS event and at least one non-PEBS event whic hoverflows
2780 	 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2781 	 * not be set, yet the overflow status bit for the PEBS counter will
2782 	 * be on Skylake.
2783 	 *
2784 	 * To avoid this problem, we systematically ignore the PEBS-enabled
2785 	 * counters from the GLOBAL_STATUS mask and we always process PEBS
2786 	 * events via drain_pebs().
2787 	 */
2788 	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
2789 		status &= ~cpuc->pebs_enabled;
2790 	else
2791 		status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2792 
2793 	/*
2794 	 * PEBS overflow sets bit 62 in the global status register
2795 	 */
2796 	if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
2797 		u64 pebs_enabled = cpuc->pebs_enabled;
2798 
2799 		handled++;
2800 		x86_pmu.drain_pebs(regs, &data);
2801 		status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2802 
2803 		/*
2804 		 * PMI throttle may be triggered, which stops the PEBS event.
2805 		 * Although cpuc->pebs_enabled is updated accordingly, the
2806 		 * MSR_IA32_PEBS_ENABLE is not updated. Because the
2807 		 * cpuc->enabled has been forced to 0 in PMI.
2808 		 * Update the MSR if pebs_enabled is changed.
2809 		 */
2810 		if (pebs_enabled != cpuc->pebs_enabled)
2811 			wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
2812 	}
2813 
2814 	/*
2815 	 * Intel PT
2816 	 */
2817 	if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
2818 		handled++;
2819 		if (unlikely(perf_guest_cbs && perf_guest_cbs->is_in_guest() &&
2820 			perf_guest_cbs->handle_intel_pt_intr))
2821 			perf_guest_cbs->handle_intel_pt_intr();
2822 		else
2823 			intel_pt_interrupt();
2824 	}
2825 
2826 	/*
2827 	 * Intel Perf mertrics
2828 	 */
2829 	if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
2830 		handled++;
2831 		if (x86_pmu.update_topdown_event)
2832 			x86_pmu.update_topdown_event(NULL);
2833 	}
2834 
2835 	/*
2836 	 * Checkpointed counters can lead to 'spurious' PMIs because the
2837 	 * rollback caused by the PMI will have cleared the overflow status
2838 	 * bit. Therefore always force probe these counters.
2839 	 */
2840 	status |= cpuc->intel_cp_status;
2841 
2842 	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2843 		struct perf_event *event = cpuc->events[bit];
2844 
2845 		handled++;
2846 
2847 		if (!test_bit(bit, cpuc->active_mask))
2848 			continue;
2849 
2850 		if (!intel_pmu_save_and_restart(event))
2851 			continue;
2852 
2853 		perf_sample_data_init(&data, 0, event->hw.last_period);
2854 
2855 		if (has_branch_stack(event))
2856 			data.br_stack = &cpuc->lbr_stack;
2857 
2858 		if (perf_event_overflow(event, &data, regs))
2859 			x86_pmu_stop(event, 0);
2860 	}
2861 
2862 	return handled;
2863 }
2864 
2865 /*
2866  * This handler is triggered by the local APIC, so the APIC IRQ handling
2867  * rules apply:
2868  */
2869 static int intel_pmu_handle_irq(struct pt_regs *regs)
2870 {
2871 	struct cpu_hw_events *cpuc;
2872 	int loops;
2873 	u64 status;
2874 	int handled;
2875 	int pmu_enabled;
2876 
2877 	cpuc = this_cpu_ptr(&cpu_hw_events);
2878 
2879 	/*
2880 	 * Save the PMU state.
2881 	 * It needs to be restored when leaving the handler.
2882 	 */
2883 	pmu_enabled = cpuc->enabled;
2884 	/*
2885 	 * No known reason to not always do late ACK,
2886 	 * but just in case do it opt-in.
2887 	 */
2888 	if (!x86_pmu.late_ack)
2889 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2890 	intel_bts_disable_local();
2891 	cpuc->enabled = 0;
2892 	__intel_pmu_disable_all();
2893 	handled = intel_pmu_drain_bts_buffer();
2894 	handled += intel_bts_interrupt();
2895 	status = intel_pmu_get_status();
2896 	if (!status)
2897 		goto done;
2898 
2899 	loops = 0;
2900 again:
2901 	intel_pmu_lbr_read();
2902 	intel_pmu_ack_status(status);
2903 	if (++loops > 100) {
2904 		static bool warned;
2905 
2906 		if (!warned) {
2907 			WARN(1, "perfevents: irq loop stuck!\n");
2908 			perf_event_print_debug();
2909 			warned = true;
2910 		}
2911 		intel_pmu_reset();
2912 		goto done;
2913 	}
2914 
2915 	handled += handle_pmi_common(regs, status);
2916 
2917 	/*
2918 	 * Repeat if there is more work to be done:
2919 	 */
2920 	status = intel_pmu_get_status();
2921 	if (status)
2922 		goto again;
2923 
2924 done:
2925 	/* Only restore PMU state when it's active. See x86_pmu_disable(). */
2926 	cpuc->enabled = pmu_enabled;
2927 	if (pmu_enabled)
2928 		__intel_pmu_enable_all(0, true);
2929 	intel_bts_enable_local();
2930 
2931 	/*
2932 	 * Only unmask the NMI after the overflow counters
2933 	 * have been reset. This avoids spurious NMIs on
2934 	 * Haswell CPUs.
2935 	 */
2936 	if (x86_pmu.late_ack)
2937 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2938 	return handled;
2939 }
2940 
2941 static struct event_constraint *
2942 intel_bts_constraints(struct perf_event *event)
2943 {
2944 	if (unlikely(intel_pmu_has_bts(event)))
2945 		return &bts_constraint;
2946 
2947 	return NULL;
2948 }
2949 
2950 /*
2951  * Note: matches a fake event, like Fixed2.
2952  */
2953 static struct event_constraint *
2954 intel_vlbr_constraints(struct perf_event *event)
2955 {
2956 	struct event_constraint *c = &vlbr_constraint;
2957 
2958 	if (unlikely(constraint_match(c, event->hw.config)))
2959 		return c;
2960 
2961 	return NULL;
2962 }
2963 
2964 static int intel_alt_er(int idx, u64 config)
2965 {
2966 	int alt_idx = idx;
2967 
2968 	if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2969 		return idx;
2970 
2971 	if (idx == EXTRA_REG_RSP_0)
2972 		alt_idx = EXTRA_REG_RSP_1;
2973 
2974 	if (idx == EXTRA_REG_RSP_1)
2975 		alt_idx = EXTRA_REG_RSP_0;
2976 
2977 	if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2978 		return idx;
2979 
2980 	return alt_idx;
2981 }
2982 
2983 static void intel_fixup_er(struct perf_event *event, int idx)
2984 {
2985 	event->hw.extra_reg.idx = idx;
2986 
2987 	if (idx == EXTRA_REG_RSP_0) {
2988 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2989 		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2990 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2991 	} else if (idx == EXTRA_REG_RSP_1) {
2992 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2993 		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2994 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2995 	}
2996 }
2997 
2998 /*
2999  * manage allocation of shared extra msr for certain events
3000  *
3001  * sharing can be:
3002  * per-cpu: to be shared between the various events on a single PMU
3003  * per-core: per-cpu + shared by HT threads
3004  */
3005 static struct event_constraint *
3006 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
3007 				   struct perf_event *event,
3008 				   struct hw_perf_event_extra *reg)
3009 {
3010 	struct event_constraint *c = &emptyconstraint;
3011 	struct er_account *era;
3012 	unsigned long flags;
3013 	int idx = reg->idx;
3014 
3015 	/*
3016 	 * reg->alloc can be set due to existing state, so for fake cpuc we
3017 	 * need to ignore this, otherwise we might fail to allocate proper fake
3018 	 * state for this extra reg constraint. Also see the comment below.
3019 	 */
3020 	if (reg->alloc && !cpuc->is_fake)
3021 		return NULL; /* call x86_get_event_constraint() */
3022 
3023 again:
3024 	era = &cpuc->shared_regs->regs[idx];
3025 	/*
3026 	 * we use spin_lock_irqsave() to avoid lockdep issues when
3027 	 * passing a fake cpuc
3028 	 */
3029 	raw_spin_lock_irqsave(&era->lock, flags);
3030 
3031 	if (!atomic_read(&era->ref) || era->config == reg->config) {
3032 
3033 		/*
3034 		 * If its a fake cpuc -- as per validate_{group,event}() we
3035 		 * shouldn't touch event state and we can avoid doing so
3036 		 * since both will only call get_event_constraints() once
3037 		 * on each event, this avoids the need for reg->alloc.
3038 		 *
3039 		 * Not doing the ER fixup will only result in era->reg being
3040 		 * wrong, but since we won't actually try and program hardware
3041 		 * this isn't a problem either.
3042 		 */
3043 		if (!cpuc->is_fake) {
3044 			if (idx != reg->idx)
3045 				intel_fixup_er(event, idx);
3046 
3047 			/*
3048 			 * x86_schedule_events() can call get_event_constraints()
3049 			 * multiple times on events in the case of incremental
3050 			 * scheduling(). reg->alloc ensures we only do the ER
3051 			 * allocation once.
3052 			 */
3053 			reg->alloc = 1;
3054 		}
3055 
3056 		/* lock in msr value */
3057 		era->config = reg->config;
3058 		era->reg = reg->reg;
3059 
3060 		/* one more user */
3061 		atomic_inc(&era->ref);
3062 
3063 		/*
3064 		 * need to call x86_get_event_constraint()
3065 		 * to check if associated event has constraints
3066 		 */
3067 		c = NULL;
3068 	} else {
3069 		idx = intel_alt_er(idx, reg->config);
3070 		if (idx != reg->idx) {
3071 			raw_spin_unlock_irqrestore(&era->lock, flags);
3072 			goto again;
3073 		}
3074 	}
3075 	raw_spin_unlock_irqrestore(&era->lock, flags);
3076 
3077 	return c;
3078 }
3079 
3080 static void
3081 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
3082 				   struct hw_perf_event_extra *reg)
3083 {
3084 	struct er_account *era;
3085 
3086 	/*
3087 	 * Only put constraint if extra reg was actually allocated. Also takes
3088 	 * care of event which do not use an extra shared reg.
3089 	 *
3090 	 * Also, if this is a fake cpuc we shouldn't touch any event state
3091 	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
3092 	 * either since it'll be thrown out.
3093 	 */
3094 	if (!reg->alloc || cpuc->is_fake)
3095 		return;
3096 
3097 	era = &cpuc->shared_regs->regs[reg->idx];
3098 
3099 	/* one fewer user */
3100 	atomic_dec(&era->ref);
3101 
3102 	/* allocate again next time */
3103 	reg->alloc = 0;
3104 }
3105 
3106 static struct event_constraint *
3107 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
3108 			      struct perf_event *event)
3109 {
3110 	struct event_constraint *c = NULL, *d;
3111 	struct hw_perf_event_extra *xreg, *breg;
3112 
3113 	xreg = &event->hw.extra_reg;
3114 	if (xreg->idx != EXTRA_REG_NONE) {
3115 		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
3116 		if (c == &emptyconstraint)
3117 			return c;
3118 	}
3119 	breg = &event->hw.branch_reg;
3120 	if (breg->idx != EXTRA_REG_NONE) {
3121 		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
3122 		if (d == &emptyconstraint) {
3123 			__intel_shared_reg_put_constraints(cpuc, xreg);
3124 			c = d;
3125 		}
3126 	}
3127 	return c;
3128 }
3129 
3130 struct event_constraint *
3131 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3132 			  struct perf_event *event)
3133 {
3134 	struct event_constraint *c;
3135 
3136 	if (x86_pmu.event_constraints) {
3137 		for_each_event_constraint(c, x86_pmu.event_constraints) {
3138 			if (constraint_match(c, event->hw.config)) {
3139 				event->hw.flags |= c->flags;
3140 				return c;
3141 			}
3142 		}
3143 	}
3144 
3145 	return &unconstrained;
3146 }
3147 
3148 static struct event_constraint *
3149 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3150 			    struct perf_event *event)
3151 {
3152 	struct event_constraint *c;
3153 
3154 	c = intel_vlbr_constraints(event);
3155 	if (c)
3156 		return c;
3157 
3158 	c = intel_bts_constraints(event);
3159 	if (c)
3160 		return c;
3161 
3162 	c = intel_shared_regs_constraints(cpuc, event);
3163 	if (c)
3164 		return c;
3165 
3166 	c = intel_pebs_constraints(event);
3167 	if (c)
3168 		return c;
3169 
3170 	return x86_get_event_constraints(cpuc, idx, event);
3171 }
3172 
3173 static void
3174 intel_start_scheduling(struct cpu_hw_events *cpuc)
3175 {
3176 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3177 	struct intel_excl_states *xl;
3178 	int tid = cpuc->excl_thread_id;
3179 
3180 	/*
3181 	 * nothing needed if in group validation mode
3182 	 */
3183 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3184 		return;
3185 
3186 	/*
3187 	 * no exclusion needed
3188 	 */
3189 	if (WARN_ON_ONCE(!excl_cntrs))
3190 		return;
3191 
3192 	xl = &excl_cntrs->states[tid];
3193 
3194 	xl->sched_started = true;
3195 	/*
3196 	 * lock shared state until we are done scheduling
3197 	 * in stop_event_scheduling()
3198 	 * makes scheduling appear as a transaction
3199 	 */
3200 	raw_spin_lock(&excl_cntrs->lock);
3201 }
3202 
3203 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
3204 {
3205 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3206 	struct event_constraint *c = cpuc->event_constraint[idx];
3207 	struct intel_excl_states *xl;
3208 	int tid = cpuc->excl_thread_id;
3209 
3210 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3211 		return;
3212 
3213 	if (WARN_ON_ONCE(!excl_cntrs))
3214 		return;
3215 
3216 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
3217 		return;
3218 
3219 	xl = &excl_cntrs->states[tid];
3220 
3221 	lockdep_assert_held(&excl_cntrs->lock);
3222 
3223 	if (c->flags & PERF_X86_EVENT_EXCL)
3224 		xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
3225 	else
3226 		xl->state[cntr] = INTEL_EXCL_SHARED;
3227 }
3228 
3229 static void
3230 intel_stop_scheduling(struct cpu_hw_events *cpuc)
3231 {
3232 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3233 	struct intel_excl_states *xl;
3234 	int tid = cpuc->excl_thread_id;
3235 
3236 	/*
3237 	 * nothing needed if in group validation mode
3238 	 */
3239 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3240 		return;
3241 	/*
3242 	 * no exclusion needed
3243 	 */
3244 	if (WARN_ON_ONCE(!excl_cntrs))
3245 		return;
3246 
3247 	xl = &excl_cntrs->states[tid];
3248 
3249 	xl->sched_started = false;
3250 	/*
3251 	 * release shared state lock (acquired in intel_start_scheduling())
3252 	 */
3253 	raw_spin_unlock(&excl_cntrs->lock);
3254 }
3255 
3256 static struct event_constraint *
3257 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
3258 {
3259 	WARN_ON_ONCE(!cpuc->constraint_list);
3260 
3261 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
3262 		struct event_constraint *cx;
3263 
3264 		/*
3265 		 * grab pre-allocated constraint entry
3266 		 */
3267 		cx = &cpuc->constraint_list[idx];
3268 
3269 		/*
3270 		 * initialize dynamic constraint
3271 		 * with static constraint
3272 		 */
3273 		*cx = *c;
3274 
3275 		/*
3276 		 * mark constraint as dynamic
3277 		 */
3278 		cx->flags |= PERF_X86_EVENT_DYNAMIC;
3279 		c = cx;
3280 	}
3281 
3282 	return c;
3283 }
3284 
3285 static struct event_constraint *
3286 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
3287 			   int idx, struct event_constraint *c)
3288 {
3289 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3290 	struct intel_excl_states *xlo;
3291 	int tid = cpuc->excl_thread_id;
3292 	int is_excl, i, w;
3293 
3294 	/*
3295 	 * validating a group does not require
3296 	 * enforcing cross-thread  exclusion
3297 	 */
3298 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3299 		return c;
3300 
3301 	/*
3302 	 * no exclusion needed
3303 	 */
3304 	if (WARN_ON_ONCE(!excl_cntrs))
3305 		return c;
3306 
3307 	/*
3308 	 * because we modify the constraint, we need
3309 	 * to make a copy. Static constraints come
3310 	 * from static const tables.
3311 	 *
3312 	 * only needed when constraint has not yet
3313 	 * been cloned (marked dynamic)
3314 	 */
3315 	c = dyn_constraint(cpuc, c, idx);
3316 
3317 	/*
3318 	 * From here on, the constraint is dynamic.
3319 	 * Either it was just allocated above, or it
3320 	 * was allocated during a earlier invocation
3321 	 * of this function
3322 	 */
3323 
3324 	/*
3325 	 * state of sibling HT
3326 	 */
3327 	xlo = &excl_cntrs->states[tid ^ 1];
3328 
3329 	/*
3330 	 * event requires exclusive counter access
3331 	 * across HT threads
3332 	 */
3333 	is_excl = c->flags & PERF_X86_EVENT_EXCL;
3334 	if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
3335 		event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
3336 		if (!cpuc->n_excl++)
3337 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
3338 	}
3339 
3340 	/*
3341 	 * Modify static constraint with current dynamic
3342 	 * state of thread
3343 	 *
3344 	 * EXCLUSIVE: sibling counter measuring exclusive event
3345 	 * SHARED   : sibling counter measuring non-exclusive event
3346 	 * UNUSED   : sibling counter unused
3347 	 */
3348 	w = c->weight;
3349 	for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3350 		/*
3351 		 * exclusive event in sibling counter
3352 		 * our corresponding counter cannot be used
3353 		 * regardless of our event
3354 		 */
3355 		if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3356 			__clear_bit(i, c->idxmsk);
3357 			w--;
3358 			continue;
3359 		}
3360 		/*
3361 		 * if measuring an exclusive event, sibling
3362 		 * measuring non-exclusive, then counter cannot
3363 		 * be used
3364 		 */
3365 		if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3366 			__clear_bit(i, c->idxmsk);
3367 			w--;
3368 			continue;
3369 		}
3370 	}
3371 
3372 	/*
3373 	 * if we return an empty mask, then switch
3374 	 * back to static empty constraint to avoid
3375 	 * the cost of freeing later on
3376 	 */
3377 	if (!w)
3378 		c = &emptyconstraint;
3379 
3380 	c->weight = w;
3381 
3382 	return c;
3383 }
3384 
3385 static struct event_constraint *
3386 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3387 			    struct perf_event *event)
3388 {
3389 	struct event_constraint *c1, *c2;
3390 
3391 	c1 = cpuc->event_constraint[idx];
3392 
3393 	/*
3394 	 * first time only
3395 	 * - static constraint: no change across incremental scheduling calls
3396 	 * - dynamic constraint: handled by intel_get_excl_constraints()
3397 	 */
3398 	c2 = __intel_get_event_constraints(cpuc, idx, event);
3399 	if (c1) {
3400 	        WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3401 		bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3402 		c1->weight = c2->weight;
3403 		c2 = c1;
3404 	}
3405 
3406 	if (cpuc->excl_cntrs)
3407 		return intel_get_excl_constraints(cpuc, event, idx, c2);
3408 
3409 	return c2;
3410 }
3411 
3412 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3413 		struct perf_event *event)
3414 {
3415 	struct hw_perf_event *hwc = &event->hw;
3416 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3417 	int tid = cpuc->excl_thread_id;
3418 	struct intel_excl_states *xl;
3419 
3420 	/*
3421 	 * nothing needed if in group validation mode
3422 	 */
3423 	if (cpuc->is_fake)
3424 		return;
3425 
3426 	if (WARN_ON_ONCE(!excl_cntrs))
3427 		return;
3428 
3429 	if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3430 		hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3431 		if (!--cpuc->n_excl)
3432 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3433 	}
3434 
3435 	/*
3436 	 * If event was actually assigned, then mark the counter state as
3437 	 * unused now.
3438 	 */
3439 	if (hwc->idx >= 0) {
3440 		xl = &excl_cntrs->states[tid];
3441 
3442 		/*
3443 		 * put_constraint may be called from x86_schedule_events()
3444 		 * which already has the lock held so here make locking
3445 		 * conditional.
3446 		 */
3447 		if (!xl->sched_started)
3448 			raw_spin_lock(&excl_cntrs->lock);
3449 
3450 		xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3451 
3452 		if (!xl->sched_started)
3453 			raw_spin_unlock(&excl_cntrs->lock);
3454 	}
3455 }
3456 
3457 static void
3458 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3459 					struct perf_event *event)
3460 {
3461 	struct hw_perf_event_extra *reg;
3462 
3463 	reg = &event->hw.extra_reg;
3464 	if (reg->idx != EXTRA_REG_NONE)
3465 		__intel_shared_reg_put_constraints(cpuc, reg);
3466 
3467 	reg = &event->hw.branch_reg;
3468 	if (reg->idx != EXTRA_REG_NONE)
3469 		__intel_shared_reg_put_constraints(cpuc, reg);
3470 }
3471 
3472 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3473 					struct perf_event *event)
3474 {
3475 	intel_put_shared_regs_event_constraints(cpuc, event);
3476 
3477 	/*
3478 	 * is PMU has exclusive counter restrictions, then
3479 	 * all events are subject to and must call the
3480 	 * put_excl_constraints() routine
3481 	 */
3482 	if (cpuc->excl_cntrs)
3483 		intel_put_excl_constraints(cpuc, event);
3484 }
3485 
3486 static void intel_pebs_aliases_core2(struct perf_event *event)
3487 {
3488 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3489 		/*
3490 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3491 		 * (0x003c) so that we can use it with PEBS.
3492 		 *
3493 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3494 		 * PEBS capable. However we can use INST_RETIRED.ANY_P
3495 		 * (0x00c0), which is a PEBS capable event, to get the same
3496 		 * count.
3497 		 *
3498 		 * INST_RETIRED.ANY_P counts the number of cycles that retires
3499 		 * CNTMASK instructions. By setting CNTMASK to a value (16)
3500 		 * larger than the maximum number of instructions that can be
3501 		 * retired per cycle (4) and then inverting the condition, we
3502 		 * count all cycles that retire 16 or less instructions, which
3503 		 * is every cycle.
3504 		 *
3505 		 * Thereby we gain a PEBS capable cycle counter.
3506 		 */
3507 		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3508 
3509 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3510 		event->hw.config = alt_config;
3511 	}
3512 }
3513 
3514 static void intel_pebs_aliases_snb(struct perf_event *event)
3515 {
3516 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3517 		/*
3518 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3519 		 * (0x003c) so that we can use it with PEBS.
3520 		 *
3521 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3522 		 * PEBS capable. However we can use UOPS_RETIRED.ALL
3523 		 * (0x01c2), which is a PEBS capable event, to get the same
3524 		 * count.
3525 		 *
3526 		 * UOPS_RETIRED.ALL counts the number of cycles that retires
3527 		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3528 		 * larger than the maximum number of micro-ops that can be
3529 		 * retired per cycle (4) and then inverting the condition, we
3530 		 * count all cycles that retire 16 or less micro-ops, which
3531 		 * is every cycle.
3532 		 *
3533 		 * Thereby we gain a PEBS capable cycle counter.
3534 		 */
3535 		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3536 
3537 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3538 		event->hw.config = alt_config;
3539 	}
3540 }
3541 
3542 static void intel_pebs_aliases_precdist(struct perf_event *event)
3543 {
3544 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3545 		/*
3546 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3547 		 * (0x003c) so that we can use it with PEBS.
3548 		 *
3549 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3550 		 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3551 		 * (0x01c0), which is a PEBS capable event, to get the same
3552 		 * count.
3553 		 *
3554 		 * The PREC_DIST event has special support to minimize sample
3555 		 * shadowing effects. One drawback is that it can be
3556 		 * only programmed on counter 1, but that seems like an
3557 		 * acceptable trade off.
3558 		 */
3559 		u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3560 
3561 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3562 		event->hw.config = alt_config;
3563 	}
3564 }
3565 
3566 static void intel_pebs_aliases_ivb(struct perf_event *event)
3567 {
3568 	if (event->attr.precise_ip < 3)
3569 		return intel_pebs_aliases_snb(event);
3570 	return intel_pebs_aliases_precdist(event);
3571 }
3572 
3573 static void intel_pebs_aliases_skl(struct perf_event *event)
3574 {
3575 	if (event->attr.precise_ip < 3)
3576 		return intel_pebs_aliases_core2(event);
3577 	return intel_pebs_aliases_precdist(event);
3578 }
3579 
3580 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3581 {
3582 	unsigned long flags = x86_pmu.large_pebs_flags;
3583 
3584 	if (event->attr.use_clockid)
3585 		flags &= ~PERF_SAMPLE_TIME;
3586 	if (!event->attr.exclude_kernel)
3587 		flags &= ~PERF_SAMPLE_REGS_USER;
3588 	if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3589 		flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3590 	return flags;
3591 }
3592 
3593 static int intel_pmu_bts_config(struct perf_event *event)
3594 {
3595 	struct perf_event_attr *attr = &event->attr;
3596 
3597 	if (unlikely(intel_pmu_has_bts(event))) {
3598 		/* BTS is not supported by this architecture. */
3599 		if (!x86_pmu.bts_active)
3600 			return -EOPNOTSUPP;
3601 
3602 		/* BTS is currently only allowed for user-mode. */
3603 		if (!attr->exclude_kernel)
3604 			return -EOPNOTSUPP;
3605 
3606 		/* BTS is not allowed for precise events. */
3607 		if (attr->precise_ip)
3608 			return -EOPNOTSUPP;
3609 
3610 		/* disallow bts if conflicting events are present */
3611 		if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3612 			return -EBUSY;
3613 
3614 		event->destroy = hw_perf_lbr_event_destroy;
3615 	}
3616 
3617 	return 0;
3618 }
3619 
3620 static int core_pmu_hw_config(struct perf_event *event)
3621 {
3622 	int ret = x86_pmu_hw_config(event);
3623 
3624 	if (ret)
3625 		return ret;
3626 
3627 	return intel_pmu_bts_config(event);
3628 }
3629 
3630 #define INTEL_TD_METRIC_AVAILABLE_MAX	(INTEL_TD_METRIC_RETIRING + \
3631 					 ((x86_pmu.num_topdown_events - 1) << 8))
3632 
3633 static bool is_available_metric_event(struct perf_event *event)
3634 {
3635 	return is_metric_event(event) &&
3636 		event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX;
3637 }
3638 
3639 static inline bool is_mem_loads_event(struct perf_event *event)
3640 {
3641 	return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01);
3642 }
3643 
3644 static inline bool is_mem_loads_aux_event(struct perf_event *event)
3645 {
3646 	return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82);
3647 }
3648 
3649 
3650 static int intel_pmu_hw_config(struct perf_event *event)
3651 {
3652 	int ret = x86_pmu_hw_config(event);
3653 
3654 	if (ret)
3655 		return ret;
3656 
3657 	ret = intel_pmu_bts_config(event);
3658 	if (ret)
3659 		return ret;
3660 
3661 	if (event->attr.precise_ip) {
3662 		if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3663 			event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3664 			if (!(event->attr.sample_type &
3665 			      ~intel_pmu_large_pebs_flags(event)))
3666 				event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3667 		}
3668 		if (x86_pmu.pebs_aliases)
3669 			x86_pmu.pebs_aliases(event);
3670 
3671 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3672 			event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3673 	}
3674 
3675 	if (needs_branch_stack(event)) {
3676 		ret = intel_pmu_setup_lbr_filter(event);
3677 		if (ret)
3678 			return ret;
3679 
3680 		/*
3681 		 * BTS is set up earlier in this path, so don't account twice
3682 		 */
3683 		if (!unlikely(intel_pmu_has_bts(event))) {
3684 			/* disallow lbr if conflicting events are present */
3685 			if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3686 				return -EBUSY;
3687 
3688 			event->destroy = hw_perf_lbr_event_destroy;
3689 		}
3690 	}
3691 
3692 	if (event->attr.aux_output) {
3693 		if (!event->attr.precise_ip)
3694 			return -EINVAL;
3695 
3696 		event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
3697 	}
3698 
3699 	if (event->attr.type != PERF_TYPE_RAW)
3700 		return 0;
3701 
3702 	/*
3703 	 * Config Topdown slots and metric events
3704 	 *
3705 	 * The slots event on Fixed Counter 3 can support sampling,
3706 	 * which will be handled normally in x86_perf_event_update().
3707 	 *
3708 	 * Metric events don't support sampling and require being paired
3709 	 * with a slots event as group leader. When the slots event
3710 	 * is used in a metrics group, it too cannot support sampling.
3711 	 */
3712 	if (x86_pmu.intel_cap.perf_metrics && is_topdown_event(event)) {
3713 		if (event->attr.config1 || event->attr.config2)
3714 			return -EINVAL;
3715 
3716 		/*
3717 		 * The TopDown metrics events and slots event don't
3718 		 * support any filters.
3719 		 */
3720 		if (event->attr.config & X86_ALL_EVENT_FLAGS)
3721 			return -EINVAL;
3722 
3723 		if (is_available_metric_event(event)) {
3724 			struct perf_event *leader = event->group_leader;
3725 
3726 			/* The metric events don't support sampling. */
3727 			if (is_sampling_event(event))
3728 				return -EINVAL;
3729 
3730 			/* The metric events require a slots group leader. */
3731 			if (!is_slots_event(leader))
3732 				return -EINVAL;
3733 
3734 			/*
3735 			 * The leader/SLOTS must not be a sampling event for
3736 			 * metric use; hardware requires it starts at 0 when used
3737 			 * in conjunction with MSR_PERF_METRICS.
3738 			 */
3739 			if (is_sampling_event(leader))
3740 				return -EINVAL;
3741 
3742 			event->event_caps |= PERF_EV_CAP_SIBLING;
3743 			/*
3744 			 * Only once we have a METRICs sibling do we
3745 			 * need TopDown magic.
3746 			 */
3747 			leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
3748 			event->hw.flags  |= PERF_X86_EVENT_TOPDOWN;
3749 		}
3750 	}
3751 
3752 	/*
3753 	 * The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR
3754 	 * doesn't function quite right. As a work-around it needs to always be
3755 	 * co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82).
3756 	 * The actual count of this second event is irrelevant it just needs
3757 	 * to be active to make the first event function correctly.
3758 	 *
3759 	 * In a group, the auxiliary event must be in front of the load latency
3760 	 * event. The rule is to simplify the implementation of the check.
3761 	 * That's because perf cannot have a complete group at the moment.
3762 	 */
3763 	if (x86_pmu.flags & PMU_FL_MEM_LOADS_AUX &&
3764 	    (event->attr.sample_type & PERF_SAMPLE_DATA_SRC) &&
3765 	    is_mem_loads_event(event)) {
3766 		struct perf_event *leader = event->group_leader;
3767 		struct perf_event *sibling = NULL;
3768 
3769 		if (!is_mem_loads_aux_event(leader)) {
3770 			for_each_sibling_event(sibling, leader) {
3771 				if (is_mem_loads_aux_event(sibling))
3772 					break;
3773 			}
3774 			if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list))
3775 				return -ENODATA;
3776 		}
3777 	}
3778 
3779 	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3780 		return 0;
3781 
3782 	if (x86_pmu.version < 3)
3783 		return -EINVAL;
3784 
3785 	ret = perf_allow_cpu(&event->attr);
3786 	if (ret)
3787 		return ret;
3788 
3789 	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3790 
3791 	return 0;
3792 }
3793 
3794 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3795 {
3796 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3797 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3798 
3799 	arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3800 	arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3801 	arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3802 	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
3803 		arr[0].guest &= ~cpuc->pebs_enabled;
3804 	else
3805 		arr[0].guest &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
3806 	*nr = 1;
3807 
3808 	if (x86_pmu.pebs && x86_pmu.pebs_no_isolation) {
3809 		/*
3810 		 * If PMU counter has PEBS enabled it is not enough to
3811 		 * disable counter on a guest entry since PEBS memory
3812 		 * write can overshoot guest entry and corrupt guest
3813 		 * memory. Disabling PEBS solves the problem.
3814 		 *
3815 		 * Don't do this if the CPU already enforces it.
3816 		 */
3817 		arr[1].msr = MSR_IA32_PEBS_ENABLE;
3818 		arr[1].host = cpuc->pebs_enabled;
3819 		arr[1].guest = 0;
3820 		*nr = 2;
3821 	}
3822 
3823 	return arr;
3824 }
3825 
3826 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3827 {
3828 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3829 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3830 	int idx;
3831 
3832 	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
3833 		struct perf_event *event = cpuc->events[idx];
3834 
3835 		arr[idx].msr = x86_pmu_config_addr(idx);
3836 		arr[idx].host = arr[idx].guest = 0;
3837 
3838 		if (!test_bit(idx, cpuc->active_mask))
3839 			continue;
3840 
3841 		arr[idx].host = arr[idx].guest =
3842 			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3843 
3844 		if (event->attr.exclude_host)
3845 			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3846 		else if (event->attr.exclude_guest)
3847 			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3848 	}
3849 
3850 	*nr = x86_pmu.num_counters;
3851 	return arr;
3852 }
3853 
3854 static void core_pmu_enable_event(struct perf_event *event)
3855 {
3856 	if (!event->attr.exclude_host)
3857 		x86_pmu_enable_event(event);
3858 }
3859 
3860 static void core_pmu_enable_all(int added)
3861 {
3862 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3863 	int idx;
3864 
3865 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3866 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
3867 
3868 		if (!test_bit(idx, cpuc->active_mask) ||
3869 				cpuc->events[idx]->attr.exclude_host)
3870 			continue;
3871 
3872 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
3873 	}
3874 }
3875 
3876 static int hsw_hw_config(struct perf_event *event)
3877 {
3878 	int ret = intel_pmu_hw_config(event);
3879 
3880 	if (ret)
3881 		return ret;
3882 	if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
3883 		return 0;
3884 	event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
3885 
3886 	/*
3887 	 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3888 	 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3889 	 * this combination.
3890 	 */
3891 	if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
3892 	     ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
3893 	      event->attr.precise_ip > 0))
3894 		return -EOPNOTSUPP;
3895 
3896 	if (event_is_checkpointed(event)) {
3897 		/*
3898 		 * Sampling of checkpointed events can cause situations where
3899 		 * the CPU constantly aborts because of a overflow, which is
3900 		 * then checkpointed back and ignored. Forbid checkpointing
3901 		 * for sampling.
3902 		 *
3903 		 * But still allow a long sampling period, so that perf stat
3904 		 * from KVM works.
3905 		 */
3906 		if (event->attr.sample_period > 0 &&
3907 		    event->attr.sample_period < 0x7fffffff)
3908 			return -EOPNOTSUPP;
3909 	}
3910 	return 0;
3911 }
3912 
3913 static struct event_constraint counter0_constraint =
3914 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3915 
3916 static struct event_constraint counter2_constraint =
3917 			EVENT_CONSTRAINT(0, 0x4, 0);
3918 
3919 static struct event_constraint fixed0_constraint =
3920 			FIXED_EVENT_CONSTRAINT(0x00c0, 0);
3921 
3922 static struct event_constraint fixed0_counter0_constraint =
3923 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
3924 
3925 static struct event_constraint *
3926 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3927 			  struct perf_event *event)
3928 {
3929 	struct event_constraint *c;
3930 
3931 	c = intel_get_event_constraints(cpuc, idx, event);
3932 
3933 	/* Handle special quirk on in_tx_checkpointed only in counter 2 */
3934 	if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
3935 		if (c->idxmsk64 & (1U << 2))
3936 			return &counter2_constraint;
3937 		return &emptyconstraint;
3938 	}
3939 
3940 	return c;
3941 }
3942 
3943 static struct event_constraint *
3944 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3945 			  struct perf_event *event)
3946 {
3947 	/*
3948 	 * Fixed counter 0 has less skid.
3949 	 * Force instruction:ppp in Fixed counter 0
3950 	 */
3951 	if ((event->attr.precise_ip == 3) &&
3952 	    constraint_match(&fixed0_constraint, event->hw.config))
3953 		return &fixed0_constraint;
3954 
3955 	return hsw_get_event_constraints(cpuc, idx, event);
3956 }
3957 
3958 static struct event_constraint *
3959 spr_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3960 			  struct perf_event *event)
3961 {
3962 	struct event_constraint *c;
3963 
3964 	c = icl_get_event_constraints(cpuc, idx, event);
3965 
3966 	/*
3967 	 * The :ppp indicates the Precise Distribution (PDist) facility, which
3968 	 * is only supported on the GP counter 0. If a :ppp event which is not
3969 	 * available on the GP counter 0, error out.
3970 	 */
3971 	if (event->attr.precise_ip == 3) {
3972 		if (c->idxmsk64 & BIT_ULL(0))
3973 			return &counter0_constraint;
3974 
3975 		return &emptyconstraint;
3976 	}
3977 
3978 	return c;
3979 }
3980 
3981 static struct event_constraint *
3982 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3983 			  struct perf_event *event)
3984 {
3985 	struct event_constraint *c;
3986 
3987 	/* :ppp means to do reduced skid PEBS which is PMC0 only. */
3988 	if (event->attr.precise_ip == 3)
3989 		return &counter0_constraint;
3990 
3991 	c = intel_get_event_constraints(cpuc, idx, event);
3992 
3993 	return c;
3994 }
3995 
3996 static struct event_constraint *
3997 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3998 			  struct perf_event *event)
3999 {
4000 	struct event_constraint *c;
4001 
4002 	/*
4003 	 * :ppp means to do reduced skid PEBS,
4004 	 * which is available on PMC0 and fixed counter 0.
4005 	 */
4006 	if (event->attr.precise_ip == 3) {
4007 		/* Force instruction:ppp on PMC0 and Fixed counter 0 */
4008 		if (constraint_match(&fixed0_constraint, event->hw.config))
4009 			return &fixed0_counter0_constraint;
4010 
4011 		return &counter0_constraint;
4012 	}
4013 
4014 	c = intel_get_event_constraints(cpuc, idx, event);
4015 
4016 	return c;
4017 }
4018 
4019 static bool allow_tsx_force_abort = true;
4020 
4021 static struct event_constraint *
4022 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4023 			  struct perf_event *event)
4024 {
4025 	struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
4026 
4027 	/*
4028 	 * Without TFA we must not use PMC3.
4029 	 */
4030 	if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
4031 		c = dyn_constraint(cpuc, c, idx);
4032 		c->idxmsk64 &= ~(1ULL << 3);
4033 		c->weight--;
4034 	}
4035 
4036 	return c;
4037 }
4038 
4039 /*
4040  * Broadwell:
4041  *
4042  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
4043  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
4044  * the two to enforce a minimum period of 128 (the smallest value that has bits
4045  * 0-5 cleared and >= 100).
4046  *
4047  * Because of how the code in x86_perf_event_set_period() works, the truncation
4048  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
4049  * to make up for the 'lost' events due to carrying the 'error' in period_left.
4050  *
4051  * Therefore the effective (average) period matches the requested period,
4052  * despite coarser hardware granularity.
4053  */
4054 static u64 bdw_limit_period(struct perf_event *event, u64 left)
4055 {
4056 	if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
4057 			X86_CONFIG(.event=0xc0, .umask=0x01)) {
4058 		if (left < 128)
4059 			left = 128;
4060 		left &= ~0x3fULL;
4061 	}
4062 	return left;
4063 }
4064 
4065 static u64 nhm_limit_period(struct perf_event *event, u64 left)
4066 {
4067 	return max(left, 32ULL);
4068 }
4069 
4070 static u64 spr_limit_period(struct perf_event *event, u64 left)
4071 {
4072 	if (event->attr.precise_ip == 3)
4073 		return max(left, 128ULL);
4074 
4075 	return left;
4076 }
4077 
4078 PMU_FORMAT_ATTR(event,	"config:0-7"	);
4079 PMU_FORMAT_ATTR(umask,	"config:8-15"	);
4080 PMU_FORMAT_ATTR(edge,	"config:18"	);
4081 PMU_FORMAT_ATTR(pc,	"config:19"	);
4082 PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
4083 PMU_FORMAT_ATTR(inv,	"config:23"	);
4084 PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
4085 PMU_FORMAT_ATTR(in_tx,  "config:32");
4086 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
4087 
4088 static struct attribute *intel_arch_formats_attr[] = {
4089 	&format_attr_event.attr,
4090 	&format_attr_umask.attr,
4091 	&format_attr_edge.attr,
4092 	&format_attr_pc.attr,
4093 	&format_attr_inv.attr,
4094 	&format_attr_cmask.attr,
4095 	NULL,
4096 };
4097 
4098 ssize_t intel_event_sysfs_show(char *page, u64 config)
4099 {
4100 	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
4101 
4102 	return x86_event_sysfs_show(page, config, event);
4103 }
4104 
4105 static struct intel_shared_regs *allocate_shared_regs(int cpu)
4106 {
4107 	struct intel_shared_regs *regs;
4108 	int i;
4109 
4110 	regs = kzalloc_node(sizeof(struct intel_shared_regs),
4111 			    GFP_KERNEL, cpu_to_node(cpu));
4112 	if (regs) {
4113 		/*
4114 		 * initialize the locks to keep lockdep happy
4115 		 */
4116 		for (i = 0; i < EXTRA_REG_MAX; i++)
4117 			raw_spin_lock_init(&regs->regs[i].lock);
4118 
4119 		regs->core_id = -1;
4120 	}
4121 	return regs;
4122 }
4123 
4124 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
4125 {
4126 	struct intel_excl_cntrs *c;
4127 
4128 	c = kzalloc_node(sizeof(struct intel_excl_cntrs),
4129 			 GFP_KERNEL, cpu_to_node(cpu));
4130 	if (c) {
4131 		raw_spin_lock_init(&c->lock);
4132 		c->core_id = -1;
4133 	}
4134 	return c;
4135 }
4136 
4137 
4138 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
4139 {
4140 	cpuc->pebs_record_size = x86_pmu.pebs_record_size;
4141 
4142 	if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
4143 		cpuc->shared_regs = allocate_shared_regs(cpu);
4144 		if (!cpuc->shared_regs)
4145 			goto err;
4146 	}
4147 
4148 	if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
4149 		size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
4150 
4151 		cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
4152 		if (!cpuc->constraint_list)
4153 			goto err_shared_regs;
4154 	}
4155 
4156 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4157 		cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
4158 		if (!cpuc->excl_cntrs)
4159 			goto err_constraint_list;
4160 
4161 		cpuc->excl_thread_id = 0;
4162 	}
4163 
4164 	return 0;
4165 
4166 err_constraint_list:
4167 	kfree(cpuc->constraint_list);
4168 	cpuc->constraint_list = NULL;
4169 
4170 err_shared_regs:
4171 	kfree(cpuc->shared_regs);
4172 	cpuc->shared_regs = NULL;
4173 
4174 err:
4175 	return -ENOMEM;
4176 }
4177 
4178 static int intel_pmu_cpu_prepare(int cpu)
4179 {
4180 	return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
4181 }
4182 
4183 static void flip_smm_bit(void *data)
4184 {
4185 	unsigned long set = *(unsigned long *)data;
4186 
4187 	if (set > 0) {
4188 		msr_set_bit(MSR_IA32_DEBUGCTLMSR,
4189 			    DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4190 	} else {
4191 		msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
4192 			      DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4193 	}
4194 }
4195 
4196 static void intel_pmu_cpu_starting(int cpu)
4197 {
4198 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4199 	int core_id = topology_core_id(cpu);
4200 	int i;
4201 
4202 	init_debug_store_on_cpu(cpu);
4203 	/*
4204 	 * Deal with CPUs that don't clear their LBRs on power-up.
4205 	 */
4206 	intel_pmu_lbr_reset();
4207 
4208 	cpuc->lbr_sel = NULL;
4209 
4210 	if (x86_pmu.flags & PMU_FL_TFA) {
4211 		WARN_ON_ONCE(cpuc->tfa_shadow);
4212 		cpuc->tfa_shadow = ~0ULL;
4213 		intel_set_tfa(cpuc, false);
4214 	}
4215 
4216 	if (x86_pmu.version > 1)
4217 		flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
4218 
4219 	/* Disable perf metrics if any added CPU doesn't support it. */
4220 	if (x86_pmu.intel_cap.perf_metrics) {
4221 		union perf_capabilities perf_cap;
4222 
4223 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
4224 		if (!perf_cap.perf_metrics) {
4225 			x86_pmu.intel_cap.perf_metrics = 0;
4226 			x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
4227 		}
4228 	}
4229 
4230 	if (!cpuc->shared_regs)
4231 		return;
4232 
4233 	if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
4234 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4235 			struct intel_shared_regs *pc;
4236 
4237 			pc = per_cpu(cpu_hw_events, i).shared_regs;
4238 			if (pc && pc->core_id == core_id) {
4239 				cpuc->kfree_on_online[0] = cpuc->shared_regs;
4240 				cpuc->shared_regs = pc;
4241 				break;
4242 			}
4243 		}
4244 		cpuc->shared_regs->core_id = core_id;
4245 		cpuc->shared_regs->refcnt++;
4246 	}
4247 
4248 	if (x86_pmu.lbr_sel_map)
4249 		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
4250 
4251 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4252 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4253 			struct cpu_hw_events *sibling;
4254 			struct intel_excl_cntrs *c;
4255 
4256 			sibling = &per_cpu(cpu_hw_events, i);
4257 			c = sibling->excl_cntrs;
4258 			if (c && c->core_id == core_id) {
4259 				cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
4260 				cpuc->excl_cntrs = c;
4261 				if (!sibling->excl_thread_id)
4262 					cpuc->excl_thread_id = 1;
4263 				break;
4264 			}
4265 		}
4266 		cpuc->excl_cntrs->core_id = core_id;
4267 		cpuc->excl_cntrs->refcnt++;
4268 	}
4269 }
4270 
4271 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
4272 {
4273 	struct intel_excl_cntrs *c;
4274 
4275 	c = cpuc->excl_cntrs;
4276 	if (c) {
4277 		if (c->core_id == -1 || --c->refcnt == 0)
4278 			kfree(c);
4279 		cpuc->excl_cntrs = NULL;
4280 	}
4281 
4282 	kfree(cpuc->constraint_list);
4283 	cpuc->constraint_list = NULL;
4284 }
4285 
4286 static void intel_pmu_cpu_dying(int cpu)
4287 {
4288 	fini_debug_store_on_cpu(cpu);
4289 }
4290 
4291 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
4292 {
4293 	struct intel_shared_regs *pc;
4294 
4295 	pc = cpuc->shared_regs;
4296 	if (pc) {
4297 		if (pc->core_id == -1 || --pc->refcnt == 0)
4298 			kfree(pc);
4299 		cpuc->shared_regs = NULL;
4300 	}
4301 
4302 	free_excl_cntrs(cpuc);
4303 }
4304 
4305 static void intel_pmu_cpu_dead(int cpu)
4306 {
4307 	intel_cpuc_finish(&per_cpu(cpu_hw_events, cpu));
4308 }
4309 
4310 static void intel_pmu_sched_task(struct perf_event_context *ctx,
4311 				 bool sched_in)
4312 {
4313 	intel_pmu_pebs_sched_task(ctx, sched_in);
4314 	intel_pmu_lbr_sched_task(ctx, sched_in);
4315 }
4316 
4317 static void intel_pmu_swap_task_ctx(struct perf_event_context *prev,
4318 				    struct perf_event_context *next)
4319 {
4320 	intel_pmu_lbr_swap_task_ctx(prev, next);
4321 }
4322 
4323 static int intel_pmu_check_period(struct perf_event *event, u64 value)
4324 {
4325 	return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
4326 }
4327 
4328 static int intel_pmu_aux_output_match(struct perf_event *event)
4329 {
4330 	if (!x86_pmu.intel_cap.pebs_output_pt_available)
4331 		return 0;
4332 
4333 	return is_intel_pt_event(event);
4334 }
4335 
4336 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
4337 
4338 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
4339 
4340 PMU_FORMAT_ATTR(frontend, "config1:0-23");
4341 
4342 static struct attribute *intel_arch3_formats_attr[] = {
4343 	&format_attr_event.attr,
4344 	&format_attr_umask.attr,
4345 	&format_attr_edge.attr,
4346 	&format_attr_pc.attr,
4347 	&format_attr_any.attr,
4348 	&format_attr_inv.attr,
4349 	&format_attr_cmask.attr,
4350 	NULL,
4351 };
4352 
4353 static struct attribute *hsw_format_attr[] = {
4354 	&format_attr_in_tx.attr,
4355 	&format_attr_in_tx_cp.attr,
4356 	&format_attr_offcore_rsp.attr,
4357 	&format_attr_ldlat.attr,
4358 	NULL
4359 };
4360 
4361 static struct attribute *nhm_format_attr[] = {
4362 	&format_attr_offcore_rsp.attr,
4363 	&format_attr_ldlat.attr,
4364 	NULL
4365 };
4366 
4367 static struct attribute *slm_format_attr[] = {
4368 	&format_attr_offcore_rsp.attr,
4369 	NULL
4370 };
4371 
4372 static struct attribute *skl_format_attr[] = {
4373 	&format_attr_frontend.attr,
4374 	NULL,
4375 };
4376 
4377 static __initconst const struct x86_pmu core_pmu = {
4378 	.name			= "core",
4379 	.handle_irq		= x86_pmu_handle_irq,
4380 	.disable_all		= x86_pmu_disable_all,
4381 	.enable_all		= core_pmu_enable_all,
4382 	.enable			= core_pmu_enable_event,
4383 	.disable		= x86_pmu_disable_event,
4384 	.hw_config		= core_pmu_hw_config,
4385 	.schedule_events	= x86_schedule_events,
4386 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
4387 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
4388 	.event_map		= intel_pmu_event_map,
4389 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
4390 	.apic			= 1,
4391 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
4392 
4393 	/*
4394 	 * Intel PMCs cannot be accessed sanely above 32-bit width,
4395 	 * so we install an artificial 1<<31 period regardless of
4396 	 * the generic event period:
4397 	 */
4398 	.max_period		= (1ULL<<31) - 1,
4399 	.get_event_constraints	= intel_get_event_constraints,
4400 	.put_event_constraints	= intel_put_event_constraints,
4401 	.event_constraints	= intel_core_event_constraints,
4402 	.guest_get_msrs		= core_guest_get_msrs,
4403 	.format_attrs		= intel_arch_formats_attr,
4404 	.events_sysfs_show	= intel_event_sysfs_show,
4405 
4406 	/*
4407 	 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
4408 	 * together with PMU version 1 and thus be using core_pmu with
4409 	 * shared_regs. We need following callbacks here to allocate
4410 	 * it properly.
4411 	 */
4412 	.cpu_prepare		= intel_pmu_cpu_prepare,
4413 	.cpu_starting		= intel_pmu_cpu_starting,
4414 	.cpu_dying		= intel_pmu_cpu_dying,
4415 	.cpu_dead		= intel_pmu_cpu_dead,
4416 
4417 	.check_period		= intel_pmu_check_period,
4418 
4419 	.lbr_reset		= intel_pmu_lbr_reset_64,
4420 	.lbr_read		= intel_pmu_lbr_read_64,
4421 	.lbr_save		= intel_pmu_lbr_save,
4422 	.lbr_restore		= intel_pmu_lbr_restore,
4423 };
4424 
4425 static __initconst const struct x86_pmu intel_pmu = {
4426 	.name			= "Intel",
4427 	.handle_irq		= intel_pmu_handle_irq,
4428 	.disable_all		= intel_pmu_disable_all,
4429 	.enable_all		= intel_pmu_enable_all,
4430 	.enable			= intel_pmu_enable_event,
4431 	.disable		= intel_pmu_disable_event,
4432 	.add			= intel_pmu_add_event,
4433 	.del			= intel_pmu_del_event,
4434 	.read			= intel_pmu_read_event,
4435 	.hw_config		= intel_pmu_hw_config,
4436 	.schedule_events	= x86_schedule_events,
4437 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
4438 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
4439 	.event_map		= intel_pmu_event_map,
4440 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
4441 	.apic			= 1,
4442 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
4443 	/*
4444 	 * Intel PMCs cannot be accessed sanely above 32 bit width,
4445 	 * so we install an artificial 1<<31 period regardless of
4446 	 * the generic event period:
4447 	 */
4448 	.max_period		= (1ULL << 31) - 1,
4449 	.get_event_constraints	= intel_get_event_constraints,
4450 	.put_event_constraints	= intel_put_event_constraints,
4451 	.pebs_aliases		= intel_pebs_aliases_core2,
4452 
4453 	.format_attrs		= intel_arch3_formats_attr,
4454 	.events_sysfs_show	= intel_event_sysfs_show,
4455 
4456 	.cpu_prepare		= intel_pmu_cpu_prepare,
4457 	.cpu_starting		= intel_pmu_cpu_starting,
4458 	.cpu_dying		= intel_pmu_cpu_dying,
4459 	.cpu_dead		= intel_pmu_cpu_dead,
4460 
4461 	.guest_get_msrs		= intel_guest_get_msrs,
4462 	.sched_task		= intel_pmu_sched_task,
4463 	.swap_task_ctx		= intel_pmu_swap_task_ctx,
4464 
4465 	.check_period		= intel_pmu_check_period,
4466 
4467 	.aux_output_match	= intel_pmu_aux_output_match,
4468 
4469 	.lbr_reset		= intel_pmu_lbr_reset_64,
4470 	.lbr_read		= intel_pmu_lbr_read_64,
4471 	.lbr_save		= intel_pmu_lbr_save,
4472 	.lbr_restore		= intel_pmu_lbr_restore,
4473 };
4474 
4475 static __init void intel_clovertown_quirk(void)
4476 {
4477 	/*
4478 	 * PEBS is unreliable due to:
4479 	 *
4480 	 *   AJ67  - PEBS may experience CPL leaks
4481 	 *   AJ68  - PEBS PMI may be delayed by one event
4482 	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
4483 	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
4484 	 *
4485 	 * AJ67 could be worked around by restricting the OS/USR flags.
4486 	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
4487 	 *
4488 	 * AJ106 could possibly be worked around by not allowing LBR
4489 	 *       usage from PEBS, including the fixup.
4490 	 * AJ68  could possibly be worked around by always programming
4491 	 *	 a pebs_event_reset[0] value and coping with the lost events.
4492 	 *
4493 	 * But taken together it might just make sense to not enable PEBS on
4494 	 * these chips.
4495 	 */
4496 	pr_warn("PEBS disabled due to CPU errata\n");
4497 	x86_pmu.pebs = 0;
4498 	x86_pmu.pebs_constraints = NULL;
4499 }
4500 
4501 static const struct x86_cpu_desc isolation_ucodes[] = {
4502 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL,		 3, 0x0000001f),
4503 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L,		 1, 0x0000001e),
4504 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G,		 1, 0x00000015),
4505 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 2, 0x00000037),
4506 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 4, 0x0000000a),
4507 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL,		 4, 0x00000023),
4508 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G,		 1, 0x00000014),
4509 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 2, 0x00000010),
4510 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 3, 0x07000009),
4511 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 4, 0x0f000009),
4512 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 5, 0x0e000002),
4513 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,		 2, 0x0b000014),
4514 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 3, 0x00000021),
4515 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 4, 0x00000000),
4516 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 5, 0x00000000),
4517 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 6, 0x00000000),
4518 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 7, 0x00000000),
4519 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L,		 3, 0x0000007c),
4520 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE,		 3, 0x0000007c),
4521 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		 9, 0x0000004e),
4522 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		 9, 0x0000004e),
4523 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		10, 0x0000004e),
4524 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		11, 0x0000004e),
4525 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		12, 0x0000004e),
4526 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		10, 0x0000004e),
4527 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		11, 0x0000004e),
4528 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		12, 0x0000004e),
4529 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		13, 0x0000004e),
4530 	{}
4531 };
4532 
4533 static void intel_check_pebs_isolation(void)
4534 {
4535 	x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
4536 }
4537 
4538 static __init void intel_pebs_isolation_quirk(void)
4539 {
4540 	WARN_ON_ONCE(x86_pmu.check_microcode);
4541 	x86_pmu.check_microcode = intel_check_pebs_isolation;
4542 	intel_check_pebs_isolation();
4543 }
4544 
4545 static const struct x86_cpu_desc pebs_ucodes[] = {
4546 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,		7, 0x00000028),
4547 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	6, 0x00000618),
4548 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	7, 0x0000070c),
4549 	{}
4550 };
4551 
4552 static bool intel_snb_pebs_broken(void)
4553 {
4554 	return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
4555 }
4556 
4557 static void intel_snb_check_microcode(void)
4558 {
4559 	if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
4560 		return;
4561 
4562 	/*
4563 	 * Serialized by the microcode lock..
4564 	 */
4565 	if (x86_pmu.pebs_broken) {
4566 		pr_info("PEBS enabled due to microcode update\n");
4567 		x86_pmu.pebs_broken = 0;
4568 	} else {
4569 		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
4570 		x86_pmu.pebs_broken = 1;
4571 	}
4572 }
4573 
4574 static bool is_lbr_from(unsigned long msr)
4575 {
4576 	unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
4577 
4578 	return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
4579 }
4580 
4581 /*
4582  * Under certain circumstances, access certain MSR may cause #GP.
4583  * The function tests if the input MSR can be safely accessed.
4584  */
4585 static bool check_msr(unsigned long msr, u64 mask)
4586 {
4587 	u64 val_old, val_new, val_tmp;
4588 
4589 	/*
4590 	 * Disable the check for real HW, so we don't
4591 	 * mess with potentionaly enabled registers:
4592 	 */
4593 	if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
4594 		return true;
4595 
4596 	/*
4597 	 * Read the current value, change it and read it back to see if it
4598 	 * matches, this is needed to detect certain hardware emulators
4599 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4600 	 */
4601 	if (rdmsrl_safe(msr, &val_old))
4602 		return false;
4603 
4604 	/*
4605 	 * Only change the bits which can be updated by wrmsrl.
4606 	 */
4607 	val_tmp = val_old ^ mask;
4608 
4609 	if (is_lbr_from(msr))
4610 		val_tmp = lbr_from_signext_quirk_wr(val_tmp);
4611 
4612 	if (wrmsrl_safe(msr, val_tmp) ||
4613 	    rdmsrl_safe(msr, &val_new))
4614 		return false;
4615 
4616 	/*
4617 	 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
4618 	 * should equal rdmsrl()'s even with the quirk.
4619 	 */
4620 	if (val_new != val_tmp)
4621 		return false;
4622 
4623 	if (is_lbr_from(msr))
4624 		val_old = lbr_from_signext_quirk_wr(val_old);
4625 
4626 	/* Here it's sure that the MSR can be safely accessed.
4627 	 * Restore the old value and return.
4628 	 */
4629 	wrmsrl(msr, val_old);
4630 
4631 	return true;
4632 }
4633 
4634 static __init void intel_sandybridge_quirk(void)
4635 {
4636 	x86_pmu.check_microcode = intel_snb_check_microcode;
4637 	cpus_read_lock();
4638 	intel_snb_check_microcode();
4639 	cpus_read_unlock();
4640 }
4641 
4642 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
4643 	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
4644 	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
4645 	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
4646 	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
4647 	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
4648 	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
4649 	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
4650 };
4651 
4652 static __init void intel_arch_events_quirk(void)
4653 {
4654 	int bit;
4655 
4656 	/* disable event that reported as not presend by cpuid */
4657 	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
4658 		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
4659 		pr_warn("CPUID marked event: \'%s\' unavailable\n",
4660 			intel_arch_events_map[bit].name);
4661 	}
4662 }
4663 
4664 static __init void intel_nehalem_quirk(void)
4665 {
4666 	union cpuid10_ebx ebx;
4667 
4668 	ebx.full = x86_pmu.events_maskl;
4669 	if (ebx.split.no_branch_misses_retired) {
4670 		/*
4671 		 * Erratum AAJ80 detected, we work it around by using
4672 		 * the BR_MISP_EXEC.ANY event. This will over-count
4673 		 * branch-misses, but it's still much better than the
4674 		 * architectural event which is often completely bogus:
4675 		 */
4676 		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
4677 		ebx.split.no_branch_misses_retired = 0;
4678 		x86_pmu.events_maskl = ebx.full;
4679 		pr_info("CPU erratum AAJ80 worked around\n");
4680 	}
4681 }
4682 
4683 /*
4684  * enable software workaround for errata:
4685  * SNB: BJ122
4686  * IVB: BV98
4687  * HSW: HSD29
4688  *
4689  * Only needed when HT is enabled. However detecting
4690  * if HT is enabled is difficult (model specific). So instead,
4691  * we enable the workaround in the early boot, and verify if
4692  * it is needed in a later initcall phase once we have valid
4693  * topology information to check if HT is actually enabled
4694  */
4695 static __init void intel_ht_bug(void)
4696 {
4697 	x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
4698 
4699 	x86_pmu.start_scheduling = intel_start_scheduling;
4700 	x86_pmu.commit_scheduling = intel_commit_scheduling;
4701 	x86_pmu.stop_scheduling = intel_stop_scheduling;
4702 }
4703 
4704 EVENT_ATTR_STR(mem-loads,	mem_ld_hsw,	"event=0xcd,umask=0x1,ldlat=3");
4705 EVENT_ATTR_STR(mem-stores,	mem_st_hsw,	"event=0xd0,umask=0x82")
4706 
4707 /* Haswell special events */
4708 EVENT_ATTR_STR(tx-start,	tx_start,	"event=0xc9,umask=0x1");
4709 EVENT_ATTR_STR(tx-commit,	tx_commit,	"event=0xc9,umask=0x2");
4710 EVENT_ATTR_STR(tx-abort,	tx_abort,	"event=0xc9,umask=0x4");
4711 EVENT_ATTR_STR(tx-capacity,	tx_capacity,	"event=0x54,umask=0x2");
4712 EVENT_ATTR_STR(tx-conflict,	tx_conflict,	"event=0x54,umask=0x1");
4713 EVENT_ATTR_STR(el-start,	el_start,	"event=0xc8,umask=0x1");
4714 EVENT_ATTR_STR(el-commit,	el_commit,	"event=0xc8,umask=0x2");
4715 EVENT_ATTR_STR(el-abort,	el_abort,	"event=0xc8,umask=0x4");
4716 EVENT_ATTR_STR(el-capacity,	el_capacity,	"event=0x54,umask=0x2");
4717 EVENT_ATTR_STR(el-conflict,	el_conflict,	"event=0x54,umask=0x1");
4718 EVENT_ATTR_STR(cycles-t,	cycles_t,	"event=0x3c,in_tx=1");
4719 EVENT_ATTR_STR(cycles-ct,	cycles_ct,	"event=0x3c,in_tx=1,in_tx_cp=1");
4720 
4721 static struct attribute *hsw_events_attrs[] = {
4722 	EVENT_PTR(td_slots_issued),
4723 	EVENT_PTR(td_slots_retired),
4724 	EVENT_PTR(td_fetch_bubbles),
4725 	EVENT_PTR(td_total_slots),
4726 	EVENT_PTR(td_total_slots_scale),
4727 	EVENT_PTR(td_recovery_bubbles),
4728 	EVENT_PTR(td_recovery_bubbles_scale),
4729 	NULL
4730 };
4731 
4732 static struct attribute *hsw_mem_events_attrs[] = {
4733 	EVENT_PTR(mem_ld_hsw),
4734 	EVENT_PTR(mem_st_hsw),
4735 	NULL,
4736 };
4737 
4738 static struct attribute *hsw_tsx_events_attrs[] = {
4739 	EVENT_PTR(tx_start),
4740 	EVENT_PTR(tx_commit),
4741 	EVENT_PTR(tx_abort),
4742 	EVENT_PTR(tx_capacity),
4743 	EVENT_PTR(tx_conflict),
4744 	EVENT_PTR(el_start),
4745 	EVENT_PTR(el_commit),
4746 	EVENT_PTR(el_abort),
4747 	EVENT_PTR(el_capacity),
4748 	EVENT_PTR(el_conflict),
4749 	EVENT_PTR(cycles_t),
4750 	EVENT_PTR(cycles_ct),
4751 	NULL
4752 };
4753 
4754 EVENT_ATTR_STR(tx-capacity-read,  tx_capacity_read,  "event=0x54,umask=0x80");
4755 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
4756 EVENT_ATTR_STR(el-capacity-read,  el_capacity_read,  "event=0x54,umask=0x80");
4757 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
4758 
4759 static struct attribute *icl_events_attrs[] = {
4760 	EVENT_PTR(mem_ld_hsw),
4761 	EVENT_PTR(mem_st_hsw),
4762 	NULL,
4763 };
4764 
4765 static struct attribute *icl_td_events_attrs[] = {
4766 	EVENT_PTR(slots),
4767 	EVENT_PTR(td_retiring),
4768 	EVENT_PTR(td_bad_spec),
4769 	EVENT_PTR(td_fe_bound),
4770 	EVENT_PTR(td_be_bound),
4771 	NULL,
4772 };
4773 
4774 static struct attribute *icl_tsx_events_attrs[] = {
4775 	EVENT_PTR(tx_start),
4776 	EVENT_PTR(tx_abort),
4777 	EVENT_PTR(tx_commit),
4778 	EVENT_PTR(tx_capacity_read),
4779 	EVENT_PTR(tx_capacity_write),
4780 	EVENT_PTR(tx_conflict),
4781 	EVENT_PTR(el_start),
4782 	EVENT_PTR(el_abort),
4783 	EVENT_PTR(el_commit),
4784 	EVENT_PTR(el_capacity_read),
4785 	EVENT_PTR(el_capacity_write),
4786 	EVENT_PTR(el_conflict),
4787 	EVENT_PTR(cycles_t),
4788 	EVENT_PTR(cycles_ct),
4789 	NULL,
4790 };
4791 
4792 
4793 EVENT_ATTR_STR(mem-stores,	mem_st_spr,	"event=0xcd,umask=0x2");
4794 EVENT_ATTR_STR(mem-loads-aux,	mem_ld_aux,	"event=0x03,umask=0x82");
4795 
4796 static struct attribute *spr_events_attrs[] = {
4797 	EVENT_PTR(mem_ld_hsw),
4798 	EVENT_PTR(mem_st_spr),
4799 	EVENT_PTR(mem_ld_aux),
4800 	NULL,
4801 };
4802 
4803 static struct attribute *spr_td_events_attrs[] = {
4804 	EVENT_PTR(slots),
4805 	EVENT_PTR(td_retiring),
4806 	EVENT_PTR(td_bad_spec),
4807 	EVENT_PTR(td_fe_bound),
4808 	EVENT_PTR(td_be_bound),
4809 	EVENT_PTR(td_heavy_ops),
4810 	EVENT_PTR(td_br_mispredict),
4811 	EVENT_PTR(td_fetch_lat),
4812 	EVENT_PTR(td_mem_bound),
4813 	NULL,
4814 };
4815 
4816 static struct attribute *spr_tsx_events_attrs[] = {
4817 	EVENT_PTR(tx_start),
4818 	EVENT_PTR(tx_abort),
4819 	EVENT_PTR(tx_commit),
4820 	EVENT_PTR(tx_capacity_read),
4821 	EVENT_PTR(tx_capacity_write),
4822 	EVENT_PTR(tx_conflict),
4823 	EVENT_PTR(cycles_t),
4824 	EVENT_PTR(cycles_ct),
4825 	NULL,
4826 };
4827 
4828 static ssize_t freeze_on_smi_show(struct device *cdev,
4829 				  struct device_attribute *attr,
4830 				  char *buf)
4831 {
4832 	return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
4833 }
4834 
4835 static DEFINE_MUTEX(freeze_on_smi_mutex);
4836 
4837 static ssize_t freeze_on_smi_store(struct device *cdev,
4838 				   struct device_attribute *attr,
4839 				   const char *buf, size_t count)
4840 {
4841 	unsigned long val;
4842 	ssize_t ret;
4843 
4844 	ret = kstrtoul(buf, 0, &val);
4845 	if (ret)
4846 		return ret;
4847 
4848 	if (val > 1)
4849 		return -EINVAL;
4850 
4851 	mutex_lock(&freeze_on_smi_mutex);
4852 
4853 	if (x86_pmu.attr_freeze_on_smi == val)
4854 		goto done;
4855 
4856 	x86_pmu.attr_freeze_on_smi = val;
4857 
4858 	get_online_cpus();
4859 	on_each_cpu(flip_smm_bit, &val, 1);
4860 	put_online_cpus();
4861 done:
4862 	mutex_unlock(&freeze_on_smi_mutex);
4863 
4864 	return count;
4865 }
4866 
4867 static void update_tfa_sched(void *ignored)
4868 {
4869 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4870 
4871 	/*
4872 	 * check if PMC3 is used
4873 	 * and if so force schedule out for all event types all contexts
4874 	 */
4875 	if (test_bit(3, cpuc->active_mask))
4876 		perf_pmu_resched(x86_get_pmu());
4877 }
4878 
4879 static ssize_t show_sysctl_tfa(struct device *cdev,
4880 			      struct device_attribute *attr,
4881 			      char *buf)
4882 {
4883 	return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
4884 }
4885 
4886 static ssize_t set_sysctl_tfa(struct device *cdev,
4887 			      struct device_attribute *attr,
4888 			      const char *buf, size_t count)
4889 {
4890 	bool val;
4891 	ssize_t ret;
4892 
4893 	ret = kstrtobool(buf, &val);
4894 	if (ret)
4895 		return ret;
4896 
4897 	/* no change */
4898 	if (val == allow_tsx_force_abort)
4899 		return count;
4900 
4901 	allow_tsx_force_abort = val;
4902 
4903 	get_online_cpus();
4904 	on_each_cpu(update_tfa_sched, NULL, 1);
4905 	put_online_cpus();
4906 
4907 	return count;
4908 }
4909 
4910 
4911 static DEVICE_ATTR_RW(freeze_on_smi);
4912 
4913 static ssize_t branches_show(struct device *cdev,
4914 			     struct device_attribute *attr,
4915 			     char *buf)
4916 {
4917 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
4918 }
4919 
4920 static DEVICE_ATTR_RO(branches);
4921 
4922 static struct attribute *lbr_attrs[] = {
4923 	&dev_attr_branches.attr,
4924 	NULL
4925 };
4926 
4927 static char pmu_name_str[30];
4928 
4929 static ssize_t pmu_name_show(struct device *cdev,
4930 			     struct device_attribute *attr,
4931 			     char *buf)
4932 {
4933 	return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
4934 }
4935 
4936 static DEVICE_ATTR_RO(pmu_name);
4937 
4938 static struct attribute *intel_pmu_caps_attrs[] = {
4939        &dev_attr_pmu_name.attr,
4940        NULL
4941 };
4942 
4943 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
4944 		   show_sysctl_tfa,
4945 		   set_sysctl_tfa);
4946 
4947 static struct attribute *intel_pmu_attrs[] = {
4948 	&dev_attr_freeze_on_smi.attr,
4949 	&dev_attr_allow_tsx_force_abort.attr,
4950 	NULL,
4951 };
4952 
4953 static umode_t
4954 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4955 {
4956 	return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
4957 }
4958 
4959 static umode_t
4960 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4961 {
4962 	return x86_pmu.pebs ? attr->mode : 0;
4963 }
4964 
4965 static umode_t
4966 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4967 {
4968 	return x86_pmu.lbr_nr ? attr->mode : 0;
4969 }
4970 
4971 static umode_t
4972 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4973 {
4974 	return x86_pmu.version >= 2 ? attr->mode : 0;
4975 }
4976 
4977 static umode_t
4978 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4979 {
4980 	if (attr == &dev_attr_allow_tsx_force_abort.attr)
4981 		return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
4982 
4983 	return attr->mode;
4984 }
4985 
4986 static struct attribute_group group_events_td  = {
4987 	.name = "events",
4988 };
4989 
4990 static struct attribute_group group_events_mem = {
4991 	.name       = "events",
4992 	.is_visible = pebs_is_visible,
4993 };
4994 
4995 static struct attribute_group group_events_tsx = {
4996 	.name       = "events",
4997 	.is_visible = tsx_is_visible,
4998 };
4999 
5000 static struct attribute_group group_caps_gen = {
5001 	.name  = "caps",
5002 	.attrs = intel_pmu_caps_attrs,
5003 };
5004 
5005 static struct attribute_group group_caps_lbr = {
5006 	.name       = "caps",
5007 	.attrs	    = lbr_attrs,
5008 	.is_visible = lbr_is_visible,
5009 };
5010 
5011 static struct attribute_group group_format_extra = {
5012 	.name       = "format",
5013 	.is_visible = exra_is_visible,
5014 };
5015 
5016 static struct attribute_group group_format_extra_skl = {
5017 	.name       = "format",
5018 	.is_visible = exra_is_visible,
5019 };
5020 
5021 static struct attribute_group group_default = {
5022 	.attrs      = intel_pmu_attrs,
5023 	.is_visible = default_is_visible,
5024 };
5025 
5026 static const struct attribute_group *attr_update[] = {
5027 	&group_events_td,
5028 	&group_events_mem,
5029 	&group_events_tsx,
5030 	&group_caps_gen,
5031 	&group_caps_lbr,
5032 	&group_format_extra,
5033 	&group_format_extra_skl,
5034 	&group_default,
5035 	NULL,
5036 };
5037 
5038 static struct attribute *empty_attrs;
5039 
5040 __init int intel_pmu_init(void)
5041 {
5042 	struct attribute **extra_skl_attr = &empty_attrs;
5043 	struct attribute **extra_attr = &empty_attrs;
5044 	struct attribute **td_attr    = &empty_attrs;
5045 	struct attribute **mem_attr   = &empty_attrs;
5046 	struct attribute **tsx_attr   = &empty_attrs;
5047 	union cpuid10_edx edx;
5048 	union cpuid10_eax eax;
5049 	union cpuid10_ebx ebx;
5050 	struct event_constraint *c;
5051 	unsigned int fixed_mask;
5052 	struct extra_reg *er;
5053 	bool pmem = false;
5054 	int version, i;
5055 	char *name;
5056 
5057 	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
5058 		switch (boot_cpu_data.x86) {
5059 		case 0x6:
5060 			return p6_pmu_init();
5061 		case 0xb:
5062 			return knc_pmu_init();
5063 		case 0xf:
5064 			return p4_pmu_init();
5065 		}
5066 		return -ENODEV;
5067 	}
5068 
5069 	/*
5070 	 * Check whether the Architectural PerfMon supports
5071 	 * Branch Misses Retired hw_event or not.
5072 	 */
5073 	cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full);
5074 	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
5075 		return -ENODEV;
5076 
5077 	version = eax.split.version_id;
5078 	if (version < 2)
5079 		x86_pmu = core_pmu;
5080 	else
5081 		x86_pmu = intel_pmu;
5082 
5083 	x86_pmu.version			= version;
5084 	x86_pmu.num_counters		= eax.split.num_counters;
5085 	x86_pmu.cntval_bits		= eax.split.bit_width;
5086 	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
5087 
5088 	x86_pmu.events_maskl		= ebx.full;
5089 	x86_pmu.events_mask_len		= eax.split.mask_length;
5090 
5091 	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
5092 
5093 	/*
5094 	 * Quirk: v2 perfmon does not report fixed-purpose events, so
5095 	 * assume at least 3 events, when not running in a hypervisor:
5096 	 */
5097 	if (version > 1 && version < 5) {
5098 		int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
5099 
5100 		x86_pmu.num_counters_fixed =
5101 			max((int)edx.split.num_counters_fixed, assume);
5102 
5103 		fixed_mask = (1L << x86_pmu.num_counters_fixed) - 1;
5104 	} else if (version >= 5)
5105 		x86_pmu.num_counters_fixed = fls(fixed_mask);
5106 
5107 	if (boot_cpu_has(X86_FEATURE_PDCM)) {
5108 		u64 capabilities;
5109 
5110 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
5111 		x86_pmu.intel_cap.capabilities = capabilities;
5112 	}
5113 
5114 	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
5115 		x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
5116 		x86_pmu.lbr_read = intel_pmu_lbr_read_32;
5117 	}
5118 
5119 	if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
5120 		intel_pmu_arch_lbr_init();
5121 
5122 	intel_ds_init();
5123 
5124 	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
5125 
5126 	if (version >= 5) {
5127 		x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
5128 		if (x86_pmu.intel_cap.anythread_deprecated)
5129 			pr_cont(" AnyThread deprecated, ");
5130 	}
5131 
5132 	/*
5133 	 * Install the hw-cache-events table:
5134 	 */
5135 	switch (boot_cpu_data.x86_model) {
5136 	case INTEL_FAM6_CORE_YONAH:
5137 		pr_cont("Core events, ");
5138 		name = "core";
5139 		break;
5140 
5141 	case INTEL_FAM6_CORE2_MEROM:
5142 		x86_add_quirk(intel_clovertown_quirk);
5143 		fallthrough;
5144 
5145 	case INTEL_FAM6_CORE2_MEROM_L:
5146 	case INTEL_FAM6_CORE2_PENRYN:
5147 	case INTEL_FAM6_CORE2_DUNNINGTON:
5148 		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
5149 		       sizeof(hw_cache_event_ids));
5150 
5151 		intel_pmu_lbr_init_core();
5152 
5153 		x86_pmu.event_constraints = intel_core2_event_constraints;
5154 		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
5155 		pr_cont("Core2 events, ");
5156 		name = "core2";
5157 		break;
5158 
5159 	case INTEL_FAM6_NEHALEM:
5160 	case INTEL_FAM6_NEHALEM_EP:
5161 	case INTEL_FAM6_NEHALEM_EX:
5162 		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
5163 		       sizeof(hw_cache_event_ids));
5164 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5165 		       sizeof(hw_cache_extra_regs));
5166 
5167 		intel_pmu_lbr_init_nhm();
5168 
5169 		x86_pmu.event_constraints = intel_nehalem_event_constraints;
5170 		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
5171 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5172 		x86_pmu.extra_regs = intel_nehalem_extra_regs;
5173 		x86_pmu.limit_period = nhm_limit_period;
5174 
5175 		mem_attr = nhm_mem_events_attrs;
5176 
5177 		/* UOPS_ISSUED.STALLED_CYCLES */
5178 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5179 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5180 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5181 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5182 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5183 
5184 		intel_pmu_pebs_data_source_nhm();
5185 		x86_add_quirk(intel_nehalem_quirk);
5186 		x86_pmu.pebs_no_tlb = 1;
5187 		extra_attr = nhm_format_attr;
5188 
5189 		pr_cont("Nehalem events, ");
5190 		name = "nehalem";
5191 		break;
5192 
5193 	case INTEL_FAM6_ATOM_BONNELL:
5194 	case INTEL_FAM6_ATOM_BONNELL_MID:
5195 	case INTEL_FAM6_ATOM_SALTWELL:
5196 	case INTEL_FAM6_ATOM_SALTWELL_MID:
5197 	case INTEL_FAM6_ATOM_SALTWELL_TABLET:
5198 		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
5199 		       sizeof(hw_cache_event_ids));
5200 
5201 		intel_pmu_lbr_init_atom();
5202 
5203 		x86_pmu.event_constraints = intel_gen_event_constraints;
5204 		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
5205 		x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
5206 		pr_cont("Atom events, ");
5207 		name = "bonnell";
5208 		break;
5209 
5210 	case INTEL_FAM6_ATOM_SILVERMONT:
5211 	case INTEL_FAM6_ATOM_SILVERMONT_D:
5212 	case INTEL_FAM6_ATOM_SILVERMONT_MID:
5213 	case INTEL_FAM6_ATOM_AIRMONT:
5214 	case INTEL_FAM6_ATOM_AIRMONT_MID:
5215 		memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
5216 			sizeof(hw_cache_event_ids));
5217 		memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
5218 		       sizeof(hw_cache_extra_regs));
5219 
5220 		intel_pmu_lbr_init_slm();
5221 
5222 		x86_pmu.event_constraints = intel_slm_event_constraints;
5223 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
5224 		x86_pmu.extra_regs = intel_slm_extra_regs;
5225 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5226 		td_attr = slm_events_attrs;
5227 		extra_attr = slm_format_attr;
5228 		pr_cont("Silvermont events, ");
5229 		name = "silvermont";
5230 		break;
5231 
5232 	case INTEL_FAM6_ATOM_GOLDMONT:
5233 	case INTEL_FAM6_ATOM_GOLDMONT_D:
5234 		memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
5235 		       sizeof(hw_cache_event_ids));
5236 		memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
5237 		       sizeof(hw_cache_extra_regs));
5238 
5239 		intel_pmu_lbr_init_skl();
5240 
5241 		x86_pmu.event_constraints = intel_slm_event_constraints;
5242 		x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
5243 		x86_pmu.extra_regs = intel_glm_extra_regs;
5244 		/*
5245 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5246 		 * for precise cycles.
5247 		 * :pp is identical to :ppp
5248 		 */
5249 		x86_pmu.pebs_aliases = NULL;
5250 		x86_pmu.pebs_prec_dist = true;
5251 		x86_pmu.lbr_pt_coexist = true;
5252 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5253 		td_attr = glm_events_attrs;
5254 		extra_attr = slm_format_attr;
5255 		pr_cont("Goldmont events, ");
5256 		name = "goldmont";
5257 		break;
5258 
5259 	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
5260 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5261 		       sizeof(hw_cache_event_ids));
5262 		memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
5263 		       sizeof(hw_cache_extra_regs));
5264 
5265 		intel_pmu_lbr_init_skl();
5266 
5267 		x86_pmu.event_constraints = intel_slm_event_constraints;
5268 		x86_pmu.extra_regs = intel_glm_extra_regs;
5269 		/*
5270 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5271 		 * for precise cycles.
5272 		 */
5273 		x86_pmu.pebs_aliases = NULL;
5274 		x86_pmu.pebs_prec_dist = true;
5275 		x86_pmu.lbr_pt_coexist = true;
5276 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5277 		x86_pmu.flags |= PMU_FL_PEBS_ALL;
5278 		x86_pmu.get_event_constraints = glp_get_event_constraints;
5279 		td_attr = glm_events_attrs;
5280 		/* Goldmont Plus has 4-wide pipeline */
5281 		event_attr_td_total_slots_scale_glm.event_str = "4";
5282 		extra_attr = slm_format_attr;
5283 		pr_cont("Goldmont plus events, ");
5284 		name = "goldmont_plus";
5285 		break;
5286 
5287 	case INTEL_FAM6_ATOM_TREMONT_D:
5288 	case INTEL_FAM6_ATOM_TREMONT:
5289 	case INTEL_FAM6_ATOM_TREMONT_L:
5290 		x86_pmu.late_ack = true;
5291 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5292 		       sizeof(hw_cache_event_ids));
5293 		memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
5294 		       sizeof(hw_cache_extra_regs));
5295 		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
5296 
5297 		intel_pmu_lbr_init_skl();
5298 
5299 		x86_pmu.event_constraints = intel_slm_event_constraints;
5300 		x86_pmu.extra_regs = intel_tnt_extra_regs;
5301 		/*
5302 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5303 		 * for precise cycles.
5304 		 */
5305 		x86_pmu.pebs_aliases = NULL;
5306 		x86_pmu.pebs_prec_dist = true;
5307 		x86_pmu.lbr_pt_coexist = true;
5308 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5309 		x86_pmu.get_event_constraints = tnt_get_event_constraints;
5310 		td_attr = tnt_events_attrs;
5311 		extra_attr = slm_format_attr;
5312 		pr_cont("Tremont events, ");
5313 		name = "Tremont";
5314 		break;
5315 
5316 	case INTEL_FAM6_WESTMERE:
5317 	case INTEL_FAM6_WESTMERE_EP:
5318 	case INTEL_FAM6_WESTMERE_EX:
5319 		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
5320 		       sizeof(hw_cache_event_ids));
5321 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5322 		       sizeof(hw_cache_extra_regs));
5323 
5324 		intel_pmu_lbr_init_nhm();
5325 
5326 		x86_pmu.event_constraints = intel_westmere_event_constraints;
5327 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5328 		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
5329 		x86_pmu.extra_regs = intel_westmere_extra_regs;
5330 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5331 
5332 		mem_attr = nhm_mem_events_attrs;
5333 
5334 		/* UOPS_ISSUED.STALLED_CYCLES */
5335 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5336 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5337 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5338 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5339 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5340 
5341 		intel_pmu_pebs_data_source_nhm();
5342 		extra_attr = nhm_format_attr;
5343 		pr_cont("Westmere events, ");
5344 		name = "westmere";
5345 		break;
5346 
5347 	case INTEL_FAM6_SANDYBRIDGE:
5348 	case INTEL_FAM6_SANDYBRIDGE_X:
5349 		x86_add_quirk(intel_sandybridge_quirk);
5350 		x86_add_quirk(intel_ht_bug);
5351 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
5352 		       sizeof(hw_cache_event_ids));
5353 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
5354 		       sizeof(hw_cache_extra_regs));
5355 
5356 		intel_pmu_lbr_init_snb();
5357 
5358 		x86_pmu.event_constraints = intel_snb_event_constraints;
5359 		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
5360 		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
5361 		if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
5362 			x86_pmu.extra_regs = intel_snbep_extra_regs;
5363 		else
5364 			x86_pmu.extra_regs = intel_snb_extra_regs;
5365 
5366 
5367 		/* all extra regs are per-cpu when HT is on */
5368 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5369 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5370 
5371 		td_attr  = snb_events_attrs;
5372 		mem_attr = snb_mem_events_attrs;
5373 
5374 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
5375 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5376 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5377 		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
5378 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5379 			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
5380 
5381 		extra_attr = nhm_format_attr;
5382 
5383 		pr_cont("SandyBridge events, ");
5384 		name = "sandybridge";
5385 		break;
5386 
5387 	case INTEL_FAM6_IVYBRIDGE:
5388 	case INTEL_FAM6_IVYBRIDGE_X:
5389 		x86_add_quirk(intel_ht_bug);
5390 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
5391 		       sizeof(hw_cache_event_ids));
5392 		/* dTLB-load-misses on IVB is different than SNB */
5393 		hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
5394 
5395 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
5396 		       sizeof(hw_cache_extra_regs));
5397 
5398 		intel_pmu_lbr_init_snb();
5399 
5400 		x86_pmu.event_constraints = intel_ivb_event_constraints;
5401 		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
5402 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5403 		x86_pmu.pebs_prec_dist = true;
5404 		if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
5405 			x86_pmu.extra_regs = intel_snbep_extra_regs;
5406 		else
5407 			x86_pmu.extra_regs = intel_snb_extra_regs;
5408 		/* all extra regs are per-cpu when HT is on */
5409 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5410 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5411 
5412 		td_attr  = snb_events_attrs;
5413 		mem_attr = snb_mem_events_attrs;
5414 
5415 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
5416 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5417 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5418 
5419 		extra_attr = nhm_format_attr;
5420 
5421 		pr_cont("IvyBridge events, ");
5422 		name = "ivybridge";
5423 		break;
5424 
5425 
5426 	case INTEL_FAM6_HASWELL:
5427 	case INTEL_FAM6_HASWELL_X:
5428 	case INTEL_FAM6_HASWELL_L:
5429 	case INTEL_FAM6_HASWELL_G:
5430 		x86_add_quirk(intel_ht_bug);
5431 		x86_add_quirk(intel_pebs_isolation_quirk);
5432 		x86_pmu.late_ack = true;
5433 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5434 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5435 
5436 		intel_pmu_lbr_init_hsw();
5437 
5438 		x86_pmu.event_constraints = intel_hsw_event_constraints;
5439 		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
5440 		x86_pmu.extra_regs = intel_snbep_extra_regs;
5441 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5442 		x86_pmu.pebs_prec_dist = true;
5443 		/* all extra regs are per-cpu when HT is on */
5444 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5445 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5446 
5447 		x86_pmu.hw_config = hsw_hw_config;
5448 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
5449 		x86_pmu.lbr_double_abort = true;
5450 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5451 			hsw_format_attr : nhm_format_attr;
5452 		td_attr  = hsw_events_attrs;
5453 		mem_attr = hsw_mem_events_attrs;
5454 		tsx_attr = hsw_tsx_events_attrs;
5455 		pr_cont("Haswell events, ");
5456 		name = "haswell";
5457 		break;
5458 
5459 	case INTEL_FAM6_BROADWELL:
5460 	case INTEL_FAM6_BROADWELL_D:
5461 	case INTEL_FAM6_BROADWELL_G:
5462 	case INTEL_FAM6_BROADWELL_X:
5463 		x86_add_quirk(intel_pebs_isolation_quirk);
5464 		x86_pmu.late_ack = true;
5465 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5466 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5467 
5468 		/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
5469 		hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
5470 									 BDW_L3_MISS|HSW_SNOOP_DRAM;
5471 		hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
5472 									  HSW_SNOOP_DRAM;
5473 		hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
5474 									     BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
5475 		hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
5476 									      BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
5477 
5478 		intel_pmu_lbr_init_hsw();
5479 
5480 		x86_pmu.event_constraints = intel_bdw_event_constraints;
5481 		x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
5482 		x86_pmu.extra_regs = intel_snbep_extra_regs;
5483 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5484 		x86_pmu.pebs_prec_dist = true;
5485 		/* all extra regs are per-cpu when HT is on */
5486 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5487 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5488 
5489 		x86_pmu.hw_config = hsw_hw_config;
5490 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
5491 		x86_pmu.limit_period = bdw_limit_period;
5492 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5493 			hsw_format_attr : nhm_format_attr;
5494 		td_attr  = hsw_events_attrs;
5495 		mem_attr = hsw_mem_events_attrs;
5496 		tsx_attr = hsw_tsx_events_attrs;
5497 		pr_cont("Broadwell events, ");
5498 		name = "broadwell";
5499 		break;
5500 
5501 	case INTEL_FAM6_XEON_PHI_KNL:
5502 	case INTEL_FAM6_XEON_PHI_KNM:
5503 		memcpy(hw_cache_event_ids,
5504 		       slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5505 		memcpy(hw_cache_extra_regs,
5506 		       knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5507 		intel_pmu_lbr_init_knl();
5508 
5509 		x86_pmu.event_constraints = intel_slm_event_constraints;
5510 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
5511 		x86_pmu.extra_regs = intel_knl_extra_regs;
5512 
5513 		/* all extra regs are per-cpu when HT is on */
5514 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5515 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5516 		extra_attr = slm_format_attr;
5517 		pr_cont("Knights Landing/Mill events, ");
5518 		name = "knights-landing";
5519 		break;
5520 
5521 	case INTEL_FAM6_SKYLAKE_X:
5522 		pmem = true;
5523 		fallthrough;
5524 	case INTEL_FAM6_SKYLAKE_L:
5525 	case INTEL_FAM6_SKYLAKE:
5526 	case INTEL_FAM6_KABYLAKE_L:
5527 	case INTEL_FAM6_KABYLAKE:
5528 	case INTEL_FAM6_COMETLAKE_L:
5529 	case INTEL_FAM6_COMETLAKE:
5530 		x86_add_quirk(intel_pebs_isolation_quirk);
5531 		x86_pmu.late_ack = true;
5532 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5533 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5534 		intel_pmu_lbr_init_skl();
5535 
5536 		/* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
5537 		event_attr_td_recovery_bubbles.event_str_noht =
5538 			"event=0xd,umask=0x1,cmask=1";
5539 		event_attr_td_recovery_bubbles.event_str_ht =
5540 			"event=0xd,umask=0x1,cmask=1,any=1";
5541 
5542 		x86_pmu.event_constraints = intel_skl_event_constraints;
5543 		x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
5544 		x86_pmu.extra_regs = intel_skl_extra_regs;
5545 		x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
5546 		x86_pmu.pebs_prec_dist = true;
5547 		/* all extra regs are per-cpu when HT is on */
5548 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5549 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5550 
5551 		x86_pmu.hw_config = hsw_hw_config;
5552 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
5553 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5554 			hsw_format_attr : nhm_format_attr;
5555 		extra_skl_attr = skl_format_attr;
5556 		td_attr  = hsw_events_attrs;
5557 		mem_attr = hsw_mem_events_attrs;
5558 		tsx_attr = hsw_tsx_events_attrs;
5559 		intel_pmu_pebs_data_source_skl(pmem);
5560 
5561 		if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT)) {
5562 			x86_pmu.flags |= PMU_FL_TFA;
5563 			x86_pmu.get_event_constraints = tfa_get_event_constraints;
5564 			x86_pmu.enable_all = intel_tfa_pmu_enable_all;
5565 			x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
5566 		}
5567 
5568 		pr_cont("Skylake events, ");
5569 		name = "skylake";
5570 		break;
5571 
5572 	case INTEL_FAM6_ICELAKE_X:
5573 	case INTEL_FAM6_ICELAKE_D:
5574 		pmem = true;
5575 		fallthrough;
5576 	case INTEL_FAM6_ICELAKE_L:
5577 	case INTEL_FAM6_ICELAKE:
5578 	case INTEL_FAM6_TIGERLAKE_L:
5579 	case INTEL_FAM6_TIGERLAKE:
5580 	case INTEL_FAM6_ROCKETLAKE:
5581 		x86_pmu.late_ack = true;
5582 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5583 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5584 		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
5585 		intel_pmu_lbr_init_skl();
5586 
5587 		x86_pmu.event_constraints = intel_icl_event_constraints;
5588 		x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
5589 		x86_pmu.extra_regs = intel_icl_extra_regs;
5590 		x86_pmu.pebs_aliases = NULL;
5591 		x86_pmu.pebs_prec_dist = true;
5592 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5593 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5594 
5595 		x86_pmu.hw_config = hsw_hw_config;
5596 		x86_pmu.get_event_constraints = icl_get_event_constraints;
5597 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5598 			hsw_format_attr : nhm_format_attr;
5599 		extra_skl_attr = skl_format_attr;
5600 		mem_attr = icl_events_attrs;
5601 		td_attr = icl_td_events_attrs;
5602 		tsx_attr = icl_tsx_events_attrs;
5603 		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
5604 		x86_pmu.lbr_pt_coexist = true;
5605 		intel_pmu_pebs_data_source_skl(pmem);
5606 		x86_pmu.num_topdown_events = 4;
5607 		x86_pmu.update_topdown_event = icl_update_topdown_event;
5608 		x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
5609 		pr_cont("Icelake events, ");
5610 		name = "icelake";
5611 		break;
5612 
5613 	case INTEL_FAM6_SAPPHIRERAPIDS_X:
5614 		pmem = true;
5615 		x86_pmu.late_ack = true;
5616 		memcpy(hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5617 		memcpy(hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5618 
5619 		x86_pmu.event_constraints = intel_spr_event_constraints;
5620 		x86_pmu.pebs_constraints = intel_spr_pebs_event_constraints;
5621 		x86_pmu.extra_regs = intel_spr_extra_regs;
5622 		x86_pmu.limit_period = spr_limit_period;
5623 		x86_pmu.pebs_aliases = NULL;
5624 		x86_pmu.pebs_prec_dist = true;
5625 		x86_pmu.pebs_block = true;
5626 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5627 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5628 		x86_pmu.flags |= PMU_FL_PEBS_ALL;
5629 		x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
5630 		x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
5631 
5632 		x86_pmu.hw_config = hsw_hw_config;
5633 		x86_pmu.get_event_constraints = spr_get_event_constraints;
5634 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5635 			hsw_format_attr : nhm_format_attr;
5636 		extra_skl_attr = skl_format_attr;
5637 		mem_attr = spr_events_attrs;
5638 		td_attr = spr_td_events_attrs;
5639 		tsx_attr = spr_tsx_events_attrs;
5640 		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
5641 		x86_pmu.lbr_pt_coexist = true;
5642 		intel_pmu_pebs_data_source_skl(pmem);
5643 		x86_pmu.num_topdown_events = 8;
5644 		x86_pmu.update_topdown_event = icl_update_topdown_event;
5645 		x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
5646 		pr_cont("Sapphire Rapids events, ");
5647 		name = "sapphire_rapids";
5648 		break;
5649 
5650 	default:
5651 		switch (x86_pmu.version) {
5652 		case 1:
5653 			x86_pmu.event_constraints = intel_v1_event_constraints;
5654 			pr_cont("generic architected perfmon v1, ");
5655 			name = "generic_arch_v1";
5656 			break;
5657 		default:
5658 			/*
5659 			 * default constraints for v2 and up
5660 			 */
5661 			x86_pmu.event_constraints = intel_gen_event_constraints;
5662 			pr_cont("generic architected perfmon, ");
5663 			name = "generic_arch_v2+";
5664 			break;
5665 		}
5666 	}
5667 
5668 	snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
5669 
5670 
5671 	group_events_td.attrs  = td_attr;
5672 	group_events_mem.attrs = mem_attr;
5673 	group_events_tsx.attrs = tsx_attr;
5674 	group_format_extra.attrs = extra_attr;
5675 	group_format_extra_skl.attrs = extra_skl_attr;
5676 
5677 	x86_pmu.attr_update = attr_update;
5678 
5679 	if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
5680 		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5681 		     x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
5682 		x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
5683 	}
5684 	x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1;
5685 
5686 	if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
5687 		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5688 		     x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
5689 		x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
5690 	}
5691 
5692 	x86_pmu.intel_ctrl |= (u64)fixed_mask << INTEL_PMC_IDX_FIXED;
5693 
5694 	/* AnyThread may be deprecated on arch perfmon v5 or later */
5695 	if (x86_pmu.intel_cap.anythread_deprecated)
5696 		x86_pmu.format_attrs = intel_arch_formats_attr;
5697 
5698 	if (x86_pmu.event_constraints) {
5699 		/*
5700 		 * event on fixed counter2 (REF_CYCLES) only works on this
5701 		 * counter, so do not extend mask to generic counters
5702 		 */
5703 		for_each_event_constraint(c, x86_pmu.event_constraints) {
5704 			/*
5705 			 * Don't extend the topdown slots and metrics
5706 			 * events to the generic counters.
5707 			 */
5708 			if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
5709 				/*
5710 				 * Disable topdown slots and metrics events,
5711 				 * if slots event is not in CPUID.
5712 				 */
5713 				if (!(INTEL_PMC_MSK_FIXED_SLOTS & x86_pmu.intel_ctrl))
5714 					c->idxmsk64 = 0;
5715 				c->weight = hweight64(c->idxmsk64);
5716 				continue;
5717 			}
5718 
5719 			if (c->cmask == FIXED_EVENT_FLAGS) {
5720 				/* Disabled fixed counters which are not in CPUID */
5721 				c->idxmsk64 &= x86_pmu.intel_ctrl;
5722 
5723 				if (c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES)
5724 					c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
5725 			}
5726 			c->idxmsk64 &=
5727 				~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
5728 			c->weight = hweight64(c->idxmsk64);
5729 		}
5730 	}
5731 
5732 	/*
5733 	 * Access LBR MSR may cause #GP under certain circumstances.
5734 	 * E.g. KVM doesn't support LBR MSR
5735 	 * Check all LBT MSR here.
5736 	 * Disable LBR access if any LBR MSRs can not be accessed.
5737 	 */
5738 	if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
5739 		x86_pmu.lbr_nr = 0;
5740 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
5741 		if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
5742 		      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
5743 			x86_pmu.lbr_nr = 0;
5744 	}
5745 
5746 	if (x86_pmu.lbr_nr)
5747 		pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
5748 
5749 	/*
5750 	 * Access extra MSR may cause #GP under certain circumstances.
5751 	 * E.g. KVM doesn't support offcore event
5752 	 * Check all extra_regs here.
5753 	 */
5754 	if (x86_pmu.extra_regs) {
5755 		for (er = x86_pmu.extra_regs; er->msr; er++) {
5756 			er->extra_msr_access = check_msr(er->msr, 0x11UL);
5757 			/* Disable LBR select mapping */
5758 			if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
5759 				x86_pmu.lbr_sel_map = NULL;
5760 		}
5761 	}
5762 
5763 	/* Support full width counters using alternative MSR range */
5764 	if (x86_pmu.intel_cap.full_width_write) {
5765 		x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
5766 		x86_pmu.perfctr = MSR_IA32_PMC0;
5767 		pr_cont("full-width counters, ");
5768 	}
5769 
5770 	if (x86_pmu.intel_cap.perf_metrics)
5771 		x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
5772 
5773 	return 0;
5774 }
5775 
5776 /*
5777  * HT bug: phase 2 init
5778  * Called once we have valid topology information to check
5779  * whether or not HT is enabled
5780  * If HT is off, then we disable the workaround
5781  */
5782 static __init int fixup_ht_bug(void)
5783 {
5784 	int c;
5785 	/*
5786 	 * problem not present on this CPU model, nothing to do
5787 	 */
5788 	if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
5789 		return 0;
5790 
5791 	if (topology_max_smt_threads() > 1) {
5792 		pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
5793 		return 0;
5794 	}
5795 
5796 	cpus_read_lock();
5797 
5798 	hardlockup_detector_perf_stop();
5799 
5800 	x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
5801 
5802 	x86_pmu.start_scheduling = NULL;
5803 	x86_pmu.commit_scheduling = NULL;
5804 	x86_pmu.stop_scheduling = NULL;
5805 
5806 	hardlockup_detector_perf_restart();
5807 
5808 	for_each_online_cpu(c)
5809 		free_excl_cntrs(&per_cpu(cpu_hw_events, c));
5810 
5811 	cpus_read_unlock();
5812 	pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
5813 	return 0;
5814 }
5815 subsys_initcall(fixup_ht_bug)
5816